ipv6: add support of equal cost multipath (ECMP)
[linux-2.6.git] / mm / sparse.c
blobfac95f2888f2d1fbe923fd83ff7d43786ac89c58
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
18 * Permanent SPARSEMEM data:
20 * 1) mem_section - memory sections, mem_map's for valid memory
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 ____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 ____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
43 int page_to_nid(const struct page *page)
45 return section_to_node_table[page_to_section(page)];
47 EXPORT_SYMBOL(page_to_nid);
49 static void set_section_nid(unsigned long section_nr, int nid)
51 section_to_node_table[section_nr] = nid;
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
57 #endif
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
68 section = kzalloc_node(array_size, GFP_KERNEL, nid);
69 else
70 section = kzalloc(array_size, GFP_KERNEL);
71 } else {
72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
75 return section;
78 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
80 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 struct mem_section *section;
82 int ret = 0;
84 if (mem_section[root])
85 return -EEXIST;
87 section = sparse_index_alloc(nid);
88 if (!section)
89 return -ENOMEM;
91 mem_section[root] = section;
93 return ret;
95 #else /* !SPARSEMEM_EXTREME */
96 static inline int sparse_index_init(unsigned long section_nr, int nid)
98 return 0;
100 #endif
103 * Although written for the SPARSEMEM_EXTREME case, this happens
104 * to also work for the flat array case because
105 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 int __section_nr(struct mem_section* ms)
109 unsigned long root_nr;
110 struct mem_section* root;
112 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
113 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
114 if (!root)
115 continue;
117 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
118 break;
121 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
127 * During early boot, before section_mem_map is used for an actual
128 * mem_map, we use section_mem_map to store the section's NUMA
129 * node. This keeps us from having to use another data structure. The
130 * node information is cleared just before we store the real mem_map.
132 static inline unsigned long sparse_encode_early_nid(int nid)
134 return (nid << SECTION_NID_SHIFT);
137 static inline int sparse_early_nid(struct mem_section *section)
139 return (section->section_mem_map >> SECTION_NID_SHIFT);
142 /* Validate the physical addressing limitations of the model */
143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
144 unsigned long *end_pfn)
146 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
149 * Sanity checks - do not allow an architecture to pass
150 * in larger pfns than the maximum scope of sparsemem:
152 if (*start_pfn > max_sparsemem_pfn) {
153 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
154 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155 *start_pfn, *end_pfn, max_sparsemem_pfn);
156 WARN_ON_ONCE(1);
157 *start_pfn = max_sparsemem_pfn;
158 *end_pfn = max_sparsemem_pfn;
159 } else if (*end_pfn > max_sparsemem_pfn) {
160 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
161 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162 *start_pfn, *end_pfn, max_sparsemem_pfn);
163 WARN_ON_ONCE(1);
164 *end_pfn = max_sparsemem_pfn;
168 /* Record a memory area against a node. */
169 void __init memory_present(int nid, unsigned long start, unsigned long end)
171 unsigned long pfn;
173 start &= PAGE_SECTION_MASK;
174 mminit_validate_memmodel_limits(&start, &end);
175 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
176 unsigned long section = pfn_to_section_nr(pfn);
177 struct mem_section *ms;
179 sparse_index_init(section, nid);
180 set_section_nid(section, nid);
182 ms = __nr_to_section(section);
183 if (!ms->section_mem_map)
184 ms->section_mem_map = sparse_encode_early_nid(nid) |
185 SECTION_MARKED_PRESENT;
190 * Only used by the i386 NUMA architecures, but relatively
191 * generic code.
193 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
194 unsigned long end_pfn)
196 unsigned long pfn;
197 unsigned long nr_pages = 0;
199 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
200 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
201 if (nid != early_pfn_to_nid(pfn))
202 continue;
204 if (pfn_present(pfn))
205 nr_pages += PAGES_PER_SECTION;
208 return nr_pages * sizeof(struct page);
212 * Subtle, we encode the real pfn into the mem_map such that
213 * the identity pfn - section_mem_map will return the actual
214 * physical page frame number.
216 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
222 * Decode mem_map from the coded memmap
224 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226 /* mask off the extra low bits of information */
227 coded_mem_map &= SECTION_MAP_MASK;
228 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
231 static int __meminit sparse_init_one_section(struct mem_section *ms,
232 unsigned long pnum, struct page *mem_map,
233 unsigned long *pageblock_bitmap)
235 if (!present_section(ms))
236 return -EINVAL;
238 ms->section_mem_map &= ~SECTION_MAP_MASK;
239 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
240 SECTION_HAS_MEM_MAP;
241 ms->pageblock_flags = pageblock_bitmap;
243 return 1;
246 unsigned long usemap_size(void)
248 unsigned long size_bytes;
249 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
250 size_bytes = roundup(size_bytes, sizeof(unsigned long));
251 return size_bytes;
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long *__kmalloc_section_usemap(void)
257 return kmalloc(usemap_size(), GFP_KERNEL);
259 #endif /* CONFIG_MEMORY_HOTPLUG */
261 #ifdef CONFIG_MEMORY_HOTREMOVE
262 static unsigned long * __init
263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
264 unsigned long size)
266 unsigned long goal, limit;
267 unsigned long *p;
268 int nid;
270 * A page may contain usemaps for other sections preventing the
271 * page being freed and making a section unremovable while
272 * other sections referencing the usemap retmain active. Similarly,
273 * a pgdat can prevent a section being removed. If section A
274 * contains a pgdat and section B contains the usemap, both
275 * sections become inter-dependent. This allocates usemaps
276 * from the same section as the pgdat where possible to avoid
277 * this problem.
279 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
280 limit = goal + (1UL << PA_SECTION_SHIFT);
281 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
282 again:
283 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
284 SMP_CACHE_BYTES, goal, limit);
285 if (!p && limit) {
286 limit = 0;
287 goto again;
289 return p;
292 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
294 unsigned long usemap_snr, pgdat_snr;
295 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
296 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
297 struct pglist_data *pgdat = NODE_DATA(nid);
298 int usemap_nid;
300 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
301 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
302 if (usemap_snr == pgdat_snr)
303 return;
305 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
306 /* skip redundant message */
307 return;
309 old_usemap_snr = usemap_snr;
310 old_pgdat_snr = pgdat_snr;
312 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
313 if (usemap_nid != nid) {
314 printk(KERN_INFO
315 "node %d must be removed before remove section %ld\n",
316 nid, usemap_snr);
317 return;
320 * There is a circular dependency.
321 * Some platforms allow un-removable section because they will just
322 * gather other removable sections for dynamic partitioning.
323 * Just notify un-removable section's number here.
325 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
326 pgdat_snr, nid);
327 printk(KERN_CONT
328 " have a circular dependency on usemap and pgdat allocations\n");
330 #else
331 static unsigned long * __init
332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
333 unsigned long size)
335 return alloc_bootmem_node_nopanic(pgdat, size);
338 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341 #endif /* CONFIG_MEMORY_HOTREMOVE */
343 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
344 unsigned long pnum_begin,
345 unsigned long pnum_end,
346 unsigned long usemap_count, int nodeid)
348 void *usemap;
349 unsigned long pnum;
350 int size = usemap_size();
352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353 size * usemap_count);
354 if (!usemap) {
355 printk(KERN_WARNING "%s: allocation failed\n", __func__);
356 return;
359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 if (!present_section_nr(pnum))
361 continue;
362 usemap_map[pnum] = usemap;
363 usemap += size;
364 check_usemap_section_nr(nodeid, usemap_map[pnum]);
368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
371 struct page *map;
372 unsigned long size;
374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 if (map)
376 return map;
378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
381 return map;
383 void __init sparse_mem_maps_populate_node(struct page **map_map,
384 unsigned long pnum_begin,
385 unsigned long pnum_end,
386 unsigned long map_count, int nodeid)
388 void *map;
389 unsigned long pnum;
390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
392 map = alloc_remap(nodeid, size * map_count);
393 if (map) {
394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 if (!present_section_nr(pnum))
396 continue;
397 map_map[pnum] = map;
398 map += size;
400 return;
403 size = PAGE_ALIGN(size);
404 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
406 if (map) {
407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408 if (!present_section_nr(pnum))
409 continue;
410 map_map[pnum] = map;
411 map += size;
413 return;
416 /* fallback */
417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
418 struct mem_section *ms;
420 if (!present_section_nr(pnum))
421 continue;
422 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
423 if (map_map[pnum])
424 continue;
425 ms = __nr_to_section(pnum);
426 printk(KERN_ERR "%s: sparsemem memory map backing failed "
427 "some memory will not be available.\n", __func__);
428 ms->section_mem_map = 0;
431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
434 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
435 unsigned long pnum_begin,
436 unsigned long pnum_end,
437 unsigned long map_count, int nodeid)
439 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
440 map_count, nodeid);
442 #else
443 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
445 struct page *map;
446 struct mem_section *ms = __nr_to_section(pnum);
447 int nid = sparse_early_nid(ms);
449 map = sparse_mem_map_populate(pnum, nid);
450 if (map)
451 return map;
453 printk(KERN_ERR "%s: sparsemem memory map backing failed "
454 "some memory will not be available.\n", __func__);
455 ms->section_mem_map = 0;
456 return NULL;
458 #endif
460 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
465 * Allocate the accumulated non-linear sections, allocate a mem_map
466 * for each and record the physical to section mapping.
468 void __init sparse_init(void)
470 unsigned long pnum;
471 struct page *map;
472 unsigned long *usemap;
473 unsigned long **usemap_map;
474 int size;
475 int nodeid_begin = 0;
476 unsigned long pnum_begin = 0;
477 unsigned long usemap_count;
478 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
479 unsigned long map_count;
480 int size2;
481 struct page **map_map;
482 #endif
484 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
485 set_pageblock_order();
488 * map is using big page (aka 2M in x86 64 bit)
489 * usemap is less one page (aka 24 bytes)
490 * so alloc 2M (with 2M align) and 24 bytes in turn will
491 * make next 2M slip to one more 2M later.
492 * then in big system, the memory will have a lot of holes...
493 * here try to allocate 2M pages continuously.
495 * powerpc need to call sparse_init_one_section right after each
496 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
498 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
499 usemap_map = alloc_bootmem(size);
500 if (!usemap_map)
501 panic("can not allocate usemap_map\n");
503 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
504 struct mem_section *ms;
506 if (!present_section_nr(pnum))
507 continue;
508 ms = __nr_to_section(pnum);
509 nodeid_begin = sparse_early_nid(ms);
510 pnum_begin = pnum;
511 break;
513 usemap_count = 1;
514 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
515 struct mem_section *ms;
516 int nodeid;
518 if (!present_section_nr(pnum))
519 continue;
520 ms = __nr_to_section(pnum);
521 nodeid = sparse_early_nid(ms);
522 if (nodeid == nodeid_begin) {
523 usemap_count++;
524 continue;
526 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
527 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
528 usemap_count, nodeid_begin);
529 /* new start, update count etc*/
530 nodeid_begin = nodeid;
531 pnum_begin = pnum;
532 usemap_count = 1;
534 /* ok, last chunk */
535 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
536 usemap_count, nodeid_begin);
538 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
539 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
540 map_map = alloc_bootmem(size2);
541 if (!map_map)
542 panic("can not allocate map_map\n");
544 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
545 struct mem_section *ms;
547 if (!present_section_nr(pnum))
548 continue;
549 ms = __nr_to_section(pnum);
550 nodeid_begin = sparse_early_nid(ms);
551 pnum_begin = pnum;
552 break;
554 map_count = 1;
555 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
556 struct mem_section *ms;
557 int nodeid;
559 if (!present_section_nr(pnum))
560 continue;
561 ms = __nr_to_section(pnum);
562 nodeid = sparse_early_nid(ms);
563 if (nodeid == nodeid_begin) {
564 map_count++;
565 continue;
567 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
568 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
569 map_count, nodeid_begin);
570 /* new start, update count etc*/
571 nodeid_begin = nodeid;
572 pnum_begin = pnum;
573 map_count = 1;
575 /* ok, last chunk */
576 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
577 map_count, nodeid_begin);
578 #endif
580 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
581 if (!present_section_nr(pnum))
582 continue;
584 usemap = usemap_map[pnum];
585 if (!usemap)
586 continue;
588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
589 map = map_map[pnum];
590 #else
591 map = sparse_early_mem_map_alloc(pnum);
592 #endif
593 if (!map)
594 continue;
596 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
597 usemap);
600 vmemmap_populate_print_last();
602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603 free_bootmem(__pa(map_map), size2);
604 #endif
605 free_bootmem(__pa(usemap_map), size);
608 #ifdef CONFIG_MEMORY_HOTPLUG
609 #ifdef CONFIG_SPARSEMEM_VMEMMAP
610 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
611 unsigned long nr_pages)
613 /* This will make the necessary allocations eventually. */
614 return sparse_mem_map_populate(pnum, nid);
616 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
618 return; /* XXX: Not implemented yet */
620 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
623 #else
624 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
626 struct page *page, *ret;
627 unsigned long memmap_size = sizeof(struct page) * nr_pages;
629 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
630 if (page)
631 goto got_map_page;
633 ret = vmalloc(memmap_size);
634 if (ret)
635 goto got_map_ptr;
637 return NULL;
638 got_map_page:
639 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
640 got_map_ptr:
641 memset(ret, 0, memmap_size);
643 return ret;
646 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
647 unsigned long nr_pages)
649 return __kmalloc_section_memmap(nr_pages);
652 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
654 if (is_vmalloc_addr(memmap))
655 vfree(memmap);
656 else
657 free_pages((unsigned long)memmap,
658 get_order(sizeof(struct page) * nr_pages));
661 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
663 unsigned long maps_section_nr, removing_section_nr, i;
664 unsigned long magic;
666 for (i = 0; i < nr_pages; i++, page++) {
667 magic = (unsigned long) page->lru.next;
669 BUG_ON(magic == NODE_INFO);
671 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
672 removing_section_nr = page->private;
675 * When this function is called, the removing section is
676 * logical offlined state. This means all pages are isolated
677 * from page allocator. If removing section's memmap is placed
678 * on the same section, it must not be freed.
679 * If it is freed, page allocator may allocate it which will
680 * be removed physically soon.
682 if (maps_section_nr != removing_section_nr)
683 put_page_bootmem(page);
686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
688 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
690 struct page *usemap_page;
691 unsigned long nr_pages;
693 if (!usemap)
694 return;
696 usemap_page = virt_to_page(usemap);
698 * Check to see if allocation came from hot-plug-add
700 if (PageSlab(usemap_page)) {
701 kfree(usemap);
702 if (memmap)
703 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
704 return;
708 * The usemap came from bootmem. This is packed with other usemaps
709 * on the section which has pgdat at boot time. Just keep it as is now.
712 if (memmap) {
713 struct page *memmap_page;
714 memmap_page = virt_to_page(memmap);
716 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
717 >> PAGE_SHIFT;
719 free_map_bootmem(memmap_page, nr_pages);
724 * returns the number of sections whose mem_maps were properly
725 * set. If this is <=0, then that means that the passed-in
726 * map was not consumed and must be freed.
728 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
729 int nr_pages)
731 unsigned long section_nr = pfn_to_section_nr(start_pfn);
732 struct pglist_data *pgdat = zone->zone_pgdat;
733 struct mem_section *ms;
734 struct page *memmap;
735 unsigned long *usemap;
736 unsigned long flags;
737 int ret;
740 * no locking for this, because it does its own
741 * plus, it does a kmalloc
743 ret = sparse_index_init(section_nr, pgdat->node_id);
744 if (ret < 0 && ret != -EEXIST)
745 return ret;
746 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
747 if (!memmap)
748 return -ENOMEM;
749 usemap = __kmalloc_section_usemap();
750 if (!usemap) {
751 __kfree_section_memmap(memmap, nr_pages);
752 return -ENOMEM;
755 pgdat_resize_lock(pgdat, &flags);
757 ms = __pfn_to_section(start_pfn);
758 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
759 ret = -EEXIST;
760 goto out;
763 ms->section_mem_map |= SECTION_MARKED_PRESENT;
765 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
767 out:
768 pgdat_resize_unlock(pgdat, &flags);
769 if (ret <= 0) {
770 kfree(usemap);
771 __kfree_section_memmap(memmap, nr_pages);
773 return ret;
776 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
778 struct page *memmap = NULL;
779 unsigned long *usemap = NULL;
781 if (ms->section_mem_map) {
782 usemap = ms->pageblock_flags;
783 memmap = sparse_decode_mem_map(ms->section_mem_map,
784 __section_nr(ms));
785 ms->section_mem_map = 0;
786 ms->pageblock_flags = NULL;
789 free_section_usemap(memmap, usemap);
791 #endif