dma: edma: Write out and handle MAX_NR_SG at a given time
[linux-2.6.git] / drivers / dma / edma.c
blob4c1c258a5b5474090ad088fe74a60c6948a83910
1 /*
2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
27 #include <linux/platform_data/edma.h>
29 #include "dmaengine.h"
30 #include "virt-dma.h"
33 * This will go away when the private EDMA API is folded
34 * into this driver and the platform device(s) are
35 * instantiated in the arch code. We can only get away
36 * with this simplification because DA8XX may not be built
37 * in the same kernel image with other DaVinci parts. This
38 * avoids having to sprinkle dmaengine driver platform devices
39 * and data throughout all the existing board files.
41 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
42 #define EDMA_CTLRS 2
43 #define EDMA_CHANS 32
44 #else
45 #define EDMA_CTLRS 1
46 #define EDMA_CHANS 64
47 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
49 /* Max of 16 segments per channel to conserve PaRAM slots */
50 #define MAX_NR_SG 16
51 #define EDMA_MAX_SLOTS MAX_NR_SG
52 #define EDMA_DESCRIPTORS 16
54 struct edma_desc {
55 struct virt_dma_desc vdesc;
56 struct list_head node;
57 int absync;
58 int pset_nr;
59 int processed;
60 struct edmacc_param pset[0];
63 struct edma_cc;
65 struct edma_chan {
66 struct virt_dma_chan vchan;
67 struct list_head node;
68 struct edma_desc *edesc;
69 struct edma_cc *ecc;
70 int ch_num;
71 bool alloced;
72 int slot[EDMA_MAX_SLOTS];
73 struct dma_slave_config cfg;
76 struct edma_cc {
77 int ctlr;
78 struct dma_device dma_slave;
79 struct edma_chan slave_chans[EDMA_CHANS];
80 int num_slave_chans;
81 int dummy_slot;
84 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
86 return container_of(d, struct edma_cc, dma_slave);
89 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
91 return container_of(c, struct edma_chan, vchan.chan);
94 static inline struct edma_desc
95 *to_edma_desc(struct dma_async_tx_descriptor *tx)
97 return container_of(tx, struct edma_desc, vdesc.tx);
100 static void edma_desc_free(struct virt_dma_desc *vdesc)
102 kfree(container_of(vdesc, struct edma_desc, vdesc));
105 /* Dispatch a queued descriptor to the controller (caller holds lock) */
106 static void edma_execute(struct edma_chan *echan)
108 struct virt_dma_desc *vdesc;
109 struct edma_desc *edesc;
110 struct device *dev = echan->vchan.chan.device->dev;
111 int i, j, left, nslots;
113 /* If either we processed all psets or we're still not started */
114 if (!echan->edesc ||
115 echan->edesc->pset_nr == echan->edesc->processed) {
116 /* Get next vdesc */
117 vdesc = vchan_next_desc(&echan->vchan);
118 if (!vdesc) {
119 echan->edesc = NULL;
120 return;
122 list_del(&vdesc->node);
123 echan->edesc = to_edma_desc(&vdesc->tx);
126 edesc = echan->edesc;
128 /* Find out how many left */
129 left = edesc->pset_nr - edesc->processed;
130 nslots = min(MAX_NR_SG, left);
132 /* Write descriptor PaRAM set(s) */
133 for (i = 0; i < nslots; i++) {
134 j = i + edesc->processed;
135 edma_write_slot(echan->slot[i], &edesc->pset[j]);
136 dev_dbg(echan->vchan.chan.device->dev,
137 "\n pset[%d]:\n"
138 " chnum\t%d\n"
139 " slot\t%d\n"
140 " opt\t%08x\n"
141 " src\t%08x\n"
142 " dst\t%08x\n"
143 " abcnt\t%08x\n"
144 " ccnt\t%08x\n"
145 " bidx\t%08x\n"
146 " cidx\t%08x\n"
147 " lkrld\t%08x\n",
148 j, echan->ch_num, echan->slot[i],
149 edesc->pset[j].opt,
150 edesc->pset[j].src,
151 edesc->pset[j].dst,
152 edesc->pset[j].a_b_cnt,
153 edesc->pset[j].ccnt,
154 edesc->pset[j].src_dst_bidx,
155 edesc->pset[j].src_dst_cidx,
156 edesc->pset[j].link_bcntrld);
157 /* Link to the previous slot if not the last set */
158 if (i != (nslots - 1))
159 edma_link(echan->slot[i], echan->slot[i+1]);
160 /* Final pset links to the dummy pset */
161 else
162 edma_link(echan->slot[i], echan->ecc->dummy_slot);
165 edesc->processed += nslots;
167 edma_resume(echan->ch_num);
169 if (edesc->processed <= MAX_NR_SG) {
170 dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
171 edma_start(echan->ch_num);
175 static int edma_terminate_all(struct edma_chan *echan)
177 unsigned long flags;
178 LIST_HEAD(head);
180 spin_lock_irqsave(&echan->vchan.lock, flags);
183 * Stop DMA activity: we assume the callback will not be called
184 * after edma_dma() returns (even if it does, it will see
185 * echan->edesc is NULL and exit.)
187 if (echan->edesc) {
188 echan->edesc = NULL;
189 edma_stop(echan->ch_num);
192 vchan_get_all_descriptors(&echan->vchan, &head);
193 spin_unlock_irqrestore(&echan->vchan.lock, flags);
194 vchan_dma_desc_free_list(&echan->vchan, &head);
196 return 0;
199 static int edma_slave_config(struct edma_chan *echan,
200 struct dma_slave_config *cfg)
202 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
203 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
204 return -EINVAL;
206 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
208 return 0;
211 static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
212 unsigned long arg)
214 int ret = 0;
215 struct dma_slave_config *config;
216 struct edma_chan *echan = to_edma_chan(chan);
218 switch (cmd) {
219 case DMA_TERMINATE_ALL:
220 edma_terminate_all(echan);
221 break;
222 case DMA_SLAVE_CONFIG:
223 config = (struct dma_slave_config *)arg;
224 ret = edma_slave_config(echan, config);
225 break;
226 default:
227 ret = -ENOSYS;
230 return ret;
233 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
234 struct dma_chan *chan, struct scatterlist *sgl,
235 unsigned int sg_len, enum dma_transfer_direction direction,
236 unsigned long tx_flags, void *context)
238 struct edma_chan *echan = to_edma_chan(chan);
239 struct device *dev = chan->device->dev;
240 struct edma_desc *edesc;
241 dma_addr_t dev_addr;
242 enum dma_slave_buswidth dev_width;
243 u32 burst;
244 struct scatterlist *sg;
245 int acnt, bcnt, ccnt, src, dst, cidx;
246 int src_bidx, dst_bidx, src_cidx, dst_cidx;
247 int i, nslots;
249 if (unlikely(!echan || !sgl || !sg_len))
250 return NULL;
252 if (direction == DMA_DEV_TO_MEM) {
253 dev_addr = echan->cfg.src_addr;
254 dev_width = echan->cfg.src_addr_width;
255 burst = echan->cfg.src_maxburst;
256 } else if (direction == DMA_MEM_TO_DEV) {
257 dev_addr = echan->cfg.dst_addr;
258 dev_width = echan->cfg.dst_addr_width;
259 burst = echan->cfg.dst_maxburst;
260 } else {
261 dev_err(dev, "%s: bad direction?\n", __func__);
262 return NULL;
265 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
266 dev_err(dev, "Undefined slave buswidth\n");
267 return NULL;
270 if (sg_len > MAX_NR_SG) {
271 dev_err(dev, "Exceeded max SG segments %d > %d\n",
272 sg_len, MAX_NR_SG);
273 return NULL;
276 edesc = kzalloc(sizeof(*edesc) + sg_len *
277 sizeof(edesc->pset[0]), GFP_ATOMIC);
278 if (!edesc) {
279 dev_dbg(dev, "Failed to allocate a descriptor\n");
280 return NULL;
283 edesc->pset_nr = sg_len;
285 /* Allocate a PaRAM slot, if needed */
286 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
288 for (i = 0; i < nslots; i++) {
289 if (echan->slot[i] < 0) {
290 echan->slot[i] =
291 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
292 EDMA_SLOT_ANY);
293 if (echan->slot[i] < 0) {
294 dev_err(dev, "Failed to allocate slot\n");
295 return NULL;
300 /* Configure PaRAM sets for each SG */
301 for_each_sg(sgl, sg, sg_len, i) {
303 acnt = dev_width;
306 * If the maxburst is equal to the fifo width, use
307 * A-synced transfers. This allows for large contiguous
308 * buffer transfers using only one PaRAM set.
310 if (burst == 1) {
311 edesc->absync = false;
312 ccnt = sg_dma_len(sg) / acnt / (SZ_64K - 1);
313 bcnt = sg_dma_len(sg) / acnt - ccnt * (SZ_64K - 1);
314 if (bcnt)
315 ccnt++;
316 else
317 bcnt = SZ_64K - 1;
318 cidx = acnt;
320 * If maxburst is greater than the fifo address_width,
321 * use AB-synced transfers where A count is the fifo
322 * address_width and B count is the maxburst. In this
323 * case, we are limited to transfers of C count frames
324 * of (address_width * maxburst) where C count is limited
325 * to SZ_64K-1. This places an upper bound on the length
326 * of an SG segment that can be handled.
328 } else {
329 edesc->absync = true;
330 bcnt = burst;
331 ccnt = sg_dma_len(sg) / (acnt * bcnt);
332 if (ccnt > (SZ_64K - 1)) {
333 dev_err(dev, "Exceeded max SG segment size\n");
334 return NULL;
336 cidx = acnt * bcnt;
339 if (direction == DMA_MEM_TO_DEV) {
340 src = sg_dma_address(sg);
341 dst = dev_addr;
342 src_bidx = acnt;
343 src_cidx = cidx;
344 dst_bidx = 0;
345 dst_cidx = 0;
346 } else {
347 src = dev_addr;
348 dst = sg_dma_address(sg);
349 src_bidx = 0;
350 src_cidx = 0;
351 dst_bidx = acnt;
352 dst_cidx = cidx;
355 edesc->pset[i].opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
356 /* Configure A or AB synchronized transfers */
357 if (edesc->absync)
358 edesc->pset[i].opt |= SYNCDIM;
360 /* If this is the last in a current SG set of transactions,
361 enable interrupts so that next set is processed */
362 if (!((i+1) % MAX_NR_SG))
363 edesc->pset[i].opt |= TCINTEN;
365 /* If this is the last set, enable completion interrupt flag */
366 if (i == sg_len - 1)
367 edesc->pset[i].opt |= TCINTEN;
369 edesc->pset[i].src = src;
370 edesc->pset[i].dst = dst;
372 edesc->pset[i].src_dst_bidx = (dst_bidx << 16) | src_bidx;
373 edesc->pset[i].src_dst_cidx = (dst_cidx << 16) | src_cidx;
375 edesc->pset[i].a_b_cnt = bcnt << 16 | acnt;
376 edesc->pset[i].ccnt = ccnt;
377 edesc->pset[i].link_bcntrld = 0xffffffff;
381 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
384 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
386 struct edma_chan *echan = data;
387 struct device *dev = echan->vchan.chan.device->dev;
388 struct edma_desc *edesc;
389 unsigned long flags;
391 /* Pause the channel */
392 edma_pause(echan->ch_num);
394 switch (ch_status) {
395 case DMA_COMPLETE:
396 spin_lock_irqsave(&echan->vchan.lock, flags);
398 edesc = echan->edesc;
399 if (edesc) {
400 if (edesc->processed == edesc->pset_nr) {
401 dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
402 edma_stop(echan->ch_num);
403 vchan_cookie_complete(&edesc->vdesc);
404 } else {
405 dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
408 edma_execute(echan);
411 spin_unlock_irqrestore(&echan->vchan.lock, flags);
413 break;
414 case DMA_CC_ERROR:
415 dev_dbg(dev, "transfer error on channel %d\n", ch_num);
416 break;
417 default:
418 break;
422 /* Alloc channel resources */
423 static int edma_alloc_chan_resources(struct dma_chan *chan)
425 struct edma_chan *echan = to_edma_chan(chan);
426 struct device *dev = chan->device->dev;
427 int ret;
428 int a_ch_num;
429 LIST_HEAD(descs);
431 a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
432 chan, EVENTQ_DEFAULT);
434 if (a_ch_num < 0) {
435 ret = -ENODEV;
436 goto err_no_chan;
439 if (a_ch_num != echan->ch_num) {
440 dev_err(dev, "failed to allocate requested channel %u:%u\n",
441 EDMA_CTLR(echan->ch_num),
442 EDMA_CHAN_SLOT(echan->ch_num));
443 ret = -ENODEV;
444 goto err_wrong_chan;
447 echan->alloced = true;
448 echan->slot[0] = echan->ch_num;
450 dev_info(dev, "allocated channel for %u:%u\n",
451 EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
453 return 0;
455 err_wrong_chan:
456 edma_free_channel(a_ch_num);
457 err_no_chan:
458 return ret;
461 /* Free channel resources */
462 static void edma_free_chan_resources(struct dma_chan *chan)
464 struct edma_chan *echan = to_edma_chan(chan);
465 struct device *dev = chan->device->dev;
466 int i;
468 /* Terminate transfers */
469 edma_stop(echan->ch_num);
471 vchan_free_chan_resources(&echan->vchan);
473 /* Free EDMA PaRAM slots */
474 for (i = 1; i < EDMA_MAX_SLOTS; i++) {
475 if (echan->slot[i] >= 0) {
476 edma_free_slot(echan->slot[i]);
477 echan->slot[i] = -1;
481 /* Free EDMA channel */
482 if (echan->alloced) {
483 edma_free_channel(echan->ch_num);
484 echan->alloced = false;
487 dev_info(dev, "freeing channel for %u\n", echan->ch_num);
490 /* Send pending descriptor to hardware */
491 static void edma_issue_pending(struct dma_chan *chan)
493 struct edma_chan *echan = to_edma_chan(chan);
494 unsigned long flags;
496 spin_lock_irqsave(&echan->vchan.lock, flags);
497 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
498 edma_execute(echan);
499 spin_unlock_irqrestore(&echan->vchan.lock, flags);
502 static size_t edma_desc_size(struct edma_desc *edesc)
504 int i;
505 size_t size;
507 if (edesc->absync)
508 for (size = i = 0; i < edesc->pset_nr; i++)
509 size += (edesc->pset[i].a_b_cnt & 0xffff) *
510 (edesc->pset[i].a_b_cnt >> 16) *
511 edesc->pset[i].ccnt;
512 else
513 size = (edesc->pset[0].a_b_cnt & 0xffff) *
514 (edesc->pset[0].a_b_cnt >> 16) +
515 (edesc->pset[0].a_b_cnt & 0xffff) *
516 (SZ_64K - 1) * edesc->pset[0].ccnt;
518 return size;
521 /* Check request completion status */
522 static enum dma_status edma_tx_status(struct dma_chan *chan,
523 dma_cookie_t cookie,
524 struct dma_tx_state *txstate)
526 struct edma_chan *echan = to_edma_chan(chan);
527 struct virt_dma_desc *vdesc;
528 enum dma_status ret;
529 unsigned long flags;
531 ret = dma_cookie_status(chan, cookie, txstate);
532 if (ret == DMA_SUCCESS || !txstate)
533 return ret;
535 spin_lock_irqsave(&echan->vchan.lock, flags);
536 vdesc = vchan_find_desc(&echan->vchan, cookie);
537 if (vdesc) {
538 txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
539 } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
540 struct edma_desc *edesc = echan->edesc;
541 txstate->residue = edma_desc_size(edesc);
543 spin_unlock_irqrestore(&echan->vchan.lock, flags);
545 return ret;
548 static void __init edma_chan_init(struct edma_cc *ecc,
549 struct dma_device *dma,
550 struct edma_chan *echans)
552 int i, j;
554 for (i = 0; i < EDMA_CHANS; i++) {
555 struct edma_chan *echan = &echans[i];
556 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
557 echan->ecc = ecc;
558 echan->vchan.desc_free = edma_desc_free;
560 vchan_init(&echan->vchan, dma);
562 INIT_LIST_HEAD(&echan->node);
563 for (j = 0; j < EDMA_MAX_SLOTS; j++)
564 echan->slot[j] = -1;
568 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
569 struct device *dev)
571 dma->device_prep_slave_sg = edma_prep_slave_sg;
572 dma->device_alloc_chan_resources = edma_alloc_chan_resources;
573 dma->device_free_chan_resources = edma_free_chan_resources;
574 dma->device_issue_pending = edma_issue_pending;
575 dma->device_tx_status = edma_tx_status;
576 dma->device_control = edma_control;
577 dma->dev = dev;
579 INIT_LIST_HEAD(&dma->channels);
582 static int edma_probe(struct platform_device *pdev)
584 struct edma_cc *ecc;
585 int ret;
587 ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
588 if (!ecc) {
589 dev_err(&pdev->dev, "Can't allocate controller\n");
590 return -ENOMEM;
593 ecc->ctlr = pdev->id;
594 ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
595 if (ecc->dummy_slot < 0) {
596 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
597 return -EIO;
600 dma_cap_zero(ecc->dma_slave.cap_mask);
601 dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
603 edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
605 edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
607 ret = dma_async_device_register(&ecc->dma_slave);
608 if (ret)
609 goto err_reg1;
611 platform_set_drvdata(pdev, ecc);
613 dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
615 return 0;
617 err_reg1:
618 edma_free_slot(ecc->dummy_slot);
619 return ret;
622 static int edma_remove(struct platform_device *pdev)
624 struct device *dev = &pdev->dev;
625 struct edma_cc *ecc = dev_get_drvdata(dev);
627 dma_async_device_unregister(&ecc->dma_slave);
628 edma_free_slot(ecc->dummy_slot);
630 return 0;
633 static struct platform_driver edma_driver = {
634 .probe = edma_probe,
635 .remove = edma_remove,
636 .driver = {
637 .name = "edma-dma-engine",
638 .owner = THIS_MODULE,
642 bool edma_filter_fn(struct dma_chan *chan, void *param)
644 if (chan->device->dev->driver == &edma_driver.driver) {
645 struct edma_chan *echan = to_edma_chan(chan);
646 unsigned ch_req = *(unsigned *)param;
647 return ch_req == echan->ch_num;
649 return false;
651 EXPORT_SYMBOL(edma_filter_fn);
653 static struct platform_device *pdev0, *pdev1;
655 static const struct platform_device_info edma_dev_info0 = {
656 .name = "edma-dma-engine",
657 .id = 0,
660 static const struct platform_device_info edma_dev_info1 = {
661 .name = "edma-dma-engine",
662 .id = 1,
665 static int edma_init(void)
667 int ret = platform_driver_register(&edma_driver);
669 if (ret == 0) {
670 pdev0 = platform_device_register_full(&edma_dev_info0);
671 if (IS_ERR(pdev0)) {
672 platform_driver_unregister(&edma_driver);
673 ret = PTR_ERR(pdev0);
674 goto out;
676 pdev0->dev.dma_mask = &pdev0->dev.coherent_dma_mask;
677 pdev0->dev.coherent_dma_mask = DMA_BIT_MASK(32);
680 if (EDMA_CTLRS == 2) {
681 pdev1 = platform_device_register_full(&edma_dev_info1);
682 if (IS_ERR(pdev1)) {
683 platform_driver_unregister(&edma_driver);
684 platform_device_unregister(pdev0);
685 ret = PTR_ERR(pdev1);
687 pdev1->dev.dma_mask = &pdev1->dev.coherent_dma_mask;
688 pdev1->dev.coherent_dma_mask = DMA_BIT_MASK(32);
691 out:
692 return ret;
694 subsys_initcall(edma_init);
696 static void __exit edma_exit(void)
698 platform_device_unregister(pdev0);
699 if (pdev1)
700 platform_device_unregister(pdev1);
701 platform_driver_unregister(&edma_driver);
703 module_exit(edma_exit);
705 MODULE_AUTHOR("Matt Porter <mporter@ti.com>");
706 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
707 MODULE_LICENSE("GPL v2");