2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
26 #include <linux/debugfs.h>
27 #include <linux/log2.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
33 * - test ext4_ext_search_left() and ext4_ext_search_right()
34 * - search for metadata in few groups
37 * - normalization should take into account whether file is still open
38 * - discard preallocations if no free space left (policy?)
39 * - don't normalize tails
41 * - reservation for superuser
44 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
45 * - track min/max extents in each group for better group selection
46 * - mb_mark_used() may allocate chunk right after splitting buddy
47 * - tree of groups sorted by number of free blocks
52 * The allocation request involve request for multiple number of blocks
53 * near to the goal(block) value specified.
55 * During initialization phase of the allocator we decide to use the
56 * group preallocation or inode preallocation depending on the size of
57 * the file. The size of the file could be the resulting file size we
58 * would have after allocation, or the current file size, which ever
59 * is larger. If the size is less than sbi->s_mb_stream_request we
60 * select to use the group preallocation. The default value of
61 * s_mb_stream_request is 16 blocks. This can also be tuned via
62 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
63 * terms of number of blocks.
65 * The main motivation for having small file use group preallocation is to
66 * ensure that we have small files closer together on the disk.
68 * First stage the allocator looks at the inode prealloc list,
69 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
70 * spaces for this particular inode. The inode prealloc space is
73 * pa_lstart -> the logical start block for this prealloc space
74 * pa_pstart -> the physical start block for this prealloc space
75 * pa_len -> length for this prealloc space (in clusters)
76 * pa_free -> free space available in this prealloc space (in clusters)
78 * The inode preallocation space is used looking at the _logical_ start
79 * block. If only the logical file block falls within the range of prealloc
80 * space we will consume the particular prealloc space. This makes sure that
81 * we have contiguous physical blocks representing the file blocks
83 * The important thing to be noted in case of inode prealloc space is that
84 * we don't modify the values associated to inode prealloc space except
87 * If we are not able to find blocks in the inode prealloc space and if we
88 * have the group allocation flag set then we look at the locality group
89 * prealloc space. These are per CPU prealloc list represented as
91 * ext4_sb_info.s_locality_groups[smp_processor_id()]
93 * The reason for having a per cpu locality group is to reduce the contention
94 * between CPUs. It is possible to get scheduled at this point.
96 * The locality group prealloc space is used looking at whether we have
97 * enough free space (pa_free) within the prealloc space.
99 * If we can't allocate blocks via inode prealloc or/and locality group
100 * prealloc then we look at the buddy cache. The buddy cache is represented
101 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
102 * mapped to the buddy and bitmap information regarding different
103 * groups. The buddy information is attached to buddy cache inode so that
104 * we can access them through the page cache. The information regarding
105 * each group is loaded via ext4_mb_load_buddy. The information involve
106 * block bitmap and buddy information. The information are stored in the
110 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
113 * one block each for bitmap and buddy information. So for each group we
114 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
115 * blocksize) blocks. So it can have information regarding groups_per_page
116 * which is blocks_per_page/2
118 * The buddy cache inode is not stored on disk. The inode is thrown
119 * away when the filesystem is unmounted.
121 * We look for count number of blocks in the buddy cache. If we were able
122 * to locate that many free blocks we return with additional information
123 * regarding rest of the contiguous physical block available
125 * Before allocating blocks via buddy cache we normalize the request
126 * blocks. This ensure we ask for more blocks that we needed. The extra
127 * blocks that we get after allocation is added to the respective prealloc
128 * list. In case of inode preallocation we follow a list of heuristics
129 * based on file size. This can be found in ext4_mb_normalize_request. If
130 * we are doing a group prealloc we try to normalize the request to
131 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
132 * dependent on the cluster size; for non-bigalloc file systems, it is
133 * 512 blocks. This can be tuned via
134 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
135 * terms of number of blocks. If we have mounted the file system with -O
136 * stripe=<value> option the group prealloc request is normalized to the
137 * the smallest multiple of the stripe value (sbi->s_stripe) which is
138 * greater than the default mb_group_prealloc.
140 * The regular allocator (using the buddy cache) supports a few tunables.
142 * /sys/fs/ext4/<partition>/mb_min_to_scan
143 * /sys/fs/ext4/<partition>/mb_max_to_scan
144 * /sys/fs/ext4/<partition>/mb_order2_req
146 * The regular allocator uses buddy scan only if the request len is power of
147 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
148 * value of s_mb_order2_reqs can be tuned via
149 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
150 * stripe size (sbi->s_stripe), we try to search for contiguous block in
151 * stripe size. This should result in better allocation on RAID setups. If
152 * not, we search in the specific group using bitmap for best extents. The
153 * tunable min_to_scan and max_to_scan control the behaviour here.
154 * min_to_scan indicate how long the mballoc __must__ look for a best
155 * extent and max_to_scan indicates how long the mballoc __can__ look for a
156 * best extent in the found extents. Searching for the blocks starts with
157 * the group specified as the goal value in allocation context via
158 * ac_g_ex. Each group is first checked based on the criteria whether it
159 * can be used for allocation. ext4_mb_good_group explains how the groups are
162 * Both the prealloc space are getting populated as above. So for the first
163 * request we will hit the buddy cache which will result in this prealloc
164 * space getting filled. The prealloc space is then later used for the
165 * subsequent request.
169 * mballoc operates on the following data:
171 * - in-core buddy (actually includes buddy and bitmap)
172 * - preallocation descriptors (PAs)
174 * there are two types of preallocations:
176 * assiged to specific inode and can be used for this inode only.
177 * it describes part of inode's space preallocated to specific
178 * physical blocks. any block from that preallocated can be used
179 * independent. the descriptor just tracks number of blocks left
180 * unused. so, before taking some block from descriptor, one must
181 * make sure corresponded logical block isn't allocated yet. this
182 * also means that freeing any block within descriptor's range
183 * must discard all preallocated blocks.
185 * assigned to specific locality group which does not translate to
186 * permanent set of inodes: inode can join and leave group. space
187 * from this type of preallocation can be used for any inode. thus
188 * it's consumed from the beginning to the end.
190 * relation between them can be expressed as:
191 * in-core buddy = on-disk bitmap + preallocation descriptors
193 * this mean blocks mballoc considers used are:
194 * - allocated blocks (persistent)
195 * - preallocated blocks (non-persistent)
197 * consistency in mballoc world means that at any time a block is either
198 * free or used in ALL structures. notice: "any time" should not be read
199 * literally -- time is discrete and delimited by locks.
201 * to keep it simple, we don't use block numbers, instead we count number of
202 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
204 * all operations can be expressed as:
205 * - init buddy: buddy = on-disk + PAs
206 * - new PA: buddy += N; PA = N
207 * - use inode PA: on-disk += N; PA -= N
208 * - discard inode PA buddy -= on-disk - PA; PA = 0
209 * - use locality group PA on-disk += N; PA -= N
210 * - discard locality group PA buddy -= PA; PA = 0
211 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
212 * is used in real operation because we can't know actual used
213 * bits from PA, only from on-disk bitmap
215 * if we follow this strict logic, then all operations above should be atomic.
216 * given some of them can block, we'd have to use something like semaphores
217 * killing performance on high-end SMP hardware. let's try to relax it using
218 * the following knowledge:
219 * 1) if buddy is referenced, it's already initialized
220 * 2) while block is used in buddy and the buddy is referenced,
221 * nobody can re-allocate that block
222 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
223 * bit set and PA claims same block, it's OK. IOW, one can set bit in
224 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
227 * so, now we're building a concurrency table:
230 * blocks for PA are allocated in the buddy, buddy must be referenced
231 * until PA is linked to allocation group to avoid concurrent buddy init
233 * we need to make sure that either on-disk bitmap or PA has uptodate data
234 * given (3) we care that PA-=N operation doesn't interfere with init
236 * the simplest way would be to have buddy initialized by the discard
237 * - use locality group PA
238 * again PA-=N must be serialized with init
239 * - discard locality group PA
240 * the simplest way would be to have buddy initialized by the discard
243 * i_data_sem serializes them
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * some mutex should serialize them
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
252 * i_data_sem or another mutex should serializes them
254 * discard process must wait until PA isn't used by another process
255 * - use locality group PA
256 * nothing wrong here -- they're different PAs covering different blocks
257 * - discard locality group PA
258 * discard process must wait until PA isn't used by another process
260 * now we're ready to make few consequences:
261 * - PA is referenced and while it is no discard is possible
262 * - PA is referenced until block isn't marked in on-disk bitmap
263 * - PA changes only after on-disk bitmap
264 * - discard must not compete with init. either init is done before
265 * any discard or they're serialized somehow
266 * - buddy init as sum of on-disk bitmap and PAs is done atomically
268 * a special case when we've used PA to emptiness. no need to modify buddy
269 * in this case, but we should care about concurrent init
274 * Logic in few words:
279 * mark bits in on-disk bitmap
282 * - use preallocation:
283 * find proper PA (per-inode or group)
285 * mark bits in on-disk bitmap
291 * mark bits in on-disk bitmap
294 * - discard preallocations in group:
296 * move them onto local list
297 * load on-disk bitmap
299 * remove PA from object (inode or locality group)
300 * mark free blocks in-core
302 * - discard inode's preallocations:
309 * - bitlock on a group (group)
310 * - object (inode/locality) (object)
321 * - release consumed pa:
326 * - generate in-core bitmap:
330 * - discard all for given object (inode, locality group):
335 * - discard all for given group:
342 static struct kmem_cache
*ext4_pspace_cachep
;
343 static struct kmem_cache
*ext4_ac_cachep
;
344 static struct kmem_cache
*ext4_free_data_cachep
;
346 /* We create slab caches for groupinfo data structures based on the
347 * superblock block size. There will be one per mounted filesystem for
348 * each unique s_blocksize_bits */
349 #define NR_GRPINFO_CACHES 8
350 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
352 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
353 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
354 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
355 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
358 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
360 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
362 static void ext4_free_data_callback(struct super_block
*sb
,
363 struct ext4_journal_cb_entry
*jce
, int rc
);
365 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
367 #if BITS_PER_LONG == 64
368 *bit
+= ((unsigned long) addr
& 7UL) << 3;
369 addr
= (void *) ((unsigned long) addr
& ~7UL);
370 #elif BITS_PER_LONG == 32
371 *bit
+= ((unsigned long) addr
& 3UL) << 3;
372 addr
= (void *) ((unsigned long) addr
& ~3UL);
374 #error "how many bits you are?!"
379 static inline int mb_test_bit(int bit
, void *addr
)
382 * ext4_test_bit on architecture like powerpc
383 * needs unsigned long aligned address
385 addr
= mb_correct_addr_and_bit(&bit
, addr
);
386 return ext4_test_bit(bit
, addr
);
389 static inline void mb_set_bit(int bit
, void *addr
)
391 addr
= mb_correct_addr_and_bit(&bit
, addr
);
392 ext4_set_bit(bit
, addr
);
395 static inline void mb_clear_bit(int bit
, void *addr
)
397 addr
= mb_correct_addr_and_bit(&bit
, addr
);
398 ext4_clear_bit(bit
, addr
);
401 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
403 int fix
= 0, ret
, tmpmax
;
404 addr
= mb_correct_addr_and_bit(&fix
, addr
);
408 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
414 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
416 int fix
= 0, ret
, tmpmax
;
417 addr
= mb_correct_addr_and_bit(&fix
, addr
);
421 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
427 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
431 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
434 if (order
> e4b
->bd_blkbits
+ 1) {
439 /* at order 0 we see each particular block */
441 *max
= 1 << (e4b
->bd_blkbits
+ 3);
442 return e4b
->bd_bitmap
;
445 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
446 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
452 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
453 int first
, int count
)
456 struct super_block
*sb
= e4b
->bd_sb
;
458 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
460 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
461 for (i
= 0; i
< count
; i
++) {
462 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
463 ext4_fsblk_t blocknr
;
465 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
466 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
467 ext4_grp_locked_error(sb
, e4b
->bd_group
,
468 inode
? inode
->i_ino
: 0,
470 "freeing block already freed "
474 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
478 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
482 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
484 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
485 for (i
= 0; i
< count
; i
++) {
486 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
487 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
491 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
493 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
494 unsigned char *b1
, *b2
;
496 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
497 b2
= (unsigned char *) bitmap
;
498 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
499 if (b1
[i
] != b2
[i
]) {
500 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
501 "corruption in group %u "
502 "at byte %u(%u): %x in copy != %x "
504 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
512 static inline void mb_free_blocks_double(struct inode
*inode
,
513 struct ext4_buddy
*e4b
, int first
, int count
)
517 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
518 int first
, int count
)
522 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
528 #ifdef AGGRESSIVE_CHECK
530 #define MB_CHECK_ASSERT(assert) \
534 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
535 function, file, line, # assert); \
540 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
541 const char *function
, int line
)
543 struct super_block
*sb
= e4b
->bd_sb
;
544 int order
= e4b
->bd_blkbits
+ 1;
551 struct ext4_group_info
*grp
;
554 struct list_head
*cur
;
559 static int mb_check_counter
;
560 if (mb_check_counter
++ % 100 != 0)
565 buddy
= mb_find_buddy(e4b
, order
, &max
);
566 MB_CHECK_ASSERT(buddy
);
567 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
568 MB_CHECK_ASSERT(buddy2
);
569 MB_CHECK_ASSERT(buddy
!= buddy2
);
570 MB_CHECK_ASSERT(max
* 2 == max2
);
573 for (i
= 0; i
< max
; i
++) {
575 if (mb_test_bit(i
, buddy
)) {
576 /* only single bit in buddy2 may be 1 */
577 if (!mb_test_bit(i
<< 1, buddy2
)) {
579 mb_test_bit((i
<<1)+1, buddy2
));
580 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
582 mb_test_bit(i
<< 1, buddy2
));
587 /* both bits in buddy2 must be 1 */
588 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
589 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
591 for (j
= 0; j
< (1 << order
); j
++) {
592 k
= (i
* (1 << order
)) + j
;
594 !mb_test_bit(k
, e4b
->bd_bitmap
));
598 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
603 buddy
= mb_find_buddy(e4b
, 0, &max
);
604 for (i
= 0; i
< max
; i
++) {
605 if (!mb_test_bit(i
, buddy
)) {
606 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
614 /* check used bits only */
615 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
616 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
618 MB_CHECK_ASSERT(k
< max2
);
619 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
622 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
623 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
625 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
626 list_for_each(cur
, &grp
->bb_prealloc_list
) {
627 ext4_group_t groupnr
;
628 struct ext4_prealloc_space
*pa
;
629 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
630 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
631 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
632 for (i
= 0; i
< pa
->pa_len
; i
++)
633 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
637 #undef MB_CHECK_ASSERT
638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
639 __FILE__, __func__, __LINE__)
641 #define mb_check_buddy(e4b)
645 * Divide blocks started from @first with length @len into
646 * smaller chunks with power of 2 blocks.
647 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
648 * then increase bb_counters[] for corresponded chunk size.
650 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
651 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
652 struct ext4_group_info
*grp
)
654 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
658 unsigned short border
;
660 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
662 border
= 2 << sb
->s_blocksize_bits
;
665 /* find how many blocks can be covered since this position */
666 max
= ffs(first
| border
) - 1;
668 /* find how many blocks of power 2 we need to mark */
675 /* mark multiblock chunks only */
676 grp
->bb_counters
[min
]++;
678 mb_clear_bit(first
>> min
,
679 buddy
+ sbi
->s_mb_offsets
[min
]);
687 * Cache the order of the largest free extent we have available in this block
691 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
696 grp
->bb_largest_free_order
= -1; /* uninit */
698 bits
= sb
->s_blocksize_bits
+ 1;
699 for (i
= bits
; i
>= 0; i
--) {
700 if (grp
->bb_counters
[i
] > 0) {
701 grp
->bb_largest_free_order
= i
;
707 static noinline_for_stack
708 void ext4_mb_generate_buddy(struct super_block
*sb
,
709 void *buddy
, void *bitmap
, ext4_group_t group
)
711 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
712 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
717 unsigned fragments
= 0;
718 unsigned long long period
= get_cycles();
720 /* initialize buddy from bitmap which is aggregation
721 * of on-disk bitmap and preallocations */
722 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
723 grp
->bb_first_free
= i
;
727 i
= mb_find_next_bit(bitmap
, max
, i
);
731 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
733 grp
->bb_counters
[0]++;
735 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
737 grp
->bb_fragments
= fragments
;
739 if (free
!= grp
->bb_free
) {
740 ext4_grp_locked_error(sb
, group
, 0, 0,
741 "%u clusters in bitmap, %u in gd",
744 * If we intent to continue, we consider group descritor
745 * corrupt and update bb_free using bitmap value
749 mb_set_largest_free_order(sb
, grp
);
751 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
753 period
= get_cycles() - period
;
754 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
755 EXT4_SB(sb
)->s_mb_buddies_generated
++;
756 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
757 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
760 /* The buddy information is attached the buddy cache inode
761 * for convenience. The information regarding each group
762 * is loaded via ext4_mb_load_buddy. The information involve
763 * block bitmap and buddy information. The information are
764 * stored in the inode as
767 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
770 * one block each for bitmap and buddy information.
771 * So for each group we take up 2 blocks. A page can
772 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
773 * So it can have information regarding groups_per_page which
774 * is blocks_per_page/2
776 * Locking note: This routine takes the block group lock of all groups
777 * for this page; do not hold this lock when calling this routine!
780 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
782 ext4_group_t ngroups
;
788 ext4_group_t first_group
, group
;
790 struct super_block
*sb
;
791 struct buffer_head
*bhs
;
792 struct buffer_head
**bh
= NULL
;
796 struct ext4_group_info
*grinfo
;
798 mb_debug(1, "init page %lu\n", page
->index
);
800 inode
= page
->mapping
->host
;
802 ngroups
= ext4_get_groups_count(sb
);
803 blocksize
= 1 << inode
->i_blkbits
;
804 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
806 groups_per_page
= blocks_per_page
>> 1;
807 if (groups_per_page
== 0)
810 /* allocate buffer_heads to read bitmaps */
811 if (groups_per_page
> 1) {
812 i
= sizeof(struct buffer_head
*) * groups_per_page
;
813 bh
= kzalloc(i
, GFP_NOFS
);
821 first_group
= page
->index
* blocks_per_page
/ 2;
823 /* read all groups the page covers into the cache */
824 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
825 if (group
>= ngroups
)
828 grinfo
= ext4_get_group_info(sb
, group
);
830 * If page is uptodate then we came here after online resize
831 * which added some new uninitialized group info structs, so
832 * we must skip all initialized uptodate buddies on the page,
833 * which may be currently in use by an allocating task.
835 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
839 if (!(bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
))) {
843 mb_debug(1, "read bitmap for group %u\n", group
);
846 /* wait for I/O completion */
847 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
848 if (bh
[i
] && ext4_wait_block_bitmap(sb
, group
, bh
[i
])) {
854 first_block
= page
->index
* blocks_per_page
;
855 for (i
= 0; i
< blocks_per_page
; i
++) {
858 group
= (first_block
+ i
) >> 1;
859 if (group
>= ngroups
)
862 if (!bh
[group
- first_group
])
863 /* skip initialized uptodate buddy */
867 * data carry information regarding this
868 * particular group in the format specified
872 data
= page_address(page
) + (i
* blocksize
);
873 bitmap
= bh
[group
- first_group
]->b_data
;
876 * We place the buddy block and bitmap block
879 if ((first_block
+ i
) & 1) {
880 /* this is block of buddy */
881 BUG_ON(incore
== NULL
);
882 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
883 group
, page
->index
, i
* blocksize
);
884 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
885 grinfo
= ext4_get_group_info(sb
, group
);
886 grinfo
->bb_fragments
= 0;
887 memset(grinfo
->bb_counters
, 0,
888 sizeof(*grinfo
->bb_counters
) *
889 (sb
->s_blocksize_bits
+2));
891 * incore got set to the group block bitmap below
893 ext4_lock_group(sb
, group
);
895 memset(data
, 0xff, blocksize
);
896 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
897 ext4_unlock_group(sb
, group
);
900 /* this is block of bitmap */
901 BUG_ON(incore
!= NULL
);
902 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
903 group
, page
->index
, i
* blocksize
);
904 trace_ext4_mb_bitmap_load(sb
, group
);
906 /* see comments in ext4_mb_put_pa() */
907 ext4_lock_group(sb
, group
);
908 memcpy(data
, bitmap
, blocksize
);
910 /* mark all preallocated blks used in in-core bitmap */
911 ext4_mb_generate_from_pa(sb
, data
, group
);
912 ext4_mb_generate_from_freelist(sb
, data
, group
);
913 ext4_unlock_group(sb
, group
);
915 /* set incore so that the buddy information can be
916 * generated using this
921 SetPageUptodate(page
);
925 for (i
= 0; i
< groups_per_page
; i
++)
934 * Lock the buddy and bitmap pages. This make sure other parallel init_group
935 * on the same buddy page doesn't happen whild holding the buddy page lock.
936 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
937 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
939 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
940 ext4_group_t group
, struct ext4_buddy
*e4b
)
942 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
943 int block
, pnum
, poff
;
947 e4b
->bd_buddy_page
= NULL
;
948 e4b
->bd_bitmap_page
= NULL
;
950 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
952 * the buddy cache inode stores the block bitmap
953 * and buddy information in consecutive blocks.
954 * So for each group we need two blocks.
957 pnum
= block
/ blocks_per_page
;
958 poff
= block
% blocks_per_page
;
959 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
962 BUG_ON(page
->mapping
!= inode
->i_mapping
);
963 e4b
->bd_bitmap_page
= page
;
964 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
966 if (blocks_per_page
>= 2) {
967 /* buddy and bitmap are on the same page */
972 pnum
= block
/ blocks_per_page
;
973 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
976 BUG_ON(page
->mapping
!= inode
->i_mapping
);
977 e4b
->bd_buddy_page
= page
;
981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
983 if (e4b
->bd_bitmap_page
) {
984 unlock_page(e4b
->bd_bitmap_page
);
985 page_cache_release(e4b
->bd_bitmap_page
);
987 if (e4b
->bd_buddy_page
) {
988 unlock_page(e4b
->bd_buddy_page
);
989 page_cache_release(e4b
->bd_buddy_page
);
994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
995 * block group lock of all groups for this page; do not hold the BG lock when
996 * calling this routine!
998 static noinline_for_stack
999 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1002 struct ext4_group_info
*this_grp
;
1003 struct ext4_buddy e4b
;
1007 mb_debug(1, "init group %u\n", group
);
1008 this_grp
= ext4_get_group_info(sb
, group
);
1010 * This ensures that we don't reinit the buddy cache
1011 * page which map to the group from which we are already
1012 * allocating. If we are looking at the buddy cache we would
1013 * have taken a reference using ext4_mb_load_buddy and that
1014 * would have pinned buddy page to page cache.
1016 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
);
1017 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1019 * somebody initialized the group
1020 * return without doing anything
1025 page
= e4b
.bd_bitmap_page
;
1026 ret
= ext4_mb_init_cache(page
, NULL
);
1029 if (!PageUptodate(page
)) {
1033 mark_page_accessed(page
);
1035 if (e4b
.bd_buddy_page
== NULL
) {
1037 * If both the bitmap and buddy are in
1038 * the same page we don't need to force
1044 /* init buddy cache */
1045 page
= e4b
.bd_buddy_page
;
1046 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
);
1049 if (!PageUptodate(page
)) {
1053 mark_page_accessed(page
);
1055 ext4_mb_put_buddy_page_lock(&e4b
);
1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1061 * block group lock of all groups for this page; do not hold the BG lock when
1062 * calling this routine!
1064 static noinline_for_stack
int
1065 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1066 struct ext4_buddy
*e4b
)
1068 int blocks_per_page
;
1074 struct ext4_group_info
*grp
;
1075 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1076 struct inode
*inode
= sbi
->s_buddy_cache
;
1078 mb_debug(1, "load group %u\n", group
);
1080 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1081 grp
= ext4_get_group_info(sb
, group
);
1083 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1086 e4b
->bd_group
= group
;
1087 e4b
->bd_buddy_page
= NULL
;
1088 e4b
->bd_bitmap_page
= NULL
;
1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1092 * we need full data about the group
1093 * to make a good selection
1095 ret
= ext4_mb_init_group(sb
, group
);
1101 * the buddy cache inode stores the block bitmap
1102 * and buddy information in consecutive blocks.
1103 * So for each group we need two blocks.
1106 pnum
= block
/ blocks_per_page
;
1107 poff
= block
% blocks_per_page
;
1109 /* we could use find_or_create_page(), but it locks page
1110 * what we'd like to avoid in fast path ... */
1111 page
= find_get_page(inode
->i_mapping
, pnum
);
1112 if (page
== NULL
|| !PageUptodate(page
)) {
1115 * drop the page reference and try
1116 * to get the page with lock. If we
1117 * are not uptodate that implies
1118 * somebody just created the page but
1119 * is yet to initialize the same. So
1120 * wait for it to initialize.
1122 page_cache_release(page
);
1123 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1125 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1126 if (!PageUptodate(page
)) {
1127 ret
= ext4_mb_init_cache(page
, NULL
);
1132 mb_cmp_bitmaps(e4b
, page_address(page
) +
1133 (poff
* sb
->s_blocksize
));
1138 if (page
== NULL
|| !PageUptodate(page
)) {
1142 e4b
->bd_bitmap_page
= page
;
1143 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1144 mark_page_accessed(page
);
1147 pnum
= block
/ blocks_per_page
;
1148 poff
= block
% blocks_per_page
;
1150 page
= find_get_page(inode
->i_mapping
, pnum
);
1151 if (page
== NULL
|| !PageUptodate(page
)) {
1153 page_cache_release(page
);
1154 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1156 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1157 if (!PageUptodate(page
)) {
1158 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1167 if (page
== NULL
|| !PageUptodate(page
)) {
1171 e4b
->bd_buddy_page
= page
;
1172 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1173 mark_page_accessed(page
);
1175 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1176 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1182 page_cache_release(page
);
1183 if (e4b
->bd_bitmap_page
)
1184 page_cache_release(e4b
->bd_bitmap_page
);
1185 if (e4b
->bd_buddy_page
)
1186 page_cache_release(e4b
->bd_buddy_page
);
1187 e4b
->bd_buddy
= NULL
;
1188 e4b
->bd_bitmap
= NULL
;
1192 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1194 if (e4b
->bd_bitmap_page
)
1195 page_cache_release(e4b
->bd_bitmap_page
);
1196 if (e4b
->bd_buddy_page
)
1197 page_cache_release(e4b
->bd_buddy_page
);
1201 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1206 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1207 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1210 while (order
<= e4b
->bd_blkbits
+ 1) {
1212 if (!mb_test_bit(block
, bb
)) {
1213 /* this block is part of buddy of order 'order' */
1216 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1222 static void mb_clear_bits(void *bm
, int cur
, int len
)
1228 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1229 /* fast path: clear whole word at once */
1230 addr
= bm
+ (cur
>> 3);
1235 mb_clear_bit(cur
, bm
);
1240 void ext4_set_bits(void *bm
, int cur
, int len
)
1246 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1247 /* fast path: set whole word at once */
1248 addr
= bm
+ (cur
>> 3);
1253 mb_set_bit(cur
, bm
);
1258 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1259 int first
, int count
)
1266 struct super_block
*sb
= e4b
->bd_sb
;
1268 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1269 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1270 mb_check_buddy(e4b
);
1271 mb_free_blocks_double(inode
, e4b
, first
, count
);
1273 e4b
->bd_info
->bb_free
+= count
;
1274 if (first
< e4b
->bd_info
->bb_first_free
)
1275 e4b
->bd_info
->bb_first_free
= first
;
1277 /* let's maintain fragments counter */
1279 block
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1280 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1281 max
= !mb_test_bit(first
+ count
, e4b
->bd_bitmap
);
1283 e4b
->bd_info
->bb_fragments
--;
1284 else if (!block
&& !max
)
1285 e4b
->bd_info
->bb_fragments
++;
1287 /* let's maintain buddy itself */
1288 while (count
-- > 0) {
1292 if (!mb_test_bit(block
, e4b
->bd_bitmap
)) {
1293 ext4_fsblk_t blocknr
;
1295 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1296 blocknr
+= EXT4_C2B(EXT4_SB(sb
), block
);
1297 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1298 inode
? inode
->i_ino
: 0,
1300 "freeing already freed block "
1303 mb_clear_bit(block
, e4b
->bd_bitmap
);
1304 e4b
->bd_info
->bb_counters
[order
]++;
1306 /* start of the buddy */
1307 buddy
= mb_find_buddy(e4b
, order
, &max
);
1311 if (mb_test_bit(block
, buddy
) ||
1312 mb_test_bit(block
+ 1, buddy
))
1315 /* both the buddies are free, try to coalesce them */
1316 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1322 /* for special purposes, we don't set
1323 * free bits in bitmap */
1324 mb_set_bit(block
, buddy
);
1325 mb_set_bit(block
+ 1, buddy
);
1327 e4b
->bd_info
->bb_counters
[order
]--;
1328 e4b
->bd_info
->bb_counters
[order
]--;
1332 e4b
->bd_info
->bb_counters
[order
]++;
1334 mb_clear_bit(block
, buddy2
);
1338 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1339 mb_check_buddy(e4b
);
1342 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1343 int needed
, struct ext4_free_extent
*ex
)
1349 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1352 buddy
= mb_find_buddy(e4b
, 0, &max
);
1353 BUG_ON(buddy
== NULL
);
1354 BUG_ON(block
>= max
);
1355 if (mb_test_bit(block
, buddy
)) {
1362 /* find actual order */
1363 order
= mb_find_order_for_block(e4b
, block
);
1364 block
= block
>> order
;
1366 ex
->fe_len
= 1 << order
;
1367 ex
->fe_start
= block
<< order
;
1368 ex
->fe_group
= e4b
->bd_group
;
1370 /* calc difference from given start */
1371 next
= next
- ex
->fe_start
;
1373 ex
->fe_start
+= next
;
1375 while (needed
> ex
->fe_len
&&
1376 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1378 if (block
+ 1 >= max
)
1381 next
= (block
+ 1) * (1 << order
);
1382 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1385 order
= mb_find_order_for_block(e4b
, next
);
1387 block
= next
>> order
;
1388 ex
->fe_len
+= 1 << order
;
1391 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1395 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1401 int start
= ex
->fe_start
;
1402 int len
= ex
->fe_len
;
1407 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1408 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1409 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1410 mb_check_buddy(e4b
);
1411 mb_mark_used_double(e4b
, start
, len
);
1413 e4b
->bd_info
->bb_free
-= len
;
1414 if (e4b
->bd_info
->bb_first_free
== start
)
1415 e4b
->bd_info
->bb_first_free
+= len
;
1417 /* let's maintain fragments counter */
1419 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1420 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1421 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1423 e4b
->bd_info
->bb_fragments
++;
1424 else if (!mlen
&& !max
)
1425 e4b
->bd_info
->bb_fragments
--;
1427 /* let's maintain buddy itself */
1429 ord
= mb_find_order_for_block(e4b
, start
);
1431 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1432 /* the whole chunk may be allocated at once! */
1434 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1435 BUG_ON((start
>> ord
) >= max
);
1436 mb_set_bit(start
>> ord
, buddy
);
1437 e4b
->bd_info
->bb_counters
[ord
]--;
1444 /* store for history */
1446 ret
= len
| (ord
<< 16);
1448 /* we have to split large buddy */
1450 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1451 mb_set_bit(start
>> ord
, buddy
);
1452 e4b
->bd_info
->bb_counters
[ord
]--;
1455 cur
= (start
>> ord
) & ~1U;
1456 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1457 mb_clear_bit(cur
, buddy
);
1458 mb_clear_bit(cur
+ 1, buddy
);
1459 e4b
->bd_info
->bb_counters
[ord
]++;
1460 e4b
->bd_info
->bb_counters
[ord
]++;
1462 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1464 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1465 mb_check_buddy(e4b
);
1471 * Must be called under group lock!
1473 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1474 struct ext4_buddy
*e4b
)
1476 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1479 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1480 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1482 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1483 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1484 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1486 /* preallocation can change ac_b_ex, thus we store actually
1487 * allocated blocks for history */
1488 ac
->ac_f_ex
= ac
->ac_b_ex
;
1490 ac
->ac_status
= AC_STATUS_FOUND
;
1491 ac
->ac_tail
= ret
& 0xffff;
1492 ac
->ac_buddy
= ret
>> 16;
1495 * take the page reference. We want the page to be pinned
1496 * so that we don't get a ext4_mb_init_cache_call for this
1497 * group until we update the bitmap. That would mean we
1498 * double allocate blocks. The reference is dropped
1499 * in ext4_mb_release_context
1501 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1502 get_page(ac
->ac_bitmap_page
);
1503 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1504 get_page(ac
->ac_buddy_page
);
1505 /* store last allocated for subsequent stream allocation */
1506 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1507 spin_lock(&sbi
->s_md_lock
);
1508 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1509 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1510 spin_unlock(&sbi
->s_md_lock
);
1515 * regular allocator, for general purposes allocation
1518 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1519 struct ext4_buddy
*e4b
,
1522 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1523 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1524 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1525 struct ext4_free_extent ex
;
1528 if (ac
->ac_status
== AC_STATUS_FOUND
)
1531 * We don't want to scan for a whole year
1533 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1534 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1535 ac
->ac_status
= AC_STATUS_BREAK
;
1540 * Haven't found good chunk so far, let's continue
1542 if (bex
->fe_len
< gex
->fe_len
)
1545 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1546 && bex
->fe_group
== e4b
->bd_group
) {
1547 /* recheck chunk's availability - we don't know
1548 * when it was found (within this lock-unlock
1550 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1551 if (max
>= gex
->fe_len
) {
1552 ext4_mb_use_best_found(ac
, e4b
);
1559 * The routine checks whether found extent is good enough. If it is,
1560 * then the extent gets marked used and flag is set to the context
1561 * to stop scanning. Otherwise, the extent is compared with the
1562 * previous found extent and if new one is better, then it's stored
1563 * in the context. Later, the best found extent will be used, if
1564 * mballoc can't find good enough extent.
1566 * FIXME: real allocation policy is to be designed yet!
1568 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1569 struct ext4_free_extent
*ex
,
1570 struct ext4_buddy
*e4b
)
1572 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1573 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1575 BUG_ON(ex
->fe_len
<= 0);
1576 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1577 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1578 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1583 * The special case - take what you catch first
1585 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1587 ext4_mb_use_best_found(ac
, e4b
);
1592 * Let's check whether the chuck is good enough
1594 if (ex
->fe_len
== gex
->fe_len
) {
1596 ext4_mb_use_best_found(ac
, e4b
);
1601 * If this is first found extent, just store it in the context
1603 if (bex
->fe_len
== 0) {
1609 * If new found extent is better, store it in the context
1611 if (bex
->fe_len
< gex
->fe_len
) {
1612 /* if the request isn't satisfied, any found extent
1613 * larger than previous best one is better */
1614 if (ex
->fe_len
> bex
->fe_len
)
1616 } else if (ex
->fe_len
> gex
->fe_len
) {
1617 /* if the request is satisfied, then we try to find
1618 * an extent that still satisfy the request, but is
1619 * smaller than previous one */
1620 if (ex
->fe_len
< bex
->fe_len
)
1624 ext4_mb_check_limits(ac
, e4b
, 0);
1627 static noinline_for_stack
1628 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1629 struct ext4_buddy
*e4b
)
1631 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1632 ext4_group_t group
= ex
.fe_group
;
1636 BUG_ON(ex
.fe_len
<= 0);
1637 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1641 ext4_lock_group(ac
->ac_sb
, group
);
1642 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1646 ext4_mb_use_best_found(ac
, e4b
);
1649 ext4_unlock_group(ac
->ac_sb
, group
);
1650 ext4_mb_unload_buddy(e4b
);
1655 static noinline_for_stack
1656 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1657 struct ext4_buddy
*e4b
)
1659 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1662 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1663 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1664 struct ext4_free_extent ex
;
1666 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1668 if (grp
->bb_free
== 0)
1671 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1675 ext4_lock_group(ac
->ac_sb
, group
);
1676 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1677 ac
->ac_g_ex
.fe_len
, &ex
);
1679 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1682 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1684 /* use do_div to get remainder (would be 64-bit modulo) */
1685 if (do_div(start
, sbi
->s_stripe
) == 0) {
1688 ext4_mb_use_best_found(ac
, e4b
);
1690 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1691 BUG_ON(ex
.fe_len
<= 0);
1692 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1693 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1696 ext4_mb_use_best_found(ac
, e4b
);
1697 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1698 /* Sometimes, caller may want to merge even small
1699 * number of blocks to an existing extent */
1700 BUG_ON(ex
.fe_len
<= 0);
1701 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1702 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1705 ext4_mb_use_best_found(ac
, e4b
);
1707 ext4_unlock_group(ac
->ac_sb
, group
);
1708 ext4_mb_unload_buddy(e4b
);
1714 * The routine scans buddy structures (not bitmap!) from given order
1715 * to max order and tries to find big enough chunk to satisfy the req
1717 static noinline_for_stack
1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1719 struct ext4_buddy
*e4b
)
1721 struct super_block
*sb
= ac
->ac_sb
;
1722 struct ext4_group_info
*grp
= e4b
->bd_info
;
1728 BUG_ON(ac
->ac_2order
<= 0);
1729 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1730 if (grp
->bb_counters
[i
] == 0)
1733 buddy
= mb_find_buddy(e4b
, i
, &max
);
1734 BUG_ON(buddy
== NULL
);
1736 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1741 ac
->ac_b_ex
.fe_len
= 1 << i
;
1742 ac
->ac_b_ex
.fe_start
= k
<< i
;
1743 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1745 ext4_mb_use_best_found(ac
, e4b
);
1747 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1749 if (EXT4_SB(sb
)->s_mb_stats
)
1750 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1757 * The routine scans the group and measures all found extents.
1758 * In order to optimize scanning, caller must pass number of
1759 * free blocks in the group, so the routine can know upper limit.
1761 static noinline_for_stack
1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1763 struct ext4_buddy
*e4b
)
1765 struct super_block
*sb
= ac
->ac_sb
;
1766 void *bitmap
= e4b
->bd_bitmap
;
1767 struct ext4_free_extent ex
;
1771 free
= e4b
->bd_info
->bb_free
;
1774 i
= e4b
->bd_info
->bb_first_free
;
1776 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1777 i
= mb_find_next_zero_bit(bitmap
,
1778 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1779 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1781 * IF we have corrupt bitmap, we won't find any
1782 * free blocks even though group info says we
1783 * we have free blocks
1785 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1786 "%d free clusters as per "
1787 "group info. But bitmap says 0",
1792 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1793 BUG_ON(ex
.fe_len
<= 0);
1794 if (free
< ex
.fe_len
) {
1795 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1796 "%d free clusters as per "
1797 "group info. But got %d blocks",
1800 * The number of free blocks differs. This mostly
1801 * indicate that the bitmap is corrupt. So exit
1802 * without claiming the space.
1807 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1813 ext4_mb_check_limits(ac
, e4b
, 1);
1817 * This is a special case for storages like raid5
1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1820 static noinline_for_stack
1821 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1822 struct ext4_buddy
*e4b
)
1824 struct super_block
*sb
= ac
->ac_sb
;
1825 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1826 void *bitmap
= e4b
->bd_bitmap
;
1827 struct ext4_free_extent ex
;
1828 ext4_fsblk_t first_group_block
;
1833 BUG_ON(sbi
->s_stripe
== 0);
1835 /* find first stripe-aligned block in group */
1836 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1838 a
= first_group_block
+ sbi
->s_stripe
- 1;
1839 do_div(a
, sbi
->s_stripe
);
1840 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1842 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
1843 if (!mb_test_bit(i
, bitmap
)) {
1844 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
1845 if (max
>= sbi
->s_stripe
) {
1848 ext4_mb_use_best_found(ac
, e4b
);
1856 /* This is now called BEFORE we load the buddy bitmap. */
1857 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1858 ext4_group_t group
, int cr
)
1860 unsigned free
, fragments
;
1861 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1862 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1864 BUG_ON(cr
< 0 || cr
>= 4);
1866 free
= grp
->bb_free
;
1869 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
1872 /* We only do this if the grp has never been initialized */
1873 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1874 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
1879 fragments
= grp
->bb_fragments
;
1885 BUG_ON(ac
->ac_2order
== 0);
1887 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
1890 /* Avoid using the first bg of a flexgroup for data files */
1891 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
1892 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
1893 ((group
% flex_size
) == 0))
1898 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1902 if (free
>= ac
->ac_g_ex
.fe_len
)
1914 static noinline_for_stack
int
1915 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1917 ext4_group_t ngroups
, group
, i
;
1920 struct ext4_sb_info
*sbi
;
1921 struct super_block
*sb
;
1922 struct ext4_buddy e4b
;
1926 ngroups
= ext4_get_groups_count(sb
);
1927 /* non-extent files are limited to low blocks/groups */
1928 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
1929 ngroups
= sbi
->s_blockfile_groups
;
1931 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1933 /* first, try the goal */
1934 err
= ext4_mb_find_by_goal(ac
, &e4b
);
1935 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
1938 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
1942 * ac->ac2_order is set only if the fe_len is a power of 2
1943 * if ac2_order is set we also set criteria to 0 so that we
1944 * try exact allocation using buddy.
1946 i
= fls(ac
->ac_g_ex
.fe_len
);
1949 * We search using buddy data only if the order of the request
1950 * is greater than equal to the sbi_s_mb_order2_reqs
1951 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1953 if (i
>= sbi
->s_mb_order2_reqs
) {
1955 * This should tell if fe_len is exactly power of 2
1957 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
1958 ac
->ac_2order
= i
- 1;
1961 /* if stream allocation is enabled, use global goal */
1962 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1963 /* TBD: may be hot point */
1964 spin_lock(&sbi
->s_md_lock
);
1965 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
1966 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
1967 spin_unlock(&sbi
->s_md_lock
);
1970 /* Let's just scan groups to find more-less suitable blocks */
1971 cr
= ac
->ac_2order
? 0 : 1;
1973 * cr == 0 try to get exact allocation,
1974 * cr == 3 try to get anything
1977 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
1978 ac
->ac_criteria
= cr
;
1980 * searching for the right group start
1981 * from the goal value specified
1983 group
= ac
->ac_g_ex
.fe_group
;
1985 for (i
= 0; i
< ngroups
; group
++, i
++) {
1986 if (group
== ngroups
)
1989 /* This now checks without needing the buddy page */
1990 if (!ext4_mb_good_group(ac
, group
, cr
))
1993 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
1997 ext4_lock_group(sb
, group
);
2000 * We need to check again after locking the
2003 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2004 ext4_unlock_group(sb
, group
);
2005 ext4_mb_unload_buddy(&e4b
);
2009 ac
->ac_groups_scanned
++;
2011 ext4_mb_simple_scan_group(ac
, &e4b
);
2012 else if (cr
== 1 && sbi
->s_stripe
&&
2013 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2014 ext4_mb_scan_aligned(ac
, &e4b
);
2016 ext4_mb_complex_scan_group(ac
, &e4b
);
2018 ext4_unlock_group(sb
, group
);
2019 ext4_mb_unload_buddy(&e4b
);
2021 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2026 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2027 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2029 * We've been searching too long. Let's try to allocate
2030 * the best chunk we've found so far
2033 ext4_mb_try_best_found(ac
, &e4b
);
2034 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2036 * Someone more lucky has already allocated it.
2037 * The only thing we can do is just take first
2039 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2041 ac
->ac_b_ex
.fe_group
= 0;
2042 ac
->ac_b_ex
.fe_start
= 0;
2043 ac
->ac_b_ex
.fe_len
= 0;
2044 ac
->ac_status
= AC_STATUS_CONTINUE
;
2045 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2047 atomic_inc(&sbi
->s_mb_lost_chunks
);
2055 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2057 struct super_block
*sb
= seq
->private;
2060 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2063 return (void *) ((unsigned long) group
);
2066 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2068 struct super_block
*sb
= seq
->private;
2072 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2075 return (void *) ((unsigned long) group
);
2078 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2080 struct super_block
*sb
= seq
->private;
2081 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2083 int err
, buddy_loaded
= 0;
2084 struct ext4_buddy e4b
;
2085 struct ext4_group_info
*grinfo
;
2087 struct ext4_group_info info
;
2088 ext4_grpblk_t counters
[16];
2093 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2094 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2095 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2096 "group", "free", "frags", "first",
2097 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2098 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2100 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2101 sizeof(struct ext4_group_info
);
2102 grinfo
= ext4_get_group_info(sb
, group
);
2103 /* Load the group info in memory only if not already loaded. */
2104 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2105 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2107 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2113 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2116 ext4_mb_unload_buddy(&e4b
);
2118 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2119 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2120 for (i
= 0; i
<= 13; i
++)
2121 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2122 sg
.info
.bb_counters
[i
] : 0);
2123 seq_printf(seq
, " ]\n");
2128 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2132 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2133 .start
= ext4_mb_seq_groups_start
,
2134 .next
= ext4_mb_seq_groups_next
,
2135 .stop
= ext4_mb_seq_groups_stop
,
2136 .show
= ext4_mb_seq_groups_show
,
2139 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2141 struct super_block
*sb
= PDE(inode
)->data
;
2144 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2146 struct seq_file
*m
= file
->private_data
;
2153 static const struct file_operations ext4_mb_seq_groups_fops
= {
2154 .owner
= THIS_MODULE
,
2155 .open
= ext4_mb_seq_groups_open
,
2157 .llseek
= seq_lseek
,
2158 .release
= seq_release
,
2161 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2163 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2164 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2171 * Allocate the top-level s_group_info array for the specified number
2174 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2176 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2178 struct ext4_group_info
***new_groupinfo
;
2180 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2181 EXT4_DESC_PER_BLOCK_BITS(sb
);
2182 if (size
<= sbi
->s_group_info_size
)
2185 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2186 new_groupinfo
= ext4_kvzalloc(size
, GFP_KERNEL
);
2187 if (!new_groupinfo
) {
2188 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2191 if (sbi
->s_group_info
) {
2192 memcpy(new_groupinfo
, sbi
->s_group_info
,
2193 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2194 ext4_kvfree(sbi
->s_group_info
);
2196 sbi
->s_group_info
= new_groupinfo
;
2197 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2198 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2199 sbi
->s_group_info_size
);
2203 /* Create and initialize ext4_group_info data for the given group. */
2204 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2205 struct ext4_group_desc
*desc
)
2209 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2210 struct ext4_group_info
**meta_group_info
;
2211 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2214 * First check if this group is the first of a reserved block.
2215 * If it's true, we have to allocate a new table of pointers
2216 * to ext4_group_info structures
2218 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2219 metalen
= sizeof(*meta_group_info
) <<
2220 EXT4_DESC_PER_BLOCK_BITS(sb
);
2221 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2222 if (meta_group_info
== NULL
) {
2223 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2224 "for a buddy group");
2225 goto exit_meta_group_info
;
2227 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2232 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2233 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2235 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_KERNEL
);
2236 if (meta_group_info
[i
] == NULL
) {
2237 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2238 goto exit_group_info
;
2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2241 &(meta_group_info
[i
]->bb_state
));
2244 * initialize bb_free to be able to skip
2245 * empty groups without initialization
2247 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2248 meta_group_info
[i
]->bb_free
=
2249 ext4_free_clusters_after_init(sb
, group
, desc
);
2251 meta_group_info
[i
]->bb_free
=
2252 ext4_free_group_clusters(sb
, desc
);
2255 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2256 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2257 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2258 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2262 struct buffer_head
*bh
;
2263 meta_group_info
[i
]->bb_bitmap
=
2264 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2265 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2266 bh
= ext4_read_block_bitmap(sb
, group
);
2268 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2277 /* If a meta_group_info table has been allocated, release it now */
2278 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2279 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2280 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] = NULL
;
2282 exit_meta_group_info
:
2284 } /* ext4_mb_add_groupinfo */
2286 static int ext4_mb_init_backend(struct super_block
*sb
)
2288 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2290 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2292 struct ext4_group_desc
*desc
;
2293 struct kmem_cache
*cachep
;
2295 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2299 sbi
->s_buddy_cache
= new_inode(sb
);
2300 if (sbi
->s_buddy_cache
== NULL
) {
2301 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2304 /* To avoid potentially colliding with an valid on-disk inode number,
2305 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2306 * not in the inode hash, so it should never be found by iget(), but
2307 * this will avoid confusion if it ever shows up during debugging. */
2308 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2309 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2310 for (i
= 0; i
< ngroups
; i
++) {
2311 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2313 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2316 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2323 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2325 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2326 i
= sbi
->s_group_info_size
;
2328 kfree(sbi
->s_group_info
[i
]);
2329 iput(sbi
->s_buddy_cache
);
2331 ext4_kvfree(sbi
->s_group_info
);
2335 static void ext4_groupinfo_destroy_slabs(void)
2339 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2340 if (ext4_groupinfo_caches
[i
])
2341 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2342 ext4_groupinfo_caches
[i
] = NULL
;
2346 static int ext4_groupinfo_create_slab(size_t size
)
2348 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2350 int blocksize_bits
= order_base_2(size
);
2351 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2352 struct kmem_cache
*cachep
;
2354 if (cache_index
>= NR_GRPINFO_CACHES
)
2357 if (unlikely(cache_index
< 0))
2360 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2361 if (ext4_groupinfo_caches
[cache_index
]) {
2362 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2363 return 0; /* Already created */
2366 slab_size
= offsetof(struct ext4_group_info
,
2367 bb_counters
[blocksize_bits
+ 2]);
2369 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2370 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2373 ext4_groupinfo_caches
[cache_index
] = cachep
;
2375 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2378 "EXT4-fs: no memory for groupinfo slab cache\n");
2385 int ext4_mb_init(struct super_block
*sb
)
2387 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2393 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2395 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2396 if (sbi
->s_mb_offsets
== NULL
) {
2401 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2402 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2403 if (sbi
->s_mb_maxs
== NULL
) {
2408 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2412 /* order 0 is regular bitmap */
2413 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2414 sbi
->s_mb_offsets
[0] = 0;
2418 max
= sb
->s_blocksize
<< 2;
2420 sbi
->s_mb_offsets
[i
] = offset
;
2421 sbi
->s_mb_maxs
[i
] = max
;
2422 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2425 } while (i
<= sb
->s_blocksize_bits
+ 1);
2427 spin_lock_init(&sbi
->s_md_lock
);
2428 spin_lock_init(&sbi
->s_bal_lock
);
2430 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2431 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2432 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2433 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2434 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2436 * The default group preallocation is 512, which for 4k block
2437 * sizes translates to 2 megabytes. However for bigalloc file
2438 * systems, this is probably too big (i.e, if the cluster size
2439 * is 1 megabyte, then group preallocation size becomes half a
2440 * gigabyte!). As a default, we will keep a two megabyte
2441 * group pralloc size for cluster sizes up to 64k, and after
2442 * that, we will force a minimum group preallocation size of
2443 * 32 clusters. This translates to 8 megs when the cluster
2444 * size is 256k, and 32 megs when the cluster size is 1 meg,
2445 * which seems reasonable as a default.
2447 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2448 sbi
->s_cluster_bits
, 32);
2450 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2451 * to the lowest multiple of s_stripe which is bigger than
2452 * the s_mb_group_prealloc as determined above. We want
2453 * the preallocation size to be an exact multiple of the
2454 * RAID stripe size so that preallocations don't fragment
2457 if (sbi
->s_stripe
> 1) {
2458 sbi
->s_mb_group_prealloc
= roundup(
2459 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2462 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2463 if (sbi
->s_locality_groups
== NULL
) {
2465 goto out_free_groupinfo_slab
;
2467 for_each_possible_cpu(i
) {
2468 struct ext4_locality_group
*lg
;
2469 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2470 mutex_init(&lg
->lg_mutex
);
2471 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2472 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2473 spin_lock_init(&lg
->lg_prealloc_lock
);
2476 /* init file for buddy data */
2477 ret
= ext4_mb_init_backend(sb
);
2479 goto out_free_locality_groups
;
2482 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2483 &ext4_mb_seq_groups_fops
, sb
);
2487 out_free_locality_groups
:
2488 free_percpu(sbi
->s_locality_groups
);
2489 sbi
->s_locality_groups
= NULL
;
2490 out_free_groupinfo_slab
:
2491 ext4_groupinfo_destroy_slabs();
2493 kfree(sbi
->s_mb_offsets
);
2494 sbi
->s_mb_offsets
= NULL
;
2495 kfree(sbi
->s_mb_maxs
);
2496 sbi
->s_mb_maxs
= NULL
;
2500 /* need to called with the ext4 group lock held */
2501 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2503 struct ext4_prealloc_space
*pa
;
2504 struct list_head
*cur
, *tmp
;
2507 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2508 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2509 list_del(&pa
->pa_group_list
);
2511 kmem_cache_free(ext4_pspace_cachep
, pa
);
2514 mb_debug(1, "mballoc: %u PAs left\n", count
);
2518 int ext4_mb_release(struct super_block
*sb
)
2520 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2522 int num_meta_group_infos
;
2523 struct ext4_group_info
*grinfo
;
2524 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2525 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2528 remove_proc_entry("mb_groups", sbi
->s_proc
);
2530 if (sbi
->s_group_info
) {
2531 for (i
= 0; i
< ngroups
; i
++) {
2532 grinfo
= ext4_get_group_info(sb
, i
);
2534 kfree(grinfo
->bb_bitmap
);
2536 ext4_lock_group(sb
, i
);
2537 ext4_mb_cleanup_pa(grinfo
);
2538 ext4_unlock_group(sb
, i
);
2539 kmem_cache_free(cachep
, grinfo
);
2541 num_meta_group_infos
= (ngroups
+
2542 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2543 EXT4_DESC_PER_BLOCK_BITS(sb
);
2544 for (i
= 0; i
< num_meta_group_infos
; i
++)
2545 kfree(sbi
->s_group_info
[i
]);
2546 ext4_kvfree(sbi
->s_group_info
);
2548 kfree(sbi
->s_mb_offsets
);
2549 kfree(sbi
->s_mb_maxs
);
2550 if (sbi
->s_buddy_cache
)
2551 iput(sbi
->s_buddy_cache
);
2552 if (sbi
->s_mb_stats
) {
2553 ext4_msg(sb
, KERN_INFO
,
2554 "mballoc: %u blocks %u reqs (%u success)",
2555 atomic_read(&sbi
->s_bal_allocated
),
2556 atomic_read(&sbi
->s_bal_reqs
),
2557 atomic_read(&sbi
->s_bal_success
));
2558 ext4_msg(sb
, KERN_INFO
,
2559 "mballoc: %u extents scanned, %u goal hits, "
2560 "%u 2^N hits, %u breaks, %u lost",
2561 atomic_read(&sbi
->s_bal_ex_scanned
),
2562 atomic_read(&sbi
->s_bal_goals
),
2563 atomic_read(&sbi
->s_bal_2orders
),
2564 atomic_read(&sbi
->s_bal_breaks
),
2565 atomic_read(&sbi
->s_mb_lost_chunks
));
2566 ext4_msg(sb
, KERN_INFO
,
2567 "mballoc: %lu generated and it took %Lu",
2568 sbi
->s_mb_buddies_generated
,
2569 sbi
->s_mb_generation_time
);
2570 ext4_msg(sb
, KERN_INFO
,
2571 "mballoc: %u preallocated, %u discarded",
2572 atomic_read(&sbi
->s_mb_preallocated
),
2573 atomic_read(&sbi
->s_mb_discarded
));
2576 free_percpu(sbi
->s_locality_groups
);
2581 static inline int ext4_issue_discard(struct super_block
*sb
,
2582 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
)
2584 ext4_fsblk_t discard_block
;
2586 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
2587 ext4_group_first_block_no(sb
, block_group
));
2588 count
= EXT4_C2B(EXT4_SB(sb
), count
);
2589 trace_ext4_discard_blocks(sb
,
2590 (unsigned long long) discard_block
, count
);
2591 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2595 * This function is called by the jbd2 layer once the commit has finished,
2596 * so we know we can free the blocks that were released with that commit.
2598 static void ext4_free_data_callback(struct super_block
*sb
,
2599 struct ext4_journal_cb_entry
*jce
,
2602 struct ext4_free_data
*entry
= (struct ext4_free_data
*)jce
;
2603 struct ext4_buddy e4b
;
2604 struct ext4_group_info
*db
;
2605 int err
, count
= 0, count2
= 0;
2607 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2608 entry
->efd_count
, entry
->efd_group
, entry
);
2610 if (test_opt(sb
, DISCARD
))
2611 ext4_issue_discard(sb
, entry
->efd_group
,
2612 entry
->efd_start_cluster
, entry
->efd_count
);
2614 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
2615 /* we expect to find existing buddy because it's pinned */
2620 /* there are blocks to put in buddy to make them really free */
2621 count
+= entry
->efd_count
;
2623 ext4_lock_group(sb
, entry
->efd_group
);
2624 /* Take it out of per group rb tree */
2625 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
2626 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
2629 * Clear the trimmed flag for the group so that the next
2630 * ext4_trim_fs can trim it.
2631 * If the volume is mounted with -o discard, online discard
2632 * is supported and the free blocks will be trimmed online.
2634 if (!test_opt(sb
, DISCARD
))
2635 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2637 if (!db
->bb_free_root
.rb_node
) {
2638 /* No more items in the per group rb tree
2639 * balance refcounts from ext4_mb_free_metadata()
2641 page_cache_release(e4b
.bd_buddy_page
);
2642 page_cache_release(e4b
.bd_bitmap_page
);
2644 ext4_unlock_group(sb
, entry
->efd_group
);
2645 kmem_cache_free(ext4_free_data_cachep
, entry
);
2646 ext4_mb_unload_buddy(&e4b
);
2648 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2651 #ifdef CONFIG_EXT4_DEBUG
2652 u8 mb_enable_debug __read_mostly
;
2654 static struct dentry
*debugfs_dir
;
2655 static struct dentry
*debugfs_debug
;
2657 static void __init
ext4_create_debugfs_entry(void)
2659 debugfs_dir
= debugfs_create_dir("ext4", NULL
);
2661 debugfs_debug
= debugfs_create_u8("mballoc-debug",
2667 static void ext4_remove_debugfs_entry(void)
2669 debugfs_remove(debugfs_debug
);
2670 debugfs_remove(debugfs_dir
);
2675 static void __init
ext4_create_debugfs_entry(void)
2679 static void ext4_remove_debugfs_entry(void)
2685 int __init
ext4_init_mballoc(void)
2687 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2688 SLAB_RECLAIM_ACCOUNT
);
2689 if (ext4_pspace_cachep
== NULL
)
2692 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2693 SLAB_RECLAIM_ACCOUNT
);
2694 if (ext4_ac_cachep
== NULL
) {
2695 kmem_cache_destroy(ext4_pspace_cachep
);
2699 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
2700 SLAB_RECLAIM_ACCOUNT
);
2701 if (ext4_free_data_cachep
== NULL
) {
2702 kmem_cache_destroy(ext4_pspace_cachep
);
2703 kmem_cache_destroy(ext4_ac_cachep
);
2706 ext4_create_debugfs_entry();
2710 void ext4_exit_mballoc(void)
2713 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2714 * before destroying the slab cache.
2717 kmem_cache_destroy(ext4_pspace_cachep
);
2718 kmem_cache_destroy(ext4_ac_cachep
);
2719 kmem_cache_destroy(ext4_free_data_cachep
);
2720 ext4_groupinfo_destroy_slabs();
2721 ext4_remove_debugfs_entry();
2726 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2727 * Returns 0 if success or error code
2729 static noinline_for_stack
int
2730 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2731 handle_t
*handle
, unsigned int reserv_clstrs
)
2733 struct buffer_head
*bitmap_bh
= NULL
;
2734 struct ext4_group_desc
*gdp
;
2735 struct buffer_head
*gdp_bh
;
2736 struct ext4_sb_info
*sbi
;
2737 struct super_block
*sb
;
2741 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2742 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2748 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2752 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2757 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2761 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2762 ext4_free_group_clusters(sb
, gdp
));
2764 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2768 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2770 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
2771 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2772 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2773 "fs metadata", block
, block
+len
);
2774 /* File system mounted not to panic on error
2775 * Fix the bitmap and repeat the block allocation
2776 * We leak some of the blocks here.
2778 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2779 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2780 ac
->ac_b_ex
.fe_len
);
2781 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2782 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2788 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2789 #ifdef AGGRESSIVE_CHECK
2792 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2793 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2794 bitmap_bh
->b_data
));
2798 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2799 ac
->ac_b_ex
.fe_len
);
2800 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2801 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2802 ext4_free_group_clusters_set(sb
, gdp
,
2803 ext4_free_clusters_after_init(sb
,
2804 ac
->ac_b_ex
.fe_group
, gdp
));
2806 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2807 ext4_free_group_clusters_set(sb
, gdp
, len
);
2808 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
,
2809 EXT4_BLOCKS_PER_GROUP(sb
) / 8);
2810 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
2812 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2813 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
2815 * Now reduce the dirty block count also. Should not go negative
2817 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2818 /* release all the reserved blocks if non delalloc */
2819 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
2822 if (sbi
->s_log_groups_per_flex
) {
2823 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2824 ac
->ac_b_ex
.fe_group
);
2825 atomic_sub(ac
->ac_b_ex
.fe_len
,
2826 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
2829 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2832 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2840 * here we normalize request for locality group
2841 * Group request are normalized to s_mb_group_prealloc, which goes to
2842 * s_strip if we set the same via mount option.
2843 * s_mb_group_prealloc can be configured via
2844 * /sys/fs/ext4/<partition>/mb_group_prealloc
2846 * XXX: should we try to preallocate more than the group has now?
2848 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2850 struct super_block
*sb
= ac
->ac_sb
;
2851 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2854 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2855 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2856 current
->pid
, ac
->ac_g_ex
.fe_len
);
2860 * Normalization means making request better in terms of
2861 * size and alignment
2863 static noinline_for_stack
void
2864 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2865 struct ext4_allocation_request
*ar
)
2867 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
2870 loff_t size
, start_off
;
2871 loff_t orig_size __maybe_unused
;
2873 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2874 struct ext4_prealloc_space
*pa
;
2876 /* do normalize only data requests, metadata requests
2877 do not need preallocation */
2878 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2881 /* sometime caller may want exact blocks */
2882 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2885 /* caller may indicate that preallocation isn't
2886 * required (it's a tail, for example) */
2887 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2890 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2891 ext4_mb_normalize_group_request(ac
);
2895 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2897 /* first, let's learn actual file size
2898 * given current request is allocated */
2899 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
2900 size
= size
<< bsbits
;
2901 if (size
< i_size_read(ac
->ac_inode
))
2902 size
= i_size_read(ac
->ac_inode
);
2905 /* max size of free chunks */
2908 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2909 (req <= (size) || max <= (chunk_size))
2911 /* first, try to predict filesize */
2912 /* XXX: should this table be tunable? */
2914 if (size
<= 16 * 1024) {
2916 } else if (size
<= 32 * 1024) {
2918 } else if (size
<= 64 * 1024) {
2920 } else if (size
<= 128 * 1024) {
2922 } else if (size
<= 256 * 1024) {
2924 } else if (size
<= 512 * 1024) {
2926 } else if (size
<= 1024 * 1024) {
2928 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
2929 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2930 (21 - bsbits
)) << 21;
2931 size
= 2 * 1024 * 1024;
2932 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
2933 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2934 (22 - bsbits
)) << 22;
2935 size
= 4 * 1024 * 1024;
2936 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
2937 (8<<20)>>bsbits
, max
, 8 * 1024)) {
2938 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2939 (23 - bsbits
)) << 23;
2940 size
= 8 * 1024 * 1024;
2942 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
2943 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
2945 size
= size
>> bsbits
;
2946 start
= start_off
>> bsbits
;
2948 /* don't cover already allocated blocks in selected range */
2949 if (ar
->pleft
&& start
<= ar
->lleft
) {
2950 size
-= ar
->lleft
+ 1 - start
;
2951 start
= ar
->lleft
+ 1;
2953 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
2954 size
-= start
+ size
- ar
->lright
;
2958 /* check we don't cross already preallocated blocks */
2960 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2965 spin_lock(&pa
->pa_lock
);
2966 if (pa
->pa_deleted
) {
2967 spin_unlock(&pa
->pa_lock
);
2971 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
2974 /* PA must not overlap original request */
2975 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
2976 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
2978 /* skip PAs this normalized request doesn't overlap with */
2979 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
2980 spin_unlock(&pa
->pa_lock
);
2983 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
2985 /* adjust start or end to be adjacent to this pa */
2986 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
2987 BUG_ON(pa_end
< start
);
2989 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
2990 BUG_ON(pa
->pa_lstart
> end
);
2991 end
= pa
->pa_lstart
;
2993 spin_unlock(&pa
->pa_lock
);
2998 /* XXX: extra loop to check we really don't overlap preallocations */
3000 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3003 spin_lock(&pa
->pa_lock
);
3004 if (pa
->pa_deleted
== 0) {
3005 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3007 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3009 spin_unlock(&pa
->pa_lock
);
3013 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3014 start
> ac
->ac_o_ex
.fe_logical
) {
3015 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3016 "start %lu, size %lu, fe_logical %lu",
3017 (unsigned long) start
, (unsigned long) size
,
3018 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3020 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3021 start
> ac
->ac_o_ex
.fe_logical
);
3022 BUG_ON(size
<= 0 || size
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
3024 /* now prepare goal request */
3026 /* XXX: is it better to align blocks WRT to logical
3027 * placement or satisfy big request as is */
3028 ac
->ac_g_ex
.fe_logical
= start
;
3029 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3031 /* define goal start in order to merge */
3032 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3033 /* merge to the right */
3034 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3035 &ac
->ac_f_ex
.fe_group
,
3036 &ac
->ac_f_ex
.fe_start
);
3037 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3039 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3040 /* merge to the left */
3041 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3042 &ac
->ac_f_ex
.fe_group
,
3043 &ac
->ac_f_ex
.fe_start
);
3044 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3047 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3048 (unsigned) orig_size
, (unsigned) start
);
3051 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3053 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3055 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3056 atomic_inc(&sbi
->s_bal_reqs
);
3057 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3058 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3059 atomic_inc(&sbi
->s_bal_success
);
3060 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3061 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3062 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3063 atomic_inc(&sbi
->s_bal_goals
);
3064 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3065 atomic_inc(&sbi
->s_bal_breaks
);
3068 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3069 trace_ext4_mballoc_alloc(ac
);
3071 trace_ext4_mballoc_prealloc(ac
);
3075 * Called on failure; free up any blocks from the inode PA for this
3076 * context. We don't need this for MB_GROUP_PA because we only change
3077 * pa_free in ext4_mb_release_context(), but on failure, we've already
3078 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3080 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3082 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3084 if (pa
&& pa
->pa_type
== MB_INODE_PA
)
3085 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3089 * use blocks preallocated to inode
3091 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3092 struct ext4_prealloc_space
*pa
)
3094 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3099 /* found preallocated blocks, use them */
3100 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3101 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3102 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3103 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3104 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3105 &ac
->ac_b_ex
.fe_start
);
3106 ac
->ac_b_ex
.fe_len
= len
;
3107 ac
->ac_status
= AC_STATUS_FOUND
;
3110 BUG_ON(start
< pa
->pa_pstart
);
3111 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3112 BUG_ON(pa
->pa_free
< len
);
3115 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3119 * use blocks preallocated to locality group
3121 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3122 struct ext4_prealloc_space
*pa
)
3124 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3126 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3127 &ac
->ac_b_ex
.fe_group
,
3128 &ac
->ac_b_ex
.fe_start
);
3129 ac
->ac_b_ex
.fe_len
= len
;
3130 ac
->ac_status
= AC_STATUS_FOUND
;
3133 /* we don't correct pa_pstart or pa_plen here to avoid
3134 * possible race when the group is being loaded concurrently
3135 * instead we correct pa later, after blocks are marked
3136 * in on-disk bitmap -- see ext4_mb_release_context()
3137 * Other CPUs are prevented from allocating from this pa by lg_mutex
3139 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3143 * Return the prealloc space that have minimal distance
3144 * from the goal block. @cpa is the prealloc
3145 * space that is having currently known minimal distance
3146 * from the goal block.
3148 static struct ext4_prealloc_space
*
3149 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3150 struct ext4_prealloc_space
*pa
,
3151 struct ext4_prealloc_space
*cpa
)
3153 ext4_fsblk_t cur_distance
, new_distance
;
3156 atomic_inc(&pa
->pa_count
);
3159 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3160 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3162 if (cur_distance
<= new_distance
)
3165 /* drop the previous reference */
3166 atomic_dec(&cpa
->pa_count
);
3167 atomic_inc(&pa
->pa_count
);
3172 * search goal blocks in preallocated space
3174 static noinline_for_stack
int
3175 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3177 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3179 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3180 struct ext4_locality_group
*lg
;
3181 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3182 ext4_fsblk_t goal_block
;
3184 /* only data can be preallocated */
3185 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3188 /* first, try per-file preallocation */
3190 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3192 /* all fields in this condition don't change,
3193 * so we can skip locking for them */
3194 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3195 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3196 EXT4_C2B(sbi
, pa
->pa_len
)))
3199 /* non-extent files can't have physical blocks past 2^32 */
3200 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3201 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3202 EXT4_MAX_BLOCK_FILE_PHYS
))
3205 /* found preallocated blocks, use them */
3206 spin_lock(&pa
->pa_lock
);
3207 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3208 atomic_inc(&pa
->pa_count
);
3209 ext4_mb_use_inode_pa(ac
, pa
);
3210 spin_unlock(&pa
->pa_lock
);
3211 ac
->ac_criteria
= 10;
3215 spin_unlock(&pa
->pa_lock
);
3219 /* can we use group allocation? */
3220 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3223 /* inode may have no locality group for some reason */
3227 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3228 if (order
> PREALLOC_TB_SIZE
- 1)
3229 /* The max size of hash table is PREALLOC_TB_SIZE */
3230 order
= PREALLOC_TB_SIZE
- 1;
3232 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3234 * search for the prealloc space that is having
3235 * minimal distance from the goal block.
3237 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3239 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3241 spin_lock(&pa
->pa_lock
);
3242 if (pa
->pa_deleted
== 0 &&
3243 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3245 cpa
= ext4_mb_check_group_pa(goal_block
,
3248 spin_unlock(&pa
->pa_lock
);
3253 ext4_mb_use_group_pa(ac
, cpa
);
3254 ac
->ac_criteria
= 20;
3261 * the function goes through all block freed in the group
3262 * but not yet committed and marks them used in in-core bitmap.
3263 * buddy must be generated from this bitmap
3264 * Need to be called with the ext4 group lock held
3266 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3270 struct ext4_group_info
*grp
;
3271 struct ext4_free_data
*entry
;
3273 grp
= ext4_get_group_info(sb
, group
);
3274 n
= rb_first(&(grp
->bb_free_root
));
3277 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3278 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3285 * the function goes through all preallocation in this group and marks them
3286 * used in in-core bitmap. buddy must be generated from this bitmap
3287 * Need to be called with ext4 group lock held
3289 static noinline_for_stack
3290 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3293 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3294 struct ext4_prealloc_space
*pa
;
3295 struct list_head
*cur
;
3296 ext4_group_t groupnr
;
3297 ext4_grpblk_t start
;
3298 int preallocated
= 0;
3301 /* all form of preallocation discards first load group,
3302 * so the only competing code is preallocation use.
3303 * we don't need any locking here
3304 * notice we do NOT ignore preallocations with pa_deleted
3305 * otherwise we could leave used blocks available for
3306 * allocation in buddy when concurrent ext4_mb_put_pa()
3307 * is dropping preallocation
3309 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3310 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3311 spin_lock(&pa
->pa_lock
);
3312 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3315 spin_unlock(&pa
->pa_lock
);
3316 if (unlikely(len
== 0))
3318 BUG_ON(groupnr
!= group
);
3319 ext4_set_bits(bitmap
, start
, len
);
3320 preallocated
+= len
;
3322 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3325 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3327 struct ext4_prealloc_space
*pa
;
3328 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3329 kmem_cache_free(ext4_pspace_cachep
, pa
);
3333 * drops a reference to preallocated space descriptor
3334 * if this was the last reference and the space is consumed
3336 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3337 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3340 ext4_fsblk_t grp_blk
;
3342 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3345 /* in this short window concurrent discard can set pa_deleted */
3346 spin_lock(&pa
->pa_lock
);
3347 if (pa
->pa_deleted
== 1) {
3348 spin_unlock(&pa
->pa_lock
);
3353 spin_unlock(&pa
->pa_lock
);
3355 grp_blk
= pa
->pa_pstart
;
3357 * If doing group-based preallocation, pa_pstart may be in the
3358 * next group when pa is used up
3360 if (pa
->pa_type
== MB_GROUP_PA
)
3363 ext4_get_group_no_and_offset(sb
, grp_blk
, &grp
, NULL
);
3368 * P1 (buddy init) P2 (regular allocation)
3369 * find block B in PA
3370 * copy on-disk bitmap to buddy
3371 * mark B in on-disk bitmap
3372 * drop PA from group
3373 * mark all PAs in buddy
3375 * thus, P1 initializes buddy with B available. to prevent this
3376 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3379 ext4_lock_group(sb
, grp
);
3380 list_del(&pa
->pa_group_list
);
3381 ext4_unlock_group(sb
, grp
);
3383 spin_lock(pa
->pa_obj_lock
);
3384 list_del_rcu(&pa
->pa_inode_list
);
3385 spin_unlock(pa
->pa_obj_lock
);
3387 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3391 * creates new preallocated space for given inode
3393 static noinline_for_stack
int
3394 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3396 struct super_block
*sb
= ac
->ac_sb
;
3397 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3398 struct ext4_prealloc_space
*pa
;
3399 struct ext4_group_info
*grp
;
3400 struct ext4_inode_info
*ei
;
3402 /* preallocate only when found space is larger then requested */
3403 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3404 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3405 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3407 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3411 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3417 /* we can't allocate as much as normalizer wants.
3418 * so, found space must get proper lstart
3419 * to cover original request */
3420 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3421 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3423 /* we're limited by original request in that
3424 * logical block must be covered any way
3425 * winl is window we can move our chunk within */
3426 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3428 /* also, we should cover whole original request */
3429 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3431 /* the smallest one defines real window */
3432 win
= min(winl
, wins
);
3434 offs
= ac
->ac_o_ex
.fe_logical
%
3435 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3436 if (offs
&& offs
< win
)
3439 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3441 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3442 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3445 /* preallocation can change ac_b_ex, thus we store actually
3446 * allocated blocks for history */
3447 ac
->ac_f_ex
= ac
->ac_b_ex
;
3449 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3450 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3451 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3452 pa
->pa_free
= pa
->pa_len
;
3453 atomic_set(&pa
->pa_count
, 1);
3454 spin_lock_init(&pa
->pa_lock
);
3455 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3456 INIT_LIST_HEAD(&pa
->pa_group_list
);
3458 pa
->pa_type
= MB_INODE_PA
;
3460 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3461 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3462 trace_ext4_mb_new_inode_pa(ac
, pa
);
3464 ext4_mb_use_inode_pa(ac
, pa
);
3465 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3467 ei
= EXT4_I(ac
->ac_inode
);
3468 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3470 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3471 pa
->pa_inode
= ac
->ac_inode
;
3473 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3474 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3475 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3477 spin_lock(pa
->pa_obj_lock
);
3478 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3479 spin_unlock(pa
->pa_obj_lock
);
3485 * creates new preallocated space for locality group inodes belongs to
3487 static noinline_for_stack
int
3488 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3490 struct super_block
*sb
= ac
->ac_sb
;
3491 struct ext4_locality_group
*lg
;
3492 struct ext4_prealloc_space
*pa
;
3493 struct ext4_group_info
*grp
;
3495 /* preallocate only when found space is larger then requested */
3496 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3497 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3498 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3500 BUG_ON(ext4_pspace_cachep
== NULL
);
3501 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3505 /* preallocation can change ac_b_ex, thus we store actually
3506 * allocated blocks for history */
3507 ac
->ac_f_ex
= ac
->ac_b_ex
;
3509 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3510 pa
->pa_lstart
= pa
->pa_pstart
;
3511 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3512 pa
->pa_free
= pa
->pa_len
;
3513 atomic_set(&pa
->pa_count
, 1);
3514 spin_lock_init(&pa
->pa_lock
);
3515 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3516 INIT_LIST_HEAD(&pa
->pa_group_list
);
3518 pa
->pa_type
= MB_GROUP_PA
;
3520 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3521 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3522 trace_ext4_mb_new_group_pa(ac
, pa
);
3524 ext4_mb_use_group_pa(ac
, pa
);
3525 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3527 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3531 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3532 pa
->pa_inode
= NULL
;
3534 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3535 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3536 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3539 * We will later add the new pa to the right bucket
3540 * after updating the pa_free in ext4_mb_release_context
3545 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3549 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3550 err
= ext4_mb_new_group_pa(ac
);
3552 err
= ext4_mb_new_inode_pa(ac
);
3557 * finds all unused blocks in on-disk bitmap, frees them in
3558 * in-core bitmap and buddy.
3559 * @pa must be unlinked from inode and group lists, so that
3560 * nobody else can find/use it.
3561 * the caller MUST hold group/inode locks.
3562 * TODO: optimize the case when there are no in-core structures yet
3564 static noinline_for_stack
int
3565 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3566 struct ext4_prealloc_space
*pa
)
3568 struct super_block
*sb
= e4b
->bd_sb
;
3569 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3574 unsigned long long grp_blk_start
;
3578 BUG_ON(pa
->pa_deleted
== 0);
3579 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3580 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
3581 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3582 end
= bit
+ pa
->pa_len
;
3585 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3588 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3589 mb_debug(1, " free preallocated %u/%u in group %u\n",
3590 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3591 (unsigned) next
- bit
, (unsigned) group
);
3594 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3595 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
3596 EXT4_C2B(sbi
, bit
)),
3598 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3601 if (free
!= pa
->pa_free
) {
3602 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3603 "pa %p: logic %lu, phys. %lu, len %lu",
3604 pa
, (unsigned long) pa
->pa_lstart
,
3605 (unsigned long) pa
->pa_pstart
,
3606 (unsigned long) pa
->pa_len
);
3607 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3610 * pa is already deleted so we use the value obtained
3611 * from the bitmap and continue.
3614 atomic_add(free
, &sbi
->s_mb_discarded
);
3619 static noinline_for_stack
int
3620 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3621 struct ext4_prealloc_space
*pa
)
3623 struct super_block
*sb
= e4b
->bd_sb
;
3627 trace_ext4_mb_release_group_pa(sb
, pa
);
3628 BUG_ON(pa
->pa_deleted
== 0);
3629 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3630 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3631 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3632 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3633 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3639 * releases all preallocations in given group
3641 * first, we need to decide discard policy:
3642 * - when do we discard
3644 * - how many do we discard
3645 * 1) how many requested
3647 static noinline_for_stack
int
3648 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3649 ext4_group_t group
, int needed
)
3651 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3652 struct buffer_head
*bitmap_bh
= NULL
;
3653 struct ext4_prealloc_space
*pa
, *tmp
;
3654 struct list_head list
;
3655 struct ext4_buddy e4b
;
3660 mb_debug(1, "discard preallocation for group %u\n", group
);
3662 if (list_empty(&grp
->bb_prealloc_list
))
3665 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3666 if (bitmap_bh
== NULL
) {
3667 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3671 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3673 ext4_error(sb
, "Error loading buddy information for %u", group
);
3679 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
3681 INIT_LIST_HEAD(&list
);
3683 ext4_lock_group(sb
, group
);
3684 list_for_each_entry_safe(pa
, tmp
,
3685 &grp
->bb_prealloc_list
, pa_group_list
) {
3686 spin_lock(&pa
->pa_lock
);
3687 if (atomic_read(&pa
->pa_count
)) {
3688 spin_unlock(&pa
->pa_lock
);
3692 if (pa
->pa_deleted
) {
3693 spin_unlock(&pa
->pa_lock
);
3697 /* seems this one can be freed ... */
3700 /* we can trust pa_free ... */
3701 free
+= pa
->pa_free
;
3703 spin_unlock(&pa
->pa_lock
);
3705 list_del(&pa
->pa_group_list
);
3706 list_add(&pa
->u
.pa_tmp_list
, &list
);
3709 /* if we still need more blocks and some PAs were used, try again */
3710 if (free
< needed
&& busy
) {
3712 ext4_unlock_group(sb
, group
);
3714 * Yield the CPU here so that we don't get soft lockup
3715 * in non preempt case.
3721 /* found anything to free? */
3722 if (list_empty(&list
)) {
3727 /* now free all selected PAs */
3728 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3730 /* remove from object (inode or locality group) */
3731 spin_lock(pa
->pa_obj_lock
);
3732 list_del_rcu(&pa
->pa_inode_list
);
3733 spin_unlock(pa
->pa_obj_lock
);
3735 if (pa
->pa_type
== MB_GROUP_PA
)
3736 ext4_mb_release_group_pa(&e4b
, pa
);
3738 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3740 list_del(&pa
->u
.pa_tmp_list
);
3741 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3745 ext4_unlock_group(sb
, group
);
3746 ext4_mb_unload_buddy(&e4b
);
3752 * releases all non-used preallocated blocks for given inode
3754 * It's important to discard preallocations under i_data_sem
3755 * We don't want another block to be served from the prealloc
3756 * space when we are discarding the inode prealloc space.
3758 * FIXME!! Make sure it is valid at all the call sites
3760 void ext4_discard_preallocations(struct inode
*inode
)
3762 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3763 struct super_block
*sb
= inode
->i_sb
;
3764 struct buffer_head
*bitmap_bh
= NULL
;
3765 struct ext4_prealloc_space
*pa
, *tmp
;
3766 ext4_group_t group
= 0;
3767 struct list_head list
;
3768 struct ext4_buddy e4b
;
3771 if (!S_ISREG(inode
->i_mode
)) {
3772 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3776 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3777 trace_ext4_discard_preallocations(inode
);
3779 INIT_LIST_HEAD(&list
);
3782 /* first, collect all pa's in the inode */
3783 spin_lock(&ei
->i_prealloc_lock
);
3784 while (!list_empty(&ei
->i_prealloc_list
)) {
3785 pa
= list_entry(ei
->i_prealloc_list
.next
,
3786 struct ext4_prealloc_space
, pa_inode_list
);
3787 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3788 spin_lock(&pa
->pa_lock
);
3789 if (atomic_read(&pa
->pa_count
)) {
3790 /* this shouldn't happen often - nobody should
3791 * use preallocation while we're discarding it */
3792 spin_unlock(&pa
->pa_lock
);
3793 spin_unlock(&ei
->i_prealloc_lock
);
3794 ext4_msg(sb
, KERN_ERR
,
3795 "uh-oh! used pa while discarding");
3797 schedule_timeout_uninterruptible(HZ
);
3801 if (pa
->pa_deleted
== 0) {
3803 spin_unlock(&pa
->pa_lock
);
3804 list_del_rcu(&pa
->pa_inode_list
);
3805 list_add(&pa
->u
.pa_tmp_list
, &list
);
3809 /* someone is deleting pa right now */
3810 spin_unlock(&pa
->pa_lock
);
3811 spin_unlock(&ei
->i_prealloc_lock
);
3813 /* we have to wait here because pa_deleted
3814 * doesn't mean pa is already unlinked from
3815 * the list. as we might be called from
3816 * ->clear_inode() the inode will get freed
3817 * and concurrent thread which is unlinking
3818 * pa from inode's list may access already
3819 * freed memory, bad-bad-bad */
3821 /* XXX: if this happens too often, we can
3822 * add a flag to force wait only in case
3823 * of ->clear_inode(), but not in case of
3824 * regular truncate */
3825 schedule_timeout_uninterruptible(HZ
);
3828 spin_unlock(&ei
->i_prealloc_lock
);
3830 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3831 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3832 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
3834 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3836 ext4_error(sb
, "Error loading buddy information for %u",
3841 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3842 if (bitmap_bh
== NULL
) {
3843 ext4_error(sb
, "Error reading block bitmap for %u",
3845 ext4_mb_unload_buddy(&e4b
);
3849 ext4_lock_group(sb
, group
);
3850 list_del(&pa
->pa_group_list
);
3851 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3852 ext4_unlock_group(sb
, group
);
3854 ext4_mb_unload_buddy(&e4b
);
3857 list_del(&pa
->u
.pa_tmp_list
);
3858 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3862 #ifdef CONFIG_EXT4_DEBUG
3863 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3865 struct super_block
*sb
= ac
->ac_sb
;
3866 ext4_group_t ngroups
, i
;
3868 if (!mb_enable_debug
||
3869 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
3872 ext4_msg(ac
->ac_sb
, KERN_ERR
, "Can't allocate:"
3873 " Allocation context details:");
3874 ext4_msg(ac
->ac_sb
, KERN_ERR
, "status %d flags %d",
3875 ac
->ac_status
, ac
->ac_flags
);
3876 ext4_msg(ac
->ac_sb
, KERN_ERR
, "orig %lu/%lu/%lu@%lu, "
3877 "goal %lu/%lu/%lu@%lu, "
3878 "best %lu/%lu/%lu@%lu cr %d",
3879 (unsigned long)ac
->ac_o_ex
.fe_group
,
3880 (unsigned long)ac
->ac_o_ex
.fe_start
,
3881 (unsigned long)ac
->ac_o_ex
.fe_len
,
3882 (unsigned long)ac
->ac_o_ex
.fe_logical
,
3883 (unsigned long)ac
->ac_g_ex
.fe_group
,
3884 (unsigned long)ac
->ac_g_ex
.fe_start
,
3885 (unsigned long)ac
->ac_g_ex
.fe_len
,
3886 (unsigned long)ac
->ac_g_ex
.fe_logical
,
3887 (unsigned long)ac
->ac_b_ex
.fe_group
,
3888 (unsigned long)ac
->ac_b_ex
.fe_start
,
3889 (unsigned long)ac
->ac_b_ex
.fe_len
,
3890 (unsigned long)ac
->ac_b_ex
.fe_logical
,
3891 (int)ac
->ac_criteria
);
3892 ext4_msg(ac
->ac_sb
, KERN_ERR
, "%lu scanned, %d found",
3893 ac
->ac_ex_scanned
, ac
->ac_found
);
3894 ext4_msg(ac
->ac_sb
, KERN_ERR
, "groups: ");
3895 ngroups
= ext4_get_groups_count(sb
);
3896 for (i
= 0; i
< ngroups
; i
++) {
3897 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
3898 struct ext4_prealloc_space
*pa
;
3899 ext4_grpblk_t start
;
3900 struct list_head
*cur
;
3901 ext4_lock_group(sb
, i
);
3902 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3903 pa
= list_entry(cur
, struct ext4_prealloc_space
,
3905 spin_lock(&pa
->pa_lock
);
3906 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3908 spin_unlock(&pa
->pa_lock
);
3909 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
3912 ext4_unlock_group(sb
, i
);
3914 if (grp
->bb_free
== 0)
3916 printk(KERN_ERR
"%u: %d/%d \n",
3917 i
, grp
->bb_free
, grp
->bb_fragments
);
3919 printk(KERN_ERR
"\n");
3922 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3929 * We use locality group preallocation for small size file. The size of the
3930 * file is determined by the current size or the resulting size after
3931 * allocation which ever is larger
3933 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3935 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
3937 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3938 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3941 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3944 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3947 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3948 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
3951 if ((size
== isize
) &&
3952 !ext4_fs_is_busy(sbi
) &&
3953 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
3954 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
3958 if (sbi
->s_mb_group_prealloc
<= 0) {
3959 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
3963 /* don't use group allocation for large files */
3964 size
= max(size
, isize
);
3965 if (size
> sbi
->s_mb_stream_request
) {
3966 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
3970 BUG_ON(ac
->ac_lg
!= NULL
);
3972 * locality group prealloc space are per cpu. The reason for having
3973 * per cpu locality group is to reduce the contention between block
3974 * request from multiple CPUs.
3976 ac
->ac_lg
= __this_cpu_ptr(sbi
->s_locality_groups
);
3978 /* we're going to use group allocation */
3979 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
3981 /* serialize all allocations in the group */
3982 mutex_lock(&ac
->ac_lg
->lg_mutex
);
3985 static noinline_for_stack
int
3986 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
3987 struct ext4_allocation_request
*ar
)
3989 struct super_block
*sb
= ar
->inode
->i_sb
;
3990 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3991 struct ext4_super_block
*es
= sbi
->s_es
;
3995 ext4_grpblk_t block
;
3997 /* we can't allocate > group size */
4000 /* just a dirty hack to filter too big requests */
4001 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
) - 10)
4002 len
= EXT4_CLUSTERS_PER_GROUP(sb
) - 10;
4004 /* start searching from the goal */
4006 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4007 goal
>= ext4_blocks_count(es
))
4008 goal
= le32_to_cpu(es
->s_first_data_block
);
4009 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4011 /* set up allocation goals */
4012 ac
->ac_b_ex
.fe_logical
= ar
->logical
& ~(sbi
->s_cluster_ratio
- 1);
4013 ac
->ac_status
= AC_STATUS_CONTINUE
;
4015 ac
->ac_inode
= ar
->inode
;
4016 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4017 ac
->ac_o_ex
.fe_group
= group
;
4018 ac
->ac_o_ex
.fe_start
= block
;
4019 ac
->ac_o_ex
.fe_len
= len
;
4020 ac
->ac_g_ex
= ac
->ac_o_ex
;
4021 ac
->ac_flags
= ar
->flags
;
4023 /* we have to define context: we'll we work with a file or
4024 * locality group. this is a policy, actually */
4025 ext4_mb_group_or_file(ac
);
4027 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4028 "left: %u/%u, right %u/%u to %swritable\n",
4029 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4030 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4031 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4032 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4033 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4038 static noinline_for_stack
void
4039 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4040 struct ext4_locality_group
*lg
,
4041 int order
, int total_entries
)
4043 ext4_group_t group
= 0;
4044 struct ext4_buddy e4b
;
4045 struct list_head discard_list
;
4046 struct ext4_prealloc_space
*pa
, *tmp
;
4048 mb_debug(1, "discard locality group preallocation\n");
4050 INIT_LIST_HEAD(&discard_list
);
4052 spin_lock(&lg
->lg_prealloc_lock
);
4053 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4055 spin_lock(&pa
->pa_lock
);
4056 if (atomic_read(&pa
->pa_count
)) {
4058 * This is the pa that we just used
4059 * for block allocation. So don't
4062 spin_unlock(&pa
->pa_lock
);
4065 if (pa
->pa_deleted
) {
4066 spin_unlock(&pa
->pa_lock
);
4069 /* only lg prealloc space */
4070 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4072 /* seems this one can be freed ... */
4074 spin_unlock(&pa
->pa_lock
);
4076 list_del_rcu(&pa
->pa_inode_list
);
4077 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4080 if (total_entries
<= 5) {
4082 * we want to keep only 5 entries
4083 * allowing it to grow to 8. This
4084 * mak sure we don't call discard
4085 * soon for this list.
4090 spin_unlock(&lg
->lg_prealloc_lock
);
4092 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4094 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4095 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4096 ext4_error(sb
, "Error loading buddy information for %u",
4100 ext4_lock_group(sb
, group
);
4101 list_del(&pa
->pa_group_list
);
4102 ext4_mb_release_group_pa(&e4b
, pa
);
4103 ext4_unlock_group(sb
, group
);
4105 ext4_mb_unload_buddy(&e4b
);
4106 list_del(&pa
->u
.pa_tmp_list
);
4107 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4112 * We have incremented pa_count. So it cannot be freed at this
4113 * point. Also we hold lg_mutex. So no parallel allocation is
4114 * possible from this lg. That means pa_free cannot be updated.
4116 * A parallel ext4_mb_discard_group_preallocations is possible.
4117 * which can cause the lg_prealloc_list to be updated.
4120 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4122 int order
, added
= 0, lg_prealloc_count
= 1;
4123 struct super_block
*sb
= ac
->ac_sb
;
4124 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4125 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4127 order
= fls(pa
->pa_free
) - 1;
4128 if (order
> PREALLOC_TB_SIZE
- 1)
4129 /* The max size of hash table is PREALLOC_TB_SIZE */
4130 order
= PREALLOC_TB_SIZE
- 1;
4131 /* Add the prealloc space to lg */
4133 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4135 spin_lock(&tmp_pa
->pa_lock
);
4136 if (tmp_pa
->pa_deleted
) {
4137 spin_unlock(&tmp_pa
->pa_lock
);
4140 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4141 /* Add to the tail of the previous entry */
4142 list_add_tail_rcu(&pa
->pa_inode_list
,
4143 &tmp_pa
->pa_inode_list
);
4146 * we want to count the total
4147 * number of entries in the list
4150 spin_unlock(&tmp_pa
->pa_lock
);
4151 lg_prealloc_count
++;
4154 list_add_tail_rcu(&pa
->pa_inode_list
,
4155 &lg
->lg_prealloc_list
[order
]);
4158 /* Now trim the list to be not more than 8 elements */
4159 if (lg_prealloc_count
> 8) {
4160 ext4_mb_discard_lg_preallocations(sb
, lg
,
4161 order
, lg_prealloc_count
);
4168 * release all resource we used in allocation
4170 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4172 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4173 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4175 if (pa
->pa_type
== MB_GROUP_PA
) {
4176 /* see comment in ext4_mb_use_group_pa() */
4177 spin_lock(&pa
->pa_lock
);
4178 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4179 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4180 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4181 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4182 spin_unlock(&pa
->pa_lock
);
4187 * We want to add the pa to the right bucket.
4188 * Remove it from the list and while adding
4189 * make sure the list to which we are adding
4192 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4193 spin_lock(pa
->pa_obj_lock
);
4194 list_del_rcu(&pa
->pa_inode_list
);
4195 spin_unlock(pa
->pa_obj_lock
);
4196 ext4_mb_add_n_trim(ac
);
4198 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4200 if (ac
->ac_bitmap_page
)
4201 page_cache_release(ac
->ac_bitmap_page
);
4202 if (ac
->ac_buddy_page
)
4203 page_cache_release(ac
->ac_buddy_page
);
4204 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4205 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4206 ext4_mb_collect_stats(ac
);
4210 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4212 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4216 trace_ext4_mb_discard_preallocations(sb
, needed
);
4217 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4218 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4227 * Main entry point into mballoc to allocate blocks
4228 * it tries to use preallocation first, then falls back
4229 * to usual allocation
4231 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4232 struct ext4_allocation_request
*ar
, int *errp
)
4235 struct ext4_allocation_context
*ac
= NULL
;
4236 struct ext4_sb_info
*sbi
;
4237 struct super_block
*sb
;
4238 ext4_fsblk_t block
= 0;
4239 unsigned int inquota
= 0;
4240 unsigned int reserv_clstrs
= 0;
4242 sb
= ar
->inode
->i_sb
;
4245 trace_ext4_request_blocks(ar
);
4247 /* Allow to use superuser reservation for quota file */
4248 if (IS_NOQUOTA(ar
->inode
))
4249 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4252 * For delayed allocation, we could skip the ENOSPC and
4253 * EDQUOT check, as blocks and quotas have been already
4254 * reserved when data being copied into pagecache.
4256 if (ext4_test_inode_state(ar
->inode
, EXT4_STATE_DELALLOC_RESERVED
))
4257 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4259 /* Without delayed allocation we need to verify
4260 * there is enough free blocks to do block allocation
4261 * and verify allocation doesn't exceed the quota limits.
4264 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4266 /* let others to free the space */
4268 ar
->len
= ar
->len
>> 1;
4274 reserv_clstrs
= ar
->len
;
4275 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4276 dquot_alloc_block_nofail(ar
->inode
,
4277 EXT4_C2B(sbi
, ar
->len
));
4280 dquot_alloc_block(ar
->inode
,
4281 EXT4_C2B(sbi
, ar
->len
))) {
4283 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4294 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4301 *errp
= ext4_mb_initialize_context(ac
, ar
);
4307 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4308 if (!ext4_mb_use_preallocated(ac
)) {
4309 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4310 ext4_mb_normalize_request(ac
, ar
);
4312 /* allocate space in core */
4313 *errp
= ext4_mb_regular_allocator(ac
);
4317 /* as we've just preallocated more space than
4318 * user requested orinally, we store allocated
4319 * space in a special descriptor */
4320 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4321 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4322 ext4_mb_new_preallocation(ac
);
4324 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4325 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4326 if (*errp
== -EAGAIN
) {
4328 * drop the reference that we took
4329 * in ext4_mb_use_best_found
4331 ext4_mb_release_context(ac
);
4332 ac
->ac_b_ex
.fe_group
= 0;
4333 ac
->ac_b_ex
.fe_start
= 0;
4334 ac
->ac_b_ex
.fe_len
= 0;
4335 ac
->ac_status
= AC_STATUS_CONTINUE
;
4339 ext4_discard_allocated_blocks(ac
);
4341 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4342 ar
->len
= ac
->ac_b_ex
.fe_len
;
4345 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4352 ac
->ac_b_ex
.fe_len
= 0;
4354 ext4_mb_show_ac(ac
);
4356 ext4_mb_release_context(ac
);
4359 kmem_cache_free(ext4_ac_cachep
, ac
);
4360 if (inquota
&& ar
->len
< inquota
)
4361 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4363 if (!ext4_test_inode_state(ar
->inode
,
4364 EXT4_STATE_DELALLOC_RESERVED
))
4365 /* release all the reserved blocks if non delalloc */
4366 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4370 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4376 * We can merge two free data extents only if the physical blocks
4377 * are contiguous, AND the extents were freed by the same transaction,
4378 * AND the blocks are associated with the same group.
4380 static int can_merge(struct ext4_free_data
*entry1
,
4381 struct ext4_free_data
*entry2
)
4383 if ((entry1
->efd_tid
== entry2
->efd_tid
) &&
4384 (entry1
->efd_group
== entry2
->efd_group
) &&
4385 ((entry1
->efd_start_cluster
+ entry1
->efd_count
) == entry2
->efd_start_cluster
))
4390 static noinline_for_stack
int
4391 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4392 struct ext4_free_data
*new_entry
)
4394 ext4_group_t group
= e4b
->bd_group
;
4395 ext4_grpblk_t cluster
;
4396 struct ext4_free_data
*entry
;
4397 struct ext4_group_info
*db
= e4b
->bd_info
;
4398 struct super_block
*sb
= e4b
->bd_sb
;
4399 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4400 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4401 struct rb_node
*parent
= NULL
, *new_node
;
4403 BUG_ON(!ext4_handle_valid(handle
));
4404 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4405 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4407 new_node
= &new_entry
->efd_node
;
4408 cluster
= new_entry
->efd_start_cluster
;
4411 /* first free block exent. We need to
4412 protect buddy cache from being freed,
4413 * otherwise we'll refresh it from
4414 * on-disk bitmap and lose not-yet-available
4416 page_cache_get(e4b
->bd_buddy_page
);
4417 page_cache_get(e4b
->bd_bitmap_page
);
4421 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
4422 if (cluster
< entry
->efd_start_cluster
)
4424 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
4425 n
= &(*n
)->rb_right
;
4427 ext4_grp_locked_error(sb
, group
, 0,
4428 ext4_group_first_block_no(sb
, group
) +
4429 EXT4_C2B(sbi
, cluster
),
4430 "Block already on to-be-freed list");
4435 rb_link_node(new_node
, parent
, n
);
4436 rb_insert_color(new_node
, &db
->bb_free_root
);
4438 /* Now try to see the extent can be merged to left and right */
4439 node
= rb_prev(new_node
);
4441 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4442 if (can_merge(entry
, new_entry
)) {
4443 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
4444 new_entry
->efd_count
+= entry
->efd_count
;
4445 rb_erase(node
, &(db
->bb_free_root
));
4446 ext4_journal_callback_del(handle
, &entry
->efd_jce
);
4447 kmem_cache_free(ext4_free_data_cachep
, entry
);
4451 node
= rb_next(new_node
);
4453 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4454 if (can_merge(new_entry
, entry
)) {
4455 new_entry
->efd_count
+= entry
->efd_count
;
4456 rb_erase(node
, &(db
->bb_free_root
));
4457 ext4_journal_callback_del(handle
, &entry
->efd_jce
);
4458 kmem_cache_free(ext4_free_data_cachep
, entry
);
4461 /* Add the extent to transaction's private list */
4462 ext4_journal_callback_add(handle
, ext4_free_data_callback
,
4463 &new_entry
->efd_jce
);
4468 * ext4_free_blocks() -- Free given blocks and update quota
4469 * @handle: handle for this transaction
4471 * @block: start physical block to free
4472 * @count: number of blocks to count
4473 * @flags: flags used by ext4_free_blocks
4475 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4476 struct buffer_head
*bh
, ext4_fsblk_t block
,
4477 unsigned long count
, int flags
)
4479 struct buffer_head
*bitmap_bh
= NULL
;
4480 struct super_block
*sb
= inode
->i_sb
;
4481 struct ext4_group_desc
*gdp
;
4482 unsigned long freed
= 0;
4483 unsigned int overflow
;
4485 struct buffer_head
*gd_bh
;
4486 ext4_group_t block_group
;
4487 struct ext4_sb_info
*sbi
;
4488 struct ext4_buddy e4b
;
4489 unsigned int count_clusters
;
4495 BUG_ON(block
!= bh
->b_blocknr
);
4497 block
= bh
->b_blocknr
;
4501 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4502 !ext4_data_block_valid(sbi
, block
, count
)) {
4503 ext4_error(sb
, "Freeing blocks not in datazone - "
4504 "block = %llu, count = %lu", block
, count
);
4508 ext4_debug("freeing block %llu\n", block
);
4509 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4511 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4512 struct buffer_head
*tbh
= bh
;
4515 BUG_ON(bh
&& (count
> 1));
4517 for (i
= 0; i
< count
; i
++) {
4519 tbh
= sb_find_get_block(inode
->i_sb
,
4523 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4524 inode
, tbh
, block
+ i
);
4529 * We need to make sure we don't reuse the freed block until
4530 * after the transaction is committed, which we can do by
4531 * treating the block as metadata, below. We make an
4532 * exception if the inode is to be written in writeback mode
4533 * since writeback mode has weak data consistency guarantees.
4535 if (!ext4_should_writeback_data(inode
))
4536 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4539 * If the extent to be freed does not begin on a cluster
4540 * boundary, we need to deal with partial clusters at the
4541 * beginning and end of the extent. Normally we will free
4542 * blocks at the beginning or the end unless we are explicitly
4543 * requested to avoid doing so.
4545 overflow
= block
& (sbi
->s_cluster_ratio
- 1);
4547 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
4548 overflow
= sbi
->s_cluster_ratio
- overflow
;
4550 if (count
> overflow
)
4559 overflow
= count
& (sbi
->s_cluster_ratio
- 1);
4561 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
4562 if (count
> overflow
)
4567 count
+= sbi
->s_cluster_ratio
- overflow
;
4572 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4575 * Check to see if we are freeing blocks across a group
4578 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4579 overflow
= EXT4_C2B(sbi
, bit
) + count
-
4580 EXT4_BLOCKS_PER_GROUP(sb
);
4583 count_clusters
= EXT4_B2C(sbi
, count
);
4584 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4589 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4595 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4596 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4597 in_range(block
, ext4_inode_table(sb
, gdp
),
4598 EXT4_SB(sb
)->s_itb_per_group
) ||
4599 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4600 EXT4_SB(sb
)->s_itb_per_group
)) {
4602 ext4_error(sb
, "Freeing blocks in system zone - "
4603 "Block = %llu, count = %lu", block
, count
);
4604 /* err = 0. ext4_std_error should be a no op */
4608 BUFFER_TRACE(bitmap_bh
, "getting write access");
4609 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4614 * We are about to modify some metadata. Call the journal APIs
4615 * to unshare ->b_data if a currently-committing transaction is
4618 BUFFER_TRACE(gd_bh
, "get_write_access");
4619 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4622 #ifdef AGGRESSIVE_CHECK
4625 for (i
= 0; i
< count_clusters
; i
++)
4626 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4629 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
4631 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4635 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4636 struct ext4_free_data
*new_entry
;
4638 * blocks being freed are metadata. these blocks shouldn't
4639 * be used until this transaction is committed
4641 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
, GFP_NOFS
);
4643 ext4_mb_unload_buddy(&e4b
);
4647 new_entry
->efd_start_cluster
= bit
;
4648 new_entry
->efd_group
= block_group
;
4649 new_entry
->efd_count
= count_clusters
;
4650 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
4652 ext4_lock_group(sb
, block_group
);
4653 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4654 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4656 /* need to update group_info->bb_free and bitmap
4657 * with group lock held. generate_buddy look at
4658 * them with group lock_held
4660 if (test_opt(sb
, DISCARD
))
4661 ext4_issue_discard(sb
, block_group
, bit
, count
);
4662 ext4_lock_group(sb
, block_group
);
4663 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4664 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
4667 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
4668 ext4_free_group_clusters_set(sb
, gdp
, ret
);
4669 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
,
4670 EXT4_BLOCKS_PER_GROUP(sb
) / 8);
4671 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
4672 ext4_unlock_group(sb
, block_group
);
4673 percpu_counter_add(&sbi
->s_freeclusters_counter
, count_clusters
);
4675 if (sbi
->s_log_groups_per_flex
) {
4676 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4677 atomic_add(count_clusters
,
4678 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4681 ext4_mb_unload_buddy(&e4b
);
4685 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4686 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
4688 /* We dirtied the bitmap block */
4689 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4690 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4692 /* And the group descriptor block */
4693 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4694 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4698 if (overflow
&& !err
) {
4706 ext4_std_error(sb
, err
);
4711 * ext4_group_add_blocks() -- Add given blocks to an existing group
4712 * @handle: handle to this transaction
4714 * @block: start physical block to add to the block group
4715 * @count: number of blocks to free
4717 * This marks the blocks as free in the bitmap and buddy.
4719 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4720 ext4_fsblk_t block
, unsigned long count
)
4722 struct buffer_head
*bitmap_bh
= NULL
;
4723 struct buffer_head
*gd_bh
;
4724 ext4_group_t block_group
;
4727 struct ext4_group_desc
*desc
;
4728 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4729 struct ext4_buddy e4b
;
4730 int err
= 0, ret
, blk_free_count
;
4731 ext4_grpblk_t blocks_freed
;
4733 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4738 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4740 * Check to see if we are freeing blocks across a group
4743 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4744 ext4_warning(sb
, "too much blocks added to group %u\n",
4750 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4756 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4762 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4763 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4764 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
4765 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
4766 sbi
->s_itb_per_group
)) {
4767 ext4_error(sb
, "Adding blocks in system zones - "
4768 "Block = %llu, count = %lu",
4774 BUFFER_TRACE(bitmap_bh
, "getting write access");
4775 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4780 * We are about to modify some metadata. Call the journal APIs
4781 * to unshare ->b_data if a currently-committing transaction is
4784 BUFFER_TRACE(gd_bh
, "get_write_access");
4785 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4789 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
4790 BUFFER_TRACE(bitmap_bh
, "clear bit");
4791 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
4792 ext4_error(sb
, "bit already cleared for block %llu",
4793 (ext4_fsblk_t
)(block
+ i
));
4794 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
4800 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4805 * need to update group_info->bb_free and bitmap
4806 * with group lock held. generate_buddy look at
4807 * them with group lock_held
4809 ext4_lock_group(sb
, block_group
);
4810 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4811 mb_free_blocks(NULL
, &e4b
, bit
, count
);
4812 blk_free_count
= blocks_freed
+ ext4_free_group_clusters(sb
, desc
);
4813 ext4_free_group_clusters_set(sb
, desc
, blk_free_count
);
4814 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
,
4815 EXT4_BLOCKS_PER_GROUP(sb
) / 8);
4816 ext4_group_desc_csum_set(sb
, block_group
, desc
);
4817 ext4_unlock_group(sb
, block_group
);
4818 percpu_counter_add(&sbi
->s_freeclusters_counter
,
4819 EXT4_B2C(sbi
, blocks_freed
));
4821 if (sbi
->s_log_groups_per_flex
) {
4822 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4823 atomic_add(EXT4_B2C(sbi
, blocks_freed
),
4824 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4827 ext4_mb_unload_buddy(&e4b
);
4829 /* We dirtied the bitmap block */
4830 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4831 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4833 /* And the group descriptor block */
4834 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4835 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4841 ext4_std_error(sb
, err
);
4846 * ext4_trim_extent -- function to TRIM one single free extent in the group
4847 * @sb: super block for the file system
4848 * @start: starting block of the free extent in the alloc. group
4849 * @count: number of blocks to TRIM
4850 * @group: alloc. group we are working with
4851 * @e4b: ext4 buddy for the group
4853 * Trim "count" blocks starting at "start" in the "group". To assure that no
4854 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4855 * be called with under the group lock.
4857 static void ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
4858 ext4_group_t group
, struct ext4_buddy
*e4b
)
4860 struct ext4_free_extent ex
;
4862 trace_ext4_trim_extent(sb
, group
, start
, count
);
4864 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
4866 ex
.fe_start
= start
;
4867 ex
.fe_group
= group
;
4871 * Mark blocks used, so no one can reuse them while
4874 mb_mark_used(e4b
, &ex
);
4875 ext4_unlock_group(sb
, group
);
4876 ext4_issue_discard(sb
, group
, start
, count
);
4877 ext4_lock_group(sb
, group
);
4878 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
4882 * ext4_trim_all_free -- function to trim all free space in alloc. group
4883 * @sb: super block for file system
4884 * @group: group to be trimmed
4885 * @start: first group block to examine
4886 * @max: last group block to examine
4887 * @minblocks: minimum extent block count
4889 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4890 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4894 * ext4_trim_all_free walks through group's block bitmap searching for free
4895 * extents. When the free extent is found, mark it as used in group buddy
4896 * bitmap. Then issue a TRIM command on this extent and free the extent in
4897 * the group buddy bitmap. This is done until whole group is scanned.
4899 static ext4_grpblk_t
4900 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
4901 ext4_grpblk_t start
, ext4_grpblk_t max
,
4902 ext4_grpblk_t minblocks
)
4905 ext4_grpblk_t next
, count
= 0, free_count
= 0;
4906 struct ext4_buddy e4b
;
4909 trace_ext4_trim_all_free(sb
, group
, start
, max
);
4911 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4913 ext4_error(sb
, "Error in loading buddy "
4914 "information for %u", group
);
4917 bitmap
= e4b
.bd_bitmap
;
4919 ext4_lock_group(sb
, group
);
4920 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
4921 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
4924 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
4925 e4b
.bd_info
->bb_first_free
: start
;
4927 while (start
<= max
) {
4928 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
4931 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
4933 if ((next
- start
) >= minblocks
) {
4934 ext4_trim_extent(sb
, start
,
4935 next
- start
, group
, &e4b
);
4936 count
+= next
- start
;
4938 free_count
+= next
- start
;
4941 if (fatal_signal_pending(current
)) {
4942 count
= -ERESTARTSYS
;
4946 if (need_resched()) {
4947 ext4_unlock_group(sb
, group
);
4949 ext4_lock_group(sb
, group
);
4952 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
4957 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
4959 ext4_unlock_group(sb
, group
);
4960 ext4_mb_unload_buddy(&e4b
);
4962 ext4_debug("trimmed %d blocks in the group %d\n",
4969 * ext4_trim_fs() -- trim ioctl handle function
4970 * @sb: superblock for filesystem
4971 * @range: fstrim_range structure
4973 * start: First Byte to trim
4974 * len: number of Bytes to trim from start
4975 * minlen: minimum extent length in Bytes
4976 * ext4_trim_fs goes through all allocation groups containing Bytes from
4977 * start to start+len. For each such a group ext4_trim_all_free function
4978 * is invoked to trim all free space.
4980 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
4982 struct ext4_group_info
*grp
;
4983 ext4_group_t group
, first_group
, last_group
;
4984 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
4985 uint64_t start
, end
, minlen
, trimmed
= 0;
4986 ext4_fsblk_t first_data_blk
=
4987 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
4988 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
4991 start
= range
->start
>> sb
->s_blocksize_bits
;
4992 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
4993 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
4994 range
->minlen
>> sb
->s_blocksize_bits
);
4996 if (unlikely(minlen
> EXT4_CLUSTERS_PER_GROUP(sb
)) ||
4997 unlikely(start
>= max_blks
))
4999 if (end
>= max_blks
)
5001 if (end
<= first_data_blk
)
5003 if (start
< first_data_blk
)
5004 start
= first_data_blk
;
5006 /* Determine first and last group to examine based on start and end */
5007 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5008 &first_group
, &first_cluster
);
5009 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5010 &last_group
, &last_cluster
);
5012 /* end now represents the last cluster to discard in this group */
5013 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5015 for (group
= first_group
; group
<= last_group
; group
++) {
5016 grp
= ext4_get_group_info(sb
, group
);
5017 /* We only do this if the grp has never been initialized */
5018 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5019 ret
= ext4_mb_init_group(sb
, group
);
5025 * For all the groups except the last one, last cluster will
5026 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5027 * change it for the last group, note that last_cluster is
5028 * already computed earlier by ext4_get_group_no_and_offset()
5030 if (group
== last_group
)
5033 if (grp
->bb_free
>= minlen
) {
5034 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5044 * For every group except the first one, we are sure
5045 * that the first cluster to discard will be cluster #0.
5051 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5054 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;