ipv6: add support of equal cost multipath (ECMP)
[linux-2.6.git] / mm / rmap.c
blob7df7984d476c8661b900725c0e2c3f33c883a32d
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
60 #include <asm/tlbflush.h>
62 #include "internal.h"
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
67 static inline struct anon_vma *anon_vma_alloc(void)
69 struct anon_vma *anon_vma;
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
78 anon_vma->root = anon_vma;
81 return anon_vma;
84 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
110 kmem_cache_free(anon_vma_cachep, anon_vma);
113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 static void anon_vma_chain_link(struct vm_area_struct *vma,
124 struct anon_vma_chain *avc,
125 struct anon_vma *anon_vma)
127 avc->vma = vma;
128 avc->anon_vma = anon_vma;
129 list_add(&avc->same_vma, &vma->anon_vma_chain);
130 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
134 * anon_vma_prepare - attach an anon_vma to a memory region
135 * @vma: the memory region in question
137 * This makes sure the memory mapping described by 'vma' has
138 * an 'anon_vma' attached to it, so that we can associate the
139 * anonymous pages mapped into it with that anon_vma.
141 * The common case will be that we already have one, but if
142 * not we either need to find an adjacent mapping that we
143 * can re-use the anon_vma from (very common when the only
144 * reason for splitting a vma has been mprotect()), or we
145 * allocate a new one.
147 * Anon-vma allocations are very subtle, because we may have
148 * optimistically looked up an anon_vma in page_lock_anon_vma()
149 * and that may actually touch the spinlock even in the newly
150 * allocated vma (it depends on RCU to make sure that the
151 * anon_vma isn't actually destroyed).
153 * As a result, we need to do proper anon_vma locking even
154 * for the new allocation. At the same time, we do not want
155 * to do any locking for the common case of already having
156 * an anon_vma.
158 * This must be called with the mmap_sem held for reading.
160 int anon_vma_prepare(struct vm_area_struct *vma)
162 struct anon_vma *anon_vma = vma->anon_vma;
163 struct anon_vma_chain *avc;
165 might_sleep();
166 if (unlikely(!anon_vma)) {
167 struct mm_struct *mm = vma->vm_mm;
168 struct anon_vma *allocated;
170 avc = anon_vma_chain_alloc(GFP_KERNEL);
171 if (!avc)
172 goto out_enomem;
174 anon_vma = find_mergeable_anon_vma(vma);
175 allocated = NULL;
176 if (!anon_vma) {
177 anon_vma = anon_vma_alloc();
178 if (unlikely(!anon_vma))
179 goto out_enomem_free_avc;
180 allocated = anon_vma;
183 anon_vma_lock(anon_vma);
184 /* page_table_lock to protect against threads */
185 spin_lock(&mm->page_table_lock);
186 if (likely(!vma->anon_vma)) {
187 vma->anon_vma = anon_vma;
188 anon_vma_chain_link(vma, avc, anon_vma);
189 allocated = NULL;
190 avc = NULL;
192 spin_unlock(&mm->page_table_lock);
193 anon_vma_unlock(anon_vma);
195 if (unlikely(allocated))
196 put_anon_vma(allocated);
197 if (unlikely(avc))
198 anon_vma_chain_free(avc);
200 return 0;
202 out_enomem_free_avc:
203 anon_vma_chain_free(avc);
204 out_enomem:
205 return -ENOMEM;
209 * This is a useful helper function for locking the anon_vma root as
210 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
211 * have the same vma.
213 * Such anon_vma's should have the same root, so you'd expect to see
214 * just a single mutex_lock for the whole traversal.
216 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 struct anon_vma *new_root = anon_vma->root;
219 if (new_root != root) {
220 if (WARN_ON_ONCE(root))
221 mutex_unlock(&root->mutex);
222 root = new_root;
223 mutex_lock(&root->mutex);
225 return root;
228 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 if (root)
231 mutex_unlock(&root->mutex);
235 * Attach the anon_vmas from src to dst.
236 * Returns 0 on success, -ENOMEM on failure.
238 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240 struct anon_vma_chain *avc, *pavc;
241 struct anon_vma *root = NULL;
243 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
244 struct anon_vma *anon_vma;
246 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
247 if (unlikely(!avc)) {
248 unlock_anon_vma_root(root);
249 root = NULL;
250 avc = anon_vma_chain_alloc(GFP_KERNEL);
251 if (!avc)
252 goto enomem_failure;
254 anon_vma = pavc->anon_vma;
255 root = lock_anon_vma_root(root, anon_vma);
256 anon_vma_chain_link(dst, avc, anon_vma);
258 unlock_anon_vma_root(root);
259 return 0;
261 enomem_failure:
262 unlink_anon_vmas(dst);
263 return -ENOMEM;
267 * Attach vma to its own anon_vma, as well as to the anon_vmas that
268 * the corresponding VMA in the parent process is attached to.
269 * Returns 0 on success, non-zero on failure.
271 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 struct anon_vma_chain *avc;
274 struct anon_vma *anon_vma;
276 /* Don't bother if the parent process has no anon_vma here. */
277 if (!pvma->anon_vma)
278 return 0;
281 * First, attach the new VMA to the parent VMA's anon_vmas,
282 * so rmap can find non-COWed pages in child processes.
284 if (anon_vma_clone(vma, pvma))
285 return -ENOMEM;
287 /* Then add our own anon_vma. */
288 anon_vma = anon_vma_alloc();
289 if (!anon_vma)
290 goto out_error;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto out_error_free_anon_vma;
296 * The root anon_vma's spinlock is the lock actually used when we
297 * lock any of the anon_vmas in this anon_vma tree.
299 anon_vma->root = pvma->anon_vma->root;
301 * With refcounts, an anon_vma can stay around longer than the
302 * process it belongs to. The root anon_vma needs to be pinned until
303 * this anon_vma is freed, because the lock lives in the root.
305 get_anon_vma(anon_vma->root);
306 /* Mark this anon_vma as the one where our new (COWed) pages go. */
307 vma->anon_vma = anon_vma;
308 anon_vma_lock(anon_vma);
309 anon_vma_chain_link(vma, avc, anon_vma);
310 anon_vma_unlock(anon_vma);
312 return 0;
314 out_error_free_anon_vma:
315 put_anon_vma(anon_vma);
316 out_error:
317 unlink_anon_vmas(vma);
318 return -ENOMEM;
321 void unlink_anon_vmas(struct vm_area_struct *vma)
323 struct anon_vma_chain *avc, *next;
324 struct anon_vma *root = NULL;
327 * Unlink each anon_vma chained to the VMA. This list is ordered
328 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
331 struct anon_vma *anon_vma = avc->anon_vma;
333 root = lock_anon_vma_root(root, anon_vma);
334 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
337 * Leave empty anon_vmas on the list - we'll need
338 * to free them outside the lock.
340 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
341 continue;
343 list_del(&avc->same_vma);
344 anon_vma_chain_free(avc);
346 unlock_anon_vma_root(root);
349 * Iterate the list once more, it now only contains empty and unlinked
350 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
351 * needing to acquire the anon_vma->root->mutex.
353 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
354 struct anon_vma *anon_vma = avc->anon_vma;
356 put_anon_vma(anon_vma);
358 list_del(&avc->same_vma);
359 anon_vma_chain_free(avc);
363 static void anon_vma_ctor(void *data)
365 struct anon_vma *anon_vma = data;
367 mutex_init(&anon_vma->mutex);
368 atomic_set(&anon_vma->refcount, 0);
369 anon_vma->rb_root = RB_ROOT;
372 void __init anon_vma_init(void)
374 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
375 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
376 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
380 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382 * Since there is no serialization what so ever against page_remove_rmap()
383 * the best this function can do is return a locked anon_vma that might
384 * have been relevant to this page.
386 * The page might have been remapped to a different anon_vma or the anon_vma
387 * returned may already be freed (and even reused).
389 * In case it was remapped to a different anon_vma, the new anon_vma will be a
390 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
391 * ensure that any anon_vma obtained from the page will still be valid for as
392 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394 * All users of this function must be very careful when walking the anon_vma
395 * chain and verify that the page in question is indeed mapped in it
396 * [ something equivalent to page_mapped_in_vma() ].
398 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
399 * that the anon_vma pointer from page->mapping is valid if there is a
400 * mapcount, we can dereference the anon_vma after observing those.
402 struct anon_vma *page_get_anon_vma(struct page *page)
404 struct anon_vma *anon_vma = NULL;
405 unsigned long anon_mapping;
407 rcu_read_lock();
408 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
409 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
410 goto out;
411 if (!page_mapped(page))
412 goto out;
414 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
415 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
416 anon_vma = NULL;
417 goto out;
421 * If this page is still mapped, then its anon_vma cannot have been
422 * freed. But if it has been unmapped, we have no security against the
423 * anon_vma structure being freed and reused (for another anon_vma:
424 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
425 * above cannot corrupt).
427 if (!page_mapped(page)) {
428 put_anon_vma(anon_vma);
429 anon_vma = NULL;
431 out:
432 rcu_read_unlock();
434 return anon_vma;
438 * Similar to page_get_anon_vma() except it locks the anon_vma.
440 * Its a little more complex as it tries to keep the fast path to a single
441 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
442 * reference like with page_get_anon_vma() and then block on the mutex.
444 struct anon_vma *page_lock_anon_vma(struct page *page)
446 struct anon_vma *anon_vma = NULL;
447 struct anon_vma *root_anon_vma;
448 unsigned long anon_mapping;
450 rcu_read_lock();
451 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
452 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
453 goto out;
454 if (!page_mapped(page))
455 goto out;
457 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
458 root_anon_vma = ACCESS_ONCE(anon_vma->root);
459 if (mutex_trylock(&root_anon_vma->mutex)) {
461 * If the page is still mapped, then this anon_vma is still
462 * its anon_vma, and holding the mutex ensures that it will
463 * not go away, see anon_vma_free().
465 if (!page_mapped(page)) {
466 mutex_unlock(&root_anon_vma->mutex);
467 anon_vma = NULL;
469 goto out;
472 /* trylock failed, we got to sleep */
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
478 if (!page_mapped(page)) {
479 put_anon_vma(anon_vma);
480 anon_vma = NULL;
481 goto out;
484 /* we pinned the anon_vma, its safe to sleep */
485 rcu_read_unlock();
486 anon_vma_lock(anon_vma);
488 if (atomic_dec_and_test(&anon_vma->refcount)) {
490 * Oops, we held the last refcount, release the lock
491 * and bail -- can't simply use put_anon_vma() because
492 * we'll deadlock on the anon_vma_lock() recursion.
494 anon_vma_unlock(anon_vma);
495 __put_anon_vma(anon_vma);
496 anon_vma = NULL;
499 return anon_vma;
501 out:
502 rcu_read_unlock();
503 return anon_vma;
506 void page_unlock_anon_vma(struct anon_vma *anon_vma)
508 anon_vma_unlock(anon_vma);
512 * At what user virtual address is page expected in @vma?
514 static inline unsigned long
515 __vma_address(struct page *page, struct vm_area_struct *vma)
517 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 if (unlikely(is_vm_hugetlb_page(vma)))
520 pgoff = page->index << huge_page_order(page_hstate(page));
522 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
525 inline unsigned long
526 vma_address(struct page *page, struct vm_area_struct *vma)
528 unsigned long address = __vma_address(page, vma);
530 /* page should be within @vma mapping range */
531 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533 return address;
537 * At what user virtual address is page expected in vma?
538 * Caller should check the page is actually part of the vma.
540 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 unsigned long address;
543 if (PageAnon(page)) {
544 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 * Note: swapoff's unuse_vma() is more efficient with this
547 * check, and needs it to match anon_vma when KSM is active.
549 if (!vma->anon_vma || !page__anon_vma ||
550 vma->anon_vma->root != page__anon_vma->root)
551 return -EFAULT;
552 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
553 if (!vma->vm_file ||
554 vma->vm_file->f_mapping != page->mapping)
555 return -EFAULT;
556 } else
557 return -EFAULT;
558 address = __vma_address(page, vma);
559 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
560 return -EFAULT;
561 return address;
565 * Check that @page is mapped at @address into @mm.
567 * If @sync is false, page_check_address may perform a racy check to avoid
568 * the page table lock when the pte is not present (helpful when reclaiming
569 * highly shared pages).
571 * On success returns with pte mapped and locked.
573 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
574 unsigned long address, spinlock_t **ptlp, int sync)
576 pgd_t *pgd;
577 pud_t *pud;
578 pmd_t *pmd;
579 pte_t *pte;
580 spinlock_t *ptl;
582 if (unlikely(PageHuge(page))) {
583 pte = huge_pte_offset(mm, address);
584 ptl = &mm->page_table_lock;
585 goto check;
588 pgd = pgd_offset(mm, address);
589 if (!pgd_present(*pgd))
590 return NULL;
592 pud = pud_offset(pgd, address);
593 if (!pud_present(*pud))
594 return NULL;
596 pmd = pmd_offset(pud, address);
597 if (!pmd_present(*pmd))
598 return NULL;
599 if (pmd_trans_huge(*pmd))
600 return NULL;
602 pte = pte_offset_map(pmd, address);
603 /* Make a quick check before getting the lock */
604 if (!sync && !pte_present(*pte)) {
605 pte_unmap(pte);
606 return NULL;
609 ptl = pte_lockptr(mm, pmd);
610 check:
611 spin_lock(ptl);
612 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
613 *ptlp = ptl;
614 return pte;
616 pte_unmap_unlock(pte, ptl);
617 return NULL;
621 * page_mapped_in_vma - check whether a page is really mapped in a VMA
622 * @page: the page to test
623 * @vma: the VMA to test
625 * Returns 1 if the page is mapped into the page tables of the VMA, 0
626 * if the page is not mapped into the page tables of this VMA. Only
627 * valid for normal file or anonymous VMAs.
629 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
631 unsigned long address;
632 pte_t *pte;
633 spinlock_t *ptl;
635 address = __vma_address(page, vma);
636 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
637 return 0;
638 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
639 if (!pte) /* the page is not in this mm */
640 return 0;
641 pte_unmap_unlock(pte, ptl);
643 return 1;
647 * Subfunctions of page_referenced: page_referenced_one called
648 * repeatedly from either page_referenced_anon or page_referenced_file.
650 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
651 unsigned long address, unsigned int *mapcount,
652 unsigned long *vm_flags)
654 struct mm_struct *mm = vma->vm_mm;
655 int referenced = 0;
657 if (unlikely(PageTransHuge(page))) {
658 pmd_t *pmd;
660 spin_lock(&mm->page_table_lock);
662 * rmap might return false positives; we must filter
663 * these out using page_check_address_pmd().
665 pmd = page_check_address_pmd(page, mm, address,
666 PAGE_CHECK_ADDRESS_PMD_FLAG);
667 if (!pmd) {
668 spin_unlock(&mm->page_table_lock);
669 goto out;
672 if (vma->vm_flags & VM_LOCKED) {
673 spin_unlock(&mm->page_table_lock);
674 *mapcount = 0; /* break early from loop */
675 *vm_flags |= VM_LOCKED;
676 goto out;
679 /* go ahead even if the pmd is pmd_trans_splitting() */
680 if (pmdp_clear_flush_young_notify(vma, address, pmd))
681 referenced++;
682 spin_unlock(&mm->page_table_lock);
683 } else {
684 pte_t *pte;
685 spinlock_t *ptl;
688 * rmap might return false positives; we must filter
689 * these out using page_check_address().
691 pte = page_check_address(page, mm, address, &ptl, 0);
692 if (!pte)
693 goto out;
695 if (vma->vm_flags & VM_LOCKED) {
696 pte_unmap_unlock(pte, ptl);
697 *mapcount = 0; /* break early from loop */
698 *vm_flags |= VM_LOCKED;
699 goto out;
702 if (ptep_clear_flush_young_notify(vma, address, pte)) {
704 * Don't treat a reference through a sequentially read
705 * mapping as such. If the page has been used in
706 * another mapping, we will catch it; if this other
707 * mapping is already gone, the unmap path will have
708 * set PG_referenced or activated the page.
710 if (likely(!VM_SequentialReadHint(vma)))
711 referenced++;
713 pte_unmap_unlock(pte, ptl);
716 (*mapcount)--;
718 if (referenced)
719 *vm_flags |= vma->vm_flags;
720 out:
721 return referenced;
724 static int page_referenced_anon(struct page *page,
725 struct mem_cgroup *memcg,
726 unsigned long *vm_flags)
728 unsigned int mapcount;
729 struct anon_vma *anon_vma;
730 pgoff_t pgoff;
731 struct anon_vma_chain *avc;
732 int referenced = 0;
734 anon_vma = page_lock_anon_vma(page);
735 if (!anon_vma)
736 return referenced;
738 mapcount = page_mapcount(page);
739 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
740 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
741 struct vm_area_struct *vma = avc->vma;
742 unsigned long address = vma_address(page, vma);
744 * If we are reclaiming on behalf of a cgroup, skip
745 * counting on behalf of references from different
746 * cgroups
748 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
749 continue;
750 referenced += page_referenced_one(page, vma, address,
751 &mapcount, vm_flags);
752 if (!mapcount)
753 break;
756 page_unlock_anon_vma(anon_vma);
757 return referenced;
761 * page_referenced_file - referenced check for object-based rmap
762 * @page: the page we're checking references on.
763 * @memcg: target memory control group
764 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
766 * For an object-based mapped page, find all the places it is mapped and
767 * check/clear the referenced flag. This is done by following the page->mapping
768 * pointer, then walking the chain of vmas it holds. It returns the number
769 * of references it found.
771 * This function is only called from page_referenced for object-based pages.
773 static int page_referenced_file(struct page *page,
774 struct mem_cgroup *memcg,
775 unsigned long *vm_flags)
777 unsigned int mapcount;
778 struct address_space *mapping = page->mapping;
779 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
780 struct vm_area_struct *vma;
781 int referenced = 0;
784 * The caller's checks on page->mapping and !PageAnon have made
785 * sure that this is a file page: the check for page->mapping
786 * excludes the case just before it gets set on an anon page.
788 BUG_ON(PageAnon(page));
791 * The page lock not only makes sure that page->mapping cannot
792 * suddenly be NULLified by truncation, it makes sure that the
793 * structure at mapping cannot be freed and reused yet,
794 * so we can safely take mapping->i_mmap_mutex.
796 BUG_ON(!PageLocked(page));
798 mutex_lock(&mapping->i_mmap_mutex);
801 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
802 * is more likely to be accurate if we note it after spinning.
804 mapcount = page_mapcount(page);
806 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
807 unsigned long address = vma_address(page, vma);
809 * If we are reclaiming on behalf of a cgroup, skip
810 * counting on behalf of references from different
811 * cgroups
813 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
814 continue;
815 referenced += page_referenced_one(page, vma, address,
816 &mapcount, vm_flags);
817 if (!mapcount)
818 break;
821 mutex_unlock(&mapping->i_mmap_mutex);
822 return referenced;
826 * page_referenced - test if the page was referenced
827 * @page: the page to test
828 * @is_locked: caller holds lock on the page
829 * @memcg: target memory cgroup
830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832 * Quick test_and_clear_referenced for all mappings to a page,
833 * returns the number of ptes which referenced the page.
835 int page_referenced(struct page *page,
836 int is_locked,
837 struct mem_cgroup *memcg,
838 unsigned long *vm_flags)
840 int referenced = 0;
841 int we_locked = 0;
843 *vm_flags = 0;
844 if (page_mapped(page) && page_rmapping(page)) {
845 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
846 we_locked = trylock_page(page);
847 if (!we_locked) {
848 referenced++;
849 goto out;
852 if (unlikely(PageKsm(page)))
853 referenced += page_referenced_ksm(page, memcg,
854 vm_flags);
855 else if (PageAnon(page))
856 referenced += page_referenced_anon(page, memcg,
857 vm_flags);
858 else if (page->mapping)
859 referenced += page_referenced_file(page, memcg,
860 vm_flags);
861 if (we_locked)
862 unlock_page(page);
864 if (page_test_and_clear_young(page_to_pfn(page)))
865 referenced++;
867 out:
868 return referenced;
871 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
872 unsigned long address)
874 struct mm_struct *mm = vma->vm_mm;
875 pte_t *pte;
876 spinlock_t *ptl;
877 int ret = 0;
879 pte = page_check_address(page, mm, address, &ptl, 1);
880 if (!pte)
881 goto out;
883 if (pte_dirty(*pte) || pte_write(*pte)) {
884 pte_t entry;
886 flush_cache_page(vma, address, pte_pfn(*pte));
887 entry = ptep_clear_flush(vma, address, pte);
888 entry = pte_wrprotect(entry);
889 entry = pte_mkclean(entry);
890 set_pte_at(mm, address, pte, entry);
891 ret = 1;
894 pte_unmap_unlock(pte, ptl);
896 if (ret)
897 mmu_notifier_invalidate_page(mm, address);
898 out:
899 return ret;
902 static int page_mkclean_file(struct address_space *mapping, struct page *page)
904 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
905 struct vm_area_struct *vma;
906 int ret = 0;
908 BUG_ON(PageAnon(page));
910 mutex_lock(&mapping->i_mmap_mutex);
911 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
912 if (vma->vm_flags & VM_SHARED) {
913 unsigned long address = vma_address(page, vma);
914 ret += page_mkclean_one(page, vma, address);
917 mutex_unlock(&mapping->i_mmap_mutex);
918 return ret;
921 int page_mkclean(struct page *page)
923 int ret = 0;
925 BUG_ON(!PageLocked(page));
927 if (page_mapped(page)) {
928 struct address_space *mapping = page_mapping(page);
929 if (mapping) {
930 ret = page_mkclean_file(mapping, page);
931 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
932 ret = 1;
936 return ret;
938 EXPORT_SYMBOL_GPL(page_mkclean);
941 * page_move_anon_rmap - move a page to our anon_vma
942 * @page: the page to move to our anon_vma
943 * @vma: the vma the page belongs to
944 * @address: the user virtual address mapped
946 * When a page belongs exclusively to one process after a COW event,
947 * that page can be moved into the anon_vma that belongs to just that
948 * process, so the rmap code will not search the parent or sibling
949 * processes.
951 void page_move_anon_rmap(struct page *page,
952 struct vm_area_struct *vma, unsigned long address)
954 struct anon_vma *anon_vma = vma->anon_vma;
956 VM_BUG_ON(!PageLocked(page));
957 VM_BUG_ON(!anon_vma);
958 VM_BUG_ON(page->index != linear_page_index(vma, address));
960 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
961 page->mapping = (struct address_space *) anon_vma;
965 * __page_set_anon_rmap - set up new anonymous rmap
966 * @page: Page to add to rmap
967 * @vma: VM area to add page to.
968 * @address: User virtual address of the mapping
969 * @exclusive: the page is exclusively owned by the current process
971 static void __page_set_anon_rmap(struct page *page,
972 struct vm_area_struct *vma, unsigned long address, int exclusive)
974 struct anon_vma *anon_vma = vma->anon_vma;
976 BUG_ON(!anon_vma);
978 if (PageAnon(page))
979 return;
982 * If the page isn't exclusively mapped into this vma,
983 * we must use the _oldest_ possible anon_vma for the
984 * page mapping!
986 if (!exclusive)
987 anon_vma = anon_vma->root;
989 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
990 page->mapping = (struct address_space *) anon_vma;
991 page->index = linear_page_index(vma, address);
995 * __page_check_anon_rmap - sanity check anonymous rmap addition
996 * @page: the page to add the mapping to
997 * @vma: the vm area in which the mapping is added
998 * @address: the user virtual address mapped
1000 static void __page_check_anon_rmap(struct page *page,
1001 struct vm_area_struct *vma, unsigned long address)
1003 #ifdef CONFIG_DEBUG_VM
1005 * The page's anon-rmap details (mapping and index) are guaranteed to
1006 * be set up correctly at this point.
1008 * We have exclusion against page_add_anon_rmap because the caller
1009 * always holds the page locked, except if called from page_dup_rmap,
1010 * in which case the page is already known to be setup.
1012 * We have exclusion against page_add_new_anon_rmap because those pages
1013 * are initially only visible via the pagetables, and the pte is locked
1014 * over the call to page_add_new_anon_rmap.
1016 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1017 BUG_ON(page->index != linear_page_index(vma, address));
1018 #endif
1022 * page_add_anon_rmap - add pte mapping to an anonymous page
1023 * @page: the page to add the mapping to
1024 * @vma: the vm area in which the mapping is added
1025 * @address: the user virtual address mapped
1027 * The caller needs to hold the pte lock, and the page must be locked in
1028 * the anon_vma case: to serialize mapping,index checking after setting,
1029 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1030 * (but PageKsm is never downgraded to PageAnon).
1032 void page_add_anon_rmap(struct page *page,
1033 struct vm_area_struct *vma, unsigned long address)
1035 do_page_add_anon_rmap(page, vma, address, 0);
1039 * Special version of the above for do_swap_page, which often runs
1040 * into pages that are exclusively owned by the current process.
1041 * Everybody else should continue to use page_add_anon_rmap above.
1043 void do_page_add_anon_rmap(struct page *page,
1044 struct vm_area_struct *vma, unsigned long address, int exclusive)
1046 int first = atomic_inc_and_test(&page->_mapcount);
1047 if (first) {
1048 if (!PageTransHuge(page))
1049 __inc_zone_page_state(page, NR_ANON_PAGES);
1050 else
1051 __inc_zone_page_state(page,
1052 NR_ANON_TRANSPARENT_HUGEPAGES);
1054 if (unlikely(PageKsm(page)))
1055 return;
1057 VM_BUG_ON(!PageLocked(page));
1058 /* address might be in next vma when migration races vma_adjust */
1059 if (first)
1060 __page_set_anon_rmap(page, vma, address, exclusive);
1061 else
1062 __page_check_anon_rmap(page, vma, address);
1066 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1067 * @page: the page to add the mapping to
1068 * @vma: the vm area in which the mapping is added
1069 * @address: the user virtual address mapped
1071 * Same as page_add_anon_rmap but must only be called on *new* pages.
1072 * This means the inc-and-test can be bypassed.
1073 * Page does not have to be locked.
1075 void page_add_new_anon_rmap(struct page *page,
1076 struct vm_area_struct *vma, unsigned long address)
1078 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1079 SetPageSwapBacked(page);
1080 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1081 if (!PageTransHuge(page))
1082 __inc_zone_page_state(page, NR_ANON_PAGES);
1083 else
1084 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1085 __page_set_anon_rmap(page, vma, address, 1);
1086 if (!mlocked_vma_newpage(vma, page))
1087 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1088 else
1089 add_page_to_unevictable_list(page);
1093 * page_add_file_rmap - add pte mapping to a file page
1094 * @page: the page to add the mapping to
1096 * The caller needs to hold the pte lock.
1098 void page_add_file_rmap(struct page *page)
1100 bool locked;
1101 unsigned long flags;
1103 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1104 if (atomic_inc_and_test(&page->_mapcount)) {
1105 __inc_zone_page_state(page, NR_FILE_MAPPED);
1106 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1108 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1112 * page_remove_rmap - take down pte mapping from a page
1113 * @page: page to remove mapping from
1115 * The caller needs to hold the pte lock.
1117 void page_remove_rmap(struct page *page)
1119 bool anon = PageAnon(page);
1120 bool locked;
1121 unsigned long flags;
1124 * The anon case has no mem_cgroup page_stat to update; but may
1125 * uncharge_page() below, where the lock ordering can deadlock if
1126 * we hold the lock against page_stat move: so avoid it on anon.
1128 if (!anon)
1129 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1131 /* page still mapped by someone else? */
1132 if (!atomic_add_negative(-1, &page->_mapcount))
1133 goto out;
1136 * Now that the last pte has gone, s390 must transfer dirty
1137 * flag from storage key to struct page. We can usually skip
1138 * this if the page is anon, so about to be freed; but perhaps
1139 * not if it's in swapcache - there might be another pte slot
1140 * containing the swap entry, but page not yet written to swap.
1142 if ((!anon || PageSwapCache(page)) &&
1143 page_test_and_clear_dirty(page_to_pfn(page), 1))
1144 set_page_dirty(page);
1146 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1147 * and not charged by memcg for now.
1149 if (unlikely(PageHuge(page)))
1150 goto out;
1151 if (anon) {
1152 mem_cgroup_uncharge_page(page);
1153 if (!PageTransHuge(page))
1154 __dec_zone_page_state(page, NR_ANON_PAGES);
1155 else
1156 __dec_zone_page_state(page,
1157 NR_ANON_TRANSPARENT_HUGEPAGES);
1158 } else {
1159 __dec_zone_page_state(page, NR_FILE_MAPPED);
1160 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1161 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1163 if (unlikely(PageMlocked(page)))
1164 clear_page_mlock(page);
1166 * It would be tidy to reset the PageAnon mapping here,
1167 * but that might overwrite a racing page_add_anon_rmap
1168 * which increments mapcount after us but sets mapping
1169 * before us: so leave the reset to free_hot_cold_page,
1170 * and remember that it's only reliable while mapped.
1171 * Leaving it set also helps swapoff to reinstate ptes
1172 * faster for those pages still in swapcache.
1174 return;
1175 out:
1176 if (!anon)
1177 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1181 * Subfunctions of try_to_unmap: try_to_unmap_one called
1182 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1184 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1185 unsigned long address, enum ttu_flags flags)
1187 struct mm_struct *mm = vma->vm_mm;
1188 pte_t *pte;
1189 pte_t pteval;
1190 spinlock_t *ptl;
1191 int ret = SWAP_AGAIN;
1193 pte = page_check_address(page, mm, address, &ptl, 0);
1194 if (!pte)
1195 goto out;
1198 * If the page is mlock()d, we cannot swap it out.
1199 * If it's recently referenced (perhaps page_referenced
1200 * skipped over this mm) then we should reactivate it.
1202 if (!(flags & TTU_IGNORE_MLOCK)) {
1203 if (vma->vm_flags & VM_LOCKED)
1204 goto out_mlock;
1206 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1207 goto out_unmap;
1209 if (!(flags & TTU_IGNORE_ACCESS)) {
1210 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1211 ret = SWAP_FAIL;
1212 goto out_unmap;
1216 /* Nuke the page table entry. */
1217 flush_cache_page(vma, address, page_to_pfn(page));
1218 pteval = ptep_clear_flush(vma, address, pte);
1220 /* Move the dirty bit to the physical page now the pte is gone. */
1221 if (pte_dirty(pteval))
1222 set_page_dirty(page);
1224 /* Update high watermark before we lower rss */
1225 update_hiwater_rss(mm);
1227 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1228 if (PageAnon(page))
1229 dec_mm_counter(mm, MM_ANONPAGES);
1230 else
1231 dec_mm_counter(mm, MM_FILEPAGES);
1232 set_pte_at(mm, address, pte,
1233 swp_entry_to_pte(make_hwpoison_entry(page)));
1234 } else if (PageAnon(page)) {
1235 swp_entry_t entry = { .val = page_private(page) };
1237 if (PageSwapCache(page)) {
1239 * Store the swap location in the pte.
1240 * See handle_pte_fault() ...
1242 if (swap_duplicate(entry) < 0) {
1243 set_pte_at(mm, address, pte, pteval);
1244 ret = SWAP_FAIL;
1245 goto out_unmap;
1247 if (list_empty(&mm->mmlist)) {
1248 spin_lock(&mmlist_lock);
1249 if (list_empty(&mm->mmlist))
1250 list_add(&mm->mmlist, &init_mm.mmlist);
1251 spin_unlock(&mmlist_lock);
1253 dec_mm_counter(mm, MM_ANONPAGES);
1254 inc_mm_counter(mm, MM_SWAPENTS);
1255 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1257 * Store the pfn of the page in a special migration
1258 * pte. do_swap_page() will wait until the migration
1259 * pte is removed and then restart fault handling.
1261 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1262 entry = make_migration_entry(page, pte_write(pteval));
1264 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1265 BUG_ON(pte_file(*pte));
1266 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1267 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1268 /* Establish migration entry for a file page */
1269 swp_entry_t entry;
1270 entry = make_migration_entry(page, pte_write(pteval));
1271 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1272 } else
1273 dec_mm_counter(mm, MM_FILEPAGES);
1275 page_remove_rmap(page);
1276 page_cache_release(page);
1278 out_unmap:
1279 pte_unmap_unlock(pte, ptl);
1280 if (ret != SWAP_FAIL)
1281 mmu_notifier_invalidate_page(mm, address);
1282 out:
1283 return ret;
1285 out_mlock:
1286 pte_unmap_unlock(pte, ptl);
1290 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1291 * unstable result and race. Plus, We can't wait here because
1292 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1293 * if trylock failed, the page remain in evictable lru and later
1294 * vmscan could retry to move the page to unevictable lru if the
1295 * page is actually mlocked.
1297 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1298 if (vma->vm_flags & VM_LOCKED) {
1299 mlock_vma_page(page);
1300 ret = SWAP_MLOCK;
1302 up_read(&vma->vm_mm->mmap_sem);
1304 return ret;
1308 * objrmap doesn't work for nonlinear VMAs because the assumption that
1309 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1310 * Consequently, given a particular page and its ->index, we cannot locate the
1311 * ptes which are mapping that page without an exhaustive linear search.
1313 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1314 * maps the file to which the target page belongs. The ->vm_private_data field
1315 * holds the current cursor into that scan. Successive searches will circulate
1316 * around the vma's virtual address space.
1318 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1319 * more scanning pressure is placed against them as well. Eventually pages
1320 * will become fully unmapped and are eligible for eviction.
1322 * For very sparsely populated VMAs this is a little inefficient - chances are
1323 * there there won't be many ptes located within the scan cluster. In this case
1324 * maybe we could scan further - to the end of the pte page, perhaps.
1326 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1327 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1328 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1329 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1331 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1332 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1334 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1335 struct vm_area_struct *vma, struct page *check_page)
1337 struct mm_struct *mm = vma->vm_mm;
1338 pgd_t *pgd;
1339 pud_t *pud;
1340 pmd_t *pmd;
1341 pte_t *pte;
1342 pte_t pteval;
1343 spinlock_t *ptl;
1344 struct page *page;
1345 unsigned long address;
1346 unsigned long mmun_start; /* For mmu_notifiers */
1347 unsigned long mmun_end; /* For mmu_notifiers */
1348 unsigned long end;
1349 int ret = SWAP_AGAIN;
1350 int locked_vma = 0;
1352 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1353 end = address + CLUSTER_SIZE;
1354 if (address < vma->vm_start)
1355 address = vma->vm_start;
1356 if (end > vma->vm_end)
1357 end = vma->vm_end;
1359 pgd = pgd_offset(mm, address);
1360 if (!pgd_present(*pgd))
1361 return ret;
1363 pud = pud_offset(pgd, address);
1364 if (!pud_present(*pud))
1365 return ret;
1367 pmd = pmd_offset(pud, address);
1368 if (!pmd_present(*pmd))
1369 return ret;
1371 mmun_start = address;
1372 mmun_end = end;
1373 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1376 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1377 * keep the sem while scanning the cluster for mlocking pages.
1379 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1380 locked_vma = (vma->vm_flags & VM_LOCKED);
1381 if (!locked_vma)
1382 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1385 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1387 /* Update high watermark before we lower rss */
1388 update_hiwater_rss(mm);
1390 for (; address < end; pte++, address += PAGE_SIZE) {
1391 if (!pte_present(*pte))
1392 continue;
1393 page = vm_normal_page(vma, address, *pte);
1394 BUG_ON(!page || PageAnon(page));
1396 if (locked_vma) {
1397 mlock_vma_page(page); /* no-op if already mlocked */
1398 if (page == check_page)
1399 ret = SWAP_MLOCK;
1400 continue; /* don't unmap */
1403 if (ptep_clear_flush_young_notify(vma, address, pte))
1404 continue;
1406 /* Nuke the page table entry. */
1407 flush_cache_page(vma, address, pte_pfn(*pte));
1408 pteval = ptep_clear_flush(vma, address, pte);
1410 /* If nonlinear, store the file page offset in the pte. */
1411 if (page->index != linear_page_index(vma, address))
1412 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1414 /* Move the dirty bit to the physical page now the pte is gone. */
1415 if (pte_dirty(pteval))
1416 set_page_dirty(page);
1418 page_remove_rmap(page);
1419 page_cache_release(page);
1420 dec_mm_counter(mm, MM_FILEPAGES);
1421 (*mapcount)--;
1423 pte_unmap_unlock(pte - 1, ptl);
1424 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1425 if (locked_vma)
1426 up_read(&vma->vm_mm->mmap_sem);
1427 return ret;
1430 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1432 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1434 if (!maybe_stack)
1435 return false;
1437 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1438 VM_STACK_INCOMPLETE_SETUP)
1439 return true;
1441 return false;
1445 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1446 * rmap method
1447 * @page: the page to unmap/unlock
1448 * @flags: action and flags
1450 * Find all the mappings of a page using the mapping pointer and the vma chains
1451 * contained in the anon_vma struct it points to.
1453 * This function is only called from try_to_unmap/try_to_munlock for
1454 * anonymous pages.
1455 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1456 * where the page was found will be held for write. So, we won't recheck
1457 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1458 * 'LOCKED.
1460 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1462 struct anon_vma *anon_vma;
1463 pgoff_t pgoff;
1464 struct anon_vma_chain *avc;
1465 int ret = SWAP_AGAIN;
1467 anon_vma = page_lock_anon_vma(page);
1468 if (!anon_vma)
1469 return ret;
1471 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1472 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1473 struct vm_area_struct *vma = avc->vma;
1474 unsigned long address;
1477 * During exec, a temporary VMA is setup and later moved.
1478 * The VMA is moved under the anon_vma lock but not the
1479 * page tables leading to a race where migration cannot
1480 * find the migration ptes. Rather than increasing the
1481 * locking requirements of exec(), migration skips
1482 * temporary VMAs until after exec() completes.
1484 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1485 is_vma_temporary_stack(vma))
1486 continue;
1488 address = vma_address(page, vma);
1489 ret = try_to_unmap_one(page, vma, address, flags);
1490 if (ret != SWAP_AGAIN || !page_mapped(page))
1491 break;
1494 page_unlock_anon_vma(anon_vma);
1495 return ret;
1499 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1500 * @page: the page to unmap/unlock
1501 * @flags: action and flags
1503 * Find all the mappings of a page using the mapping pointer and the vma chains
1504 * contained in the address_space struct it points to.
1506 * This function is only called from try_to_unmap/try_to_munlock for
1507 * object-based pages.
1508 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1509 * where the page was found will be held for write. So, we won't recheck
1510 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1511 * 'LOCKED.
1513 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1515 struct address_space *mapping = page->mapping;
1516 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1517 struct vm_area_struct *vma;
1518 int ret = SWAP_AGAIN;
1519 unsigned long cursor;
1520 unsigned long max_nl_cursor = 0;
1521 unsigned long max_nl_size = 0;
1522 unsigned int mapcount;
1524 mutex_lock(&mapping->i_mmap_mutex);
1525 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1526 unsigned long address = vma_address(page, vma);
1527 ret = try_to_unmap_one(page, vma, address, flags);
1528 if (ret != SWAP_AGAIN || !page_mapped(page))
1529 goto out;
1532 if (list_empty(&mapping->i_mmap_nonlinear))
1533 goto out;
1536 * We don't bother to try to find the munlocked page in nonlinears.
1537 * It's costly. Instead, later, page reclaim logic may call
1538 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1540 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1541 goto out;
1543 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1544 shared.nonlinear) {
1545 cursor = (unsigned long) vma->vm_private_data;
1546 if (cursor > max_nl_cursor)
1547 max_nl_cursor = cursor;
1548 cursor = vma->vm_end - vma->vm_start;
1549 if (cursor > max_nl_size)
1550 max_nl_size = cursor;
1553 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1554 ret = SWAP_FAIL;
1555 goto out;
1559 * We don't try to search for this page in the nonlinear vmas,
1560 * and page_referenced wouldn't have found it anyway. Instead
1561 * just walk the nonlinear vmas trying to age and unmap some.
1562 * The mapcount of the page we came in with is irrelevant,
1563 * but even so use it as a guide to how hard we should try?
1565 mapcount = page_mapcount(page);
1566 if (!mapcount)
1567 goto out;
1568 cond_resched();
1570 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1571 if (max_nl_cursor == 0)
1572 max_nl_cursor = CLUSTER_SIZE;
1574 do {
1575 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1576 shared.nonlinear) {
1577 cursor = (unsigned long) vma->vm_private_data;
1578 while ( cursor < max_nl_cursor &&
1579 cursor < vma->vm_end - vma->vm_start) {
1580 if (try_to_unmap_cluster(cursor, &mapcount,
1581 vma, page) == SWAP_MLOCK)
1582 ret = SWAP_MLOCK;
1583 cursor += CLUSTER_SIZE;
1584 vma->vm_private_data = (void *) cursor;
1585 if ((int)mapcount <= 0)
1586 goto out;
1588 vma->vm_private_data = (void *) max_nl_cursor;
1590 cond_resched();
1591 max_nl_cursor += CLUSTER_SIZE;
1592 } while (max_nl_cursor <= max_nl_size);
1595 * Don't loop forever (perhaps all the remaining pages are
1596 * in locked vmas). Reset cursor on all unreserved nonlinear
1597 * vmas, now forgetting on which ones it had fallen behind.
1599 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1600 vma->vm_private_data = NULL;
1601 out:
1602 mutex_unlock(&mapping->i_mmap_mutex);
1603 return ret;
1607 * try_to_unmap - try to remove all page table mappings to a page
1608 * @page: the page to get unmapped
1609 * @flags: action and flags
1611 * Tries to remove all the page table entries which are mapping this
1612 * page, used in the pageout path. Caller must hold the page lock.
1613 * Return values are:
1615 * SWAP_SUCCESS - we succeeded in removing all mappings
1616 * SWAP_AGAIN - we missed a mapping, try again later
1617 * SWAP_FAIL - the page is unswappable
1618 * SWAP_MLOCK - page is mlocked.
1620 int try_to_unmap(struct page *page, enum ttu_flags flags)
1622 int ret;
1624 BUG_ON(!PageLocked(page));
1625 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1627 if (unlikely(PageKsm(page)))
1628 ret = try_to_unmap_ksm(page, flags);
1629 else if (PageAnon(page))
1630 ret = try_to_unmap_anon(page, flags);
1631 else
1632 ret = try_to_unmap_file(page, flags);
1633 if (ret != SWAP_MLOCK && !page_mapped(page))
1634 ret = SWAP_SUCCESS;
1635 return ret;
1639 * try_to_munlock - try to munlock a page
1640 * @page: the page to be munlocked
1642 * Called from munlock code. Checks all of the VMAs mapping the page
1643 * to make sure nobody else has this page mlocked. The page will be
1644 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1646 * Return values are:
1648 * SWAP_AGAIN - no vma is holding page mlocked, or,
1649 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1650 * SWAP_FAIL - page cannot be located at present
1651 * SWAP_MLOCK - page is now mlocked.
1653 int try_to_munlock(struct page *page)
1655 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1657 if (unlikely(PageKsm(page)))
1658 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1659 else if (PageAnon(page))
1660 return try_to_unmap_anon(page, TTU_MUNLOCK);
1661 else
1662 return try_to_unmap_file(page, TTU_MUNLOCK);
1665 void __put_anon_vma(struct anon_vma *anon_vma)
1667 struct anon_vma *root = anon_vma->root;
1669 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1670 anon_vma_free(root);
1672 anon_vma_free(anon_vma);
1675 #ifdef CONFIG_MIGRATION
1677 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1678 * Called by migrate.c to remove migration ptes, but might be used more later.
1680 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1681 struct vm_area_struct *, unsigned long, void *), void *arg)
1683 struct anon_vma *anon_vma;
1684 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1685 struct anon_vma_chain *avc;
1686 int ret = SWAP_AGAIN;
1689 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1690 * because that depends on page_mapped(); but not all its usages
1691 * are holding mmap_sem. Users without mmap_sem are required to
1692 * take a reference count to prevent the anon_vma disappearing
1694 anon_vma = page_anon_vma(page);
1695 if (!anon_vma)
1696 return ret;
1697 anon_vma_lock(anon_vma);
1698 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1699 struct vm_area_struct *vma = avc->vma;
1700 unsigned long address = vma_address(page, vma);
1701 ret = rmap_one(page, vma, address, arg);
1702 if (ret != SWAP_AGAIN)
1703 break;
1705 anon_vma_unlock(anon_vma);
1706 return ret;
1709 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1710 struct vm_area_struct *, unsigned long, void *), void *arg)
1712 struct address_space *mapping = page->mapping;
1713 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1714 struct vm_area_struct *vma;
1715 int ret = SWAP_AGAIN;
1717 if (!mapping)
1718 return ret;
1719 mutex_lock(&mapping->i_mmap_mutex);
1720 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1721 unsigned long address = vma_address(page, vma);
1722 ret = rmap_one(page, vma, address, arg);
1723 if (ret != SWAP_AGAIN)
1724 break;
1727 * No nonlinear handling: being always shared, nonlinear vmas
1728 * never contain migration ptes. Decide what to do about this
1729 * limitation to linear when we need rmap_walk() on nonlinear.
1731 mutex_unlock(&mapping->i_mmap_mutex);
1732 return ret;
1735 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1736 struct vm_area_struct *, unsigned long, void *), void *arg)
1738 VM_BUG_ON(!PageLocked(page));
1740 if (unlikely(PageKsm(page)))
1741 return rmap_walk_ksm(page, rmap_one, arg);
1742 else if (PageAnon(page))
1743 return rmap_walk_anon(page, rmap_one, arg);
1744 else
1745 return rmap_walk_file(page, rmap_one, arg);
1747 #endif /* CONFIG_MIGRATION */
1749 #ifdef CONFIG_HUGETLB_PAGE
1751 * The following three functions are for anonymous (private mapped) hugepages.
1752 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1753 * and no lru code, because we handle hugepages differently from common pages.
1755 static void __hugepage_set_anon_rmap(struct page *page,
1756 struct vm_area_struct *vma, unsigned long address, int exclusive)
1758 struct anon_vma *anon_vma = vma->anon_vma;
1760 BUG_ON(!anon_vma);
1762 if (PageAnon(page))
1763 return;
1764 if (!exclusive)
1765 anon_vma = anon_vma->root;
1767 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1768 page->mapping = (struct address_space *) anon_vma;
1769 page->index = linear_page_index(vma, address);
1772 void hugepage_add_anon_rmap(struct page *page,
1773 struct vm_area_struct *vma, unsigned long address)
1775 struct anon_vma *anon_vma = vma->anon_vma;
1776 int first;
1778 BUG_ON(!PageLocked(page));
1779 BUG_ON(!anon_vma);
1780 /* address might be in next vma when migration races vma_adjust */
1781 first = atomic_inc_and_test(&page->_mapcount);
1782 if (first)
1783 __hugepage_set_anon_rmap(page, vma, address, 0);
1786 void hugepage_add_new_anon_rmap(struct page *page,
1787 struct vm_area_struct *vma, unsigned long address)
1789 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1790 atomic_set(&page->_mapcount, 0);
1791 __hugepage_set_anon_rmap(page, vma, address, 1);
1793 #endif /* CONFIG_HUGETLB_PAGE */