perf tests: Add framework for automated perf_event_attr tests
[linux-2.6.git] / kernel / sched / rt.c
blob418feb01344edb7e59f11643e153e2f1866cc4ed
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #include "sched.h"
8 #include <linux/slab.h>
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 struct rt_bandwidth def_rt_bandwidth;
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
16 struct rt_bandwidth *rt_b =
17 container_of(timer, struct rt_bandwidth, rt_period_timer);
18 ktime_t now;
19 int overrun;
20 int idle = 0;
22 for (;;) {
23 now = hrtimer_cb_get_time(timer);
24 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
26 if (!overrun)
27 break;
29 idle = do_sched_rt_period_timer(rt_b, overrun);
32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
37 rt_b->rt_period = ns_to_ktime(period);
38 rt_b->rt_runtime = runtime;
40 raw_spin_lock_init(&rt_b->rt_runtime_lock);
42 hrtimer_init(&rt_b->rt_period_timer,
43 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 return;
52 if (hrtimer_active(&rt_b->rt_period_timer))
53 return;
55 raw_spin_lock(&rt_b->rt_runtime_lock);
56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
62 struct rt_prio_array *array;
63 int i;
65 array = &rt_rq->active;
66 for (i = 0; i < MAX_RT_PRIO; i++) {
67 INIT_LIST_HEAD(array->queue + i);
68 __clear_bit(i, array->bitmap);
70 /* delimiter for bitsearch: */
71 __set_bit(MAX_RT_PRIO, array->bitmap);
73 #if defined CONFIG_SMP
74 rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 rt_rq->highest_prio.next = MAX_RT_PRIO;
76 rt_rq->rt_nr_migratory = 0;
77 rt_rq->overloaded = 0;
78 plist_head_init(&rt_rq->pushable_tasks);
79 #endif
81 rt_rq->rt_time = 0;
82 rt_rq->rt_throttled = 0;
83 rt_rq->rt_runtime = 0;
84 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
90 hrtimer_cancel(&rt_b->rt_period_timer);
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
97 #ifdef CONFIG_SCHED_DEBUG
98 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100 return container_of(rt_se, struct task_struct, rt);
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
105 return rt_rq->rq;
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
110 return rt_se->rt_rq;
113 void free_rt_sched_group(struct task_group *tg)
115 int i;
117 if (tg->rt_se)
118 destroy_rt_bandwidth(&tg->rt_bandwidth);
120 for_each_possible_cpu(i) {
121 if (tg->rt_rq)
122 kfree(tg->rt_rq[i]);
123 if (tg->rt_se)
124 kfree(tg->rt_se[i]);
127 kfree(tg->rt_rq);
128 kfree(tg->rt_se);
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 struct sched_rt_entity *rt_se, int cpu,
133 struct sched_rt_entity *parent)
135 struct rq *rq = cpu_rq(cpu);
137 rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 rt_rq->rt_nr_boosted = 0;
139 rt_rq->rq = rq;
140 rt_rq->tg = tg;
142 tg->rt_rq[cpu] = rt_rq;
143 tg->rt_se[cpu] = rt_se;
145 if (!rt_se)
146 return;
148 if (!parent)
149 rt_se->rt_rq = &rq->rt;
150 else
151 rt_se->rt_rq = parent->my_q;
153 rt_se->my_q = rt_rq;
154 rt_se->parent = parent;
155 INIT_LIST_HEAD(&rt_se->run_list);
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
160 struct rt_rq *rt_rq;
161 struct sched_rt_entity *rt_se;
162 int i;
164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 if (!tg->rt_rq)
166 goto err;
167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 if (!tg->rt_se)
169 goto err;
171 init_rt_bandwidth(&tg->rt_bandwidth,
172 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
174 for_each_possible_cpu(i) {
175 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 GFP_KERNEL, cpu_to_node(i));
177 if (!rt_rq)
178 goto err;
180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 GFP_KERNEL, cpu_to_node(i));
182 if (!rt_se)
183 goto err_free_rq;
185 init_rt_rq(rt_rq, cpu_rq(i));
186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 return 1;
192 err_free_rq:
193 kfree(rt_rq);
194 err:
195 return 0;
198 #else /* CONFIG_RT_GROUP_SCHED */
200 #define rt_entity_is_task(rt_se) (1)
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
204 return container_of(rt_se, struct task_struct, rt);
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
209 return container_of(rt_rq, struct rq, rt);
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
214 struct task_struct *p = rt_task_of(rt_se);
215 struct rq *rq = task_rq(p);
217 return &rq->rt;
220 void free_rt_sched_group(struct task_group *tg) { }
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
224 return 1;
226 #endif /* CONFIG_RT_GROUP_SCHED */
228 #ifdef CONFIG_SMP
230 static inline int rt_overloaded(struct rq *rq)
232 return atomic_read(&rq->rd->rto_count);
235 static inline void rt_set_overload(struct rq *rq)
237 if (!rq->online)
238 return;
240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
242 * Make sure the mask is visible before we set
243 * the overload count. That is checked to determine
244 * if we should look at the mask. It would be a shame
245 * if we looked at the mask, but the mask was not
246 * updated yet.
248 wmb();
249 atomic_inc(&rq->rd->rto_count);
252 static inline void rt_clear_overload(struct rq *rq)
254 if (!rq->online)
255 return;
257 /* the order here really doesn't matter */
258 atomic_dec(&rq->rd->rto_count);
259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
262 static void update_rt_migration(struct rt_rq *rt_rq)
264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 if (!rt_rq->overloaded) {
266 rt_set_overload(rq_of_rt_rq(rt_rq));
267 rt_rq->overloaded = 1;
269 } else if (rt_rq->overloaded) {
270 rt_clear_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 0;
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
277 struct task_struct *p;
279 if (!rt_entity_is_task(rt_se))
280 return;
282 p = rt_task_of(rt_se);
283 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
285 rt_rq->rt_nr_total++;
286 if (p->nr_cpus_allowed > 1)
287 rt_rq->rt_nr_migratory++;
289 update_rt_migration(rt_rq);
292 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
294 struct task_struct *p;
296 if (!rt_entity_is_task(rt_se))
297 return;
299 p = rt_task_of(rt_se);
300 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
302 rt_rq->rt_nr_total--;
303 if (p->nr_cpus_allowed > 1)
304 rt_rq->rt_nr_migratory--;
306 update_rt_migration(rt_rq);
309 static inline int has_pushable_tasks(struct rq *rq)
311 return !plist_head_empty(&rq->rt.pushable_tasks);
314 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
316 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
317 plist_node_init(&p->pushable_tasks, p->prio);
318 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
320 /* Update the highest prio pushable task */
321 if (p->prio < rq->rt.highest_prio.next)
322 rq->rt.highest_prio.next = p->prio;
325 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
327 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
329 /* Update the new highest prio pushable task */
330 if (has_pushable_tasks(rq)) {
331 p = plist_first_entry(&rq->rt.pushable_tasks,
332 struct task_struct, pushable_tasks);
333 rq->rt.highest_prio.next = p->prio;
334 } else
335 rq->rt.highest_prio.next = MAX_RT_PRIO;
338 #else
340 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
344 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
348 static inline
349 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
353 static inline
354 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
358 #endif /* CONFIG_SMP */
360 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
362 return !list_empty(&rt_se->run_list);
365 #ifdef CONFIG_RT_GROUP_SCHED
367 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
369 if (!rt_rq->tg)
370 return RUNTIME_INF;
372 return rt_rq->rt_runtime;
375 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
377 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
380 typedef struct task_group *rt_rq_iter_t;
382 static inline struct task_group *next_task_group(struct task_group *tg)
384 do {
385 tg = list_entry_rcu(tg->list.next,
386 typeof(struct task_group), list);
387 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
389 if (&tg->list == &task_groups)
390 tg = NULL;
392 return tg;
395 #define for_each_rt_rq(rt_rq, iter, rq) \
396 for (iter = container_of(&task_groups, typeof(*iter), list); \
397 (iter = next_task_group(iter)) && \
398 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
400 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
402 list_add_rcu(&rt_rq->leaf_rt_rq_list,
403 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
406 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
408 list_del_rcu(&rt_rq->leaf_rt_rq_list);
411 #define for_each_leaf_rt_rq(rt_rq, rq) \
412 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
414 #define for_each_sched_rt_entity(rt_se) \
415 for (; rt_se; rt_se = rt_se->parent)
417 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
419 return rt_se->my_q;
422 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
423 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
425 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
427 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
428 struct sched_rt_entity *rt_se;
430 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
432 rt_se = rt_rq->tg->rt_se[cpu];
434 if (rt_rq->rt_nr_running) {
435 if (rt_se && !on_rt_rq(rt_se))
436 enqueue_rt_entity(rt_se, false);
437 if (rt_rq->highest_prio.curr < curr->prio)
438 resched_task(curr);
442 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
444 struct sched_rt_entity *rt_se;
445 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
447 rt_se = rt_rq->tg->rt_se[cpu];
449 if (rt_se && on_rt_rq(rt_se))
450 dequeue_rt_entity(rt_se);
453 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
455 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
458 static int rt_se_boosted(struct sched_rt_entity *rt_se)
460 struct rt_rq *rt_rq = group_rt_rq(rt_se);
461 struct task_struct *p;
463 if (rt_rq)
464 return !!rt_rq->rt_nr_boosted;
466 p = rt_task_of(rt_se);
467 return p->prio != p->normal_prio;
470 #ifdef CONFIG_SMP
471 static inline const struct cpumask *sched_rt_period_mask(void)
473 return cpu_rq(smp_processor_id())->rd->span;
475 #else
476 static inline const struct cpumask *sched_rt_period_mask(void)
478 return cpu_online_mask;
480 #endif
482 static inline
483 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
485 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
488 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
490 return &rt_rq->tg->rt_bandwidth;
493 #else /* !CONFIG_RT_GROUP_SCHED */
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
497 return rt_rq->rt_runtime;
500 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
502 return ktime_to_ns(def_rt_bandwidth.rt_period);
505 typedef struct rt_rq *rt_rq_iter_t;
507 #define for_each_rt_rq(rt_rq, iter, rq) \
508 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
510 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
514 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
518 #define for_each_leaf_rt_rq(rt_rq, rq) \
519 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
521 #define for_each_sched_rt_entity(rt_se) \
522 for (; rt_se; rt_se = NULL)
524 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
526 return NULL;
529 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
531 if (rt_rq->rt_nr_running)
532 resched_task(rq_of_rt_rq(rt_rq)->curr);
535 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
539 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
541 return rt_rq->rt_throttled;
544 static inline const struct cpumask *sched_rt_period_mask(void)
546 return cpu_online_mask;
549 static inline
550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
552 return &cpu_rq(cpu)->rt;
555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
557 return &def_rt_bandwidth;
560 #endif /* CONFIG_RT_GROUP_SCHED */
562 #ifdef CONFIG_SMP
564 * We ran out of runtime, see if we can borrow some from our neighbours.
566 static int do_balance_runtime(struct rt_rq *rt_rq)
568 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
569 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
570 int i, weight, more = 0;
571 u64 rt_period;
573 weight = cpumask_weight(rd->span);
575 raw_spin_lock(&rt_b->rt_runtime_lock);
576 rt_period = ktime_to_ns(rt_b->rt_period);
577 for_each_cpu(i, rd->span) {
578 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
579 s64 diff;
581 if (iter == rt_rq)
582 continue;
584 raw_spin_lock(&iter->rt_runtime_lock);
586 * Either all rqs have inf runtime and there's nothing to steal
587 * or __disable_runtime() below sets a specific rq to inf to
588 * indicate its been disabled and disalow stealing.
590 if (iter->rt_runtime == RUNTIME_INF)
591 goto next;
594 * From runqueues with spare time, take 1/n part of their
595 * spare time, but no more than our period.
597 diff = iter->rt_runtime - iter->rt_time;
598 if (diff > 0) {
599 diff = div_u64((u64)diff, weight);
600 if (rt_rq->rt_runtime + diff > rt_period)
601 diff = rt_period - rt_rq->rt_runtime;
602 iter->rt_runtime -= diff;
603 rt_rq->rt_runtime += diff;
604 more = 1;
605 if (rt_rq->rt_runtime == rt_period) {
606 raw_spin_unlock(&iter->rt_runtime_lock);
607 break;
610 next:
611 raw_spin_unlock(&iter->rt_runtime_lock);
613 raw_spin_unlock(&rt_b->rt_runtime_lock);
615 return more;
619 * Ensure this RQ takes back all the runtime it lend to its neighbours.
621 static void __disable_runtime(struct rq *rq)
623 struct root_domain *rd = rq->rd;
624 rt_rq_iter_t iter;
625 struct rt_rq *rt_rq;
627 if (unlikely(!scheduler_running))
628 return;
630 for_each_rt_rq(rt_rq, iter, rq) {
631 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
632 s64 want;
633 int i;
635 raw_spin_lock(&rt_b->rt_runtime_lock);
636 raw_spin_lock(&rt_rq->rt_runtime_lock);
638 * Either we're all inf and nobody needs to borrow, or we're
639 * already disabled and thus have nothing to do, or we have
640 * exactly the right amount of runtime to take out.
642 if (rt_rq->rt_runtime == RUNTIME_INF ||
643 rt_rq->rt_runtime == rt_b->rt_runtime)
644 goto balanced;
645 raw_spin_unlock(&rt_rq->rt_runtime_lock);
648 * Calculate the difference between what we started out with
649 * and what we current have, that's the amount of runtime
650 * we lend and now have to reclaim.
652 want = rt_b->rt_runtime - rt_rq->rt_runtime;
655 * Greedy reclaim, take back as much as we can.
657 for_each_cpu(i, rd->span) {
658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 s64 diff;
662 * Can't reclaim from ourselves or disabled runqueues.
664 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
665 continue;
667 raw_spin_lock(&iter->rt_runtime_lock);
668 if (want > 0) {
669 diff = min_t(s64, iter->rt_runtime, want);
670 iter->rt_runtime -= diff;
671 want -= diff;
672 } else {
673 iter->rt_runtime -= want;
674 want -= want;
676 raw_spin_unlock(&iter->rt_runtime_lock);
678 if (!want)
679 break;
682 raw_spin_lock(&rt_rq->rt_runtime_lock);
684 * We cannot be left wanting - that would mean some runtime
685 * leaked out of the system.
687 BUG_ON(want);
688 balanced:
690 * Disable all the borrow logic by pretending we have inf
691 * runtime - in which case borrowing doesn't make sense.
693 rt_rq->rt_runtime = RUNTIME_INF;
694 rt_rq->rt_throttled = 0;
695 raw_spin_unlock(&rt_rq->rt_runtime_lock);
696 raw_spin_unlock(&rt_b->rt_runtime_lock);
700 static void disable_runtime(struct rq *rq)
702 unsigned long flags;
704 raw_spin_lock_irqsave(&rq->lock, flags);
705 __disable_runtime(rq);
706 raw_spin_unlock_irqrestore(&rq->lock, flags);
709 static void __enable_runtime(struct rq *rq)
711 rt_rq_iter_t iter;
712 struct rt_rq *rt_rq;
714 if (unlikely(!scheduler_running))
715 return;
718 * Reset each runqueue's bandwidth settings
720 for_each_rt_rq(rt_rq, iter, rq) {
721 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
723 raw_spin_lock(&rt_b->rt_runtime_lock);
724 raw_spin_lock(&rt_rq->rt_runtime_lock);
725 rt_rq->rt_runtime = rt_b->rt_runtime;
726 rt_rq->rt_time = 0;
727 rt_rq->rt_throttled = 0;
728 raw_spin_unlock(&rt_rq->rt_runtime_lock);
729 raw_spin_unlock(&rt_b->rt_runtime_lock);
733 static void enable_runtime(struct rq *rq)
735 unsigned long flags;
737 raw_spin_lock_irqsave(&rq->lock, flags);
738 __enable_runtime(rq);
739 raw_spin_unlock_irqrestore(&rq->lock, flags);
742 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
744 int cpu = (int)(long)hcpu;
746 switch (action) {
747 case CPU_DOWN_PREPARE:
748 case CPU_DOWN_PREPARE_FROZEN:
749 disable_runtime(cpu_rq(cpu));
750 return NOTIFY_OK;
752 case CPU_DOWN_FAILED:
753 case CPU_DOWN_FAILED_FROZEN:
754 case CPU_ONLINE:
755 case CPU_ONLINE_FROZEN:
756 enable_runtime(cpu_rq(cpu));
757 return NOTIFY_OK;
759 default:
760 return NOTIFY_DONE;
764 static int balance_runtime(struct rt_rq *rt_rq)
766 int more = 0;
768 if (!sched_feat(RT_RUNTIME_SHARE))
769 return more;
771 if (rt_rq->rt_time > rt_rq->rt_runtime) {
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 more = do_balance_runtime(rt_rq);
774 raw_spin_lock(&rt_rq->rt_runtime_lock);
777 return more;
779 #else /* !CONFIG_SMP */
780 static inline int balance_runtime(struct rt_rq *rt_rq)
782 return 0;
784 #endif /* CONFIG_SMP */
786 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
788 int i, idle = 1, throttled = 0;
789 const struct cpumask *span;
791 span = sched_rt_period_mask();
792 #ifdef CONFIG_RT_GROUP_SCHED
794 * FIXME: isolated CPUs should really leave the root task group,
795 * whether they are isolcpus or were isolated via cpusets, lest
796 * the timer run on a CPU which does not service all runqueues,
797 * potentially leaving other CPUs indefinitely throttled. If
798 * isolation is really required, the user will turn the throttle
799 * off to kill the perturbations it causes anyway. Meanwhile,
800 * this maintains functionality for boot and/or troubleshooting.
802 if (rt_b == &root_task_group.rt_bandwidth)
803 span = cpu_online_mask;
804 #endif
805 for_each_cpu(i, span) {
806 int enqueue = 0;
807 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
808 struct rq *rq = rq_of_rt_rq(rt_rq);
810 raw_spin_lock(&rq->lock);
811 if (rt_rq->rt_time) {
812 u64 runtime;
814 raw_spin_lock(&rt_rq->rt_runtime_lock);
815 if (rt_rq->rt_throttled)
816 balance_runtime(rt_rq);
817 runtime = rt_rq->rt_runtime;
818 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
819 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
820 rt_rq->rt_throttled = 0;
821 enqueue = 1;
824 * Force a clock update if the CPU was idle,
825 * lest wakeup -> unthrottle time accumulate.
827 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
828 rq->skip_clock_update = -1;
830 if (rt_rq->rt_time || rt_rq->rt_nr_running)
831 idle = 0;
832 raw_spin_unlock(&rt_rq->rt_runtime_lock);
833 } else if (rt_rq->rt_nr_running) {
834 idle = 0;
835 if (!rt_rq_throttled(rt_rq))
836 enqueue = 1;
838 if (rt_rq->rt_throttled)
839 throttled = 1;
841 if (enqueue)
842 sched_rt_rq_enqueue(rt_rq);
843 raw_spin_unlock(&rq->lock);
846 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
847 return 1;
849 return idle;
852 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
854 #ifdef CONFIG_RT_GROUP_SCHED
855 struct rt_rq *rt_rq = group_rt_rq(rt_se);
857 if (rt_rq)
858 return rt_rq->highest_prio.curr;
859 #endif
861 return rt_task_of(rt_se)->prio;
864 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
866 u64 runtime = sched_rt_runtime(rt_rq);
868 if (rt_rq->rt_throttled)
869 return rt_rq_throttled(rt_rq);
871 if (runtime >= sched_rt_period(rt_rq))
872 return 0;
874 balance_runtime(rt_rq);
875 runtime = sched_rt_runtime(rt_rq);
876 if (runtime == RUNTIME_INF)
877 return 0;
879 if (rt_rq->rt_time > runtime) {
880 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
883 * Don't actually throttle groups that have no runtime assigned
884 * but accrue some time due to boosting.
886 if (likely(rt_b->rt_runtime)) {
887 static bool once = false;
889 rt_rq->rt_throttled = 1;
891 if (!once) {
892 once = true;
893 printk_sched("sched: RT throttling activated\n");
895 } else {
897 * In case we did anyway, make it go away,
898 * replenishment is a joke, since it will replenish us
899 * with exactly 0 ns.
901 rt_rq->rt_time = 0;
904 if (rt_rq_throttled(rt_rq)) {
905 sched_rt_rq_dequeue(rt_rq);
906 return 1;
910 return 0;
914 * Update the current task's runtime statistics. Skip current tasks that
915 * are not in our scheduling class.
917 static void update_curr_rt(struct rq *rq)
919 struct task_struct *curr = rq->curr;
920 struct sched_rt_entity *rt_se = &curr->rt;
921 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
922 u64 delta_exec;
924 if (curr->sched_class != &rt_sched_class)
925 return;
927 delta_exec = rq->clock_task - curr->se.exec_start;
928 if (unlikely((s64)delta_exec < 0))
929 delta_exec = 0;
931 schedstat_set(curr->se.statistics.exec_max,
932 max(curr->se.statistics.exec_max, delta_exec));
934 curr->se.sum_exec_runtime += delta_exec;
935 account_group_exec_runtime(curr, delta_exec);
937 curr->se.exec_start = rq->clock_task;
938 cpuacct_charge(curr, delta_exec);
940 sched_rt_avg_update(rq, delta_exec);
942 if (!rt_bandwidth_enabled())
943 return;
945 for_each_sched_rt_entity(rt_se) {
946 rt_rq = rt_rq_of_se(rt_se);
948 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
949 raw_spin_lock(&rt_rq->rt_runtime_lock);
950 rt_rq->rt_time += delta_exec;
951 if (sched_rt_runtime_exceeded(rt_rq))
952 resched_task(curr);
953 raw_spin_unlock(&rt_rq->rt_runtime_lock);
958 #if defined CONFIG_SMP
960 static void
961 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
963 struct rq *rq = rq_of_rt_rq(rt_rq);
965 if (rq->online && prio < prev_prio)
966 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
969 static void
970 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
972 struct rq *rq = rq_of_rt_rq(rt_rq);
974 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
975 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
978 #else /* CONFIG_SMP */
980 static inline
981 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
982 static inline
983 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
985 #endif /* CONFIG_SMP */
987 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
988 static void
989 inc_rt_prio(struct rt_rq *rt_rq, int prio)
991 int prev_prio = rt_rq->highest_prio.curr;
993 if (prio < prev_prio)
994 rt_rq->highest_prio.curr = prio;
996 inc_rt_prio_smp(rt_rq, prio, prev_prio);
999 static void
1000 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1002 int prev_prio = rt_rq->highest_prio.curr;
1004 if (rt_rq->rt_nr_running) {
1006 WARN_ON(prio < prev_prio);
1009 * This may have been our highest task, and therefore
1010 * we may have some recomputation to do
1012 if (prio == prev_prio) {
1013 struct rt_prio_array *array = &rt_rq->active;
1015 rt_rq->highest_prio.curr =
1016 sched_find_first_bit(array->bitmap);
1019 } else
1020 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1022 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1025 #else
1027 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1028 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1030 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1032 #ifdef CONFIG_RT_GROUP_SCHED
1034 static void
1035 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1037 if (rt_se_boosted(rt_se))
1038 rt_rq->rt_nr_boosted++;
1040 if (rt_rq->tg)
1041 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1044 static void
1045 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1047 if (rt_se_boosted(rt_se))
1048 rt_rq->rt_nr_boosted--;
1050 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1053 #else /* CONFIG_RT_GROUP_SCHED */
1055 static void
1056 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1058 start_rt_bandwidth(&def_rt_bandwidth);
1061 static inline
1062 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1064 #endif /* CONFIG_RT_GROUP_SCHED */
1066 static inline
1067 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1069 int prio = rt_se_prio(rt_se);
1071 WARN_ON(!rt_prio(prio));
1072 rt_rq->rt_nr_running++;
1074 inc_rt_prio(rt_rq, prio);
1075 inc_rt_migration(rt_se, rt_rq);
1076 inc_rt_group(rt_se, rt_rq);
1079 static inline
1080 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1082 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1083 WARN_ON(!rt_rq->rt_nr_running);
1084 rt_rq->rt_nr_running--;
1086 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1087 dec_rt_migration(rt_se, rt_rq);
1088 dec_rt_group(rt_se, rt_rq);
1091 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1093 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1094 struct rt_prio_array *array = &rt_rq->active;
1095 struct rt_rq *group_rq = group_rt_rq(rt_se);
1096 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1099 * Don't enqueue the group if its throttled, or when empty.
1100 * The latter is a consequence of the former when a child group
1101 * get throttled and the current group doesn't have any other
1102 * active members.
1104 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1105 return;
1107 if (!rt_rq->rt_nr_running)
1108 list_add_leaf_rt_rq(rt_rq);
1110 if (head)
1111 list_add(&rt_se->run_list, queue);
1112 else
1113 list_add_tail(&rt_se->run_list, queue);
1114 __set_bit(rt_se_prio(rt_se), array->bitmap);
1116 inc_rt_tasks(rt_se, rt_rq);
1119 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1121 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1122 struct rt_prio_array *array = &rt_rq->active;
1124 list_del_init(&rt_se->run_list);
1125 if (list_empty(array->queue + rt_se_prio(rt_se)))
1126 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1128 dec_rt_tasks(rt_se, rt_rq);
1129 if (!rt_rq->rt_nr_running)
1130 list_del_leaf_rt_rq(rt_rq);
1134 * Because the prio of an upper entry depends on the lower
1135 * entries, we must remove entries top - down.
1137 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1139 struct sched_rt_entity *back = NULL;
1141 for_each_sched_rt_entity(rt_se) {
1142 rt_se->back = back;
1143 back = rt_se;
1146 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1147 if (on_rt_rq(rt_se))
1148 __dequeue_rt_entity(rt_se);
1152 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1154 dequeue_rt_stack(rt_se);
1155 for_each_sched_rt_entity(rt_se)
1156 __enqueue_rt_entity(rt_se, head);
1159 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1161 dequeue_rt_stack(rt_se);
1163 for_each_sched_rt_entity(rt_se) {
1164 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1166 if (rt_rq && rt_rq->rt_nr_running)
1167 __enqueue_rt_entity(rt_se, false);
1172 * Adding/removing a task to/from a priority array:
1174 static void
1175 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1177 struct sched_rt_entity *rt_se = &p->rt;
1179 if (flags & ENQUEUE_WAKEUP)
1180 rt_se->timeout = 0;
1182 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1184 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1185 enqueue_pushable_task(rq, p);
1187 inc_nr_running(rq);
1190 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1192 struct sched_rt_entity *rt_se = &p->rt;
1194 update_curr_rt(rq);
1195 dequeue_rt_entity(rt_se);
1197 dequeue_pushable_task(rq, p);
1199 dec_nr_running(rq);
1203 * Put task to the head or the end of the run list without the overhead of
1204 * dequeue followed by enqueue.
1206 static void
1207 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1209 if (on_rt_rq(rt_se)) {
1210 struct rt_prio_array *array = &rt_rq->active;
1211 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1213 if (head)
1214 list_move(&rt_se->run_list, queue);
1215 else
1216 list_move_tail(&rt_se->run_list, queue);
1220 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1222 struct sched_rt_entity *rt_se = &p->rt;
1223 struct rt_rq *rt_rq;
1225 for_each_sched_rt_entity(rt_se) {
1226 rt_rq = rt_rq_of_se(rt_se);
1227 requeue_rt_entity(rt_rq, rt_se, head);
1231 static void yield_task_rt(struct rq *rq)
1233 requeue_task_rt(rq, rq->curr, 0);
1236 #ifdef CONFIG_SMP
1237 static int find_lowest_rq(struct task_struct *task);
1239 static int
1240 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1242 struct task_struct *curr;
1243 struct rq *rq;
1244 int cpu;
1246 cpu = task_cpu(p);
1248 if (p->nr_cpus_allowed == 1)
1249 goto out;
1251 /* For anything but wake ups, just return the task_cpu */
1252 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1253 goto out;
1255 rq = cpu_rq(cpu);
1257 rcu_read_lock();
1258 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1261 * If the current task on @p's runqueue is an RT task, then
1262 * try to see if we can wake this RT task up on another
1263 * runqueue. Otherwise simply start this RT task
1264 * on its current runqueue.
1266 * We want to avoid overloading runqueues. If the woken
1267 * task is a higher priority, then it will stay on this CPU
1268 * and the lower prio task should be moved to another CPU.
1269 * Even though this will probably make the lower prio task
1270 * lose its cache, we do not want to bounce a higher task
1271 * around just because it gave up its CPU, perhaps for a
1272 * lock?
1274 * For equal prio tasks, we just let the scheduler sort it out.
1276 * Otherwise, just let it ride on the affined RQ and the
1277 * post-schedule router will push the preempted task away
1279 * This test is optimistic, if we get it wrong the load-balancer
1280 * will have to sort it out.
1282 if (curr && unlikely(rt_task(curr)) &&
1283 (curr->nr_cpus_allowed < 2 ||
1284 curr->prio <= p->prio) &&
1285 (p->nr_cpus_allowed > 1)) {
1286 int target = find_lowest_rq(p);
1288 if (target != -1)
1289 cpu = target;
1291 rcu_read_unlock();
1293 out:
1294 return cpu;
1297 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1299 if (rq->curr->nr_cpus_allowed == 1)
1300 return;
1302 if (p->nr_cpus_allowed != 1
1303 && cpupri_find(&rq->rd->cpupri, p, NULL))
1304 return;
1306 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1307 return;
1310 * There appears to be other cpus that can accept
1311 * current and none to run 'p', so lets reschedule
1312 * to try and push current away:
1314 requeue_task_rt(rq, p, 1);
1315 resched_task(rq->curr);
1318 #endif /* CONFIG_SMP */
1321 * Preempt the current task with a newly woken task if needed:
1323 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1325 if (p->prio < rq->curr->prio) {
1326 resched_task(rq->curr);
1327 return;
1330 #ifdef CONFIG_SMP
1332 * If:
1334 * - the newly woken task is of equal priority to the current task
1335 * - the newly woken task is non-migratable while current is migratable
1336 * - current will be preempted on the next reschedule
1338 * we should check to see if current can readily move to a different
1339 * cpu. If so, we will reschedule to allow the push logic to try
1340 * to move current somewhere else, making room for our non-migratable
1341 * task.
1343 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1344 check_preempt_equal_prio(rq, p);
1345 #endif
1348 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1349 struct rt_rq *rt_rq)
1351 struct rt_prio_array *array = &rt_rq->active;
1352 struct sched_rt_entity *next = NULL;
1353 struct list_head *queue;
1354 int idx;
1356 idx = sched_find_first_bit(array->bitmap);
1357 BUG_ON(idx >= MAX_RT_PRIO);
1359 queue = array->queue + idx;
1360 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1362 return next;
1365 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1367 struct sched_rt_entity *rt_se;
1368 struct task_struct *p;
1369 struct rt_rq *rt_rq;
1371 rt_rq = &rq->rt;
1373 if (!rt_rq->rt_nr_running)
1374 return NULL;
1376 if (rt_rq_throttled(rt_rq))
1377 return NULL;
1379 do {
1380 rt_se = pick_next_rt_entity(rq, rt_rq);
1381 BUG_ON(!rt_se);
1382 rt_rq = group_rt_rq(rt_se);
1383 } while (rt_rq);
1385 p = rt_task_of(rt_se);
1386 p->se.exec_start = rq->clock_task;
1388 return p;
1391 static struct task_struct *pick_next_task_rt(struct rq *rq)
1393 struct task_struct *p = _pick_next_task_rt(rq);
1395 /* The running task is never eligible for pushing */
1396 if (p)
1397 dequeue_pushable_task(rq, p);
1399 #ifdef CONFIG_SMP
1401 * We detect this state here so that we can avoid taking the RQ
1402 * lock again later if there is no need to push
1404 rq->post_schedule = has_pushable_tasks(rq);
1405 #endif
1407 return p;
1410 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1412 update_curr_rt(rq);
1415 * The previous task needs to be made eligible for pushing
1416 * if it is still active
1418 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1419 enqueue_pushable_task(rq, p);
1422 #ifdef CONFIG_SMP
1424 /* Only try algorithms three times */
1425 #define RT_MAX_TRIES 3
1427 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1429 if (!task_running(rq, p) &&
1430 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1431 (p->nr_cpus_allowed > 1))
1432 return 1;
1433 return 0;
1436 /* Return the second highest RT task, NULL otherwise */
1437 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1439 struct task_struct *next = NULL;
1440 struct sched_rt_entity *rt_se;
1441 struct rt_prio_array *array;
1442 struct rt_rq *rt_rq;
1443 int idx;
1445 for_each_leaf_rt_rq(rt_rq, rq) {
1446 array = &rt_rq->active;
1447 idx = sched_find_first_bit(array->bitmap);
1448 next_idx:
1449 if (idx >= MAX_RT_PRIO)
1450 continue;
1451 if (next && next->prio <= idx)
1452 continue;
1453 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1454 struct task_struct *p;
1456 if (!rt_entity_is_task(rt_se))
1457 continue;
1459 p = rt_task_of(rt_se);
1460 if (pick_rt_task(rq, p, cpu)) {
1461 next = p;
1462 break;
1465 if (!next) {
1466 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1467 goto next_idx;
1471 return next;
1474 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1476 static int find_lowest_rq(struct task_struct *task)
1478 struct sched_domain *sd;
1479 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1480 int this_cpu = smp_processor_id();
1481 int cpu = task_cpu(task);
1483 /* Make sure the mask is initialized first */
1484 if (unlikely(!lowest_mask))
1485 return -1;
1487 if (task->nr_cpus_allowed == 1)
1488 return -1; /* No other targets possible */
1490 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1491 return -1; /* No targets found */
1494 * At this point we have built a mask of cpus representing the
1495 * lowest priority tasks in the system. Now we want to elect
1496 * the best one based on our affinity and topology.
1498 * We prioritize the last cpu that the task executed on since
1499 * it is most likely cache-hot in that location.
1501 if (cpumask_test_cpu(cpu, lowest_mask))
1502 return cpu;
1505 * Otherwise, we consult the sched_domains span maps to figure
1506 * out which cpu is logically closest to our hot cache data.
1508 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1509 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1511 rcu_read_lock();
1512 for_each_domain(cpu, sd) {
1513 if (sd->flags & SD_WAKE_AFFINE) {
1514 int best_cpu;
1517 * "this_cpu" is cheaper to preempt than a
1518 * remote processor.
1520 if (this_cpu != -1 &&
1521 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1522 rcu_read_unlock();
1523 return this_cpu;
1526 best_cpu = cpumask_first_and(lowest_mask,
1527 sched_domain_span(sd));
1528 if (best_cpu < nr_cpu_ids) {
1529 rcu_read_unlock();
1530 return best_cpu;
1534 rcu_read_unlock();
1537 * And finally, if there were no matches within the domains
1538 * just give the caller *something* to work with from the compatible
1539 * locations.
1541 if (this_cpu != -1)
1542 return this_cpu;
1544 cpu = cpumask_any(lowest_mask);
1545 if (cpu < nr_cpu_ids)
1546 return cpu;
1547 return -1;
1550 /* Will lock the rq it finds */
1551 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1553 struct rq *lowest_rq = NULL;
1554 int tries;
1555 int cpu;
1557 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1558 cpu = find_lowest_rq(task);
1560 if ((cpu == -1) || (cpu == rq->cpu))
1561 break;
1563 lowest_rq = cpu_rq(cpu);
1565 /* if the prio of this runqueue changed, try again */
1566 if (double_lock_balance(rq, lowest_rq)) {
1568 * We had to unlock the run queue. In
1569 * the mean time, task could have
1570 * migrated already or had its affinity changed.
1571 * Also make sure that it wasn't scheduled on its rq.
1573 if (unlikely(task_rq(task) != rq ||
1574 !cpumask_test_cpu(lowest_rq->cpu,
1575 tsk_cpus_allowed(task)) ||
1576 task_running(rq, task) ||
1577 !task->on_rq)) {
1579 double_unlock_balance(rq, lowest_rq);
1580 lowest_rq = NULL;
1581 break;
1585 /* If this rq is still suitable use it. */
1586 if (lowest_rq->rt.highest_prio.curr > task->prio)
1587 break;
1589 /* try again */
1590 double_unlock_balance(rq, lowest_rq);
1591 lowest_rq = NULL;
1594 return lowest_rq;
1597 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1599 struct task_struct *p;
1601 if (!has_pushable_tasks(rq))
1602 return NULL;
1604 p = plist_first_entry(&rq->rt.pushable_tasks,
1605 struct task_struct, pushable_tasks);
1607 BUG_ON(rq->cpu != task_cpu(p));
1608 BUG_ON(task_current(rq, p));
1609 BUG_ON(p->nr_cpus_allowed <= 1);
1611 BUG_ON(!p->on_rq);
1612 BUG_ON(!rt_task(p));
1614 return p;
1618 * If the current CPU has more than one RT task, see if the non
1619 * running task can migrate over to a CPU that is running a task
1620 * of lesser priority.
1622 static int push_rt_task(struct rq *rq)
1624 struct task_struct *next_task;
1625 struct rq *lowest_rq;
1626 int ret = 0;
1628 if (!rq->rt.overloaded)
1629 return 0;
1631 next_task = pick_next_pushable_task(rq);
1632 if (!next_task)
1633 return 0;
1635 retry:
1636 if (unlikely(next_task == rq->curr)) {
1637 WARN_ON(1);
1638 return 0;
1642 * It's possible that the next_task slipped in of
1643 * higher priority than current. If that's the case
1644 * just reschedule current.
1646 if (unlikely(next_task->prio < rq->curr->prio)) {
1647 resched_task(rq->curr);
1648 return 0;
1651 /* We might release rq lock */
1652 get_task_struct(next_task);
1654 /* find_lock_lowest_rq locks the rq if found */
1655 lowest_rq = find_lock_lowest_rq(next_task, rq);
1656 if (!lowest_rq) {
1657 struct task_struct *task;
1659 * find_lock_lowest_rq releases rq->lock
1660 * so it is possible that next_task has migrated.
1662 * We need to make sure that the task is still on the same
1663 * run-queue and is also still the next task eligible for
1664 * pushing.
1666 task = pick_next_pushable_task(rq);
1667 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1669 * The task hasn't migrated, and is still the next
1670 * eligible task, but we failed to find a run-queue
1671 * to push it to. Do not retry in this case, since
1672 * other cpus will pull from us when ready.
1674 goto out;
1677 if (!task)
1678 /* No more tasks, just exit */
1679 goto out;
1682 * Something has shifted, try again.
1684 put_task_struct(next_task);
1685 next_task = task;
1686 goto retry;
1689 deactivate_task(rq, next_task, 0);
1690 set_task_cpu(next_task, lowest_rq->cpu);
1691 activate_task(lowest_rq, next_task, 0);
1692 ret = 1;
1694 resched_task(lowest_rq->curr);
1696 double_unlock_balance(rq, lowest_rq);
1698 out:
1699 put_task_struct(next_task);
1701 return ret;
1704 static void push_rt_tasks(struct rq *rq)
1706 /* push_rt_task will return true if it moved an RT */
1707 while (push_rt_task(rq))
1711 static int pull_rt_task(struct rq *this_rq)
1713 int this_cpu = this_rq->cpu, ret = 0, cpu;
1714 struct task_struct *p;
1715 struct rq *src_rq;
1717 if (likely(!rt_overloaded(this_rq)))
1718 return 0;
1720 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1721 if (this_cpu == cpu)
1722 continue;
1724 src_rq = cpu_rq(cpu);
1727 * Don't bother taking the src_rq->lock if the next highest
1728 * task is known to be lower-priority than our current task.
1729 * This may look racy, but if this value is about to go
1730 * logically higher, the src_rq will push this task away.
1731 * And if its going logically lower, we do not care
1733 if (src_rq->rt.highest_prio.next >=
1734 this_rq->rt.highest_prio.curr)
1735 continue;
1738 * We can potentially drop this_rq's lock in
1739 * double_lock_balance, and another CPU could
1740 * alter this_rq
1742 double_lock_balance(this_rq, src_rq);
1745 * Are there still pullable RT tasks?
1747 if (src_rq->rt.rt_nr_running <= 1)
1748 goto skip;
1750 p = pick_next_highest_task_rt(src_rq, this_cpu);
1753 * Do we have an RT task that preempts
1754 * the to-be-scheduled task?
1756 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1757 WARN_ON(p == src_rq->curr);
1758 WARN_ON(!p->on_rq);
1761 * There's a chance that p is higher in priority
1762 * than what's currently running on its cpu.
1763 * This is just that p is wakeing up and hasn't
1764 * had a chance to schedule. We only pull
1765 * p if it is lower in priority than the
1766 * current task on the run queue
1768 if (p->prio < src_rq->curr->prio)
1769 goto skip;
1771 ret = 1;
1773 deactivate_task(src_rq, p, 0);
1774 set_task_cpu(p, this_cpu);
1775 activate_task(this_rq, p, 0);
1777 * We continue with the search, just in
1778 * case there's an even higher prio task
1779 * in another runqueue. (low likelihood
1780 * but possible)
1783 skip:
1784 double_unlock_balance(this_rq, src_rq);
1787 return ret;
1790 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1792 /* Try to pull RT tasks here if we lower this rq's prio */
1793 if (rq->rt.highest_prio.curr > prev->prio)
1794 pull_rt_task(rq);
1797 static void post_schedule_rt(struct rq *rq)
1799 push_rt_tasks(rq);
1803 * If we are not running and we are not going to reschedule soon, we should
1804 * try to push tasks away now
1806 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1808 if (!task_running(rq, p) &&
1809 !test_tsk_need_resched(rq->curr) &&
1810 has_pushable_tasks(rq) &&
1811 p->nr_cpus_allowed > 1 &&
1812 rt_task(rq->curr) &&
1813 (rq->curr->nr_cpus_allowed < 2 ||
1814 rq->curr->prio <= p->prio))
1815 push_rt_tasks(rq);
1818 static void set_cpus_allowed_rt(struct task_struct *p,
1819 const struct cpumask *new_mask)
1821 struct rq *rq;
1822 int weight;
1824 BUG_ON(!rt_task(p));
1826 if (!p->on_rq)
1827 return;
1829 weight = cpumask_weight(new_mask);
1832 * Only update if the process changes its state from whether it
1833 * can migrate or not.
1835 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1836 return;
1838 rq = task_rq(p);
1841 * The process used to be able to migrate OR it can now migrate
1843 if (weight <= 1) {
1844 if (!task_current(rq, p))
1845 dequeue_pushable_task(rq, p);
1846 BUG_ON(!rq->rt.rt_nr_migratory);
1847 rq->rt.rt_nr_migratory--;
1848 } else {
1849 if (!task_current(rq, p))
1850 enqueue_pushable_task(rq, p);
1851 rq->rt.rt_nr_migratory++;
1854 update_rt_migration(&rq->rt);
1857 /* Assumes rq->lock is held */
1858 static void rq_online_rt(struct rq *rq)
1860 if (rq->rt.overloaded)
1861 rt_set_overload(rq);
1863 __enable_runtime(rq);
1865 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1868 /* Assumes rq->lock is held */
1869 static void rq_offline_rt(struct rq *rq)
1871 if (rq->rt.overloaded)
1872 rt_clear_overload(rq);
1874 __disable_runtime(rq);
1876 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1880 * When switch from the rt queue, we bring ourselves to a position
1881 * that we might want to pull RT tasks from other runqueues.
1883 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1886 * If there are other RT tasks then we will reschedule
1887 * and the scheduling of the other RT tasks will handle
1888 * the balancing. But if we are the last RT task
1889 * we may need to handle the pulling of RT tasks
1890 * now.
1892 if (p->on_rq && !rq->rt.rt_nr_running)
1893 pull_rt_task(rq);
1896 void init_sched_rt_class(void)
1898 unsigned int i;
1900 for_each_possible_cpu(i) {
1901 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1902 GFP_KERNEL, cpu_to_node(i));
1905 #endif /* CONFIG_SMP */
1908 * When switching a task to RT, we may overload the runqueue
1909 * with RT tasks. In this case we try to push them off to
1910 * other runqueues.
1912 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1914 int check_resched = 1;
1917 * If we are already running, then there's nothing
1918 * that needs to be done. But if we are not running
1919 * we may need to preempt the current running task.
1920 * If that current running task is also an RT task
1921 * then see if we can move to another run queue.
1923 if (p->on_rq && rq->curr != p) {
1924 #ifdef CONFIG_SMP
1925 if (rq->rt.overloaded && push_rt_task(rq) &&
1926 /* Don't resched if we changed runqueues */
1927 rq != task_rq(p))
1928 check_resched = 0;
1929 #endif /* CONFIG_SMP */
1930 if (check_resched && p->prio < rq->curr->prio)
1931 resched_task(rq->curr);
1936 * Priority of the task has changed. This may cause
1937 * us to initiate a push or pull.
1939 static void
1940 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1942 if (!p->on_rq)
1943 return;
1945 if (rq->curr == p) {
1946 #ifdef CONFIG_SMP
1948 * If our priority decreases while running, we
1949 * may need to pull tasks to this runqueue.
1951 if (oldprio < p->prio)
1952 pull_rt_task(rq);
1954 * If there's a higher priority task waiting to run
1955 * then reschedule. Note, the above pull_rt_task
1956 * can release the rq lock and p could migrate.
1957 * Only reschedule if p is still on the same runqueue.
1959 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1960 resched_task(p);
1961 #else
1962 /* For UP simply resched on drop of prio */
1963 if (oldprio < p->prio)
1964 resched_task(p);
1965 #endif /* CONFIG_SMP */
1966 } else {
1968 * This task is not running, but if it is
1969 * greater than the current running task
1970 * then reschedule.
1972 if (p->prio < rq->curr->prio)
1973 resched_task(rq->curr);
1977 static void watchdog(struct rq *rq, struct task_struct *p)
1979 unsigned long soft, hard;
1981 /* max may change after cur was read, this will be fixed next tick */
1982 soft = task_rlimit(p, RLIMIT_RTTIME);
1983 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1985 if (soft != RLIM_INFINITY) {
1986 unsigned long next;
1988 p->rt.timeout++;
1989 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1990 if (p->rt.timeout > next)
1991 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1995 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1997 struct sched_rt_entity *rt_se = &p->rt;
1999 update_curr_rt(rq);
2001 watchdog(rq, p);
2004 * RR tasks need a special form of timeslice management.
2005 * FIFO tasks have no timeslices.
2007 if (p->policy != SCHED_RR)
2008 return;
2010 if (--p->rt.time_slice)
2011 return;
2013 p->rt.time_slice = RR_TIMESLICE;
2016 * Requeue to the end of queue if we (and all of our ancestors) are the
2017 * only element on the queue
2019 for_each_sched_rt_entity(rt_se) {
2020 if (rt_se->run_list.prev != rt_se->run_list.next) {
2021 requeue_task_rt(rq, p, 0);
2022 set_tsk_need_resched(p);
2023 return;
2028 static void set_curr_task_rt(struct rq *rq)
2030 struct task_struct *p = rq->curr;
2032 p->se.exec_start = rq->clock_task;
2034 /* The running task is never eligible for pushing */
2035 dequeue_pushable_task(rq, p);
2038 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2041 * Time slice is 0 for SCHED_FIFO tasks
2043 if (task->policy == SCHED_RR)
2044 return RR_TIMESLICE;
2045 else
2046 return 0;
2049 const struct sched_class rt_sched_class = {
2050 .next = &fair_sched_class,
2051 .enqueue_task = enqueue_task_rt,
2052 .dequeue_task = dequeue_task_rt,
2053 .yield_task = yield_task_rt,
2055 .check_preempt_curr = check_preempt_curr_rt,
2057 .pick_next_task = pick_next_task_rt,
2058 .put_prev_task = put_prev_task_rt,
2060 #ifdef CONFIG_SMP
2061 .select_task_rq = select_task_rq_rt,
2063 .set_cpus_allowed = set_cpus_allowed_rt,
2064 .rq_online = rq_online_rt,
2065 .rq_offline = rq_offline_rt,
2066 .pre_schedule = pre_schedule_rt,
2067 .post_schedule = post_schedule_rt,
2068 .task_woken = task_woken_rt,
2069 .switched_from = switched_from_rt,
2070 #endif
2072 .set_curr_task = set_curr_task_rt,
2073 .task_tick = task_tick_rt,
2075 .get_rr_interval = get_rr_interval_rt,
2077 .prio_changed = prio_changed_rt,
2078 .switched_to = switched_to_rt,
2081 #ifdef CONFIG_SCHED_DEBUG
2082 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2084 void print_rt_stats(struct seq_file *m, int cpu)
2086 rt_rq_iter_t iter;
2087 struct rt_rq *rt_rq;
2089 rcu_read_lock();
2090 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2091 print_rt_rq(m, cpu, rt_rq);
2092 rcu_read_unlock();
2094 #endif /* CONFIG_SCHED_DEBUG */