ipv6: add support of equal cost multipath (ECMP)
[linux-2.6.git] / mm / slub.c
bloba0d698467f706bd617b960240cbb775cdc9cd034
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
35 #include <trace/events/kmem.h>
37 #include "internal.h"
40 * Lock order:
41 * 1. slab_mutex (Global Mutex)
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
45 * slab_mutex
47 * The role of the slab_mutex is to protect the list of all the slabs
48 * and to synchronize major metadata changes to slab cache structures.
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
84 * freed then the slab will show up again on the partial lists.
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
92 * Overloading of page flags that are otherwise used for LRU management.
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
106 * freelist that allows lockless access to
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
112 * the fast path and disables lockless freelists.
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
118 static inline int kmem_cache_debug(struct kmem_cache *s)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
128 * Issues still to be resolved:
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
132 * - Variable sizing of the per node arrays
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
145 #define MIN_PARTIAL 5
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
152 #define MAX_PARTIAL 10
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
165 * Set of flags that will prevent slab merging
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 SLAB_CACHE_DMA | SLAB_NOTRACK)
174 #define OO_SHIFT 16
175 #define OO_MASK ((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON 0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static int kmem_size = sizeof(struct kmem_cache);
184 #ifdef CONFIG_SMP
185 static struct notifier_block slab_notifier;
186 #endif
189 * Tracking user of a slab.
191 #define TRACK_ADDRS_COUNT 16
192 struct track {
193 unsigned long addr; /* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196 #endif
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
204 #ifdef CONFIG_SYSFS
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
215 #endif
217 static inline void stat(const struct kmem_cache *s, enum stat_item si)
219 #ifdef CONFIG_SLUB_STATS
220 __this_cpu_inc(s->cpu_slab->stat[si]);
221 #endif
224 /********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230 return s->node[node];
233 /* Verify that a pointer has an address that is valid within a slab page */
234 static inline int check_valid_pointer(struct kmem_cache *s,
235 struct page *page, const void *object)
237 void *base;
239 if (!object)
240 return 1;
242 base = page_address(page);
243 if (object < base || object >= base + page->objects * s->size ||
244 (object - base) % s->size) {
245 return 0;
248 return 1;
251 static inline void *get_freepointer(struct kmem_cache *s, void *object)
253 return *(void **)(object + s->offset);
256 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
258 prefetch(object + s->offset);
261 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
263 void *p;
265 #ifdef CONFIG_DEBUG_PAGEALLOC
266 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
267 #else
268 p = get_freepointer(s, object);
269 #endif
270 return p;
273 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
275 *(void **)(object + s->offset) = fp;
278 /* Loop over all objects in a slab */
279 #define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
281 __p += (__s)->size)
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
286 return (p - addr) / s->size;
289 static inline size_t slab_ksize(const struct kmem_cache *s)
291 #ifdef CONFIG_SLUB_DEBUG
293 * Debugging requires use of the padding between object
294 * and whatever may come after it.
296 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
297 return s->object_size;
299 #endif
301 * If we have the need to store the freelist pointer
302 * back there or track user information then we can
303 * only use the space before that information.
305 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
306 return s->inuse;
308 * Else we can use all the padding etc for the allocation
310 return s->size;
313 static inline int order_objects(int order, unsigned long size, int reserved)
315 return ((PAGE_SIZE << order) - reserved) / size;
318 static inline struct kmem_cache_order_objects oo_make(int order,
319 unsigned long size, int reserved)
321 struct kmem_cache_order_objects x = {
322 (order << OO_SHIFT) + order_objects(order, size, reserved)
325 return x;
328 static inline int oo_order(struct kmem_cache_order_objects x)
330 return x.x >> OO_SHIFT;
333 static inline int oo_objects(struct kmem_cache_order_objects x)
335 return x.x & OO_MASK;
339 * Per slab locking using the pagelock
341 static __always_inline void slab_lock(struct page *page)
343 bit_spin_lock(PG_locked, &page->flags);
346 static __always_inline void slab_unlock(struct page *page)
348 __bit_spin_unlock(PG_locked, &page->flags);
351 /* Interrupts must be disabled (for the fallback code to work right) */
352 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
353 void *freelist_old, unsigned long counters_old,
354 void *freelist_new, unsigned long counters_new,
355 const char *n)
357 VM_BUG_ON(!irqs_disabled());
358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
360 if (s->flags & __CMPXCHG_DOUBLE) {
361 if (cmpxchg_double(&page->freelist, &page->counters,
362 freelist_old, counters_old,
363 freelist_new, counters_new))
364 return 1;
365 } else
366 #endif
368 slab_lock(page);
369 if (page->freelist == freelist_old && page->counters == counters_old) {
370 page->freelist = freelist_new;
371 page->counters = counters_new;
372 slab_unlock(page);
373 return 1;
375 slab_unlock(page);
378 cpu_relax();
379 stat(s, CMPXCHG_DOUBLE_FAIL);
381 #ifdef SLUB_DEBUG_CMPXCHG
382 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
383 #endif
385 return 0;
388 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
389 void *freelist_old, unsigned long counters_old,
390 void *freelist_new, unsigned long counters_new,
391 const char *n)
393 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
394 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
395 if (s->flags & __CMPXCHG_DOUBLE) {
396 if (cmpxchg_double(&page->freelist, &page->counters,
397 freelist_old, counters_old,
398 freelist_new, counters_new))
399 return 1;
400 } else
401 #endif
403 unsigned long flags;
405 local_irq_save(flags);
406 slab_lock(page);
407 if (page->freelist == freelist_old && page->counters == counters_old) {
408 page->freelist = freelist_new;
409 page->counters = counters_new;
410 slab_unlock(page);
411 local_irq_restore(flags);
412 return 1;
414 slab_unlock(page);
415 local_irq_restore(flags);
418 cpu_relax();
419 stat(s, CMPXCHG_DOUBLE_FAIL);
421 #ifdef SLUB_DEBUG_CMPXCHG
422 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
423 #endif
425 return 0;
428 #ifdef CONFIG_SLUB_DEBUG
430 * Determine a map of object in use on a page.
432 * Node listlock must be held to guarantee that the page does
433 * not vanish from under us.
435 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
437 void *p;
438 void *addr = page_address(page);
440 for (p = page->freelist; p; p = get_freepointer(s, p))
441 set_bit(slab_index(p, s, addr), map);
445 * Debug settings:
447 #ifdef CONFIG_SLUB_DEBUG_ON
448 static int slub_debug = DEBUG_DEFAULT_FLAGS;
449 #else
450 static int slub_debug;
451 #endif
453 static char *slub_debug_slabs;
454 static int disable_higher_order_debug;
457 * Object debugging
459 static void print_section(char *text, u8 *addr, unsigned int length)
461 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
462 length, 1);
465 static struct track *get_track(struct kmem_cache *s, void *object,
466 enum track_item alloc)
468 struct track *p;
470 if (s->offset)
471 p = object + s->offset + sizeof(void *);
472 else
473 p = object + s->inuse;
475 return p + alloc;
478 static void set_track(struct kmem_cache *s, void *object,
479 enum track_item alloc, unsigned long addr)
481 struct track *p = get_track(s, object, alloc);
483 if (addr) {
484 #ifdef CONFIG_STACKTRACE
485 struct stack_trace trace;
486 int i;
488 trace.nr_entries = 0;
489 trace.max_entries = TRACK_ADDRS_COUNT;
490 trace.entries = p->addrs;
491 trace.skip = 3;
492 save_stack_trace(&trace);
494 /* See rant in lockdep.c */
495 if (trace.nr_entries != 0 &&
496 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
497 trace.nr_entries--;
499 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
500 p->addrs[i] = 0;
501 #endif
502 p->addr = addr;
503 p->cpu = smp_processor_id();
504 p->pid = current->pid;
505 p->when = jiffies;
506 } else
507 memset(p, 0, sizeof(struct track));
510 static void init_tracking(struct kmem_cache *s, void *object)
512 if (!(s->flags & SLAB_STORE_USER))
513 return;
515 set_track(s, object, TRACK_FREE, 0UL);
516 set_track(s, object, TRACK_ALLOC, 0UL);
519 static void print_track(const char *s, struct track *t)
521 if (!t->addr)
522 return;
524 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
525 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
526 #ifdef CONFIG_STACKTRACE
528 int i;
529 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
530 if (t->addrs[i])
531 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
532 else
533 break;
535 #endif
538 static void print_tracking(struct kmem_cache *s, void *object)
540 if (!(s->flags & SLAB_STORE_USER))
541 return;
543 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
544 print_track("Freed", get_track(s, object, TRACK_FREE));
547 static void print_page_info(struct page *page)
549 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
550 page, page->objects, page->inuse, page->freelist, page->flags);
554 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
556 va_list args;
557 char buf[100];
559 va_start(args, fmt);
560 vsnprintf(buf, sizeof(buf), fmt, args);
561 va_end(args);
562 printk(KERN_ERR "========================================"
563 "=====================================\n");
564 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
565 printk(KERN_ERR "----------------------------------------"
566 "-------------------------------------\n\n");
568 add_taint(TAINT_BAD_PAGE);
571 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
573 va_list args;
574 char buf[100];
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
584 unsigned int off; /* Offset of last byte */
585 u8 *addr = page_address(page);
587 print_tracking(s, p);
589 print_page_info(page);
591 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
592 p, p - addr, get_freepointer(s, p));
594 if (p > addr + 16)
595 print_section("Bytes b4 ", p - 16, 16);
597 print_section("Object ", p, min_t(unsigned long, s->object_size,
598 PAGE_SIZE));
599 if (s->flags & SLAB_RED_ZONE)
600 print_section("Redzone ", p + s->object_size,
601 s->inuse - s->object_size);
603 if (s->offset)
604 off = s->offset + sizeof(void *);
605 else
606 off = s->inuse;
608 if (s->flags & SLAB_STORE_USER)
609 off += 2 * sizeof(struct track);
611 if (off != s->size)
612 /* Beginning of the filler is the free pointer */
613 print_section("Padding ", p + off, s->size - off);
615 dump_stack();
618 static void object_err(struct kmem_cache *s, struct page *page,
619 u8 *object, char *reason)
621 slab_bug(s, "%s", reason);
622 print_trailer(s, page, object);
625 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
627 va_list args;
628 char buf[100];
630 va_start(args, fmt);
631 vsnprintf(buf, sizeof(buf), fmt, args);
632 va_end(args);
633 slab_bug(s, "%s", buf);
634 print_page_info(page);
635 dump_stack();
638 static void init_object(struct kmem_cache *s, void *object, u8 val)
640 u8 *p = object;
642 if (s->flags & __OBJECT_POISON) {
643 memset(p, POISON_FREE, s->object_size - 1);
644 p[s->object_size - 1] = POISON_END;
647 if (s->flags & SLAB_RED_ZONE)
648 memset(p + s->object_size, val, s->inuse - s->object_size);
651 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
652 void *from, void *to)
654 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
655 memset(from, data, to - from);
658 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
659 u8 *object, char *what,
660 u8 *start, unsigned int value, unsigned int bytes)
662 u8 *fault;
663 u8 *end;
665 fault = memchr_inv(start, value, bytes);
666 if (!fault)
667 return 1;
669 end = start + bytes;
670 while (end > fault && end[-1] == value)
671 end--;
673 slab_bug(s, "%s overwritten", what);
674 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
675 fault, end - 1, fault[0], value);
676 print_trailer(s, page, object);
678 restore_bytes(s, what, value, fault, end);
679 return 0;
683 * Object layout:
685 * object address
686 * Bytes of the object to be managed.
687 * If the freepointer may overlay the object then the free
688 * pointer is the first word of the object.
690 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
691 * 0xa5 (POISON_END)
693 * object + s->object_size
694 * Padding to reach word boundary. This is also used for Redzoning.
695 * Padding is extended by another word if Redzoning is enabled and
696 * object_size == inuse.
698 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
699 * 0xcc (RED_ACTIVE) for objects in use.
701 * object + s->inuse
702 * Meta data starts here.
704 * A. Free pointer (if we cannot overwrite object on free)
705 * B. Tracking data for SLAB_STORE_USER
706 * C. Padding to reach required alignment boundary or at mininum
707 * one word if debugging is on to be able to detect writes
708 * before the word boundary.
710 * Padding is done using 0x5a (POISON_INUSE)
712 * object + s->size
713 * Nothing is used beyond s->size.
715 * If slabcaches are merged then the object_size and inuse boundaries are mostly
716 * ignored. And therefore no slab options that rely on these boundaries
717 * may be used with merged slabcaches.
720 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
722 unsigned long off = s->inuse; /* The end of info */
724 if (s->offset)
725 /* Freepointer is placed after the object. */
726 off += sizeof(void *);
728 if (s->flags & SLAB_STORE_USER)
729 /* We also have user information there */
730 off += 2 * sizeof(struct track);
732 if (s->size == off)
733 return 1;
735 return check_bytes_and_report(s, page, p, "Object padding",
736 p + off, POISON_INUSE, s->size - off);
739 /* Check the pad bytes at the end of a slab page */
740 static int slab_pad_check(struct kmem_cache *s, struct page *page)
742 u8 *start;
743 u8 *fault;
744 u8 *end;
745 int length;
746 int remainder;
748 if (!(s->flags & SLAB_POISON))
749 return 1;
751 start = page_address(page);
752 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
753 end = start + length;
754 remainder = length % s->size;
755 if (!remainder)
756 return 1;
758 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
759 if (!fault)
760 return 1;
761 while (end > fault && end[-1] == POISON_INUSE)
762 end--;
764 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
765 print_section("Padding ", end - remainder, remainder);
767 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
768 return 0;
771 static int check_object(struct kmem_cache *s, struct page *page,
772 void *object, u8 val)
774 u8 *p = object;
775 u8 *endobject = object + s->object_size;
777 if (s->flags & SLAB_RED_ZONE) {
778 if (!check_bytes_and_report(s, page, object, "Redzone",
779 endobject, val, s->inuse - s->object_size))
780 return 0;
781 } else {
782 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
783 check_bytes_and_report(s, page, p, "Alignment padding",
784 endobject, POISON_INUSE, s->inuse - s->object_size);
788 if (s->flags & SLAB_POISON) {
789 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
790 (!check_bytes_and_report(s, page, p, "Poison", p,
791 POISON_FREE, s->object_size - 1) ||
792 !check_bytes_and_report(s, page, p, "Poison",
793 p + s->object_size - 1, POISON_END, 1)))
794 return 0;
796 * check_pad_bytes cleans up on its own.
798 check_pad_bytes(s, page, p);
801 if (!s->offset && val == SLUB_RED_ACTIVE)
803 * Object and freepointer overlap. Cannot check
804 * freepointer while object is allocated.
806 return 1;
808 /* Check free pointer validity */
809 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
810 object_err(s, page, p, "Freepointer corrupt");
812 * No choice but to zap it and thus lose the remainder
813 * of the free objects in this slab. May cause
814 * another error because the object count is now wrong.
816 set_freepointer(s, p, NULL);
817 return 0;
819 return 1;
822 static int check_slab(struct kmem_cache *s, struct page *page)
824 int maxobj;
826 VM_BUG_ON(!irqs_disabled());
828 if (!PageSlab(page)) {
829 slab_err(s, page, "Not a valid slab page");
830 return 0;
833 maxobj = order_objects(compound_order(page), s->size, s->reserved);
834 if (page->objects > maxobj) {
835 slab_err(s, page, "objects %u > max %u",
836 s->name, page->objects, maxobj);
837 return 0;
839 if (page->inuse > page->objects) {
840 slab_err(s, page, "inuse %u > max %u",
841 s->name, page->inuse, page->objects);
842 return 0;
844 /* Slab_pad_check fixes things up after itself */
845 slab_pad_check(s, page);
846 return 1;
850 * Determine if a certain object on a page is on the freelist. Must hold the
851 * slab lock to guarantee that the chains are in a consistent state.
853 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
855 int nr = 0;
856 void *fp;
857 void *object = NULL;
858 unsigned long max_objects;
860 fp = page->freelist;
861 while (fp && nr <= page->objects) {
862 if (fp == search)
863 return 1;
864 if (!check_valid_pointer(s, page, fp)) {
865 if (object) {
866 object_err(s, page, object,
867 "Freechain corrupt");
868 set_freepointer(s, object, NULL);
869 break;
870 } else {
871 slab_err(s, page, "Freepointer corrupt");
872 page->freelist = NULL;
873 page->inuse = page->objects;
874 slab_fix(s, "Freelist cleared");
875 return 0;
877 break;
879 object = fp;
880 fp = get_freepointer(s, object);
881 nr++;
884 max_objects = order_objects(compound_order(page), s->size, s->reserved);
885 if (max_objects > MAX_OBJS_PER_PAGE)
886 max_objects = MAX_OBJS_PER_PAGE;
888 if (page->objects != max_objects) {
889 slab_err(s, page, "Wrong number of objects. Found %d but "
890 "should be %d", page->objects, max_objects);
891 page->objects = max_objects;
892 slab_fix(s, "Number of objects adjusted.");
894 if (page->inuse != page->objects - nr) {
895 slab_err(s, page, "Wrong object count. Counter is %d but "
896 "counted were %d", page->inuse, page->objects - nr);
897 page->inuse = page->objects - nr;
898 slab_fix(s, "Object count adjusted.");
900 return search == NULL;
903 static void trace(struct kmem_cache *s, struct page *page, void *object,
904 int alloc)
906 if (s->flags & SLAB_TRACE) {
907 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
908 s->name,
909 alloc ? "alloc" : "free",
910 object, page->inuse,
911 page->freelist);
913 if (!alloc)
914 print_section("Object ", (void *)object, s->object_size);
916 dump_stack();
921 * Hooks for other subsystems that check memory allocations. In a typical
922 * production configuration these hooks all should produce no code at all.
924 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
926 flags &= gfp_allowed_mask;
927 lockdep_trace_alloc(flags);
928 might_sleep_if(flags & __GFP_WAIT);
930 return should_failslab(s->object_size, flags, s->flags);
933 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
935 flags &= gfp_allowed_mask;
936 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
937 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
940 static inline void slab_free_hook(struct kmem_cache *s, void *x)
942 kmemleak_free_recursive(x, s->flags);
945 * Trouble is that we may no longer disable interupts in the fast path
946 * So in order to make the debug calls that expect irqs to be
947 * disabled we need to disable interrupts temporarily.
949 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
951 unsigned long flags;
953 local_irq_save(flags);
954 kmemcheck_slab_free(s, x, s->object_size);
955 debug_check_no_locks_freed(x, s->object_size);
956 local_irq_restore(flags);
958 #endif
959 if (!(s->flags & SLAB_DEBUG_OBJECTS))
960 debug_check_no_obj_freed(x, s->object_size);
964 * Tracking of fully allocated slabs for debugging purposes.
966 * list_lock must be held.
968 static void add_full(struct kmem_cache *s,
969 struct kmem_cache_node *n, struct page *page)
971 if (!(s->flags & SLAB_STORE_USER))
972 return;
974 list_add(&page->lru, &n->full);
978 * list_lock must be held.
980 static void remove_full(struct kmem_cache *s, struct page *page)
982 if (!(s->flags & SLAB_STORE_USER))
983 return;
985 list_del(&page->lru);
988 /* Tracking of the number of slabs for debugging purposes */
989 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
991 struct kmem_cache_node *n = get_node(s, node);
993 return atomic_long_read(&n->nr_slabs);
996 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
998 return atomic_long_read(&n->nr_slabs);
1001 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1003 struct kmem_cache_node *n = get_node(s, node);
1006 * May be called early in order to allocate a slab for the
1007 * kmem_cache_node structure. Solve the chicken-egg
1008 * dilemma by deferring the increment of the count during
1009 * bootstrap (see early_kmem_cache_node_alloc).
1011 if (n) {
1012 atomic_long_inc(&n->nr_slabs);
1013 atomic_long_add(objects, &n->total_objects);
1016 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1018 struct kmem_cache_node *n = get_node(s, node);
1020 atomic_long_dec(&n->nr_slabs);
1021 atomic_long_sub(objects, &n->total_objects);
1024 /* Object debug checks for alloc/free paths */
1025 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1026 void *object)
1028 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1029 return;
1031 init_object(s, object, SLUB_RED_INACTIVE);
1032 init_tracking(s, object);
1035 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1036 void *object, unsigned long addr)
1038 if (!check_slab(s, page))
1039 goto bad;
1041 if (!check_valid_pointer(s, page, object)) {
1042 object_err(s, page, object, "Freelist Pointer check fails");
1043 goto bad;
1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1047 goto bad;
1049 /* Success perform special debug activities for allocs */
1050 if (s->flags & SLAB_STORE_USER)
1051 set_track(s, object, TRACK_ALLOC, addr);
1052 trace(s, page, object, 1);
1053 init_object(s, object, SLUB_RED_ACTIVE);
1054 return 1;
1056 bad:
1057 if (PageSlab(page)) {
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
1061 * as used avoids touching the remaining objects.
1063 slab_fix(s, "Marking all objects used");
1064 page->inuse = page->objects;
1065 page->freelist = NULL;
1067 return 0;
1070 static noinline struct kmem_cache_node *free_debug_processing(
1071 struct kmem_cache *s, struct page *page, void *object,
1072 unsigned long addr, unsigned long *flags)
1074 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1076 spin_lock_irqsave(&n->list_lock, *flags);
1077 slab_lock(page);
1079 if (!check_slab(s, page))
1080 goto fail;
1082 if (!check_valid_pointer(s, page, object)) {
1083 slab_err(s, page, "Invalid object pointer 0x%p", object);
1084 goto fail;
1087 if (on_freelist(s, page, object)) {
1088 object_err(s, page, object, "Object already free");
1089 goto fail;
1092 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1093 goto out;
1095 if (unlikely(s != page->slab)) {
1096 if (!PageSlab(page)) {
1097 slab_err(s, page, "Attempt to free object(0x%p) "
1098 "outside of slab", object);
1099 } else if (!page->slab) {
1100 printk(KERN_ERR
1101 "SLUB <none>: no slab for object 0x%p.\n",
1102 object);
1103 dump_stack();
1104 } else
1105 object_err(s, page, object,
1106 "page slab pointer corrupt.");
1107 goto fail;
1110 if (s->flags & SLAB_STORE_USER)
1111 set_track(s, object, TRACK_FREE, addr);
1112 trace(s, page, object, 0);
1113 init_object(s, object, SLUB_RED_INACTIVE);
1114 out:
1115 slab_unlock(page);
1117 * Keep node_lock to preserve integrity
1118 * until the object is actually freed
1120 return n;
1122 fail:
1123 slab_unlock(page);
1124 spin_unlock_irqrestore(&n->list_lock, *flags);
1125 slab_fix(s, "Object at 0x%p not freed", object);
1126 return NULL;
1129 static int __init setup_slub_debug(char *str)
1131 slub_debug = DEBUG_DEFAULT_FLAGS;
1132 if (*str++ != '=' || !*str)
1134 * No options specified. Switch on full debugging.
1136 goto out;
1138 if (*str == ',')
1140 * No options but restriction on slabs. This means full
1141 * debugging for slabs matching a pattern.
1143 goto check_slabs;
1145 if (tolower(*str) == 'o') {
1147 * Avoid enabling debugging on caches if its minimum order
1148 * would increase as a result.
1150 disable_higher_order_debug = 1;
1151 goto out;
1154 slub_debug = 0;
1155 if (*str == '-')
1157 * Switch off all debugging measures.
1159 goto out;
1162 * Determine which debug features should be switched on
1164 for (; *str && *str != ','; str++) {
1165 switch (tolower(*str)) {
1166 case 'f':
1167 slub_debug |= SLAB_DEBUG_FREE;
1168 break;
1169 case 'z':
1170 slub_debug |= SLAB_RED_ZONE;
1171 break;
1172 case 'p':
1173 slub_debug |= SLAB_POISON;
1174 break;
1175 case 'u':
1176 slub_debug |= SLAB_STORE_USER;
1177 break;
1178 case 't':
1179 slub_debug |= SLAB_TRACE;
1180 break;
1181 case 'a':
1182 slub_debug |= SLAB_FAILSLAB;
1183 break;
1184 default:
1185 printk(KERN_ERR "slub_debug option '%c' "
1186 "unknown. skipped\n", *str);
1190 check_slabs:
1191 if (*str == ',')
1192 slub_debug_slabs = str + 1;
1193 out:
1194 return 1;
1197 __setup("slub_debug", setup_slub_debug);
1199 static unsigned long kmem_cache_flags(unsigned long object_size,
1200 unsigned long flags, const char *name,
1201 void (*ctor)(void *))
1204 * Enable debugging if selected on the kernel commandline.
1206 if (slub_debug && (!slub_debug_slabs ||
1207 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1208 flags |= slub_debug;
1210 return flags;
1212 #else
1213 static inline void setup_object_debug(struct kmem_cache *s,
1214 struct page *page, void *object) {}
1216 static inline int alloc_debug_processing(struct kmem_cache *s,
1217 struct page *page, void *object, unsigned long addr) { return 0; }
1219 static inline struct kmem_cache_node *free_debug_processing(
1220 struct kmem_cache *s, struct page *page, void *object,
1221 unsigned long addr, unsigned long *flags) { return NULL; }
1223 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1224 { return 1; }
1225 static inline int check_object(struct kmem_cache *s, struct page *page,
1226 void *object, u8 val) { return 1; }
1227 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1228 struct page *page) {}
1229 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1230 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1231 unsigned long flags, const char *name,
1232 void (*ctor)(void *))
1234 return flags;
1236 #define slub_debug 0
1238 #define disable_higher_order_debug 0
1240 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1241 { return 0; }
1242 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1243 { return 0; }
1244 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1245 int objects) {}
1246 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1247 int objects) {}
1249 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1250 { return 0; }
1252 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1253 void *object) {}
1255 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1257 #endif /* CONFIG_SLUB_DEBUG */
1260 * Slab allocation and freeing
1262 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1263 struct kmem_cache_order_objects oo)
1265 int order = oo_order(oo);
1267 flags |= __GFP_NOTRACK;
1269 if (node == NUMA_NO_NODE)
1270 return alloc_pages(flags, order);
1271 else
1272 return alloc_pages_exact_node(node, flags, order);
1275 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1277 struct page *page;
1278 struct kmem_cache_order_objects oo = s->oo;
1279 gfp_t alloc_gfp;
1281 flags &= gfp_allowed_mask;
1283 if (flags & __GFP_WAIT)
1284 local_irq_enable();
1286 flags |= s->allocflags;
1289 * Let the initial higher-order allocation fail under memory pressure
1290 * so we fall-back to the minimum order allocation.
1292 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1294 page = alloc_slab_page(alloc_gfp, node, oo);
1295 if (unlikely(!page)) {
1296 oo = s->min;
1298 * Allocation may have failed due to fragmentation.
1299 * Try a lower order alloc if possible
1301 page = alloc_slab_page(flags, node, oo);
1303 if (page)
1304 stat(s, ORDER_FALLBACK);
1307 if (kmemcheck_enabled && page
1308 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1309 int pages = 1 << oo_order(oo);
1311 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1314 * Objects from caches that have a constructor don't get
1315 * cleared when they're allocated, so we need to do it here.
1317 if (s->ctor)
1318 kmemcheck_mark_uninitialized_pages(page, pages);
1319 else
1320 kmemcheck_mark_unallocated_pages(page, pages);
1323 if (flags & __GFP_WAIT)
1324 local_irq_disable();
1325 if (!page)
1326 return NULL;
1328 page->objects = oo_objects(oo);
1329 mod_zone_page_state(page_zone(page),
1330 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1331 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1332 1 << oo_order(oo));
1334 return page;
1337 static void setup_object(struct kmem_cache *s, struct page *page,
1338 void *object)
1340 setup_object_debug(s, page, object);
1341 if (unlikely(s->ctor))
1342 s->ctor(object);
1345 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1347 struct page *page;
1348 void *start;
1349 void *last;
1350 void *p;
1352 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1354 page = allocate_slab(s,
1355 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1356 if (!page)
1357 goto out;
1359 inc_slabs_node(s, page_to_nid(page), page->objects);
1360 page->slab = s;
1361 __SetPageSlab(page);
1362 if (page->pfmemalloc)
1363 SetPageSlabPfmemalloc(page);
1365 start = page_address(page);
1367 if (unlikely(s->flags & SLAB_POISON))
1368 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1370 last = start;
1371 for_each_object(p, s, start, page->objects) {
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, p);
1374 last = p;
1376 setup_object(s, page, last);
1377 set_freepointer(s, last, NULL);
1379 page->freelist = start;
1380 page->inuse = page->objects;
1381 page->frozen = 1;
1382 out:
1383 return page;
1386 static void __free_slab(struct kmem_cache *s, struct page *page)
1388 int order = compound_order(page);
1389 int pages = 1 << order;
1391 if (kmem_cache_debug(s)) {
1392 void *p;
1394 slab_pad_check(s, page);
1395 for_each_object(p, s, page_address(page),
1396 page->objects)
1397 check_object(s, page, p, SLUB_RED_INACTIVE);
1400 kmemcheck_free_shadow(page, compound_order(page));
1402 mod_zone_page_state(page_zone(page),
1403 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1405 -pages);
1407 __ClearPageSlabPfmemalloc(page);
1408 __ClearPageSlab(page);
1409 reset_page_mapcount(page);
1410 if (current->reclaim_state)
1411 current->reclaim_state->reclaimed_slab += pages;
1412 __free_pages(page, order);
1415 #define need_reserve_slab_rcu \
1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1418 static void rcu_free_slab(struct rcu_head *h)
1420 struct page *page;
1422 if (need_reserve_slab_rcu)
1423 page = virt_to_head_page(h);
1424 else
1425 page = container_of((struct list_head *)h, struct page, lru);
1427 __free_slab(page->slab, page);
1430 static void free_slab(struct kmem_cache *s, struct page *page)
1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1433 struct rcu_head *head;
1435 if (need_reserve_slab_rcu) {
1436 int order = compound_order(page);
1437 int offset = (PAGE_SIZE << order) - s->reserved;
1439 VM_BUG_ON(s->reserved != sizeof(*head));
1440 head = page_address(page) + offset;
1441 } else {
1443 * RCU free overloads the RCU head over the LRU
1445 head = (void *)&page->lru;
1448 call_rcu(head, rcu_free_slab);
1449 } else
1450 __free_slab(s, page);
1453 static void discard_slab(struct kmem_cache *s, struct page *page)
1455 dec_slabs_node(s, page_to_nid(page), page->objects);
1456 free_slab(s, page);
1460 * Management of partially allocated slabs.
1462 * list_lock must be held.
1464 static inline void add_partial(struct kmem_cache_node *n,
1465 struct page *page, int tail)
1467 n->nr_partial++;
1468 if (tail == DEACTIVATE_TO_TAIL)
1469 list_add_tail(&page->lru, &n->partial);
1470 else
1471 list_add(&page->lru, &n->partial);
1475 * list_lock must be held.
1477 static inline void remove_partial(struct kmem_cache_node *n,
1478 struct page *page)
1480 list_del(&page->lru);
1481 n->nr_partial--;
1485 * Remove slab from the partial list, freeze it and
1486 * return the pointer to the freelist.
1488 * Returns a list of objects or NULL if it fails.
1490 * Must hold list_lock since we modify the partial list.
1492 static inline void *acquire_slab(struct kmem_cache *s,
1493 struct kmem_cache_node *n, struct page *page,
1494 int mode)
1496 void *freelist;
1497 unsigned long counters;
1498 struct page new;
1501 * Zap the freelist and set the frozen bit.
1502 * The old freelist is the list of objects for the
1503 * per cpu allocation list.
1505 freelist = page->freelist;
1506 counters = page->counters;
1507 new.counters = counters;
1508 if (mode) {
1509 new.inuse = page->objects;
1510 new.freelist = NULL;
1511 } else {
1512 new.freelist = freelist;
1515 VM_BUG_ON(new.frozen);
1516 new.frozen = 1;
1518 if (!__cmpxchg_double_slab(s, page,
1519 freelist, counters,
1520 new.freelist, new.counters,
1521 "acquire_slab"))
1522 return NULL;
1524 remove_partial(n, page);
1525 WARN_ON(!freelist);
1526 return freelist;
1529 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1530 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1533 * Try to allocate a partial slab from a specific node.
1535 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1536 struct kmem_cache_cpu *c, gfp_t flags)
1538 struct page *page, *page2;
1539 void *object = NULL;
1542 * Racy check. If we mistakenly see no partial slabs then we
1543 * just allocate an empty slab. If we mistakenly try to get a
1544 * partial slab and there is none available then get_partials()
1545 * will return NULL.
1547 if (!n || !n->nr_partial)
1548 return NULL;
1550 spin_lock(&n->list_lock);
1551 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1552 void *t;
1553 int available;
1555 if (!pfmemalloc_match(page, flags))
1556 continue;
1558 t = acquire_slab(s, n, page, object == NULL);
1559 if (!t)
1560 break;
1562 if (!object) {
1563 c->page = page;
1564 stat(s, ALLOC_FROM_PARTIAL);
1565 object = t;
1566 available = page->objects - page->inuse;
1567 } else {
1568 available = put_cpu_partial(s, page, 0);
1569 stat(s, CPU_PARTIAL_NODE);
1571 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1572 break;
1575 spin_unlock(&n->list_lock);
1576 return object;
1580 * Get a page from somewhere. Search in increasing NUMA distances.
1582 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1583 struct kmem_cache_cpu *c)
1585 #ifdef CONFIG_NUMA
1586 struct zonelist *zonelist;
1587 struct zoneref *z;
1588 struct zone *zone;
1589 enum zone_type high_zoneidx = gfp_zone(flags);
1590 void *object;
1591 unsigned int cpuset_mems_cookie;
1594 * The defrag ratio allows a configuration of the tradeoffs between
1595 * inter node defragmentation and node local allocations. A lower
1596 * defrag_ratio increases the tendency to do local allocations
1597 * instead of attempting to obtain partial slabs from other nodes.
1599 * If the defrag_ratio is set to 0 then kmalloc() always
1600 * returns node local objects. If the ratio is higher then kmalloc()
1601 * may return off node objects because partial slabs are obtained
1602 * from other nodes and filled up.
1604 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1605 * defrag_ratio = 1000) then every (well almost) allocation will
1606 * first attempt to defrag slab caches on other nodes. This means
1607 * scanning over all nodes to look for partial slabs which may be
1608 * expensive if we do it every time we are trying to find a slab
1609 * with available objects.
1611 if (!s->remote_node_defrag_ratio ||
1612 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1613 return NULL;
1615 do {
1616 cpuset_mems_cookie = get_mems_allowed();
1617 zonelist = node_zonelist(slab_node(), flags);
1618 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1619 struct kmem_cache_node *n;
1621 n = get_node(s, zone_to_nid(zone));
1623 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1624 n->nr_partial > s->min_partial) {
1625 object = get_partial_node(s, n, c, flags);
1626 if (object) {
1628 * Return the object even if
1629 * put_mems_allowed indicated that
1630 * the cpuset mems_allowed was
1631 * updated in parallel. It's a
1632 * harmless race between the alloc
1633 * and the cpuset update.
1635 put_mems_allowed(cpuset_mems_cookie);
1636 return object;
1640 } while (!put_mems_allowed(cpuset_mems_cookie));
1641 #endif
1642 return NULL;
1646 * Get a partial page, lock it and return it.
1648 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1649 struct kmem_cache_cpu *c)
1651 void *object;
1652 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1654 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1655 if (object || node != NUMA_NO_NODE)
1656 return object;
1658 return get_any_partial(s, flags, c);
1661 #ifdef CONFIG_PREEMPT
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1668 #else
1670 * No preemption supported therefore also no need to check for
1671 * different cpus.
1673 #define TID_STEP 1
1674 #endif
1676 static inline unsigned long next_tid(unsigned long tid)
1678 return tid + TID_STEP;
1681 static inline unsigned int tid_to_cpu(unsigned long tid)
1683 return tid % TID_STEP;
1686 static inline unsigned long tid_to_event(unsigned long tid)
1688 return tid / TID_STEP;
1691 static inline unsigned int init_tid(int cpu)
1693 return cpu;
1696 static inline void note_cmpxchg_failure(const char *n,
1697 const struct kmem_cache *s, unsigned long tid)
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1702 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1704 #ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 printk("due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708 else
1709 #endif
1710 if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 printk("due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid), tid_to_event(actual_tid));
1713 else
1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid, tid, next_tid(tid));
1716 #endif
1717 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1720 static void init_kmem_cache_cpus(struct kmem_cache *s)
1722 int cpu;
1724 for_each_possible_cpu(cpu)
1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1729 * Remove the cpu slab
1731 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1733 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1734 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1735 int lock = 0;
1736 enum slab_modes l = M_NONE, m = M_NONE;
1737 void *nextfree;
1738 int tail = DEACTIVATE_TO_HEAD;
1739 struct page new;
1740 struct page old;
1742 if (page->freelist) {
1743 stat(s, DEACTIVATE_REMOTE_FREES);
1744 tail = DEACTIVATE_TO_TAIL;
1748 * Stage one: Free all available per cpu objects back
1749 * to the page freelist while it is still frozen. Leave the
1750 * last one.
1752 * There is no need to take the list->lock because the page
1753 * is still frozen.
1755 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1756 void *prior;
1757 unsigned long counters;
1759 do {
1760 prior = page->freelist;
1761 counters = page->counters;
1762 set_freepointer(s, freelist, prior);
1763 new.counters = counters;
1764 new.inuse--;
1765 VM_BUG_ON(!new.frozen);
1767 } while (!__cmpxchg_double_slab(s, page,
1768 prior, counters,
1769 freelist, new.counters,
1770 "drain percpu freelist"));
1772 freelist = nextfree;
1776 * Stage two: Ensure that the page is unfrozen while the
1777 * list presence reflects the actual number of objects
1778 * during unfreeze.
1780 * We setup the list membership and then perform a cmpxchg
1781 * with the count. If there is a mismatch then the page
1782 * is not unfrozen but the page is on the wrong list.
1784 * Then we restart the process which may have to remove
1785 * the page from the list that we just put it on again
1786 * because the number of objects in the slab may have
1787 * changed.
1789 redo:
1791 old.freelist = page->freelist;
1792 old.counters = page->counters;
1793 VM_BUG_ON(!old.frozen);
1795 /* Determine target state of the slab */
1796 new.counters = old.counters;
1797 if (freelist) {
1798 new.inuse--;
1799 set_freepointer(s, freelist, old.freelist);
1800 new.freelist = freelist;
1801 } else
1802 new.freelist = old.freelist;
1804 new.frozen = 0;
1806 if (!new.inuse && n->nr_partial > s->min_partial)
1807 m = M_FREE;
1808 else if (new.freelist) {
1809 m = M_PARTIAL;
1810 if (!lock) {
1811 lock = 1;
1813 * Taking the spinlock removes the possiblity
1814 * that acquire_slab() will see a slab page that
1815 * is frozen
1817 spin_lock(&n->list_lock);
1819 } else {
1820 m = M_FULL;
1821 if (kmem_cache_debug(s) && !lock) {
1822 lock = 1;
1824 * This also ensures that the scanning of full
1825 * slabs from diagnostic functions will not see
1826 * any frozen slabs.
1828 spin_lock(&n->list_lock);
1832 if (l != m) {
1834 if (l == M_PARTIAL)
1836 remove_partial(n, page);
1838 else if (l == M_FULL)
1840 remove_full(s, page);
1842 if (m == M_PARTIAL) {
1844 add_partial(n, page, tail);
1845 stat(s, tail);
1847 } else if (m == M_FULL) {
1849 stat(s, DEACTIVATE_FULL);
1850 add_full(s, n, page);
1855 l = m;
1856 if (!__cmpxchg_double_slab(s, page,
1857 old.freelist, old.counters,
1858 new.freelist, new.counters,
1859 "unfreezing slab"))
1860 goto redo;
1862 if (lock)
1863 spin_unlock(&n->list_lock);
1865 if (m == M_FREE) {
1866 stat(s, DEACTIVATE_EMPTY);
1867 discard_slab(s, page);
1868 stat(s, FREE_SLAB);
1873 * Unfreeze all the cpu partial slabs.
1875 * This function must be called with interrupt disabled.
1877 static void unfreeze_partials(struct kmem_cache *s)
1879 struct kmem_cache_node *n = NULL, *n2 = NULL;
1880 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1881 struct page *page, *discard_page = NULL;
1883 while ((page = c->partial)) {
1884 struct page new;
1885 struct page old;
1887 c->partial = page->next;
1889 n2 = get_node(s, page_to_nid(page));
1890 if (n != n2) {
1891 if (n)
1892 spin_unlock(&n->list_lock);
1894 n = n2;
1895 spin_lock(&n->list_lock);
1898 do {
1900 old.freelist = page->freelist;
1901 old.counters = page->counters;
1902 VM_BUG_ON(!old.frozen);
1904 new.counters = old.counters;
1905 new.freelist = old.freelist;
1907 new.frozen = 0;
1909 } while (!__cmpxchg_double_slab(s, page,
1910 old.freelist, old.counters,
1911 new.freelist, new.counters,
1912 "unfreezing slab"));
1914 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1915 page->next = discard_page;
1916 discard_page = page;
1917 } else {
1918 add_partial(n, page, DEACTIVATE_TO_TAIL);
1919 stat(s, FREE_ADD_PARTIAL);
1923 if (n)
1924 spin_unlock(&n->list_lock);
1926 while (discard_page) {
1927 page = discard_page;
1928 discard_page = discard_page->next;
1930 stat(s, DEACTIVATE_EMPTY);
1931 discard_slab(s, page);
1932 stat(s, FREE_SLAB);
1937 * Put a page that was just frozen (in __slab_free) into a partial page
1938 * slot if available. This is done without interrupts disabled and without
1939 * preemption disabled. The cmpxchg is racy and may put the partial page
1940 * onto a random cpus partial slot.
1942 * If we did not find a slot then simply move all the partials to the
1943 * per node partial list.
1945 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1947 struct page *oldpage;
1948 int pages;
1949 int pobjects;
1951 do {
1952 pages = 0;
1953 pobjects = 0;
1954 oldpage = this_cpu_read(s->cpu_slab->partial);
1956 if (oldpage) {
1957 pobjects = oldpage->pobjects;
1958 pages = oldpage->pages;
1959 if (drain && pobjects > s->cpu_partial) {
1960 unsigned long flags;
1962 * partial array is full. Move the existing
1963 * set to the per node partial list.
1965 local_irq_save(flags);
1966 unfreeze_partials(s);
1967 local_irq_restore(flags);
1968 oldpage = NULL;
1969 pobjects = 0;
1970 pages = 0;
1971 stat(s, CPU_PARTIAL_DRAIN);
1975 pages++;
1976 pobjects += page->objects - page->inuse;
1978 page->pages = pages;
1979 page->pobjects = pobjects;
1980 page->next = oldpage;
1982 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1983 return pobjects;
1986 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1988 stat(s, CPUSLAB_FLUSH);
1989 deactivate_slab(s, c->page, c->freelist);
1991 c->tid = next_tid(c->tid);
1992 c->page = NULL;
1993 c->freelist = NULL;
1997 * Flush cpu slab.
1999 * Called from IPI handler with interrupts disabled.
2001 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2003 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2005 if (likely(c)) {
2006 if (c->page)
2007 flush_slab(s, c);
2009 unfreeze_partials(s);
2013 static void flush_cpu_slab(void *d)
2015 struct kmem_cache *s = d;
2017 __flush_cpu_slab(s, smp_processor_id());
2020 static bool has_cpu_slab(int cpu, void *info)
2022 struct kmem_cache *s = info;
2023 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2025 return c->page || c->partial;
2028 static void flush_all(struct kmem_cache *s)
2030 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2034 * Check if the objects in a per cpu structure fit numa
2035 * locality expectations.
2037 static inline int node_match(struct page *page, int node)
2039 #ifdef CONFIG_NUMA
2040 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2041 return 0;
2042 #endif
2043 return 1;
2046 static int count_free(struct page *page)
2048 return page->objects - page->inuse;
2051 static unsigned long count_partial(struct kmem_cache_node *n,
2052 int (*get_count)(struct page *))
2054 unsigned long flags;
2055 unsigned long x = 0;
2056 struct page *page;
2058 spin_lock_irqsave(&n->list_lock, flags);
2059 list_for_each_entry(page, &n->partial, lru)
2060 x += get_count(page);
2061 spin_unlock_irqrestore(&n->list_lock, flags);
2062 return x;
2065 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2067 #ifdef CONFIG_SLUB_DEBUG
2068 return atomic_long_read(&n->total_objects);
2069 #else
2070 return 0;
2071 #endif
2074 static noinline void
2075 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2077 int node;
2079 printk(KERN_WARNING
2080 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2081 nid, gfpflags);
2082 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2083 "default order: %d, min order: %d\n", s->name, s->object_size,
2084 s->size, oo_order(s->oo), oo_order(s->min));
2086 if (oo_order(s->min) > get_order(s->object_size))
2087 printk(KERN_WARNING " %s debugging increased min order, use "
2088 "slub_debug=O to disable.\n", s->name);
2090 for_each_online_node(node) {
2091 struct kmem_cache_node *n = get_node(s, node);
2092 unsigned long nr_slabs;
2093 unsigned long nr_objs;
2094 unsigned long nr_free;
2096 if (!n)
2097 continue;
2099 nr_free = count_partial(n, count_free);
2100 nr_slabs = node_nr_slabs(n);
2101 nr_objs = node_nr_objs(n);
2103 printk(KERN_WARNING
2104 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2105 node, nr_slabs, nr_objs, nr_free);
2109 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2110 int node, struct kmem_cache_cpu **pc)
2112 void *freelist;
2113 struct kmem_cache_cpu *c = *pc;
2114 struct page *page;
2116 freelist = get_partial(s, flags, node, c);
2118 if (freelist)
2119 return freelist;
2121 page = new_slab(s, flags, node);
2122 if (page) {
2123 c = __this_cpu_ptr(s->cpu_slab);
2124 if (c->page)
2125 flush_slab(s, c);
2128 * No other reference to the page yet so we can
2129 * muck around with it freely without cmpxchg
2131 freelist = page->freelist;
2132 page->freelist = NULL;
2134 stat(s, ALLOC_SLAB);
2135 c->page = page;
2136 *pc = c;
2137 } else
2138 freelist = NULL;
2140 return freelist;
2143 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2145 if (unlikely(PageSlabPfmemalloc(page)))
2146 return gfp_pfmemalloc_allowed(gfpflags);
2148 return true;
2152 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2153 * or deactivate the page.
2155 * The page is still frozen if the return value is not NULL.
2157 * If this function returns NULL then the page has been unfrozen.
2159 * This function must be called with interrupt disabled.
2161 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2163 struct page new;
2164 unsigned long counters;
2165 void *freelist;
2167 do {
2168 freelist = page->freelist;
2169 counters = page->counters;
2171 new.counters = counters;
2172 VM_BUG_ON(!new.frozen);
2174 new.inuse = page->objects;
2175 new.frozen = freelist != NULL;
2177 } while (!__cmpxchg_double_slab(s, page,
2178 freelist, counters,
2179 NULL, new.counters,
2180 "get_freelist"));
2182 return freelist;
2186 * Slow path. The lockless freelist is empty or we need to perform
2187 * debugging duties.
2189 * Processing is still very fast if new objects have been freed to the
2190 * regular freelist. In that case we simply take over the regular freelist
2191 * as the lockless freelist and zap the regular freelist.
2193 * If that is not working then we fall back to the partial lists. We take the
2194 * first element of the freelist as the object to allocate now and move the
2195 * rest of the freelist to the lockless freelist.
2197 * And if we were unable to get a new slab from the partial slab lists then
2198 * we need to allocate a new slab. This is the slowest path since it involves
2199 * a call to the page allocator and the setup of a new slab.
2201 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2202 unsigned long addr, struct kmem_cache_cpu *c)
2204 void *freelist;
2205 struct page *page;
2206 unsigned long flags;
2208 local_irq_save(flags);
2209 #ifdef CONFIG_PREEMPT
2211 * We may have been preempted and rescheduled on a different
2212 * cpu before disabling interrupts. Need to reload cpu area
2213 * pointer.
2215 c = this_cpu_ptr(s->cpu_slab);
2216 #endif
2218 page = c->page;
2219 if (!page)
2220 goto new_slab;
2221 redo:
2223 if (unlikely(!node_match(page, node))) {
2224 stat(s, ALLOC_NODE_MISMATCH);
2225 deactivate_slab(s, page, c->freelist);
2226 c->page = NULL;
2227 c->freelist = NULL;
2228 goto new_slab;
2232 * By rights, we should be searching for a slab page that was
2233 * PFMEMALLOC but right now, we are losing the pfmemalloc
2234 * information when the page leaves the per-cpu allocator
2236 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2237 deactivate_slab(s, page, c->freelist);
2238 c->page = NULL;
2239 c->freelist = NULL;
2240 goto new_slab;
2243 /* must check again c->freelist in case of cpu migration or IRQ */
2244 freelist = c->freelist;
2245 if (freelist)
2246 goto load_freelist;
2248 stat(s, ALLOC_SLOWPATH);
2250 freelist = get_freelist(s, page);
2252 if (!freelist) {
2253 c->page = NULL;
2254 stat(s, DEACTIVATE_BYPASS);
2255 goto new_slab;
2258 stat(s, ALLOC_REFILL);
2260 load_freelist:
2262 * freelist is pointing to the list of objects to be used.
2263 * page is pointing to the page from which the objects are obtained.
2264 * That page must be frozen for per cpu allocations to work.
2266 VM_BUG_ON(!c->page->frozen);
2267 c->freelist = get_freepointer(s, freelist);
2268 c->tid = next_tid(c->tid);
2269 local_irq_restore(flags);
2270 return freelist;
2272 new_slab:
2274 if (c->partial) {
2275 page = c->page = c->partial;
2276 c->partial = page->next;
2277 stat(s, CPU_PARTIAL_ALLOC);
2278 c->freelist = NULL;
2279 goto redo;
2282 freelist = new_slab_objects(s, gfpflags, node, &c);
2284 if (unlikely(!freelist)) {
2285 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2286 slab_out_of_memory(s, gfpflags, node);
2288 local_irq_restore(flags);
2289 return NULL;
2292 page = c->page;
2293 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2294 goto load_freelist;
2296 /* Only entered in the debug case */
2297 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2298 goto new_slab; /* Slab failed checks. Next slab needed */
2300 deactivate_slab(s, page, get_freepointer(s, freelist));
2301 c->page = NULL;
2302 c->freelist = NULL;
2303 local_irq_restore(flags);
2304 return freelist;
2308 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2309 * have the fastpath folded into their functions. So no function call
2310 * overhead for requests that can be satisfied on the fastpath.
2312 * The fastpath works by first checking if the lockless freelist can be used.
2313 * If not then __slab_alloc is called for slow processing.
2315 * Otherwise we can simply pick the next object from the lockless free list.
2317 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2318 gfp_t gfpflags, int node, unsigned long addr)
2320 void **object;
2321 struct kmem_cache_cpu *c;
2322 struct page *page;
2323 unsigned long tid;
2325 if (slab_pre_alloc_hook(s, gfpflags))
2326 return NULL;
2328 redo:
2331 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2332 * enabled. We may switch back and forth between cpus while
2333 * reading from one cpu area. That does not matter as long
2334 * as we end up on the original cpu again when doing the cmpxchg.
2336 c = __this_cpu_ptr(s->cpu_slab);
2339 * The transaction ids are globally unique per cpu and per operation on
2340 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2341 * occurs on the right processor and that there was no operation on the
2342 * linked list in between.
2344 tid = c->tid;
2345 barrier();
2347 object = c->freelist;
2348 page = c->page;
2349 if (unlikely(!object || !node_match(page, node)))
2350 object = __slab_alloc(s, gfpflags, node, addr, c);
2352 else {
2353 void *next_object = get_freepointer_safe(s, object);
2356 * The cmpxchg will only match if there was no additional
2357 * operation and if we are on the right processor.
2359 * The cmpxchg does the following atomically (without lock semantics!)
2360 * 1. Relocate first pointer to the current per cpu area.
2361 * 2. Verify that tid and freelist have not been changed
2362 * 3. If they were not changed replace tid and freelist
2364 * Since this is without lock semantics the protection is only against
2365 * code executing on this cpu *not* from access by other cpus.
2367 if (unlikely(!this_cpu_cmpxchg_double(
2368 s->cpu_slab->freelist, s->cpu_slab->tid,
2369 object, tid,
2370 next_object, next_tid(tid)))) {
2372 note_cmpxchg_failure("slab_alloc", s, tid);
2373 goto redo;
2375 prefetch_freepointer(s, next_object);
2376 stat(s, ALLOC_FASTPATH);
2379 if (unlikely(gfpflags & __GFP_ZERO) && object)
2380 memset(object, 0, s->object_size);
2382 slab_post_alloc_hook(s, gfpflags, object);
2384 return object;
2387 static __always_inline void *slab_alloc(struct kmem_cache *s,
2388 gfp_t gfpflags, unsigned long addr)
2390 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2393 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2395 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2397 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2399 return ret;
2401 EXPORT_SYMBOL(kmem_cache_alloc);
2403 #ifdef CONFIG_TRACING
2404 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2406 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2407 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2408 return ret;
2410 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2412 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2414 void *ret = kmalloc_order(size, flags, order);
2415 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2416 return ret;
2418 EXPORT_SYMBOL(kmalloc_order_trace);
2419 #endif
2421 #ifdef CONFIG_NUMA
2422 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2424 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2426 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2427 s->object_size, s->size, gfpflags, node);
2429 return ret;
2431 EXPORT_SYMBOL(kmem_cache_alloc_node);
2433 #ifdef CONFIG_TRACING
2434 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2435 gfp_t gfpflags,
2436 int node, size_t size)
2438 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2440 trace_kmalloc_node(_RET_IP_, ret,
2441 size, s->size, gfpflags, node);
2442 return ret;
2444 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2445 #endif
2446 #endif
2449 * Slow patch handling. This may still be called frequently since objects
2450 * have a longer lifetime than the cpu slabs in most processing loads.
2452 * So we still attempt to reduce cache line usage. Just take the slab
2453 * lock and free the item. If there is no additional partial page
2454 * handling required then we can return immediately.
2456 static void __slab_free(struct kmem_cache *s, struct page *page,
2457 void *x, unsigned long addr)
2459 void *prior;
2460 void **object = (void *)x;
2461 int was_frozen;
2462 int inuse;
2463 struct page new;
2464 unsigned long counters;
2465 struct kmem_cache_node *n = NULL;
2466 unsigned long uninitialized_var(flags);
2468 stat(s, FREE_SLOWPATH);
2470 if (kmem_cache_debug(s) &&
2471 !(n = free_debug_processing(s, page, x, addr, &flags)))
2472 return;
2474 do {
2475 prior = page->freelist;
2476 counters = page->counters;
2477 set_freepointer(s, object, prior);
2478 new.counters = counters;
2479 was_frozen = new.frozen;
2480 new.inuse--;
2481 if ((!new.inuse || !prior) && !was_frozen && !n) {
2483 if (!kmem_cache_debug(s) && !prior)
2486 * Slab was on no list before and will be partially empty
2487 * We can defer the list move and instead freeze it.
2489 new.frozen = 1;
2491 else { /* Needs to be taken off a list */
2493 n = get_node(s, page_to_nid(page));
2495 * Speculatively acquire the list_lock.
2496 * If the cmpxchg does not succeed then we may
2497 * drop the list_lock without any processing.
2499 * Otherwise the list_lock will synchronize with
2500 * other processors updating the list of slabs.
2502 spin_lock_irqsave(&n->list_lock, flags);
2506 inuse = new.inuse;
2508 } while (!cmpxchg_double_slab(s, page,
2509 prior, counters,
2510 object, new.counters,
2511 "__slab_free"));
2513 if (likely(!n)) {
2516 * If we just froze the page then put it onto the
2517 * per cpu partial list.
2519 if (new.frozen && !was_frozen) {
2520 put_cpu_partial(s, page, 1);
2521 stat(s, CPU_PARTIAL_FREE);
2524 * The list lock was not taken therefore no list
2525 * activity can be necessary.
2527 if (was_frozen)
2528 stat(s, FREE_FROZEN);
2529 return;
2533 * was_frozen may have been set after we acquired the list_lock in
2534 * an earlier loop. So we need to check it here again.
2536 if (was_frozen)
2537 stat(s, FREE_FROZEN);
2538 else {
2539 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2540 goto slab_empty;
2543 * Objects left in the slab. If it was not on the partial list before
2544 * then add it.
2546 if (unlikely(!prior)) {
2547 remove_full(s, page);
2548 add_partial(n, page, DEACTIVATE_TO_TAIL);
2549 stat(s, FREE_ADD_PARTIAL);
2552 spin_unlock_irqrestore(&n->list_lock, flags);
2553 return;
2555 slab_empty:
2556 if (prior) {
2558 * Slab on the partial list.
2560 remove_partial(n, page);
2561 stat(s, FREE_REMOVE_PARTIAL);
2562 } else
2563 /* Slab must be on the full list */
2564 remove_full(s, page);
2566 spin_unlock_irqrestore(&n->list_lock, flags);
2567 stat(s, FREE_SLAB);
2568 discard_slab(s, page);
2572 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2573 * can perform fastpath freeing without additional function calls.
2575 * The fastpath is only possible if we are freeing to the current cpu slab
2576 * of this processor. This typically the case if we have just allocated
2577 * the item before.
2579 * If fastpath is not possible then fall back to __slab_free where we deal
2580 * with all sorts of special processing.
2582 static __always_inline void slab_free(struct kmem_cache *s,
2583 struct page *page, void *x, unsigned long addr)
2585 void **object = (void *)x;
2586 struct kmem_cache_cpu *c;
2587 unsigned long tid;
2589 slab_free_hook(s, x);
2591 redo:
2593 * Determine the currently cpus per cpu slab.
2594 * The cpu may change afterward. However that does not matter since
2595 * data is retrieved via this pointer. If we are on the same cpu
2596 * during the cmpxchg then the free will succedd.
2598 c = __this_cpu_ptr(s->cpu_slab);
2600 tid = c->tid;
2601 barrier();
2603 if (likely(page == c->page)) {
2604 set_freepointer(s, object, c->freelist);
2606 if (unlikely(!this_cpu_cmpxchg_double(
2607 s->cpu_slab->freelist, s->cpu_slab->tid,
2608 c->freelist, tid,
2609 object, next_tid(tid)))) {
2611 note_cmpxchg_failure("slab_free", s, tid);
2612 goto redo;
2614 stat(s, FREE_FASTPATH);
2615 } else
2616 __slab_free(s, page, x, addr);
2620 void kmem_cache_free(struct kmem_cache *s, void *x)
2622 struct page *page;
2624 page = virt_to_head_page(x);
2626 if (kmem_cache_debug(s) && page->slab != s) {
2627 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2628 " is from %s\n", page->slab->name, s->name);
2629 WARN_ON_ONCE(1);
2630 return;
2633 slab_free(s, page, x, _RET_IP_);
2635 trace_kmem_cache_free(_RET_IP_, x);
2637 EXPORT_SYMBOL(kmem_cache_free);
2640 * Object placement in a slab is made very easy because we always start at
2641 * offset 0. If we tune the size of the object to the alignment then we can
2642 * get the required alignment by putting one properly sized object after
2643 * another.
2645 * Notice that the allocation order determines the sizes of the per cpu
2646 * caches. Each processor has always one slab available for allocations.
2647 * Increasing the allocation order reduces the number of times that slabs
2648 * must be moved on and off the partial lists and is therefore a factor in
2649 * locking overhead.
2653 * Mininum / Maximum order of slab pages. This influences locking overhead
2654 * and slab fragmentation. A higher order reduces the number of partial slabs
2655 * and increases the number of allocations possible without having to
2656 * take the list_lock.
2658 static int slub_min_order;
2659 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2660 static int slub_min_objects;
2663 * Merge control. If this is set then no merging of slab caches will occur.
2664 * (Could be removed. This was introduced to pacify the merge skeptics.)
2666 static int slub_nomerge;
2669 * Calculate the order of allocation given an slab object size.
2671 * The order of allocation has significant impact on performance and other
2672 * system components. Generally order 0 allocations should be preferred since
2673 * order 0 does not cause fragmentation in the page allocator. Larger objects
2674 * be problematic to put into order 0 slabs because there may be too much
2675 * unused space left. We go to a higher order if more than 1/16th of the slab
2676 * would be wasted.
2678 * In order to reach satisfactory performance we must ensure that a minimum
2679 * number of objects is in one slab. Otherwise we may generate too much
2680 * activity on the partial lists which requires taking the list_lock. This is
2681 * less a concern for large slabs though which are rarely used.
2683 * slub_max_order specifies the order where we begin to stop considering the
2684 * number of objects in a slab as critical. If we reach slub_max_order then
2685 * we try to keep the page order as low as possible. So we accept more waste
2686 * of space in favor of a small page order.
2688 * Higher order allocations also allow the placement of more objects in a
2689 * slab and thereby reduce object handling overhead. If the user has
2690 * requested a higher mininum order then we start with that one instead of
2691 * the smallest order which will fit the object.
2693 static inline int slab_order(int size, int min_objects,
2694 int max_order, int fract_leftover, int reserved)
2696 int order;
2697 int rem;
2698 int min_order = slub_min_order;
2700 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2701 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2703 for (order = max(min_order,
2704 fls(min_objects * size - 1) - PAGE_SHIFT);
2705 order <= max_order; order++) {
2707 unsigned long slab_size = PAGE_SIZE << order;
2709 if (slab_size < min_objects * size + reserved)
2710 continue;
2712 rem = (slab_size - reserved) % size;
2714 if (rem <= slab_size / fract_leftover)
2715 break;
2719 return order;
2722 static inline int calculate_order(int size, int reserved)
2724 int order;
2725 int min_objects;
2726 int fraction;
2727 int max_objects;
2730 * Attempt to find best configuration for a slab. This
2731 * works by first attempting to generate a layout with
2732 * the best configuration and backing off gradually.
2734 * First we reduce the acceptable waste in a slab. Then
2735 * we reduce the minimum objects required in a slab.
2737 min_objects = slub_min_objects;
2738 if (!min_objects)
2739 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2740 max_objects = order_objects(slub_max_order, size, reserved);
2741 min_objects = min(min_objects, max_objects);
2743 while (min_objects > 1) {
2744 fraction = 16;
2745 while (fraction >= 4) {
2746 order = slab_order(size, min_objects,
2747 slub_max_order, fraction, reserved);
2748 if (order <= slub_max_order)
2749 return order;
2750 fraction /= 2;
2752 min_objects--;
2756 * We were unable to place multiple objects in a slab. Now
2757 * lets see if we can place a single object there.
2759 order = slab_order(size, 1, slub_max_order, 1, reserved);
2760 if (order <= slub_max_order)
2761 return order;
2764 * Doh this slab cannot be placed using slub_max_order.
2766 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2767 if (order < MAX_ORDER)
2768 return order;
2769 return -ENOSYS;
2773 * Figure out what the alignment of the objects will be.
2775 static unsigned long calculate_alignment(unsigned long flags,
2776 unsigned long align, unsigned long size)
2779 * If the user wants hardware cache aligned objects then follow that
2780 * suggestion if the object is sufficiently large.
2782 * The hardware cache alignment cannot override the specified
2783 * alignment though. If that is greater then use it.
2785 if (flags & SLAB_HWCACHE_ALIGN) {
2786 unsigned long ralign = cache_line_size();
2787 while (size <= ralign / 2)
2788 ralign /= 2;
2789 align = max(align, ralign);
2792 if (align < ARCH_SLAB_MINALIGN)
2793 align = ARCH_SLAB_MINALIGN;
2795 return ALIGN(align, sizeof(void *));
2798 static void
2799 init_kmem_cache_node(struct kmem_cache_node *n)
2801 n->nr_partial = 0;
2802 spin_lock_init(&n->list_lock);
2803 INIT_LIST_HEAD(&n->partial);
2804 #ifdef CONFIG_SLUB_DEBUG
2805 atomic_long_set(&n->nr_slabs, 0);
2806 atomic_long_set(&n->total_objects, 0);
2807 INIT_LIST_HEAD(&n->full);
2808 #endif
2811 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2813 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2814 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2817 * Must align to double word boundary for the double cmpxchg
2818 * instructions to work; see __pcpu_double_call_return_bool().
2820 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2821 2 * sizeof(void *));
2823 if (!s->cpu_slab)
2824 return 0;
2826 init_kmem_cache_cpus(s);
2828 return 1;
2831 static struct kmem_cache *kmem_cache_node;
2834 * No kmalloc_node yet so do it by hand. We know that this is the first
2835 * slab on the node for this slabcache. There are no concurrent accesses
2836 * possible.
2838 * Note that this function only works on the kmalloc_node_cache
2839 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2840 * memory on a fresh node that has no slab structures yet.
2842 static void early_kmem_cache_node_alloc(int node)
2844 struct page *page;
2845 struct kmem_cache_node *n;
2847 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2849 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2851 BUG_ON(!page);
2852 if (page_to_nid(page) != node) {
2853 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2854 "node %d\n", node);
2855 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2856 "in order to be able to continue\n");
2859 n = page->freelist;
2860 BUG_ON(!n);
2861 page->freelist = get_freepointer(kmem_cache_node, n);
2862 page->inuse = 1;
2863 page->frozen = 0;
2864 kmem_cache_node->node[node] = n;
2865 #ifdef CONFIG_SLUB_DEBUG
2866 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2867 init_tracking(kmem_cache_node, n);
2868 #endif
2869 init_kmem_cache_node(n);
2870 inc_slabs_node(kmem_cache_node, node, page->objects);
2872 add_partial(n, page, DEACTIVATE_TO_HEAD);
2875 static void free_kmem_cache_nodes(struct kmem_cache *s)
2877 int node;
2879 for_each_node_state(node, N_NORMAL_MEMORY) {
2880 struct kmem_cache_node *n = s->node[node];
2882 if (n)
2883 kmem_cache_free(kmem_cache_node, n);
2885 s->node[node] = NULL;
2889 static int init_kmem_cache_nodes(struct kmem_cache *s)
2891 int node;
2893 for_each_node_state(node, N_NORMAL_MEMORY) {
2894 struct kmem_cache_node *n;
2896 if (slab_state == DOWN) {
2897 early_kmem_cache_node_alloc(node);
2898 continue;
2900 n = kmem_cache_alloc_node(kmem_cache_node,
2901 GFP_KERNEL, node);
2903 if (!n) {
2904 free_kmem_cache_nodes(s);
2905 return 0;
2908 s->node[node] = n;
2909 init_kmem_cache_node(n);
2911 return 1;
2914 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2916 if (min < MIN_PARTIAL)
2917 min = MIN_PARTIAL;
2918 else if (min > MAX_PARTIAL)
2919 min = MAX_PARTIAL;
2920 s->min_partial = min;
2924 * calculate_sizes() determines the order and the distribution of data within
2925 * a slab object.
2927 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2929 unsigned long flags = s->flags;
2930 unsigned long size = s->object_size;
2931 unsigned long align = s->align;
2932 int order;
2935 * Round up object size to the next word boundary. We can only
2936 * place the free pointer at word boundaries and this determines
2937 * the possible location of the free pointer.
2939 size = ALIGN(size, sizeof(void *));
2941 #ifdef CONFIG_SLUB_DEBUG
2943 * Determine if we can poison the object itself. If the user of
2944 * the slab may touch the object after free or before allocation
2945 * then we should never poison the object itself.
2947 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2948 !s->ctor)
2949 s->flags |= __OBJECT_POISON;
2950 else
2951 s->flags &= ~__OBJECT_POISON;
2955 * If we are Redzoning then check if there is some space between the
2956 * end of the object and the free pointer. If not then add an
2957 * additional word to have some bytes to store Redzone information.
2959 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2960 size += sizeof(void *);
2961 #endif
2964 * With that we have determined the number of bytes in actual use
2965 * by the object. This is the potential offset to the free pointer.
2967 s->inuse = size;
2969 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2970 s->ctor)) {
2972 * Relocate free pointer after the object if it is not
2973 * permitted to overwrite the first word of the object on
2974 * kmem_cache_free.
2976 * This is the case if we do RCU, have a constructor or
2977 * destructor or are poisoning the objects.
2979 s->offset = size;
2980 size += sizeof(void *);
2983 #ifdef CONFIG_SLUB_DEBUG
2984 if (flags & SLAB_STORE_USER)
2986 * Need to store information about allocs and frees after
2987 * the object.
2989 size += 2 * sizeof(struct track);
2991 if (flags & SLAB_RED_ZONE)
2993 * Add some empty padding so that we can catch
2994 * overwrites from earlier objects rather than let
2995 * tracking information or the free pointer be
2996 * corrupted if a user writes before the start
2997 * of the object.
2999 size += sizeof(void *);
3000 #endif
3003 * Determine the alignment based on various parameters that the
3004 * user specified and the dynamic determination of cache line size
3005 * on bootup.
3007 align = calculate_alignment(flags, align, s->object_size);
3008 s->align = align;
3011 * SLUB stores one object immediately after another beginning from
3012 * offset 0. In order to align the objects we have to simply size
3013 * each object to conform to the alignment.
3015 size = ALIGN(size, align);
3016 s->size = size;
3017 if (forced_order >= 0)
3018 order = forced_order;
3019 else
3020 order = calculate_order(size, s->reserved);
3022 if (order < 0)
3023 return 0;
3025 s->allocflags = 0;
3026 if (order)
3027 s->allocflags |= __GFP_COMP;
3029 if (s->flags & SLAB_CACHE_DMA)
3030 s->allocflags |= SLUB_DMA;
3032 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3033 s->allocflags |= __GFP_RECLAIMABLE;
3036 * Determine the number of objects per slab
3038 s->oo = oo_make(order, size, s->reserved);
3039 s->min = oo_make(get_order(size), size, s->reserved);
3040 if (oo_objects(s->oo) > oo_objects(s->max))
3041 s->max = s->oo;
3043 return !!oo_objects(s->oo);
3047 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3049 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3050 s->reserved = 0;
3052 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3053 s->reserved = sizeof(struct rcu_head);
3055 if (!calculate_sizes(s, -1))
3056 goto error;
3057 if (disable_higher_order_debug) {
3059 * Disable debugging flags that store metadata if the min slab
3060 * order increased.
3062 if (get_order(s->size) > get_order(s->object_size)) {
3063 s->flags &= ~DEBUG_METADATA_FLAGS;
3064 s->offset = 0;
3065 if (!calculate_sizes(s, -1))
3066 goto error;
3070 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3071 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3072 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3073 /* Enable fast mode */
3074 s->flags |= __CMPXCHG_DOUBLE;
3075 #endif
3078 * The larger the object size is, the more pages we want on the partial
3079 * list to avoid pounding the page allocator excessively.
3081 set_min_partial(s, ilog2(s->size) / 2);
3084 * cpu_partial determined the maximum number of objects kept in the
3085 * per cpu partial lists of a processor.
3087 * Per cpu partial lists mainly contain slabs that just have one
3088 * object freed. If they are used for allocation then they can be
3089 * filled up again with minimal effort. The slab will never hit the
3090 * per node partial lists and therefore no locking will be required.
3092 * This setting also determines
3094 * A) The number of objects from per cpu partial slabs dumped to the
3095 * per node list when we reach the limit.
3096 * B) The number of objects in cpu partial slabs to extract from the
3097 * per node list when we run out of per cpu objects. We only fetch 50%
3098 * to keep some capacity around for frees.
3100 if (kmem_cache_debug(s))
3101 s->cpu_partial = 0;
3102 else if (s->size >= PAGE_SIZE)
3103 s->cpu_partial = 2;
3104 else if (s->size >= 1024)
3105 s->cpu_partial = 6;
3106 else if (s->size >= 256)
3107 s->cpu_partial = 13;
3108 else
3109 s->cpu_partial = 30;
3111 #ifdef CONFIG_NUMA
3112 s->remote_node_defrag_ratio = 1000;
3113 #endif
3114 if (!init_kmem_cache_nodes(s))
3115 goto error;
3117 if (alloc_kmem_cache_cpus(s))
3118 return 0;
3120 free_kmem_cache_nodes(s);
3121 error:
3122 if (flags & SLAB_PANIC)
3123 panic("Cannot create slab %s size=%lu realsize=%u "
3124 "order=%u offset=%u flags=%lx\n",
3125 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3126 s->offset, flags);
3127 return -EINVAL;
3131 * Determine the size of a slab object
3133 unsigned int kmem_cache_size(struct kmem_cache *s)
3135 return s->object_size;
3137 EXPORT_SYMBOL(kmem_cache_size);
3139 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3140 const char *text)
3142 #ifdef CONFIG_SLUB_DEBUG
3143 void *addr = page_address(page);
3144 void *p;
3145 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3146 sizeof(long), GFP_ATOMIC);
3147 if (!map)
3148 return;
3149 slab_err(s, page, text, s->name);
3150 slab_lock(page);
3152 get_map(s, page, map);
3153 for_each_object(p, s, addr, page->objects) {
3155 if (!test_bit(slab_index(p, s, addr), map)) {
3156 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3157 p, p - addr);
3158 print_tracking(s, p);
3161 slab_unlock(page);
3162 kfree(map);
3163 #endif
3167 * Attempt to free all partial slabs on a node.
3168 * This is called from kmem_cache_close(). We must be the last thread
3169 * using the cache and therefore we do not need to lock anymore.
3171 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3173 struct page *page, *h;
3175 list_for_each_entry_safe(page, h, &n->partial, lru) {
3176 if (!page->inuse) {
3177 remove_partial(n, page);
3178 discard_slab(s, page);
3179 } else {
3180 list_slab_objects(s, page,
3181 "Objects remaining in %s on kmem_cache_close()");
3187 * Release all resources used by a slab cache.
3189 static inline int kmem_cache_close(struct kmem_cache *s)
3191 int node;
3193 flush_all(s);
3194 /* Attempt to free all objects */
3195 for_each_node_state(node, N_NORMAL_MEMORY) {
3196 struct kmem_cache_node *n = get_node(s, node);
3198 free_partial(s, n);
3199 if (n->nr_partial || slabs_node(s, node))
3200 return 1;
3202 free_percpu(s->cpu_slab);
3203 free_kmem_cache_nodes(s);
3204 return 0;
3207 int __kmem_cache_shutdown(struct kmem_cache *s)
3209 int rc = kmem_cache_close(s);
3211 if (!rc)
3212 sysfs_slab_remove(s);
3214 return rc;
3217 /********************************************************************
3218 * Kmalloc subsystem
3219 *******************************************************************/
3221 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3222 EXPORT_SYMBOL(kmalloc_caches);
3224 #ifdef CONFIG_ZONE_DMA
3225 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3226 #endif
3228 static int __init setup_slub_min_order(char *str)
3230 get_option(&str, &slub_min_order);
3232 return 1;
3235 __setup("slub_min_order=", setup_slub_min_order);
3237 static int __init setup_slub_max_order(char *str)
3239 get_option(&str, &slub_max_order);
3240 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3242 return 1;
3245 __setup("slub_max_order=", setup_slub_max_order);
3247 static int __init setup_slub_min_objects(char *str)
3249 get_option(&str, &slub_min_objects);
3251 return 1;
3254 __setup("slub_min_objects=", setup_slub_min_objects);
3256 static int __init setup_slub_nomerge(char *str)
3258 slub_nomerge = 1;
3259 return 1;
3262 __setup("slub_nomerge", setup_slub_nomerge);
3264 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3265 int size, unsigned int flags)
3267 struct kmem_cache *s;
3269 s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3271 s->name = name;
3272 s->size = s->object_size = size;
3273 s->align = ARCH_KMALLOC_MINALIGN;
3276 * This function is called with IRQs disabled during early-boot on
3277 * single CPU so there's no need to take slab_mutex here.
3279 if (kmem_cache_open(s, flags))
3280 goto panic;
3282 list_add(&s->list, &slab_caches);
3283 return s;
3285 panic:
3286 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3287 return NULL;
3291 * Conversion table for small slabs sizes / 8 to the index in the
3292 * kmalloc array. This is necessary for slabs < 192 since we have non power
3293 * of two cache sizes there. The size of larger slabs can be determined using
3294 * fls.
3296 static s8 size_index[24] = {
3297 3, /* 8 */
3298 4, /* 16 */
3299 5, /* 24 */
3300 5, /* 32 */
3301 6, /* 40 */
3302 6, /* 48 */
3303 6, /* 56 */
3304 6, /* 64 */
3305 1, /* 72 */
3306 1, /* 80 */
3307 1, /* 88 */
3308 1, /* 96 */
3309 7, /* 104 */
3310 7, /* 112 */
3311 7, /* 120 */
3312 7, /* 128 */
3313 2, /* 136 */
3314 2, /* 144 */
3315 2, /* 152 */
3316 2, /* 160 */
3317 2, /* 168 */
3318 2, /* 176 */
3319 2, /* 184 */
3320 2 /* 192 */
3323 static inline int size_index_elem(size_t bytes)
3325 return (bytes - 1) / 8;
3328 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3330 int index;
3332 if (size <= 192) {
3333 if (!size)
3334 return ZERO_SIZE_PTR;
3336 index = size_index[size_index_elem(size)];
3337 } else
3338 index = fls(size - 1);
3340 #ifdef CONFIG_ZONE_DMA
3341 if (unlikely((flags & SLUB_DMA)))
3342 return kmalloc_dma_caches[index];
3344 #endif
3345 return kmalloc_caches[index];
3348 void *__kmalloc(size_t size, gfp_t flags)
3350 struct kmem_cache *s;
3351 void *ret;
3353 if (unlikely(size > SLUB_MAX_SIZE))
3354 return kmalloc_large(size, flags);
3356 s = get_slab(size, flags);
3358 if (unlikely(ZERO_OR_NULL_PTR(s)))
3359 return s;
3361 ret = slab_alloc(s, flags, _RET_IP_);
3363 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3365 return ret;
3367 EXPORT_SYMBOL(__kmalloc);
3369 #ifdef CONFIG_NUMA
3370 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3372 struct page *page;
3373 void *ptr = NULL;
3375 flags |= __GFP_COMP | __GFP_NOTRACK;
3376 page = alloc_pages_node(node, flags, get_order(size));
3377 if (page)
3378 ptr = page_address(page);
3380 kmemleak_alloc(ptr, size, 1, flags);
3381 return ptr;
3384 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3386 struct kmem_cache *s;
3387 void *ret;
3389 if (unlikely(size > SLUB_MAX_SIZE)) {
3390 ret = kmalloc_large_node(size, flags, node);
3392 trace_kmalloc_node(_RET_IP_, ret,
3393 size, PAGE_SIZE << get_order(size),
3394 flags, node);
3396 return ret;
3399 s = get_slab(size, flags);
3401 if (unlikely(ZERO_OR_NULL_PTR(s)))
3402 return s;
3404 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3406 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3408 return ret;
3410 EXPORT_SYMBOL(__kmalloc_node);
3411 #endif
3413 size_t ksize(const void *object)
3415 struct page *page;
3417 if (unlikely(object == ZERO_SIZE_PTR))
3418 return 0;
3420 page = virt_to_head_page(object);
3422 if (unlikely(!PageSlab(page))) {
3423 WARN_ON(!PageCompound(page));
3424 return PAGE_SIZE << compound_order(page);
3427 return slab_ksize(page->slab);
3429 EXPORT_SYMBOL(ksize);
3431 #ifdef CONFIG_SLUB_DEBUG
3432 bool verify_mem_not_deleted(const void *x)
3434 struct page *page;
3435 void *object = (void *)x;
3436 unsigned long flags;
3437 bool rv;
3439 if (unlikely(ZERO_OR_NULL_PTR(x)))
3440 return false;
3442 local_irq_save(flags);
3444 page = virt_to_head_page(x);
3445 if (unlikely(!PageSlab(page))) {
3446 /* maybe it was from stack? */
3447 rv = true;
3448 goto out_unlock;
3451 slab_lock(page);
3452 if (on_freelist(page->slab, page, object)) {
3453 object_err(page->slab, page, object, "Object is on free-list");
3454 rv = false;
3455 } else {
3456 rv = true;
3458 slab_unlock(page);
3460 out_unlock:
3461 local_irq_restore(flags);
3462 return rv;
3464 EXPORT_SYMBOL(verify_mem_not_deleted);
3465 #endif
3467 void kfree(const void *x)
3469 struct page *page;
3470 void *object = (void *)x;
3472 trace_kfree(_RET_IP_, x);
3474 if (unlikely(ZERO_OR_NULL_PTR(x)))
3475 return;
3477 page = virt_to_head_page(x);
3478 if (unlikely(!PageSlab(page))) {
3479 BUG_ON(!PageCompound(page));
3480 kmemleak_free(x);
3481 __free_pages(page, compound_order(page));
3482 return;
3484 slab_free(page->slab, page, object, _RET_IP_);
3486 EXPORT_SYMBOL(kfree);
3489 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3490 * the remaining slabs by the number of items in use. The slabs with the
3491 * most items in use come first. New allocations will then fill those up
3492 * and thus they can be removed from the partial lists.
3494 * The slabs with the least items are placed last. This results in them
3495 * being allocated from last increasing the chance that the last objects
3496 * are freed in them.
3498 int kmem_cache_shrink(struct kmem_cache *s)
3500 int node;
3501 int i;
3502 struct kmem_cache_node *n;
3503 struct page *page;
3504 struct page *t;
3505 int objects = oo_objects(s->max);
3506 struct list_head *slabs_by_inuse =
3507 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3508 unsigned long flags;
3510 if (!slabs_by_inuse)
3511 return -ENOMEM;
3513 flush_all(s);
3514 for_each_node_state(node, N_NORMAL_MEMORY) {
3515 n = get_node(s, node);
3517 if (!n->nr_partial)
3518 continue;
3520 for (i = 0; i < objects; i++)
3521 INIT_LIST_HEAD(slabs_by_inuse + i);
3523 spin_lock_irqsave(&n->list_lock, flags);
3526 * Build lists indexed by the items in use in each slab.
3528 * Note that concurrent frees may occur while we hold the
3529 * list_lock. page->inuse here is the upper limit.
3531 list_for_each_entry_safe(page, t, &n->partial, lru) {
3532 list_move(&page->lru, slabs_by_inuse + page->inuse);
3533 if (!page->inuse)
3534 n->nr_partial--;
3538 * Rebuild the partial list with the slabs filled up most
3539 * first and the least used slabs at the end.
3541 for (i = objects - 1; i > 0; i--)
3542 list_splice(slabs_by_inuse + i, n->partial.prev);
3544 spin_unlock_irqrestore(&n->list_lock, flags);
3546 /* Release empty slabs */
3547 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3548 discard_slab(s, page);
3551 kfree(slabs_by_inuse);
3552 return 0;
3554 EXPORT_SYMBOL(kmem_cache_shrink);
3556 #if defined(CONFIG_MEMORY_HOTPLUG)
3557 static int slab_mem_going_offline_callback(void *arg)
3559 struct kmem_cache *s;
3561 mutex_lock(&slab_mutex);
3562 list_for_each_entry(s, &slab_caches, list)
3563 kmem_cache_shrink(s);
3564 mutex_unlock(&slab_mutex);
3566 return 0;
3569 static void slab_mem_offline_callback(void *arg)
3571 struct kmem_cache_node *n;
3572 struct kmem_cache *s;
3573 struct memory_notify *marg = arg;
3574 int offline_node;
3576 offline_node = marg->status_change_nid;
3579 * If the node still has available memory. we need kmem_cache_node
3580 * for it yet.
3582 if (offline_node < 0)
3583 return;
3585 mutex_lock(&slab_mutex);
3586 list_for_each_entry(s, &slab_caches, list) {
3587 n = get_node(s, offline_node);
3588 if (n) {
3590 * if n->nr_slabs > 0, slabs still exist on the node
3591 * that is going down. We were unable to free them,
3592 * and offline_pages() function shouldn't call this
3593 * callback. So, we must fail.
3595 BUG_ON(slabs_node(s, offline_node));
3597 s->node[offline_node] = NULL;
3598 kmem_cache_free(kmem_cache_node, n);
3601 mutex_unlock(&slab_mutex);
3604 static int slab_mem_going_online_callback(void *arg)
3606 struct kmem_cache_node *n;
3607 struct kmem_cache *s;
3608 struct memory_notify *marg = arg;
3609 int nid = marg->status_change_nid;
3610 int ret = 0;
3613 * If the node's memory is already available, then kmem_cache_node is
3614 * already created. Nothing to do.
3616 if (nid < 0)
3617 return 0;
3620 * We are bringing a node online. No memory is available yet. We must
3621 * allocate a kmem_cache_node structure in order to bring the node
3622 * online.
3624 mutex_lock(&slab_mutex);
3625 list_for_each_entry(s, &slab_caches, list) {
3627 * XXX: kmem_cache_alloc_node will fallback to other nodes
3628 * since memory is not yet available from the node that
3629 * is brought up.
3631 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3632 if (!n) {
3633 ret = -ENOMEM;
3634 goto out;
3636 init_kmem_cache_node(n);
3637 s->node[nid] = n;
3639 out:
3640 mutex_unlock(&slab_mutex);
3641 return ret;
3644 static int slab_memory_callback(struct notifier_block *self,
3645 unsigned long action, void *arg)
3647 int ret = 0;
3649 switch (action) {
3650 case MEM_GOING_ONLINE:
3651 ret = slab_mem_going_online_callback(arg);
3652 break;
3653 case MEM_GOING_OFFLINE:
3654 ret = slab_mem_going_offline_callback(arg);
3655 break;
3656 case MEM_OFFLINE:
3657 case MEM_CANCEL_ONLINE:
3658 slab_mem_offline_callback(arg);
3659 break;
3660 case MEM_ONLINE:
3661 case MEM_CANCEL_OFFLINE:
3662 break;
3664 if (ret)
3665 ret = notifier_from_errno(ret);
3666 else
3667 ret = NOTIFY_OK;
3668 return ret;
3671 #endif /* CONFIG_MEMORY_HOTPLUG */
3673 /********************************************************************
3674 * Basic setup of slabs
3675 *******************************************************************/
3678 * Used for early kmem_cache structures that were allocated using
3679 * the page allocator
3682 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3684 int node;
3686 list_add(&s->list, &slab_caches);
3687 s->refcount = -1;
3689 for_each_node_state(node, N_NORMAL_MEMORY) {
3690 struct kmem_cache_node *n = get_node(s, node);
3691 struct page *p;
3693 if (n) {
3694 list_for_each_entry(p, &n->partial, lru)
3695 p->slab = s;
3697 #ifdef CONFIG_SLUB_DEBUG
3698 list_for_each_entry(p, &n->full, lru)
3699 p->slab = s;
3700 #endif
3705 void __init kmem_cache_init(void)
3707 int i;
3708 int caches = 0;
3709 struct kmem_cache *temp_kmem_cache;
3710 int order;
3711 struct kmem_cache *temp_kmem_cache_node;
3712 unsigned long kmalloc_size;
3714 if (debug_guardpage_minorder())
3715 slub_max_order = 0;
3717 kmem_size = offsetof(struct kmem_cache, node) +
3718 nr_node_ids * sizeof(struct kmem_cache_node *);
3720 /* Allocate two kmem_caches from the page allocator */
3721 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3722 order = get_order(2 * kmalloc_size);
3723 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT | __GFP_ZERO, order);
3726 * Must first have the slab cache available for the allocations of the
3727 * struct kmem_cache_node's. There is special bootstrap code in
3728 * kmem_cache_open for slab_state == DOWN.
3730 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3732 kmem_cache_node->name = "kmem_cache_node";
3733 kmem_cache_node->size = kmem_cache_node->object_size =
3734 sizeof(struct kmem_cache_node);
3735 kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3737 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3739 /* Able to allocate the per node structures */
3740 slab_state = PARTIAL;
3742 temp_kmem_cache = kmem_cache;
3743 kmem_cache->name = "kmem_cache";
3744 kmem_cache->size = kmem_cache->object_size = kmem_size;
3745 kmem_cache_open(kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3747 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3748 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3751 * Allocate kmem_cache_node properly from the kmem_cache slab.
3752 * kmem_cache_node is separately allocated so no need to
3753 * update any list pointers.
3755 temp_kmem_cache_node = kmem_cache_node;
3757 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3758 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3760 kmem_cache_bootstrap_fixup(kmem_cache_node);
3762 caches++;
3763 kmem_cache_bootstrap_fixup(kmem_cache);
3764 caches++;
3765 /* Free temporary boot structure */
3766 free_pages((unsigned long)temp_kmem_cache, order);
3768 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3771 * Patch up the size_index table if we have strange large alignment
3772 * requirements for the kmalloc array. This is only the case for
3773 * MIPS it seems. The standard arches will not generate any code here.
3775 * Largest permitted alignment is 256 bytes due to the way we
3776 * handle the index determination for the smaller caches.
3778 * Make sure that nothing crazy happens if someone starts tinkering
3779 * around with ARCH_KMALLOC_MINALIGN
3781 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3782 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3784 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3785 int elem = size_index_elem(i);
3786 if (elem >= ARRAY_SIZE(size_index))
3787 break;
3788 size_index[elem] = KMALLOC_SHIFT_LOW;
3791 if (KMALLOC_MIN_SIZE == 64) {
3793 * The 96 byte size cache is not used if the alignment
3794 * is 64 byte.
3796 for (i = 64 + 8; i <= 96; i += 8)
3797 size_index[size_index_elem(i)] = 7;
3798 } else if (KMALLOC_MIN_SIZE == 128) {
3800 * The 192 byte sized cache is not used if the alignment
3801 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3802 * instead.
3804 for (i = 128 + 8; i <= 192; i += 8)
3805 size_index[size_index_elem(i)] = 8;
3808 /* Caches that are not of the two-to-the-power-of size */
3809 if (KMALLOC_MIN_SIZE <= 32) {
3810 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3811 caches++;
3814 if (KMALLOC_MIN_SIZE <= 64) {
3815 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3816 caches++;
3819 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3820 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3821 caches++;
3824 slab_state = UP;
3826 /* Provide the correct kmalloc names now that the caches are up */
3827 if (KMALLOC_MIN_SIZE <= 32) {
3828 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3829 BUG_ON(!kmalloc_caches[1]->name);
3832 if (KMALLOC_MIN_SIZE <= 64) {
3833 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3834 BUG_ON(!kmalloc_caches[2]->name);
3837 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3838 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3840 BUG_ON(!s);
3841 kmalloc_caches[i]->name = s;
3844 #ifdef CONFIG_SMP
3845 register_cpu_notifier(&slab_notifier);
3846 #endif
3848 #ifdef CONFIG_ZONE_DMA
3849 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3850 struct kmem_cache *s = kmalloc_caches[i];
3852 if (s && s->size) {
3853 char *name = kasprintf(GFP_NOWAIT,
3854 "dma-kmalloc-%d", s->object_size);
3856 BUG_ON(!name);
3857 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3858 s->object_size, SLAB_CACHE_DMA);
3861 #endif
3862 printk(KERN_INFO
3863 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3864 " CPUs=%d, Nodes=%d\n",
3865 caches, cache_line_size(),
3866 slub_min_order, slub_max_order, slub_min_objects,
3867 nr_cpu_ids, nr_node_ids);
3870 void __init kmem_cache_init_late(void)
3875 * Find a mergeable slab cache
3877 static int slab_unmergeable(struct kmem_cache *s)
3879 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3880 return 1;
3882 if (s->ctor)
3883 return 1;
3886 * We may have set a slab to be unmergeable during bootstrap.
3888 if (s->refcount < 0)
3889 return 1;
3891 return 0;
3894 static struct kmem_cache *find_mergeable(size_t size,
3895 size_t align, unsigned long flags, const char *name,
3896 void (*ctor)(void *))
3898 struct kmem_cache *s;
3900 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3901 return NULL;
3903 if (ctor)
3904 return NULL;
3906 size = ALIGN(size, sizeof(void *));
3907 align = calculate_alignment(flags, align, size);
3908 size = ALIGN(size, align);
3909 flags = kmem_cache_flags(size, flags, name, NULL);
3911 list_for_each_entry(s, &slab_caches, list) {
3912 if (slab_unmergeable(s))
3913 continue;
3915 if (size > s->size)
3916 continue;
3918 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3919 continue;
3921 * Check if alignment is compatible.
3922 * Courtesy of Adrian Drzewiecki
3924 if ((s->size & ~(align - 1)) != s->size)
3925 continue;
3927 if (s->size - size >= sizeof(void *))
3928 continue;
3930 return s;
3932 return NULL;
3935 struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
3936 size_t align, unsigned long flags, void (*ctor)(void *))
3938 struct kmem_cache *s;
3940 s = find_mergeable(size, align, flags, name, ctor);
3941 if (s) {
3942 s->refcount++;
3944 * Adjust the object sizes so that we clear
3945 * the complete object on kzalloc.
3947 s->object_size = max(s->object_size, (int)size);
3948 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3950 if (sysfs_slab_alias(s, name)) {
3951 s->refcount--;
3952 s = NULL;
3956 return s;
3959 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3961 int err;
3963 err = kmem_cache_open(s, flags);
3964 if (err)
3965 return err;
3967 mutex_unlock(&slab_mutex);
3968 err = sysfs_slab_add(s);
3969 mutex_lock(&slab_mutex);
3971 if (err)
3972 kmem_cache_close(s);
3974 return err;
3977 #ifdef CONFIG_SMP
3979 * Use the cpu notifier to insure that the cpu slabs are flushed when
3980 * necessary.
3982 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3983 unsigned long action, void *hcpu)
3985 long cpu = (long)hcpu;
3986 struct kmem_cache *s;
3987 unsigned long flags;
3989 switch (action) {
3990 case CPU_UP_CANCELED:
3991 case CPU_UP_CANCELED_FROZEN:
3992 case CPU_DEAD:
3993 case CPU_DEAD_FROZEN:
3994 mutex_lock(&slab_mutex);
3995 list_for_each_entry(s, &slab_caches, list) {
3996 local_irq_save(flags);
3997 __flush_cpu_slab(s, cpu);
3998 local_irq_restore(flags);
4000 mutex_unlock(&slab_mutex);
4001 break;
4002 default:
4003 break;
4005 return NOTIFY_OK;
4008 static struct notifier_block __cpuinitdata slab_notifier = {
4009 .notifier_call = slab_cpuup_callback
4012 #endif
4014 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4016 struct kmem_cache *s;
4017 void *ret;
4019 if (unlikely(size > SLUB_MAX_SIZE))
4020 return kmalloc_large(size, gfpflags);
4022 s = get_slab(size, gfpflags);
4024 if (unlikely(ZERO_OR_NULL_PTR(s)))
4025 return s;
4027 ret = slab_alloc(s, gfpflags, caller);
4029 /* Honor the call site pointer we received. */
4030 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4032 return ret;
4035 #ifdef CONFIG_NUMA
4036 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4037 int node, unsigned long caller)
4039 struct kmem_cache *s;
4040 void *ret;
4042 if (unlikely(size > SLUB_MAX_SIZE)) {
4043 ret = kmalloc_large_node(size, gfpflags, node);
4045 trace_kmalloc_node(caller, ret,
4046 size, PAGE_SIZE << get_order(size),
4047 gfpflags, node);
4049 return ret;
4052 s = get_slab(size, gfpflags);
4054 if (unlikely(ZERO_OR_NULL_PTR(s)))
4055 return s;
4057 ret = slab_alloc_node(s, gfpflags, node, caller);
4059 /* Honor the call site pointer we received. */
4060 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4062 return ret;
4064 #endif
4066 #ifdef CONFIG_SYSFS
4067 static int count_inuse(struct page *page)
4069 return page->inuse;
4072 static int count_total(struct page *page)
4074 return page->objects;
4076 #endif
4078 #ifdef CONFIG_SLUB_DEBUG
4079 static int validate_slab(struct kmem_cache *s, struct page *page,
4080 unsigned long *map)
4082 void *p;
4083 void *addr = page_address(page);
4085 if (!check_slab(s, page) ||
4086 !on_freelist(s, page, NULL))
4087 return 0;
4089 /* Now we know that a valid freelist exists */
4090 bitmap_zero(map, page->objects);
4092 get_map(s, page, map);
4093 for_each_object(p, s, addr, page->objects) {
4094 if (test_bit(slab_index(p, s, addr), map))
4095 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4096 return 0;
4099 for_each_object(p, s, addr, page->objects)
4100 if (!test_bit(slab_index(p, s, addr), map))
4101 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4102 return 0;
4103 return 1;
4106 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4107 unsigned long *map)
4109 slab_lock(page);
4110 validate_slab(s, page, map);
4111 slab_unlock(page);
4114 static int validate_slab_node(struct kmem_cache *s,
4115 struct kmem_cache_node *n, unsigned long *map)
4117 unsigned long count = 0;
4118 struct page *page;
4119 unsigned long flags;
4121 spin_lock_irqsave(&n->list_lock, flags);
4123 list_for_each_entry(page, &n->partial, lru) {
4124 validate_slab_slab(s, page, map);
4125 count++;
4127 if (count != n->nr_partial)
4128 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4129 "counter=%ld\n", s->name, count, n->nr_partial);
4131 if (!(s->flags & SLAB_STORE_USER))
4132 goto out;
4134 list_for_each_entry(page, &n->full, lru) {
4135 validate_slab_slab(s, page, map);
4136 count++;
4138 if (count != atomic_long_read(&n->nr_slabs))
4139 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4140 "counter=%ld\n", s->name, count,
4141 atomic_long_read(&n->nr_slabs));
4143 out:
4144 spin_unlock_irqrestore(&n->list_lock, flags);
4145 return count;
4148 static long validate_slab_cache(struct kmem_cache *s)
4150 int node;
4151 unsigned long count = 0;
4152 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4153 sizeof(unsigned long), GFP_KERNEL);
4155 if (!map)
4156 return -ENOMEM;
4158 flush_all(s);
4159 for_each_node_state(node, N_NORMAL_MEMORY) {
4160 struct kmem_cache_node *n = get_node(s, node);
4162 count += validate_slab_node(s, n, map);
4164 kfree(map);
4165 return count;
4168 * Generate lists of code addresses where slabcache objects are allocated
4169 * and freed.
4172 struct location {
4173 unsigned long count;
4174 unsigned long addr;
4175 long long sum_time;
4176 long min_time;
4177 long max_time;
4178 long min_pid;
4179 long max_pid;
4180 DECLARE_BITMAP(cpus, NR_CPUS);
4181 nodemask_t nodes;
4184 struct loc_track {
4185 unsigned long max;
4186 unsigned long count;
4187 struct location *loc;
4190 static void free_loc_track(struct loc_track *t)
4192 if (t->max)
4193 free_pages((unsigned long)t->loc,
4194 get_order(sizeof(struct location) * t->max));
4197 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4199 struct location *l;
4200 int order;
4202 order = get_order(sizeof(struct location) * max);
4204 l = (void *)__get_free_pages(flags, order);
4205 if (!l)
4206 return 0;
4208 if (t->count) {
4209 memcpy(l, t->loc, sizeof(struct location) * t->count);
4210 free_loc_track(t);
4212 t->max = max;
4213 t->loc = l;
4214 return 1;
4217 static int add_location(struct loc_track *t, struct kmem_cache *s,
4218 const struct track *track)
4220 long start, end, pos;
4221 struct location *l;
4222 unsigned long caddr;
4223 unsigned long age = jiffies - track->when;
4225 start = -1;
4226 end = t->count;
4228 for ( ; ; ) {
4229 pos = start + (end - start + 1) / 2;
4232 * There is nothing at "end". If we end up there
4233 * we need to add something to before end.
4235 if (pos == end)
4236 break;
4238 caddr = t->loc[pos].addr;
4239 if (track->addr == caddr) {
4241 l = &t->loc[pos];
4242 l->count++;
4243 if (track->when) {
4244 l->sum_time += age;
4245 if (age < l->min_time)
4246 l->min_time = age;
4247 if (age > l->max_time)
4248 l->max_time = age;
4250 if (track->pid < l->min_pid)
4251 l->min_pid = track->pid;
4252 if (track->pid > l->max_pid)
4253 l->max_pid = track->pid;
4255 cpumask_set_cpu(track->cpu,
4256 to_cpumask(l->cpus));
4258 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4259 return 1;
4262 if (track->addr < caddr)
4263 end = pos;
4264 else
4265 start = pos;
4269 * Not found. Insert new tracking element.
4271 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4272 return 0;
4274 l = t->loc + pos;
4275 if (pos < t->count)
4276 memmove(l + 1, l,
4277 (t->count - pos) * sizeof(struct location));
4278 t->count++;
4279 l->count = 1;
4280 l->addr = track->addr;
4281 l->sum_time = age;
4282 l->min_time = age;
4283 l->max_time = age;
4284 l->min_pid = track->pid;
4285 l->max_pid = track->pid;
4286 cpumask_clear(to_cpumask(l->cpus));
4287 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4288 nodes_clear(l->nodes);
4289 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4290 return 1;
4293 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4294 struct page *page, enum track_item alloc,
4295 unsigned long *map)
4297 void *addr = page_address(page);
4298 void *p;
4300 bitmap_zero(map, page->objects);
4301 get_map(s, page, map);
4303 for_each_object(p, s, addr, page->objects)
4304 if (!test_bit(slab_index(p, s, addr), map))
4305 add_location(t, s, get_track(s, p, alloc));
4308 static int list_locations(struct kmem_cache *s, char *buf,
4309 enum track_item alloc)
4311 int len = 0;
4312 unsigned long i;
4313 struct loc_track t = { 0, 0, NULL };
4314 int node;
4315 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4316 sizeof(unsigned long), GFP_KERNEL);
4318 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4319 GFP_TEMPORARY)) {
4320 kfree(map);
4321 return sprintf(buf, "Out of memory\n");
4323 /* Push back cpu slabs */
4324 flush_all(s);
4326 for_each_node_state(node, N_NORMAL_MEMORY) {
4327 struct kmem_cache_node *n = get_node(s, node);
4328 unsigned long flags;
4329 struct page *page;
4331 if (!atomic_long_read(&n->nr_slabs))
4332 continue;
4334 spin_lock_irqsave(&n->list_lock, flags);
4335 list_for_each_entry(page, &n->partial, lru)
4336 process_slab(&t, s, page, alloc, map);
4337 list_for_each_entry(page, &n->full, lru)
4338 process_slab(&t, s, page, alloc, map);
4339 spin_unlock_irqrestore(&n->list_lock, flags);
4342 for (i = 0; i < t.count; i++) {
4343 struct location *l = &t.loc[i];
4345 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4346 break;
4347 len += sprintf(buf + len, "%7ld ", l->count);
4349 if (l->addr)
4350 len += sprintf(buf + len, "%pS", (void *)l->addr);
4351 else
4352 len += sprintf(buf + len, "<not-available>");
4354 if (l->sum_time != l->min_time) {
4355 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4356 l->min_time,
4357 (long)div_u64(l->sum_time, l->count),
4358 l->max_time);
4359 } else
4360 len += sprintf(buf + len, " age=%ld",
4361 l->min_time);
4363 if (l->min_pid != l->max_pid)
4364 len += sprintf(buf + len, " pid=%ld-%ld",
4365 l->min_pid, l->max_pid);
4366 else
4367 len += sprintf(buf + len, " pid=%ld",
4368 l->min_pid);
4370 if (num_online_cpus() > 1 &&
4371 !cpumask_empty(to_cpumask(l->cpus)) &&
4372 len < PAGE_SIZE - 60) {
4373 len += sprintf(buf + len, " cpus=");
4374 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4375 to_cpumask(l->cpus));
4378 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4379 len < PAGE_SIZE - 60) {
4380 len += sprintf(buf + len, " nodes=");
4381 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4382 l->nodes);
4385 len += sprintf(buf + len, "\n");
4388 free_loc_track(&t);
4389 kfree(map);
4390 if (!t.count)
4391 len += sprintf(buf, "No data\n");
4392 return len;
4394 #endif
4396 #ifdef SLUB_RESILIENCY_TEST
4397 static void resiliency_test(void)
4399 u8 *p;
4401 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4403 printk(KERN_ERR "SLUB resiliency testing\n");
4404 printk(KERN_ERR "-----------------------\n");
4405 printk(KERN_ERR "A. Corruption after allocation\n");
4407 p = kzalloc(16, GFP_KERNEL);
4408 p[16] = 0x12;
4409 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4410 " 0x12->0x%p\n\n", p + 16);
4412 validate_slab_cache(kmalloc_caches[4]);
4414 /* Hmmm... The next two are dangerous */
4415 p = kzalloc(32, GFP_KERNEL);
4416 p[32 + sizeof(void *)] = 0x34;
4417 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4418 " 0x34 -> -0x%p\n", p);
4419 printk(KERN_ERR
4420 "If allocated object is overwritten then not detectable\n\n");
4422 validate_slab_cache(kmalloc_caches[5]);
4423 p = kzalloc(64, GFP_KERNEL);
4424 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4425 *p = 0x56;
4426 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4428 printk(KERN_ERR
4429 "If allocated object is overwritten then not detectable\n\n");
4430 validate_slab_cache(kmalloc_caches[6]);
4432 printk(KERN_ERR "\nB. Corruption after free\n");
4433 p = kzalloc(128, GFP_KERNEL);
4434 kfree(p);
4435 *p = 0x78;
4436 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4437 validate_slab_cache(kmalloc_caches[7]);
4439 p = kzalloc(256, GFP_KERNEL);
4440 kfree(p);
4441 p[50] = 0x9a;
4442 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4444 validate_slab_cache(kmalloc_caches[8]);
4446 p = kzalloc(512, GFP_KERNEL);
4447 kfree(p);
4448 p[512] = 0xab;
4449 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4450 validate_slab_cache(kmalloc_caches[9]);
4452 #else
4453 #ifdef CONFIG_SYSFS
4454 static void resiliency_test(void) {};
4455 #endif
4456 #endif
4458 #ifdef CONFIG_SYSFS
4459 enum slab_stat_type {
4460 SL_ALL, /* All slabs */
4461 SL_PARTIAL, /* Only partially allocated slabs */
4462 SL_CPU, /* Only slabs used for cpu caches */
4463 SL_OBJECTS, /* Determine allocated objects not slabs */
4464 SL_TOTAL /* Determine object capacity not slabs */
4467 #define SO_ALL (1 << SL_ALL)
4468 #define SO_PARTIAL (1 << SL_PARTIAL)
4469 #define SO_CPU (1 << SL_CPU)
4470 #define SO_OBJECTS (1 << SL_OBJECTS)
4471 #define SO_TOTAL (1 << SL_TOTAL)
4473 static ssize_t show_slab_objects(struct kmem_cache *s,
4474 char *buf, unsigned long flags)
4476 unsigned long total = 0;
4477 int node;
4478 int x;
4479 unsigned long *nodes;
4480 unsigned long *per_cpu;
4482 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4483 if (!nodes)
4484 return -ENOMEM;
4485 per_cpu = nodes + nr_node_ids;
4487 if (flags & SO_CPU) {
4488 int cpu;
4490 for_each_possible_cpu(cpu) {
4491 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4492 int node;
4493 struct page *page;
4495 page = ACCESS_ONCE(c->page);
4496 if (!page)
4497 continue;
4499 node = page_to_nid(page);
4500 if (flags & SO_TOTAL)
4501 x = page->objects;
4502 else if (flags & SO_OBJECTS)
4503 x = page->inuse;
4504 else
4505 x = 1;
4507 total += x;
4508 nodes[node] += x;
4510 page = ACCESS_ONCE(c->partial);
4511 if (page) {
4512 x = page->pobjects;
4513 total += x;
4514 nodes[node] += x;
4517 per_cpu[node]++;
4521 lock_memory_hotplug();
4522 #ifdef CONFIG_SLUB_DEBUG
4523 if (flags & SO_ALL) {
4524 for_each_node_state(node, N_NORMAL_MEMORY) {
4525 struct kmem_cache_node *n = get_node(s, node);
4527 if (flags & SO_TOTAL)
4528 x = atomic_long_read(&n->total_objects);
4529 else if (flags & SO_OBJECTS)
4530 x = atomic_long_read(&n->total_objects) -
4531 count_partial(n, count_free);
4533 else
4534 x = atomic_long_read(&n->nr_slabs);
4535 total += x;
4536 nodes[node] += x;
4539 } else
4540 #endif
4541 if (flags & SO_PARTIAL) {
4542 for_each_node_state(node, N_NORMAL_MEMORY) {
4543 struct kmem_cache_node *n = get_node(s, node);
4545 if (flags & SO_TOTAL)
4546 x = count_partial(n, count_total);
4547 else if (flags & SO_OBJECTS)
4548 x = count_partial(n, count_inuse);
4549 else
4550 x = n->nr_partial;
4551 total += x;
4552 nodes[node] += x;
4555 x = sprintf(buf, "%lu", total);
4556 #ifdef CONFIG_NUMA
4557 for_each_node_state(node, N_NORMAL_MEMORY)
4558 if (nodes[node])
4559 x += sprintf(buf + x, " N%d=%lu",
4560 node, nodes[node]);
4561 #endif
4562 unlock_memory_hotplug();
4563 kfree(nodes);
4564 return x + sprintf(buf + x, "\n");
4567 #ifdef CONFIG_SLUB_DEBUG
4568 static int any_slab_objects(struct kmem_cache *s)
4570 int node;
4572 for_each_online_node(node) {
4573 struct kmem_cache_node *n = get_node(s, node);
4575 if (!n)
4576 continue;
4578 if (atomic_long_read(&n->total_objects))
4579 return 1;
4581 return 0;
4583 #endif
4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4588 struct slab_attribute {
4589 struct attribute attr;
4590 ssize_t (*show)(struct kmem_cache *s, char *buf);
4591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4594 #define SLAB_ATTR_RO(_name) \
4595 static struct slab_attribute _name##_attr = \
4596 __ATTR(_name, 0400, _name##_show, NULL)
4598 #define SLAB_ATTR(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0600, _name##_show, _name##_store)
4602 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4604 return sprintf(buf, "%d\n", s->size);
4606 SLAB_ATTR_RO(slab_size);
4608 static ssize_t align_show(struct kmem_cache *s, char *buf)
4610 return sprintf(buf, "%d\n", s->align);
4612 SLAB_ATTR_RO(align);
4614 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4616 return sprintf(buf, "%d\n", s->object_size);
4618 SLAB_ATTR_RO(object_size);
4620 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4622 return sprintf(buf, "%d\n", oo_objects(s->oo));
4624 SLAB_ATTR_RO(objs_per_slab);
4626 static ssize_t order_store(struct kmem_cache *s,
4627 const char *buf, size_t length)
4629 unsigned long order;
4630 int err;
4632 err = strict_strtoul(buf, 10, &order);
4633 if (err)
4634 return err;
4636 if (order > slub_max_order || order < slub_min_order)
4637 return -EINVAL;
4639 calculate_sizes(s, order);
4640 return length;
4643 static ssize_t order_show(struct kmem_cache *s, char *buf)
4645 return sprintf(buf, "%d\n", oo_order(s->oo));
4647 SLAB_ATTR(order);
4649 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4651 return sprintf(buf, "%lu\n", s->min_partial);
4654 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4655 size_t length)
4657 unsigned long min;
4658 int err;
4660 err = strict_strtoul(buf, 10, &min);
4661 if (err)
4662 return err;
4664 set_min_partial(s, min);
4665 return length;
4667 SLAB_ATTR(min_partial);
4669 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4671 return sprintf(buf, "%u\n", s->cpu_partial);
4674 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4675 size_t length)
4677 unsigned long objects;
4678 int err;
4680 err = strict_strtoul(buf, 10, &objects);
4681 if (err)
4682 return err;
4683 if (objects && kmem_cache_debug(s))
4684 return -EINVAL;
4686 s->cpu_partial = objects;
4687 flush_all(s);
4688 return length;
4690 SLAB_ATTR(cpu_partial);
4692 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4694 if (!s->ctor)
4695 return 0;
4696 return sprintf(buf, "%pS\n", s->ctor);
4698 SLAB_ATTR_RO(ctor);
4700 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4702 return sprintf(buf, "%d\n", s->refcount - 1);
4704 SLAB_ATTR_RO(aliases);
4706 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4708 return show_slab_objects(s, buf, SO_PARTIAL);
4710 SLAB_ATTR_RO(partial);
4712 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4714 return show_slab_objects(s, buf, SO_CPU);
4716 SLAB_ATTR_RO(cpu_slabs);
4718 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4720 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4722 SLAB_ATTR_RO(objects);
4724 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4726 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4728 SLAB_ATTR_RO(objects_partial);
4730 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4732 int objects = 0;
4733 int pages = 0;
4734 int cpu;
4735 int len;
4737 for_each_online_cpu(cpu) {
4738 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4740 if (page) {
4741 pages += page->pages;
4742 objects += page->pobjects;
4746 len = sprintf(buf, "%d(%d)", objects, pages);
4748 #ifdef CONFIG_SMP
4749 for_each_online_cpu(cpu) {
4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4752 if (page && len < PAGE_SIZE - 20)
4753 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4754 page->pobjects, page->pages);
4756 #endif
4757 return len + sprintf(buf + len, "\n");
4759 SLAB_ATTR_RO(slabs_cpu_partial);
4761 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4766 static ssize_t reclaim_account_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4769 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4770 if (buf[0] == '1')
4771 s->flags |= SLAB_RECLAIM_ACCOUNT;
4772 return length;
4774 SLAB_ATTR(reclaim_account);
4776 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4780 SLAB_ATTR_RO(hwcache_align);
4782 #ifdef CONFIG_ZONE_DMA
4783 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4787 SLAB_ATTR_RO(cache_dma);
4788 #endif
4790 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4794 SLAB_ATTR_RO(destroy_by_rcu);
4796 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4798 return sprintf(buf, "%d\n", s->reserved);
4800 SLAB_ATTR_RO(reserved);
4802 #ifdef CONFIG_SLUB_DEBUG
4803 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4805 return show_slab_objects(s, buf, SO_ALL);
4807 SLAB_ATTR_RO(slabs);
4809 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4811 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4813 SLAB_ATTR_RO(total_objects);
4815 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4817 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4820 static ssize_t sanity_checks_store(struct kmem_cache *s,
4821 const char *buf, size_t length)
4823 s->flags &= ~SLAB_DEBUG_FREE;
4824 if (buf[0] == '1') {
4825 s->flags &= ~__CMPXCHG_DOUBLE;
4826 s->flags |= SLAB_DEBUG_FREE;
4828 return length;
4830 SLAB_ATTR(sanity_checks);
4832 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4837 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4838 size_t length)
4840 s->flags &= ~SLAB_TRACE;
4841 if (buf[0] == '1') {
4842 s->flags &= ~__CMPXCHG_DOUBLE;
4843 s->flags |= SLAB_TRACE;
4845 return length;
4847 SLAB_ATTR(trace);
4849 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4851 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4854 static ssize_t red_zone_store(struct kmem_cache *s,
4855 const char *buf, size_t length)
4857 if (any_slab_objects(s))
4858 return -EBUSY;
4860 s->flags &= ~SLAB_RED_ZONE;
4861 if (buf[0] == '1') {
4862 s->flags &= ~__CMPXCHG_DOUBLE;
4863 s->flags |= SLAB_RED_ZONE;
4865 calculate_sizes(s, -1);
4866 return length;
4868 SLAB_ATTR(red_zone);
4870 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4875 static ssize_t poison_store(struct kmem_cache *s,
4876 const char *buf, size_t length)
4878 if (any_slab_objects(s))
4879 return -EBUSY;
4881 s->flags &= ~SLAB_POISON;
4882 if (buf[0] == '1') {
4883 s->flags &= ~__CMPXCHG_DOUBLE;
4884 s->flags |= SLAB_POISON;
4886 calculate_sizes(s, -1);
4887 return length;
4889 SLAB_ATTR(poison);
4891 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4893 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4896 static ssize_t store_user_store(struct kmem_cache *s,
4897 const char *buf, size_t length)
4899 if (any_slab_objects(s))
4900 return -EBUSY;
4902 s->flags &= ~SLAB_STORE_USER;
4903 if (buf[0] == '1') {
4904 s->flags &= ~__CMPXCHG_DOUBLE;
4905 s->flags |= SLAB_STORE_USER;
4907 calculate_sizes(s, -1);
4908 return length;
4910 SLAB_ATTR(store_user);
4912 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4914 return 0;
4917 static ssize_t validate_store(struct kmem_cache *s,
4918 const char *buf, size_t length)
4920 int ret = -EINVAL;
4922 if (buf[0] == '1') {
4923 ret = validate_slab_cache(s);
4924 if (ret >= 0)
4925 ret = length;
4927 return ret;
4929 SLAB_ATTR(validate);
4931 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4933 if (!(s->flags & SLAB_STORE_USER))
4934 return -ENOSYS;
4935 return list_locations(s, buf, TRACK_ALLOC);
4937 SLAB_ATTR_RO(alloc_calls);
4939 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4941 if (!(s->flags & SLAB_STORE_USER))
4942 return -ENOSYS;
4943 return list_locations(s, buf, TRACK_FREE);
4945 SLAB_ATTR_RO(free_calls);
4946 #endif /* CONFIG_SLUB_DEBUG */
4948 #ifdef CONFIG_FAILSLAB
4949 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4951 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4954 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4955 size_t length)
4957 s->flags &= ~SLAB_FAILSLAB;
4958 if (buf[0] == '1')
4959 s->flags |= SLAB_FAILSLAB;
4960 return length;
4962 SLAB_ATTR(failslab);
4963 #endif
4965 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4967 return 0;
4970 static ssize_t shrink_store(struct kmem_cache *s,
4971 const char *buf, size_t length)
4973 if (buf[0] == '1') {
4974 int rc = kmem_cache_shrink(s);
4976 if (rc)
4977 return rc;
4978 } else
4979 return -EINVAL;
4980 return length;
4982 SLAB_ATTR(shrink);
4984 #ifdef CONFIG_NUMA
4985 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4987 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4990 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4991 const char *buf, size_t length)
4993 unsigned long ratio;
4994 int err;
4996 err = strict_strtoul(buf, 10, &ratio);
4997 if (err)
4998 return err;
5000 if (ratio <= 100)
5001 s->remote_node_defrag_ratio = ratio * 10;
5003 return length;
5005 SLAB_ATTR(remote_node_defrag_ratio);
5006 #endif
5008 #ifdef CONFIG_SLUB_STATS
5009 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5011 unsigned long sum = 0;
5012 int cpu;
5013 int len;
5014 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5016 if (!data)
5017 return -ENOMEM;
5019 for_each_online_cpu(cpu) {
5020 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5022 data[cpu] = x;
5023 sum += x;
5026 len = sprintf(buf, "%lu", sum);
5028 #ifdef CONFIG_SMP
5029 for_each_online_cpu(cpu) {
5030 if (data[cpu] && len < PAGE_SIZE - 20)
5031 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5033 #endif
5034 kfree(data);
5035 return len + sprintf(buf + len, "\n");
5038 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5040 int cpu;
5042 for_each_online_cpu(cpu)
5043 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5046 #define STAT_ATTR(si, text) \
5047 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5049 return show_stat(s, buf, si); \
5051 static ssize_t text##_store(struct kmem_cache *s, \
5052 const char *buf, size_t length) \
5054 if (buf[0] != '0') \
5055 return -EINVAL; \
5056 clear_stat(s, si); \
5057 return length; \
5059 SLAB_ATTR(text); \
5061 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5062 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5063 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5064 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5065 STAT_ATTR(FREE_FROZEN, free_frozen);
5066 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5067 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5068 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5069 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5070 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5071 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5072 STAT_ATTR(FREE_SLAB, free_slab);
5073 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5074 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5075 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5076 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5077 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5078 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5079 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5080 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5081 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5082 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5083 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5084 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5085 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5086 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5087 #endif
5089 static struct attribute *slab_attrs[] = {
5090 &slab_size_attr.attr,
5091 &object_size_attr.attr,
5092 &objs_per_slab_attr.attr,
5093 &order_attr.attr,
5094 &min_partial_attr.attr,
5095 &cpu_partial_attr.attr,
5096 &objects_attr.attr,
5097 &objects_partial_attr.attr,
5098 &partial_attr.attr,
5099 &cpu_slabs_attr.attr,
5100 &ctor_attr.attr,
5101 &aliases_attr.attr,
5102 &align_attr.attr,
5103 &hwcache_align_attr.attr,
5104 &reclaim_account_attr.attr,
5105 &destroy_by_rcu_attr.attr,
5106 &shrink_attr.attr,
5107 &reserved_attr.attr,
5108 &slabs_cpu_partial_attr.attr,
5109 #ifdef CONFIG_SLUB_DEBUG
5110 &total_objects_attr.attr,
5111 &slabs_attr.attr,
5112 &sanity_checks_attr.attr,
5113 &trace_attr.attr,
5114 &red_zone_attr.attr,
5115 &poison_attr.attr,
5116 &store_user_attr.attr,
5117 &validate_attr.attr,
5118 &alloc_calls_attr.attr,
5119 &free_calls_attr.attr,
5120 #endif
5121 #ifdef CONFIG_ZONE_DMA
5122 &cache_dma_attr.attr,
5123 #endif
5124 #ifdef CONFIG_NUMA
5125 &remote_node_defrag_ratio_attr.attr,
5126 #endif
5127 #ifdef CONFIG_SLUB_STATS
5128 &alloc_fastpath_attr.attr,
5129 &alloc_slowpath_attr.attr,
5130 &free_fastpath_attr.attr,
5131 &free_slowpath_attr.attr,
5132 &free_frozen_attr.attr,
5133 &free_add_partial_attr.attr,
5134 &free_remove_partial_attr.attr,
5135 &alloc_from_partial_attr.attr,
5136 &alloc_slab_attr.attr,
5137 &alloc_refill_attr.attr,
5138 &alloc_node_mismatch_attr.attr,
5139 &free_slab_attr.attr,
5140 &cpuslab_flush_attr.attr,
5141 &deactivate_full_attr.attr,
5142 &deactivate_empty_attr.attr,
5143 &deactivate_to_head_attr.attr,
5144 &deactivate_to_tail_attr.attr,
5145 &deactivate_remote_frees_attr.attr,
5146 &deactivate_bypass_attr.attr,
5147 &order_fallback_attr.attr,
5148 &cmpxchg_double_fail_attr.attr,
5149 &cmpxchg_double_cpu_fail_attr.attr,
5150 &cpu_partial_alloc_attr.attr,
5151 &cpu_partial_free_attr.attr,
5152 &cpu_partial_node_attr.attr,
5153 &cpu_partial_drain_attr.attr,
5154 #endif
5155 #ifdef CONFIG_FAILSLAB
5156 &failslab_attr.attr,
5157 #endif
5159 NULL
5162 static struct attribute_group slab_attr_group = {
5163 .attrs = slab_attrs,
5166 static ssize_t slab_attr_show(struct kobject *kobj,
5167 struct attribute *attr,
5168 char *buf)
5170 struct slab_attribute *attribute;
5171 struct kmem_cache *s;
5172 int err;
5174 attribute = to_slab_attr(attr);
5175 s = to_slab(kobj);
5177 if (!attribute->show)
5178 return -EIO;
5180 err = attribute->show(s, buf);
5182 return err;
5185 static ssize_t slab_attr_store(struct kobject *kobj,
5186 struct attribute *attr,
5187 const char *buf, size_t len)
5189 struct slab_attribute *attribute;
5190 struct kmem_cache *s;
5191 int err;
5193 attribute = to_slab_attr(attr);
5194 s = to_slab(kobj);
5196 if (!attribute->store)
5197 return -EIO;
5199 err = attribute->store(s, buf, len);
5201 return err;
5204 static const struct sysfs_ops slab_sysfs_ops = {
5205 .show = slab_attr_show,
5206 .store = slab_attr_store,
5209 static struct kobj_type slab_ktype = {
5210 .sysfs_ops = &slab_sysfs_ops,
5213 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5215 struct kobj_type *ktype = get_ktype(kobj);
5217 if (ktype == &slab_ktype)
5218 return 1;
5219 return 0;
5222 static const struct kset_uevent_ops slab_uevent_ops = {
5223 .filter = uevent_filter,
5226 static struct kset *slab_kset;
5228 #define ID_STR_LENGTH 64
5230 /* Create a unique string id for a slab cache:
5232 * Format :[flags-]size
5234 static char *create_unique_id(struct kmem_cache *s)
5236 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5237 char *p = name;
5239 BUG_ON(!name);
5241 *p++ = ':';
5243 * First flags affecting slabcache operations. We will only
5244 * get here for aliasable slabs so we do not need to support
5245 * too many flags. The flags here must cover all flags that
5246 * are matched during merging to guarantee that the id is
5247 * unique.
5249 if (s->flags & SLAB_CACHE_DMA)
5250 *p++ = 'd';
5251 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5252 *p++ = 'a';
5253 if (s->flags & SLAB_DEBUG_FREE)
5254 *p++ = 'F';
5255 if (!(s->flags & SLAB_NOTRACK))
5256 *p++ = 't';
5257 if (p != name + 1)
5258 *p++ = '-';
5259 p += sprintf(p, "%07d", s->size);
5260 BUG_ON(p > name + ID_STR_LENGTH - 1);
5261 return name;
5264 static int sysfs_slab_add(struct kmem_cache *s)
5266 int err;
5267 const char *name;
5268 int unmergeable;
5270 if (slab_state < FULL)
5271 /* Defer until later */
5272 return 0;
5274 unmergeable = slab_unmergeable(s);
5275 if (unmergeable) {
5277 * Slabcache can never be merged so we can use the name proper.
5278 * This is typically the case for debug situations. In that
5279 * case we can catch duplicate names easily.
5281 sysfs_remove_link(&slab_kset->kobj, s->name);
5282 name = s->name;
5283 } else {
5285 * Create a unique name for the slab as a target
5286 * for the symlinks.
5288 name = create_unique_id(s);
5291 s->kobj.kset = slab_kset;
5292 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5293 if (err) {
5294 kobject_put(&s->kobj);
5295 return err;
5298 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5299 if (err) {
5300 kobject_del(&s->kobj);
5301 kobject_put(&s->kobj);
5302 return err;
5304 kobject_uevent(&s->kobj, KOBJ_ADD);
5305 if (!unmergeable) {
5306 /* Setup first alias */
5307 sysfs_slab_alias(s, s->name);
5308 kfree(name);
5310 return 0;
5313 static void sysfs_slab_remove(struct kmem_cache *s)
5315 if (slab_state < FULL)
5317 * Sysfs has not been setup yet so no need to remove the
5318 * cache from sysfs.
5320 return;
5322 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 kobject_del(&s->kobj);
5324 kobject_put(&s->kobj);
5328 * Need to buffer aliases during bootup until sysfs becomes
5329 * available lest we lose that information.
5331 struct saved_alias {
5332 struct kmem_cache *s;
5333 const char *name;
5334 struct saved_alias *next;
5337 static struct saved_alias *alias_list;
5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5341 struct saved_alias *al;
5343 if (slab_state == FULL) {
5345 * If we have a leftover link then remove it.
5347 sysfs_remove_link(&slab_kset->kobj, name);
5348 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5351 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 if (!al)
5353 return -ENOMEM;
5355 al->s = s;
5356 al->name = name;
5357 al->next = alias_list;
5358 alias_list = al;
5359 return 0;
5362 static int __init slab_sysfs_init(void)
5364 struct kmem_cache *s;
5365 int err;
5367 mutex_lock(&slab_mutex);
5369 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5370 if (!slab_kset) {
5371 mutex_unlock(&slab_mutex);
5372 printk(KERN_ERR "Cannot register slab subsystem.\n");
5373 return -ENOSYS;
5376 slab_state = FULL;
5378 list_for_each_entry(s, &slab_caches, list) {
5379 err = sysfs_slab_add(s);
5380 if (err)
5381 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5382 " to sysfs\n", s->name);
5385 while (alias_list) {
5386 struct saved_alias *al = alias_list;
5388 alias_list = alias_list->next;
5389 err = sysfs_slab_alias(al->s, al->name);
5390 if (err)
5391 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5392 " %s to sysfs\n", al->name);
5393 kfree(al);
5396 mutex_unlock(&slab_mutex);
5397 resiliency_test();
5398 return 0;
5401 __initcall(slab_sysfs_init);
5402 #endif /* CONFIG_SYSFS */
5405 * The /proc/slabinfo ABI
5407 #ifdef CONFIG_SLABINFO
5408 static void print_slabinfo_header(struct seq_file *m)
5410 seq_puts(m, "slabinfo - version: 2.1\n");
5411 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
5412 "<objperslab> <pagesperslab>");
5413 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5414 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5415 seq_putc(m, '\n');
5418 static void *s_start(struct seq_file *m, loff_t *pos)
5420 loff_t n = *pos;
5422 mutex_lock(&slab_mutex);
5423 if (!n)
5424 print_slabinfo_header(m);
5426 return seq_list_start(&slab_caches, *pos);
5429 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5431 return seq_list_next(p, &slab_caches, pos);
5434 static void s_stop(struct seq_file *m, void *p)
5436 mutex_unlock(&slab_mutex);
5439 static int s_show(struct seq_file *m, void *p)
5441 unsigned long nr_partials = 0;
5442 unsigned long nr_slabs = 0;
5443 unsigned long nr_inuse = 0;
5444 unsigned long nr_objs = 0;
5445 unsigned long nr_free = 0;
5446 struct kmem_cache *s;
5447 int node;
5449 s = list_entry(p, struct kmem_cache, list);
5451 for_each_online_node(node) {
5452 struct kmem_cache_node *n = get_node(s, node);
5454 if (!n)
5455 continue;
5457 nr_partials += n->nr_partial;
5458 nr_slabs += atomic_long_read(&n->nr_slabs);
5459 nr_objs += atomic_long_read(&n->total_objects);
5460 nr_free += count_partial(n, count_free);
5463 nr_inuse = nr_objs - nr_free;
5465 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5466 nr_objs, s->size, oo_objects(s->oo),
5467 (1 << oo_order(s->oo)));
5468 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5469 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5470 0UL);
5471 seq_putc(m, '\n');
5472 return 0;
5475 static const struct seq_operations slabinfo_op = {
5476 .start = s_start,
5477 .next = s_next,
5478 .stop = s_stop,
5479 .show = s_show,
5482 static int slabinfo_open(struct inode *inode, struct file *file)
5484 return seq_open(file, &slabinfo_op);
5487 static const struct file_operations proc_slabinfo_operations = {
5488 .open = slabinfo_open,
5489 .read = seq_read,
5490 .llseek = seq_lseek,
5491 .release = seq_release,
5494 static int __init slab_proc_init(void)
5496 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5497 return 0;
5499 module_init(slab_proc_init);
5500 #endif /* CONFIG_SLABINFO */