UAPI: fix endianness conditionals in linux/aio_abi.h
[linux-2.6.git] / block / blk-core.c
blob074b758efc42cf116d61f4755f0107f491890980
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
37 #include "blk.h"
38 #include "blk-cgroup.h"
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
44 DEFINE_IDA(blk_queue_ida);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 struct kmem_cache *blk_requestq_cachep;
57 * Controlling structure to kblockd
59 static struct workqueue_struct *kblockd_workqueue;
61 static void drive_stat_acct(struct request *rq, int new_io)
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
67 if (!blk_do_io_stat(rq))
68 return;
70 cpu = part_stat_lock();
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
94 part_stat_unlock();
97 void blk_queue_congestion_threshold(struct request_queue *q)
99 int nr;
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
132 void blk_rq_init(struct request_queue *q, struct request *rq)
134 memset(rq, 0, sizeof(*rq));
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
151 EXPORT_SYMBOL(blk_rq_init);
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
181 void blk_dump_rq_flags(struct request *rq, char *msg)
183 int bit;
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
202 EXPORT_SYMBOL(blk_dump_rq_flags);
204 static void blk_delay_work(struct work_struct *work)
206 struct request_queue *q;
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time. Queue lock must be held.
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
226 if (likely(!blk_queue_dead(q)))
227 queue_delayed_work(kblockd_workqueue, &q->delay_work,
228 msecs_to_jiffies(msecs));
230 EXPORT_SYMBOL(blk_delay_queue);
233 * blk_start_queue - restart a previously stopped queue
234 * @q: The &struct request_queue in question
236 * Description:
237 * blk_start_queue() will clear the stop flag on the queue, and call
238 * the request_fn for the queue if it was in a stopped state when
239 * entered. Also see blk_stop_queue(). Queue lock must be held.
241 void blk_start_queue(struct request_queue *q)
243 WARN_ON(!irqs_disabled());
245 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
246 __blk_run_queue(q);
248 EXPORT_SYMBOL(blk_start_queue);
251 * blk_stop_queue - stop a queue
252 * @q: The &struct request_queue in question
254 * Description:
255 * The Linux block layer assumes that a block driver will consume all
256 * entries on the request queue when the request_fn strategy is called.
257 * Often this will not happen, because of hardware limitations (queue
258 * depth settings). If a device driver gets a 'queue full' response,
259 * or if it simply chooses not to queue more I/O at one point, it can
260 * call this function to prevent the request_fn from being called until
261 * the driver has signalled it's ready to go again. This happens by calling
262 * blk_start_queue() to restart queue operations. Queue lock must be held.
264 void blk_stop_queue(struct request_queue *q)
266 cancel_delayed_work(&q->delay_work);
267 queue_flag_set(QUEUE_FLAG_STOPPED, q);
269 EXPORT_SYMBOL(blk_stop_queue);
272 * blk_sync_queue - cancel any pending callbacks on a queue
273 * @q: the queue
275 * Description:
276 * The block layer may perform asynchronous callback activity
277 * on a queue, such as calling the unplug function after a timeout.
278 * A block device may call blk_sync_queue to ensure that any
279 * such activity is cancelled, thus allowing it to release resources
280 * that the callbacks might use. The caller must already have made sure
281 * that its ->make_request_fn will not re-add plugging prior to calling
282 * this function.
284 * This function does not cancel any asynchronous activity arising
285 * out of elevator or throttling code. That would require elevaotor_exit()
286 * and blkcg_exit_queue() to be called with queue lock initialized.
289 void blk_sync_queue(struct request_queue *q)
291 del_timer_sync(&q->timeout);
292 cancel_delayed_work_sync(&q->delay_work);
294 EXPORT_SYMBOL(blk_sync_queue);
297 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
298 * @q: The queue to run
300 * Description:
301 * Invoke request handling on a queue if there are any pending requests.
302 * May be used to restart request handling after a request has completed.
303 * This variant runs the queue whether or not the queue has been
304 * stopped. Must be called with the queue lock held and interrupts
305 * disabled. See also @blk_run_queue.
307 inline void __blk_run_queue_uncond(struct request_queue *q)
309 if (unlikely(blk_queue_dead(q)))
310 return;
313 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
314 * the queue lock internally. As a result multiple threads may be
315 * running such a request function concurrently. Keep track of the
316 * number of active request_fn invocations such that blk_drain_queue()
317 * can wait until all these request_fn calls have finished.
319 q->request_fn_active++;
320 q->request_fn(q);
321 q->request_fn_active--;
325 * __blk_run_queue - run a single device queue
326 * @q: The queue to run
328 * Description:
329 * See @blk_run_queue. This variant must be called with the queue lock
330 * held and interrupts disabled.
332 void __blk_run_queue(struct request_queue *q)
334 if (unlikely(blk_queue_stopped(q)))
335 return;
337 __blk_run_queue_uncond(q);
339 EXPORT_SYMBOL(__blk_run_queue);
342 * blk_run_queue_async - run a single device queue in workqueue context
343 * @q: The queue to run
345 * Description:
346 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
347 * of us. The caller must hold the queue lock.
349 void blk_run_queue_async(struct request_queue *q)
351 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
352 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
354 EXPORT_SYMBOL(blk_run_queue_async);
357 * blk_run_queue - run a single device queue
358 * @q: The queue to run
360 * Description:
361 * Invoke request handling on this queue, if it has pending work to do.
362 * May be used to restart queueing when a request has completed.
364 void blk_run_queue(struct request_queue *q)
366 unsigned long flags;
368 spin_lock_irqsave(q->queue_lock, flags);
369 __blk_run_queue(q);
370 spin_unlock_irqrestore(q->queue_lock, flags);
372 EXPORT_SYMBOL(blk_run_queue);
374 void blk_put_queue(struct request_queue *q)
376 kobject_put(&q->kobj);
378 EXPORT_SYMBOL(blk_put_queue);
381 * __blk_drain_queue - drain requests from request_queue
382 * @q: queue to drain
383 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
385 * Drain requests from @q. If @drain_all is set, all requests are drained.
386 * If not, only ELVPRIV requests are drained. The caller is responsible
387 * for ensuring that no new requests which need to be drained are queued.
389 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
390 __releases(q->queue_lock)
391 __acquires(q->queue_lock)
393 int i;
395 lockdep_assert_held(q->queue_lock);
397 while (true) {
398 bool drain = false;
401 * The caller might be trying to drain @q before its
402 * elevator is initialized.
404 if (q->elevator)
405 elv_drain_elevator(q);
407 blkcg_drain_queue(q);
410 * This function might be called on a queue which failed
411 * driver init after queue creation or is not yet fully
412 * active yet. Some drivers (e.g. fd and loop) get unhappy
413 * in such cases. Kick queue iff dispatch queue has
414 * something on it and @q has request_fn set.
416 if (!list_empty(&q->queue_head) && q->request_fn)
417 __blk_run_queue(q);
419 drain |= q->nr_rqs_elvpriv;
420 drain |= q->request_fn_active;
423 * Unfortunately, requests are queued at and tracked from
424 * multiple places and there's no single counter which can
425 * be drained. Check all the queues and counters.
427 if (drain_all) {
428 drain |= !list_empty(&q->queue_head);
429 for (i = 0; i < 2; i++) {
430 drain |= q->nr_rqs[i];
431 drain |= q->in_flight[i];
432 drain |= !list_empty(&q->flush_queue[i]);
436 if (!drain)
437 break;
439 spin_unlock_irq(q->queue_lock);
441 msleep(10);
443 spin_lock_irq(q->queue_lock);
447 * With queue marked dead, any woken up waiter will fail the
448 * allocation path, so the wakeup chaining is lost and we're
449 * left with hung waiters. We need to wake up those waiters.
451 if (q->request_fn) {
452 struct request_list *rl;
454 blk_queue_for_each_rl(rl, q)
455 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
456 wake_up_all(&rl->wait[i]);
461 * blk_queue_bypass_start - enter queue bypass mode
462 * @q: queue of interest
464 * In bypass mode, only the dispatch FIFO queue of @q is used. This
465 * function makes @q enter bypass mode and drains all requests which were
466 * throttled or issued before. On return, it's guaranteed that no request
467 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
468 * inside queue or RCU read lock.
470 void blk_queue_bypass_start(struct request_queue *q)
472 bool drain;
474 spin_lock_irq(q->queue_lock);
475 drain = !q->bypass_depth++;
476 queue_flag_set(QUEUE_FLAG_BYPASS, q);
477 spin_unlock_irq(q->queue_lock);
479 if (drain) {
480 spin_lock_irq(q->queue_lock);
481 __blk_drain_queue(q, false);
482 spin_unlock_irq(q->queue_lock);
484 /* ensure blk_queue_bypass() is %true inside RCU read lock */
485 synchronize_rcu();
488 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
491 * blk_queue_bypass_end - leave queue bypass mode
492 * @q: queue of interest
494 * Leave bypass mode and restore the normal queueing behavior.
496 void blk_queue_bypass_end(struct request_queue *q)
498 spin_lock_irq(q->queue_lock);
499 if (!--q->bypass_depth)
500 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
501 WARN_ON_ONCE(q->bypass_depth < 0);
502 spin_unlock_irq(q->queue_lock);
504 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
507 * blk_cleanup_queue - shutdown a request queue
508 * @q: request queue to shutdown
510 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
511 * put it. All future requests will be failed immediately with -ENODEV.
513 void blk_cleanup_queue(struct request_queue *q)
515 spinlock_t *lock = q->queue_lock;
517 /* mark @q DYING, no new request or merges will be allowed afterwards */
518 mutex_lock(&q->sysfs_lock);
519 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
520 spin_lock_irq(lock);
523 * A dying queue is permanently in bypass mode till released. Note
524 * that, unlike blk_queue_bypass_start(), we aren't performing
525 * synchronize_rcu() after entering bypass mode to avoid the delay
526 * as some drivers create and destroy a lot of queues while
527 * probing. This is still safe because blk_release_queue() will be
528 * called only after the queue refcnt drops to zero and nothing,
529 * RCU or not, would be traversing the queue by then.
531 q->bypass_depth++;
532 queue_flag_set(QUEUE_FLAG_BYPASS, q);
534 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
535 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
536 queue_flag_set(QUEUE_FLAG_DYING, q);
537 spin_unlock_irq(lock);
538 mutex_unlock(&q->sysfs_lock);
541 * Drain all requests queued before DYING marking. Set DEAD flag to
542 * prevent that q->request_fn() gets invoked after draining finished.
544 spin_lock_irq(lock);
545 __blk_drain_queue(q, true);
546 queue_flag_set(QUEUE_FLAG_DEAD, q);
547 spin_unlock_irq(lock);
549 /* @q won't process any more request, flush async actions */
550 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
551 blk_sync_queue(q);
553 spin_lock_irq(lock);
554 if (q->queue_lock != &q->__queue_lock)
555 q->queue_lock = &q->__queue_lock;
556 spin_unlock_irq(lock);
558 /* @q is and will stay empty, shutdown and put */
559 blk_put_queue(q);
561 EXPORT_SYMBOL(blk_cleanup_queue);
563 int blk_init_rl(struct request_list *rl, struct request_queue *q,
564 gfp_t gfp_mask)
566 if (unlikely(rl->rq_pool))
567 return 0;
569 rl->q = q;
570 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
571 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
572 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
573 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
575 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
576 mempool_free_slab, request_cachep,
577 gfp_mask, q->node);
578 if (!rl->rq_pool)
579 return -ENOMEM;
581 return 0;
584 void blk_exit_rl(struct request_list *rl)
586 if (rl->rq_pool)
587 mempool_destroy(rl->rq_pool);
590 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
592 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
594 EXPORT_SYMBOL(blk_alloc_queue);
596 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
598 struct request_queue *q;
599 int err;
601 q = kmem_cache_alloc_node(blk_requestq_cachep,
602 gfp_mask | __GFP_ZERO, node_id);
603 if (!q)
604 return NULL;
606 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
607 if (q->id < 0)
608 goto fail_q;
610 q->backing_dev_info.ra_pages =
611 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
612 q->backing_dev_info.state = 0;
613 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
614 q->backing_dev_info.name = "block";
615 q->node = node_id;
617 err = bdi_init(&q->backing_dev_info);
618 if (err)
619 goto fail_id;
621 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
622 laptop_mode_timer_fn, (unsigned long) q);
623 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
624 INIT_LIST_HEAD(&q->queue_head);
625 INIT_LIST_HEAD(&q->timeout_list);
626 INIT_LIST_HEAD(&q->icq_list);
627 #ifdef CONFIG_BLK_CGROUP
628 INIT_LIST_HEAD(&q->blkg_list);
629 #endif
630 INIT_LIST_HEAD(&q->flush_queue[0]);
631 INIT_LIST_HEAD(&q->flush_queue[1]);
632 INIT_LIST_HEAD(&q->flush_data_in_flight);
633 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
635 kobject_init(&q->kobj, &blk_queue_ktype);
637 mutex_init(&q->sysfs_lock);
638 spin_lock_init(&q->__queue_lock);
641 * By default initialize queue_lock to internal lock and driver can
642 * override it later if need be.
644 q->queue_lock = &q->__queue_lock;
647 * A queue starts its life with bypass turned on to avoid
648 * unnecessary bypass on/off overhead and nasty surprises during
649 * init. The initial bypass will be finished when the queue is
650 * registered by blk_register_queue().
652 q->bypass_depth = 1;
653 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
655 if (blkcg_init_queue(q))
656 goto fail_id;
658 return q;
660 fail_id:
661 ida_simple_remove(&blk_queue_ida, q->id);
662 fail_q:
663 kmem_cache_free(blk_requestq_cachep, q);
664 return NULL;
666 EXPORT_SYMBOL(blk_alloc_queue_node);
669 * blk_init_queue - prepare a request queue for use with a block device
670 * @rfn: The function to be called to process requests that have been
671 * placed on the queue.
672 * @lock: Request queue spin lock
674 * Description:
675 * If a block device wishes to use the standard request handling procedures,
676 * which sorts requests and coalesces adjacent requests, then it must
677 * call blk_init_queue(). The function @rfn will be called when there
678 * are requests on the queue that need to be processed. If the device
679 * supports plugging, then @rfn may not be called immediately when requests
680 * are available on the queue, but may be called at some time later instead.
681 * Plugged queues are generally unplugged when a buffer belonging to one
682 * of the requests on the queue is needed, or due to memory pressure.
684 * @rfn is not required, or even expected, to remove all requests off the
685 * queue, but only as many as it can handle at a time. If it does leave
686 * requests on the queue, it is responsible for arranging that the requests
687 * get dealt with eventually.
689 * The queue spin lock must be held while manipulating the requests on the
690 * request queue; this lock will be taken also from interrupt context, so irq
691 * disabling is needed for it.
693 * Function returns a pointer to the initialized request queue, or %NULL if
694 * it didn't succeed.
696 * Note:
697 * blk_init_queue() must be paired with a blk_cleanup_queue() call
698 * when the block device is deactivated (such as at module unload).
701 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
703 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
705 EXPORT_SYMBOL(blk_init_queue);
707 struct request_queue *
708 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
710 struct request_queue *uninit_q, *q;
712 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
713 if (!uninit_q)
714 return NULL;
716 q = blk_init_allocated_queue(uninit_q, rfn, lock);
717 if (!q)
718 blk_cleanup_queue(uninit_q);
720 return q;
722 EXPORT_SYMBOL(blk_init_queue_node);
724 struct request_queue *
725 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
726 spinlock_t *lock)
728 if (!q)
729 return NULL;
731 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
732 return NULL;
734 q->request_fn = rfn;
735 q->prep_rq_fn = NULL;
736 q->unprep_rq_fn = NULL;
737 q->queue_flags |= QUEUE_FLAG_DEFAULT;
739 /* Override internal queue lock with supplied lock pointer */
740 if (lock)
741 q->queue_lock = lock;
744 * This also sets hw/phys segments, boundary and size
746 blk_queue_make_request(q, blk_queue_bio);
748 q->sg_reserved_size = INT_MAX;
750 /* init elevator */
751 if (elevator_init(q, NULL))
752 return NULL;
753 return q;
755 EXPORT_SYMBOL(blk_init_allocated_queue);
757 bool blk_get_queue(struct request_queue *q)
759 if (likely(!blk_queue_dying(q))) {
760 __blk_get_queue(q);
761 return true;
764 return false;
766 EXPORT_SYMBOL(blk_get_queue);
768 static inline void blk_free_request(struct request_list *rl, struct request *rq)
770 if (rq->cmd_flags & REQ_ELVPRIV) {
771 elv_put_request(rl->q, rq);
772 if (rq->elv.icq)
773 put_io_context(rq->elv.icq->ioc);
776 mempool_free(rq, rl->rq_pool);
780 * ioc_batching returns true if the ioc is a valid batching request and
781 * should be given priority access to a request.
783 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
785 if (!ioc)
786 return 0;
789 * Make sure the process is able to allocate at least 1 request
790 * even if the batch times out, otherwise we could theoretically
791 * lose wakeups.
793 return ioc->nr_batch_requests == q->nr_batching ||
794 (ioc->nr_batch_requests > 0
795 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
799 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
800 * will cause the process to be a "batcher" on all queues in the system. This
801 * is the behaviour we want though - once it gets a wakeup it should be given
802 * a nice run.
804 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
806 if (!ioc || ioc_batching(q, ioc))
807 return;
809 ioc->nr_batch_requests = q->nr_batching;
810 ioc->last_waited = jiffies;
813 static void __freed_request(struct request_list *rl, int sync)
815 struct request_queue *q = rl->q;
818 * bdi isn't aware of blkcg yet. As all async IOs end up root
819 * blkcg anyway, just use root blkcg state.
821 if (rl == &q->root_rl &&
822 rl->count[sync] < queue_congestion_off_threshold(q))
823 blk_clear_queue_congested(q, sync);
825 if (rl->count[sync] + 1 <= q->nr_requests) {
826 if (waitqueue_active(&rl->wait[sync]))
827 wake_up(&rl->wait[sync]);
829 blk_clear_rl_full(rl, sync);
834 * A request has just been released. Account for it, update the full and
835 * congestion status, wake up any waiters. Called under q->queue_lock.
837 static void freed_request(struct request_list *rl, unsigned int flags)
839 struct request_queue *q = rl->q;
840 int sync = rw_is_sync(flags);
842 q->nr_rqs[sync]--;
843 rl->count[sync]--;
844 if (flags & REQ_ELVPRIV)
845 q->nr_rqs_elvpriv--;
847 __freed_request(rl, sync);
849 if (unlikely(rl->starved[sync ^ 1]))
850 __freed_request(rl, sync ^ 1);
854 * Determine if elevator data should be initialized when allocating the
855 * request associated with @bio.
857 static bool blk_rq_should_init_elevator(struct bio *bio)
859 if (!bio)
860 return true;
863 * Flush requests do not use the elevator so skip initialization.
864 * This allows a request to share the flush and elevator data.
866 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
867 return false;
869 return true;
873 * rq_ioc - determine io_context for request allocation
874 * @bio: request being allocated is for this bio (can be %NULL)
876 * Determine io_context to use for request allocation for @bio. May return
877 * %NULL if %current->io_context doesn't exist.
879 static struct io_context *rq_ioc(struct bio *bio)
881 #ifdef CONFIG_BLK_CGROUP
882 if (bio && bio->bi_ioc)
883 return bio->bi_ioc;
884 #endif
885 return current->io_context;
889 * __get_request - get a free request
890 * @rl: request list to allocate from
891 * @rw_flags: RW and SYNC flags
892 * @bio: bio to allocate request for (can be %NULL)
893 * @gfp_mask: allocation mask
895 * Get a free request from @q. This function may fail under memory
896 * pressure or if @q is dead.
898 * Must be callled with @q->queue_lock held and,
899 * Returns %NULL on failure, with @q->queue_lock held.
900 * Returns !%NULL on success, with @q->queue_lock *not held*.
902 static struct request *__get_request(struct request_list *rl, int rw_flags,
903 struct bio *bio, gfp_t gfp_mask)
905 struct request_queue *q = rl->q;
906 struct request *rq;
907 struct elevator_type *et = q->elevator->type;
908 struct io_context *ioc = rq_ioc(bio);
909 struct io_cq *icq = NULL;
910 const bool is_sync = rw_is_sync(rw_flags) != 0;
911 int may_queue;
913 if (unlikely(blk_queue_dying(q)))
914 return NULL;
916 may_queue = elv_may_queue(q, rw_flags);
917 if (may_queue == ELV_MQUEUE_NO)
918 goto rq_starved;
920 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
921 if (rl->count[is_sync]+1 >= q->nr_requests) {
923 * The queue will fill after this allocation, so set
924 * it as full, and mark this process as "batching".
925 * This process will be allowed to complete a batch of
926 * requests, others will be blocked.
928 if (!blk_rl_full(rl, is_sync)) {
929 ioc_set_batching(q, ioc);
930 blk_set_rl_full(rl, is_sync);
931 } else {
932 if (may_queue != ELV_MQUEUE_MUST
933 && !ioc_batching(q, ioc)) {
935 * The queue is full and the allocating
936 * process is not a "batcher", and not
937 * exempted by the IO scheduler
939 return NULL;
944 * bdi isn't aware of blkcg yet. As all async IOs end up
945 * root blkcg anyway, just use root blkcg state.
947 if (rl == &q->root_rl)
948 blk_set_queue_congested(q, is_sync);
952 * Only allow batching queuers to allocate up to 50% over the defined
953 * limit of requests, otherwise we could have thousands of requests
954 * allocated with any setting of ->nr_requests
956 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
957 return NULL;
959 q->nr_rqs[is_sync]++;
960 rl->count[is_sync]++;
961 rl->starved[is_sync] = 0;
964 * Decide whether the new request will be managed by elevator. If
965 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
966 * prevent the current elevator from being destroyed until the new
967 * request is freed. This guarantees icq's won't be destroyed and
968 * makes creating new ones safe.
970 * Also, lookup icq while holding queue_lock. If it doesn't exist,
971 * it will be created after releasing queue_lock.
973 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
974 rw_flags |= REQ_ELVPRIV;
975 q->nr_rqs_elvpriv++;
976 if (et->icq_cache && ioc)
977 icq = ioc_lookup_icq(ioc, q);
980 if (blk_queue_io_stat(q))
981 rw_flags |= REQ_IO_STAT;
982 spin_unlock_irq(q->queue_lock);
984 /* allocate and init request */
985 rq = mempool_alloc(rl->rq_pool, gfp_mask);
986 if (!rq)
987 goto fail_alloc;
989 blk_rq_init(q, rq);
990 blk_rq_set_rl(rq, rl);
991 rq->cmd_flags = rw_flags | REQ_ALLOCED;
993 /* init elvpriv */
994 if (rw_flags & REQ_ELVPRIV) {
995 if (unlikely(et->icq_cache && !icq)) {
996 if (ioc)
997 icq = ioc_create_icq(ioc, q, gfp_mask);
998 if (!icq)
999 goto fail_elvpriv;
1002 rq->elv.icq = icq;
1003 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1004 goto fail_elvpriv;
1006 /* @rq->elv.icq holds io_context until @rq is freed */
1007 if (icq)
1008 get_io_context(icq->ioc);
1010 out:
1012 * ioc may be NULL here, and ioc_batching will be false. That's
1013 * OK, if the queue is under the request limit then requests need
1014 * not count toward the nr_batch_requests limit. There will always
1015 * be some limit enforced by BLK_BATCH_TIME.
1017 if (ioc_batching(q, ioc))
1018 ioc->nr_batch_requests--;
1020 trace_block_getrq(q, bio, rw_flags & 1);
1021 return rq;
1023 fail_elvpriv:
1025 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1026 * and may fail indefinitely under memory pressure and thus
1027 * shouldn't stall IO. Treat this request as !elvpriv. This will
1028 * disturb iosched and blkcg but weird is bettern than dead.
1030 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1031 dev_name(q->backing_dev_info.dev));
1033 rq->cmd_flags &= ~REQ_ELVPRIV;
1034 rq->elv.icq = NULL;
1036 spin_lock_irq(q->queue_lock);
1037 q->nr_rqs_elvpriv--;
1038 spin_unlock_irq(q->queue_lock);
1039 goto out;
1041 fail_alloc:
1043 * Allocation failed presumably due to memory. Undo anything we
1044 * might have messed up.
1046 * Allocating task should really be put onto the front of the wait
1047 * queue, but this is pretty rare.
1049 spin_lock_irq(q->queue_lock);
1050 freed_request(rl, rw_flags);
1053 * in the very unlikely event that allocation failed and no
1054 * requests for this direction was pending, mark us starved so that
1055 * freeing of a request in the other direction will notice
1056 * us. another possible fix would be to split the rq mempool into
1057 * READ and WRITE
1059 rq_starved:
1060 if (unlikely(rl->count[is_sync] == 0))
1061 rl->starved[is_sync] = 1;
1062 return NULL;
1066 * get_request - get a free request
1067 * @q: request_queue to allocate request from
1068 * @rw_flags: RW and SYNC flags
1069 * @bio: bio to allocate request for (can be %NULL)
1070 * @gfp_mask: allocation mask
1072 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1073 * function keeps retrying under memory pressure and fails iff @q is dead.
1075 * Must be callled with @q->queue_lock held and,
1076 * Returns %NULL on failure, with @q->queue_lock held.
1077 * Returns !%NULL on success, with @q->queue_lock *not held*.
1079 static struct request *get_request(struct request_queue *q, int rw_flags,
1080 struct bio *bio, gfp_t gfp_mask)
1082 const bool is_sync = rw_is_sync(rw_flags) != 0;
1083 DEFINE_WAIT(wait);
1084 struct request_list *rl;
1085 struct request *rq;
1087 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1088 retry:
1089 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1090 if (rq)
1091 return rq;
1093 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1094 blk_put_rl(rl);
1095 return NULL;
1098 /* wait on @rl and retry */
1099 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1100 TASK_UNINTERRUPTIBLE);
1102 trace_block_sleeprq(q, bio, rw_flags & 1);
1104 spin_unlock_irq(q->queue_lock);
1105 io_schedule();
1108 * After sleeping, we become a "batching" process and will be able
1109 * to allocate at least one request, and up to a big batch of them
1110 * for a small period time. See ioc_batching, ioc_set_batching
1112 ioc_set_batching(q, current->io_context);
1114 spin_lock_irq(q->queue_lock);
1115 finish_wait(&rl->wait[is_sync], &wait);
1117 goto retry;
1120 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1122 struct request *rq;
1124 BUG_ON(rw != READ && rw != WRITE);
1126 /* create ioc upfront */
1127 create_io_context(gfp_mask, q->node);
1129 spin_lock_irq(q->queue_lock);
1130 rq = get_request(q, rw, NULL, gfp_mask);
1131 if (!rq)
1132 spin_unlock_irq(q->queue_lock);
1133 /* q->queue_lock is unlocked at this point */
1135 return rq;
1137 EXPORT_SYMBOL(blk_get_request);
1140 * blk_make_request - given a bio, allocate a corresponding struct request.
1141 * @q: target request queue
1142 * @bio: The bio describing the memory mappings that will be submitted for IO.
1143 * It may be a chained-bio properly constructed by block/bio layer.
1144 * @gfp_mask: gfp flags to be used for memory allocation
1146 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1147 * type commands. Where the struct request needs to be farther initialized by
1148 * the caller. It is passed a &struct bio, which describes the memory info of
1149 * the I/O transfer.
1151 * The caller of blk_make_request must make sure that bi_io_vec
1152 * are set to describe the memory buffers. That bio_data_dir() will return
1153 * the needed direction of the request. (And all bio's in the passed bio-chain
1154 * are properly set accordingly)
1156 * If called under none-sleepable conditions, mapped bio buffers must not
1157 * need bouncing, by calling the appropriate masked or flagged allocator,
1158 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1159 * BUG.
1161 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1162 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1163 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1164 * completion of a bio that hasn't been submitted yet, thus resulting in a
1165 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1166 * of bio_alloc(), as that avoids the mempool deadlock.
1167 * If possible a big IO should be split into smaller parts when allocation
1168 * fails. Partial allocation should not be an error, or you risk a live-lock.
1170 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1171 gfp_t gfp_mask)
1173 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1175 if (unlikely(!rq))
1176 return ERR_PTR(-ENOMEM);
1178 for_each_bio(bio) {
1179 struct bio *bounce_bio = bio;
1180 int ret;
1182 blk_queue_bounce(q, &bounce_bio);
1183 ret = blk_rq_append_bio(q, rq, bounce_bio);
1184 if (unlikely(ret)) {
1185 blk_put_request(rq);
1186 return ERR_PTR(ret);
1190 return rq;
1192 EXPORT_SYMBOL(blk_make_request);
1195 * blk_requeue_request - put a request back on queue
1196 * @q: request queue where request should be inserted
1197 * @rq: request to be inserted
1199 * Description:
1200 * Drivers often keep queueing requests until the hardware cannot accept
1201 * more, when that condition happens we need to put the request back
1202 * on the queue. Must be called with queue lock held.
1204 void blk_requeue_request(struct request_queue *q, struct request *rq)
1206 blk_delete_timer(rq);
1207 blk_clear_rq_complete(rq);
1208 trace_block_rq_requeue(q, rq);
1210 if (blk_rq_tagged(rq))
1211 blk_queue_end_tag(q, rq);
1213 BUG_ON(blk_queued_rq(rq));
1215 elv_requeue_request(q, rq);
1217 EXPORT_SYMBOL(blk_requeue_request);
1219 static void add_acct_request(struct request_queue *q, struct request *rq,
1220 int where)
1222 drive_stat_acct(rq, 1);
1223 __elv_add_request(q, rq, where);
1226 static void part_round_stats_single(int cpu, struct hd_struct *part,
1227 unsigned long now)
1229 if (now == part->stamp)
1230 return;
1232 if (part_in_flight(part)) {
1233 __part_stat_add(cpu, part, time_in_queue,
1234 part_in_flight(part) * (now - part->stamp));
1235 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1237 part->stamp = now;
1241 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1242 * @cpu: cpu number for stats access
1243 * @part: target partition
1245 * The average IO queue length and utilisation statistics are maintained
1246 * by observing the current state of the queue length and the amount of
1247 * time it has been in this state for.
1249 * Normally, that accounting is done on IO completion, but that can result
1250 * in more than a second's worth of IO being accounted for within any one
1251 * second, leading to >100% utilisation. To deal with that, we call this
1252 * function to do a round-off before returning the results when reading
1253 * /proc/diskstats. This accounts immediately for all queue usage up to
1254 * the current jiffies and restarts the counters again.
1256 void part_round_stats(int cpu, struct hd_struct *part)
1258 unsigned long now = jiffies;
1260 if (part->partno)
1261 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1262 part_round_stats_single(cpu, part, now);
1264 EXPORT_SYMBOL_GPL(part_round_stats);
1267 * queue lock must be held
1269 void __blk_put_request(struct request_queue *q, struct request *req)
1271 if (unlikely(!q))
1272 return;
1273 if (unlikely(--req->ref_count))
1274 return;
1276 elv_completed_request(q, req);
1278 /* this is a bio leak */
1279 WARN_ON(req->bio != NULL);
1282 * Request may not have originated from ll_rw_blk. if not,
1283 * it didn't come out of our reserved rq pools
1285 if (req->cmd_flags & REQ_ALLOCED) {
1286 unsigned int flags = req->cmd_flags;
1287 struct request_list *rl = blk_rq_rl(req);
1289 BUG_ON(!list_empty(&req->queuelist));
1290 BUG_ON(!hlist_unhashed(&req->hash));
1292 blk_free_request(rl, req);
1293 freed_request(rl, flags);
1294 blk_put_rl(rl);
1297 EXPORT_SYMBOL_GPL(__blk_put_request);
1299 void blk_put_request(struct request *req)
1301 unsigned long flags;
1302 struct request_queue *q = req->q;
1304 spin_lock_irqsave(q->queue_lock, flags);
1305 __blk_put_request(q, req);
1306 spin_unlock_irqrestore(q->queue_lock, flags);
1308 EXPORT_SYMBOL(blk_put_request);
1311 * blk_add_request_payload - add a payload to a request
1312 * @rq: request to update
1313 * @page: page backing the payload
1314 * @len: length of the payload.
1316 * This allows to later add a payload to an already submitted request by
1317 * a block driver. The driver needs to take care of freeing the payload
1318 * itself.
1320 * Note that this is a quite horrible hack and nothing but handling of
1321 * discard requests should ever use it.
1323 void blk_add_request_payload(struct request *rq, struct page *page,
1324 unsigned int len)
1326 struct bio *bio = rq->bio;
1328 bio->bi_io_vec->bv_page = page;
1329 bio->bi_io_vec->bv_offset = 0;
1330 bio->bi_io_vec->bv_len = len;
1332 bio->bi_size = len;
1333 bio->bi_vcnt = 1;
1334 bio->bi_phys_segments = 1;
1336 rq->__data_len = rq->resid_len = len;
1337 rq->nr_phys_segments = 1;
1338 rq->buffer = bio_data(bio);
1340 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1342 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1343 struct bio *bio)
1345 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1347 if (!ll_back_merge_fn(q, req, bio))
1348 return false;
1350 trace_block_bio_backmerge(q, req, bio);
1352 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1353 blk_rq_set_mixed_merge(req);
1355 req->biotail->bi_next = bio;
1356 req->biotail = bio;
1357 req->__data_len += bio->bi_size;
1358 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1360 drive_stat_acct(req, 0);
1361 return true;
1364 static bool bio_attempt_front_merge(struct request_queue *q,
1365 struct request *req, struct bio *bio)
1367 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1369 if (!ll_front_merge_fn(q, req, bio))
1370 return false;
1372 trace_block_bio_frontmerge(q, req, bio);
1374 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1375 blk_rq_set_mixed_merge(req);
1377 bio->bi_next = req->bio;
1378 req->bio = bio;
1381 * may not be valid. if the low level driver said
1382 * it didn't need a bounce buffer then it better
1383 * not touch req->buffer either...
1385 req->buffer = bio_data(bio);
1386 req->__sector = bio->bi_sector;
1387 req->__data_len += bio->bi_size;
1388 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1390 drive_stat_acct(req, 0);
1391 return true;
1395 * attempt_plug_merge - try to merge with %current's plugged list
1396 * @q: request_queue new bio is being queued at
1397 * @bio: new bio being queued
1398 * @request_count: out parameter for number of traversed plugged requests
1400 * Determine whether @bio being queued on @q can be merged with a request
1401 * on %current's plugged list. Returns %true if merge was successful,
1402 * otherwise %false.
1404 * Plugging coalesces IOs from the same issuer for the same purpose without
1405 * going through @q->queue_lock. As such it's more of an issuing mechanism
1406 * than scheduling, and the request, while may have elvpriv data, is not
1407 * added on the elevator at this point. In addition, we don't have
1408 * reliable access to the elevator outside queue lock. Only check basic
1409 * merging parameters without querying the elevator.
1411 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1412 unsigned int *request_count)
1414 struct blk_plug *plug;
1415 struct request *rq;
1416 bool ret = false;
1418 plug = current->plug;
1419 if (!plug)
1420 goto out;
1421 *request_count = 0;
1423 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1424 int el_ret;
1426 if (rq->q == q)
1427 (*request_count)++;
1429 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1430 continue;
1432 el_ret = blk_try_merge(rq, bio);
1433 if (el_ret == ELEVATOR_BACK_MERGE) {
1434 ret = bio_attempt_back_merge(q, rq, bio);
1435 if (ret)
1436 break;
1437 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1438 ret = bio_attempt_front_merge(q, rq, bio);
1439 if (ret)
1440 break;
1443 out:
1444 return ret;
1447 void init_request_from_bio(struct request *req, struct bio *bio)
1449 req->cmd_type = REQ_TYPE_FS;
1451 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1452 if (bio->bi_rw & REQ_RAHEAD)
1453 req->cmd_flags |= REQ_FAILFAST_MASK;
1455 req->errors = 0;
1456 req->__sector = bio->bi_sector;
1457 req->ioprio = bio_prio(bio);
1458 blk_rq_bio_prep(req->q, req, bio);
1461 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1463 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1464 struct blk_plug *plug;
1465 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1466 struct request *req;
1467 unsigned int request_count = 0;
1470 * low level driver can indicate that it wants pages above a
1471 * certain limit bounced to low memory (ie for highmem, or even
1472 * ISA dma in theory)
1474 blk_queue_bounce(q, &bio);
1476 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1477 bio_endio(bio, -EIO);
1478 return;
1481 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1482 spin_lock_irq(q->queue_lock);
1483 where = ELEVATOR_INSERT_FLUSH;
1484 goto get_rq;
1488 * Check if we can merge with the plugged list before grabbing
1489 * any locks.
1491 if (attempt_plug_merge(q, bio, &request_count))
1492 return;
1494 spin_lock_irq(q->queue_lock);
1496 el_ret = elv_merge(q, &req, bio);
1497 if (el_ret == ELEVATOR_BACK_MERGE) {
1498 if (bio_attempt_back_merge(q, req, bio)) {
1499 elv_bio_merged(q, req, bio);
1500 if (!attempt_back_merge(q, req))
1501 elv_merged_request(q, req, el_ret);
1502 goto out_unlock;
1504 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1505 if (bio_attempt_front_merge(q, req, bio)) {
1506 elv_bio_merged(q, req, bio);
1507 if (!attempt_front_merge(q, req))
1508 elv_merged_request(q, req, el_ret);
1509 goto out_unlock;
1513 get_rq:
1515 * This sync check and mask will be re-done in init_request_from_bio(),
1516 * but we need to set it earlier to expose the sync flag to the
1517 * rq allocator and io schedulers.
1519 rw_flags = bio_data_dir(bio);
1520 if (sync)
1521 rw_flags |= REQ_SYNC;
1524 * Grab a free request. This is might sleep but can not fail.
1525 * Returns with the queue unlocked.
1527 req = get_request(q, rw_flags, bio, GFP_NOIO);
1528 if (unlikely(!req)) {
1529 bio_endio(bio, -ENODEV); /* @q is dead */
1530 goto out_unlock;
1534 * After dropping the lock and possibly sleeping here, our request
1535 * may now be mergeable after it had proven unmergeable (above).
1536 * We don't worry about that case for efficiency. It won't happen
1537 * often, and the elevators are able to handle it.
1539 init_request_from_bio(req, bio);
1541 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1542 req->cpu = raw_smp_processor_id();
1544 plug = current->plug;
1545 if (plug) {
1547 * If this is the first request added after a plug, fire
1548 * of a plug trace. If others have been added before, check
1549 * if we have multiple devices in this plug. If so, make a
1550 * note to sort the list before dispatch.
1552 if (list_empty(&plug->list))
1553 trace_block_plug(q);
1554 else {
1555 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1556 blk_flush_plug_list(plug, false);
1557 trace_block_plug(q);
1560 list_add_tail(&req->queuelist, &plug->list);
1561 drive_stat_acct(req, 1);
1562 } else {
1563 spin_lock_irq(q->queue_lock);
1564 add_acct_request(q, req, where);
1565 __blk_run_queue(q);
1566 out_unlock:
1567 spin_unlock_irq(q->queue_lock);
1570 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1573 * If bio->bi_dev is a partition, remap the location
1575 static inline void blk_partition_remap(struct bio *bio)
1577 struct block_device *bdev = bio->bi_bdev;
1579 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1580 struct hd_struct *p = bdev->bd_part;
1582 bio->bi_sector += p->start_sect;
1583 bio->bi_bdev = bdev->bd_contains;
1585 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1586 bdev->bd_dev,
1587 bio->bi_sector - p->start_sect);
1591 static void handle_bad_sector(struct bio *bio)
1593 char b[BDEVNAME_SIZE];
1595 printk(KERN_INFO "attempt to access beyond end of device\n");
1596 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1597 bdevname(bio->bi_bdev, b),
1598 bio->bi_rw,
1599 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1600 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1602 set_bit(BIO_EOF, &bio->bi_flags);
1605 #ifdef CONFIG_FAIL_MAKE_REQUEST
1607 static DECLARE_FAULT_ATTR(fail_make_request);
1609 static int __init setup_fail_make_request(char *str)
1611 return setup_fault_attr(&fail_make_request, str);
1613 __setup("fail_make_request=", setup_fail_make_request);
1615 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1617 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1620 static int __init fail_make_request_debugfs(void)
1622 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1623 NULL, &fail_make_request);
1625 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1628 late_initcall(fail_make_request_debugfs);
1630 #else /* CONFIG_FAIL_MAKE_REQUEST */
1632 static inline bool should_fail_request(struct hd_struct *part,
1633 unsigned int bytes)
1635 return false;
1638 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1641 * Check whether this bio extends beyond the end of the device.
1643 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1645 sector_t maxsector;
1647 if (!nr_sectors)
1648 return 0;
1650 /* Test device or partition size, when known. */
1651 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1652 if (maxsector) {
1653 sector_t sector = bio->bi_sector;
1655 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1657 * This may well happen - the kernel calls bread()
1658 * without checking the size of the device, e.g., when
1659 * mounting a device.
1661 handle_bad_sector(bio);
1662 return 1;
1666 return 0;
1669 static noinline_for_stack bool
1670 generic_make_request_checks(struct bio *bio)
1672 struct request_queue *q;
1673 int nr_sectors = bio_sectors(bio);
1674 int err = -EIO;
1675 char b[BDEVNAME_SIZE];
1676 struct hd_struct *part;
1678 might_sleep();
1680 if (bio_check_eod(bio, nr_sectors))
1681 goto end_io;
1683 q = bdev_get_queue(bio->bi_bdev);
1684 if (unlikely(!q)) {
1685 printk(KERN_ERR
1686 "generic_make_request: Trying to access "
1687 "nonexistent block-device %s (%Lu)\n",
1688 bdevname(bio->bi_bdev, b),
1689 (long long) bio->bi_sector);
1690 goto end_io;
1693 if (likely(bio_is_rw(bio) &&
1694 nr_sectors > queue_max_hw_sectors(q))) {
1695 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1696 bdevname(bio->bi_bdev, b),
1697 bio_sectors(bio),
1698 queue_max_hw_sectors(q));
1699 goto end_io;
1702 part = bio->bi_bdev->bd_part;
1703 if (should_fail_request(part, bio->bi_size) ||
1704 should_fail_request(&part_to_disk(part)->part0,
1705 bio->bi_size))
1706 goto end_io;
1709 * If this device has partitions, remap block n
1710 * of partition p to block n+start(p) of the disk.
1712 blk_partition_remap(bio);
1714 if (bio_check_eod(bio, nr_sectors))
1715 goto end_io;
1718 * Filter flush bio's early so that make_request based
1719 * drivers without flush support don't have to worry
1720 * about them.
1722 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1723 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1724 if (!nr_sectors) {
1725 err = 0;
1726 goto end_io;
1730 if ((bio->bi_rw & REQ_DISCARD) &&
1731 (!blk_queue_discard(q) ||
1732 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1733 err = -EOPNOTSUPP;
1734 goto end_io;
1737 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1738 err = -EOPNOTSUPP;
1739 goto end_io;
1743 * Various block parts want %current->io_context and lazy ioc
1744 * allocation ends up trading a lot of pain for a small amount of
1745 * memory. Just allocate it upfront. This may fail and block
1746 * layer knows how to live with it.
1748 create_io_context(GFP_ATOMIC, q->node);
1750 if (blk_throtl_bio(q, bio))
1751 return false; /* throttled, will be resubmitted later */
1753 trace_block_bio_queue(q, bio);
1754 return true;
1756 end_io:
1757 bio_endio(bio, err);
1758 return false;
1762 * generic_make_request - hand a buffer to its device driver for I/O
1763 * @bio: The bio describing the location in memory and on the device.
1765 * generic_make_request() is used to make I/O requests of block
1766 * devices. It is passed a &struct bio, which describes the I/O that needs
1767 * to be done.
1769 * generic_make_request() does not return any status. The
1770 * success/failure status of the request, along with notification of
1771 * completion, is delivered asynchronously through the bio->bi_end_io
1772 * function described (one day) else where.
1774 * The caller of generic_make_request must make sure that bi_io_vec
1775 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1776 * set to describe the device address, and the
1777 * bi_end_io and optionally bi_private are set to describe how
1778 * completion notification should be signaled.
1780 * generic_make_request and the drivers it calls may use bi_next if this
1781 * bio happens to be merged with someone else, and may resubmit the bio to
1782 * a lower device by calling into generic_make_request recursively, which
1783 * means the bio should NOT be touched after the call to ->make_request_fn.
1785 void generic_make_request(struct bio *bio)
1787 struct bio_list bio_list_on_stack;
1789 if (!generic_make_request_checks(bio))
1790 return;
1793 * We only want one ->make_request_fn to be active at a time, else
1794 * stack usage with stacked devices could be a problem. So use
1795 * current->bio_list to keep a list of requests submited by a
1796 * make_request_fn function. current->bio_list is also used as a
1797 * flag to say if generic_make_request is currently active in this
1798 * task or not. If it is NULL, then no make_request is active. If
1799 * it is non-NULL, then a make_request is active, and new requests
1800 * should be added at the tail
1802 if (current->bio_list) {
1803 bio_list_add(current->bio_list, bio);
1804 return;
1807 /* following loop may be a bit non-obvious, and so deserves some
1808 * explanation.
1809 * Before entering the loop, bio->bi_next is NULL (as all callers
1810 * ensure that) so we have a list with a single bio.
1811 * We pretend that we have just taken it off a longer list, so
1812 * we assign bio_list to a pointer to the bio_list_on_stack,
1813 * thus initialising the bio_list of new bios to be
1814 * added. ->make_request() may indeed add some more bios
1815 * through a recursive call to generic_make_request. If it
1816 * did, we find a non-NULL value in bio_list and re-enter the loop
1817 * from the top. In this case we really did just take the bio
1818 * of the top of the list (no pretending) and so remove it from
1819 * bio_list, and call into ->make_request() again.
1821 BUG_ON(bio->bi_next);
1822 bio_list_init(&bio_list_on_stack);
1823 current->bio_list = &bio_list_on_stack;
1824 do {
1825 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1827 q->make_request_fn(q, bio);
1829 bio = bio_list_pop(current->bio_list);
1830 } while (bio);
1831 current->bio_list = NULL; /* deactivate */
1833 EXPORT_SYMBOL(generic_make_request);
1836 * submit_bio - submit a bio to the block device layer for I/O
1837 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1838 * @bio: The &struct bio which describes the I/O
1840 * submit_bio() is very similar in purpose to generic_make_request(), and
1841 * uses that function to do most of the work. Both are fairly rough
1842 * interfaces; @bio must be presetup and ready for I/O.
1845 void submit_bio(int rw, struct bio *bio)
1847 bio->bi_rw |= rw;
1850 * If it's a regular read/write or a barrier with data attached,
1851 * go through the normal accounting stuff before submission.
1853 if (bio_has_data(bio)) {
1854 unsigned int count;
1856 if (unlikely(rw & REQ_WRITE_SAME))
1857 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1858 else
1859 count = bio_sectors(bio);
1861 if (rw & WRITE) {
1862 count_vm_events(PGPGOUT, count);
1863 } else {
1864 task_io_account_read(bio->bi_size);
1865 count_vm_events(PGPGIN, count);
1868 if (unlikely(block_dump)) {
1869 char b[BDEVNAME_SIZE];
1870 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1871 current->comm, task_pid_nr(current),
1872 (rw & WRITE) ? "WRITE" : "READ",
1873 (unsigned long long)bio->bi_sector,
1874 bdevname(bio->bi_bdev, b),
1875 count);
1879 generic_make_request(bio);
1881 EXPORT_SYMBOL(submit_bio);
1884 * blk_rq_check_limits - Helper function to check a request for the queue limit
1885 * @q: the queue
1886 * @rq: the request being checked
1888 * Description:
1889 * @rq may have been made based on weaker limitations of upper-level queues
1890 * in request stacking drivers, and it may violate the limitation of @q.
1891 * Since the block layer and the underlying device driver trust @rq
1892 * after it is inserted to @q, it should be checked against @q before
1893 * the insertion using this generic function.
1895 * This function should also be useful for request stacking drivers
1896 * in some cases below, so export this function.
1897 * Request stacking drivers like request-based dm may change the queue
1898 * limits while requests are in the queue (e.g. dm's table swapping).
1899 * Such request stacking drivers should check those requests agaist
1900 * the new queue limits again when they dispatch those requests,
1901 * although such checkings are also done against the old queue limits
1902 * when submitting requests.
1904 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1906 if (!rq_mergeable(rq))
1907 return 0;
1909 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1910 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1911 return -EIO;
1915 * queue's settings related to segment counting like q->bounce_pfn
1916 * may differ from that of other stacking queues.
1917 * Recalculate it to check the request correctly on this queue's
1918 * limitation.
1920 blk_recalc_rq_segments(rq);
1921 if (rq->nr_phys_segments > queue_max_segments(q)) {
1922 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1923 return -EIO;
1926 return 0;
1928 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1931 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1932 * @q: the queue to submit the request
1933 * @rq: the request being queued
1935 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1937 unsigned long flags;
1938 int where = ELEVATOR_INSERT_BACK;
1940 if (blk_rq_check_limits(q, rq))
1941 return -EIO;
1943 if (rq->rq_disk &&
1944 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1945 return -EIO;
1947 spin_lock_irqsave(q->queue_lock, flags);
1948 if (unlikely(blk_queue_dying(q))) {
1949 spin_unlock_irqrestore(q->queue_lock, flags);
1950 return -ENODEV;
1954 * Submitting request must be dequeued before calling this function
1955 * because it will be linked to another request_queue
1957 BUG_ON(blk_queued_rq(rq));
1959 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1960 where = ELEVATOR_INSERT_FLUSH;
1962 add_acct_request(q, rq, where);
1963 if (where == ELEVATOR_INSERT_FLUSH)
1964 __blk_run_queue(q);
1965 spin_unlock_irqrestore(q->queue_lock, flags);
1967 return 0;
1969 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1972 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1973 * @rq: request to examine
1975 * Description:
1976 * A request could be merge of IOs which require different failure
1977 * handling. This function determines the number of bytes which
1978 * can be failed from the beginning of the request without
1979 * crossing into area which need to be retried further.
1981 * Return:
1982 * The number of bytes to fail.
1984 * Context:
1985 * queue_lock must be held.
1987 unsigned int blk_rq_err_bytes(const struct request *rq)
1989 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1990 unsigned int bytes = 0;
1991 struct bio *bio;
1993 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1994 return blk_rq_bytes(rq);
1997 * Currently the only 'mixing' which can happen is between
1998 * different fastfail types. We can safely fail portions
1999 * which have all the failfast bits that the first one has -
2000 * the ones which are at least as eager to fail as the first
2001 * one.
2003 for (bio = rq->bio; bio; bio = bio->bi_next) {
2004 if ((bio->bi_rw & ff) != ff)
2005 break;
2006 bytes += bio->bi_size;
2009 /* this could lead to infinite loop */
2010 BUG_ON(blk_rq_bytes(rq) && !bytes);
2011 return bytes;
2013 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2015 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2017 if (blk_do_io_stat(req)) {
2018 const int rw = rq_data_dir(req);
2019 struct hd_struct *part;
2020 int cpu;
2022 cpu = part_stat_lock();
2023 part = req->part;
2024 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2025 part_stat_unlock();
2029 static void blk_account_io_done(struct request *req)
2032 * Account IO completion. flush_rq isn't accounted as a
2033 * normal IO on queueing nor completion. Accounting the
2034 * containing request is enough.
2036 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2037 unsigned long duration = jiffies - req->start_time;
2038 const int rw = rq_data_dir(req);
2039 struct hd_struct *part;
2040 int cpu;
2042 cpu = part_stat_lock();
2043 part = req->part;
2045 part_stat_inc(cpu, part, ios[rw]);
2046 part_stat_add(cpu, part, ticks[rw], duration);
2047 part_round_stats(cpu, part);
2048 part_dec_in_flight(part, rw);
2050 hd_struct_put(part);
2051 part_stat_unlock();
2056 * blk_peek_request - peek at the top of a request queue
2057 * @q: request queue to peek at
2059 * Description:
2060 * Return the request at the top of @q. The returned request
2061 * should be started using blk_start_request() before LLD starts
2062 * processing it.
2064 * Return:
2065 * Pointer to the request at the top of @q if available. Null
2066 * otherwise.
2068 * Context:
2069 * queue_lock must be held.
2071 struct request *blk_peek_request(struct request_queue *q)
2073 struct request *rq;
2074 int ret;
2076 while ((rq = __elv_next_request(q)) != NULL) {
2077 if (!(rq->cmd_flags & REQ_STARTED)) {
2079 * This is the first time the device driver
2080 * sees this request (possibly after
2081 * requeueing). Notify IO scheduler.
2083 if (rq->cmd_flags & REQ_SORTED)
2084 elv_activate_rq(q, rq);
2087 * just mark as started even if we don't start
2088 * it, a request that has been delayed should
2089 * not be passed by new incoming requests
2091 rq->cmd_flags |= REQ_STARTED;
2092 trace_block_rq_issue(q, rq);
2095 if (!q->boundary_rq || q->boundary_rq == rq) {
2096 q->end_sector = rq_end_sector(rq);
2097 q->boundary_rq = NULL;
2100 if (rq->cmd_flags & REQ_DONTPREP)
2101 break;
2103 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2105 * make sure space for the drain appears we
2106 * know we can do this because max_hw_segments
2107 * has been adjusted to be one fewer than the
2108 * device can handle
2110 rq->nr_phys_segments++;
2113 if (!q->prep_rq_fn)
2114 break;
2116 ret = q->prep_rq_fn(q, rq);
2117 if (ret == BLKPREP_OK) {
2118 break;
2119 } else if (ret == BLKPREP_DEFER) {
2121 * the request may have been (partially) prepped.
2122 * we need to keep this request in the front to
2123 * avoid resource deadlock. REQ_STARTED will
2124 * prevent other fs requests from passing this one.
2126 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2127 !(rq->cmd_flags & REQ_DONTPREP)) {
2129 * remove the space for the drain we added
2130 * so that we don't add it again
2132 --rq->nr_phys_segments;
2135 rq = NULL;
2136 break;
2137 } else if (ret == BLKPREP_KILL) {
2138 rq->cmd_flags |= REQ_QUIET;
2140 * Mark this request as started so we don't trigger
2141 * any debug logic in the end I/O path.
2143 blk_start_request(rq);
2144 __blk_end_request_all(rq, -EIO);
2145 } else {
2146 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2147 break;
2151 return rq;
2153 EXPORT_SYMBOL(blk_peek_request);
2155 void blk_dequeue_request(struct request *rq)
2157 struct request_queue *q = rq->q;
2159 BUG_ON(list_empty(&rq->queuelist));
2160 BUG_ON(ELV_ON_HASH(rq));
2162 list_del_init(&rq->queuelist);
2165 * the time frame between a request being removed from the lists
2166 * and to it is freed is accounted as io that is in progress at
2167 * the driver side.
2169 if (blk_account_rq(rq)) {
2170 q->in_flight[rq_is_sync(rq)]++;
2171 set_io_start_time_ns(rq);
2176 * blk_start_request - start request processing on the driver
2177 * @req: request to dequeue
2179 * Description:
2180 * Dequeue @req and start timeout timer on it. This hands off the
2181 * request to the driver.
2183 * Block internal functions which don't want to start timer should
2184 * call blk_dequeue_request().
2186 * Context:
2187 * queue_lock must be held.
2189 void blk_start_request(struct request *req)
2191 blk_dequeue_request(req);
2194 * We are now handing the request to the hardware, initialize
2195 * resid_len to full count and add the timeout handler.
2197 req->resid_len = blk_rq_bytes(req);
2198 if (unlikely(blk_bidi_rq(req)))
2199 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2201 blk_add_timer(req);
2203 EXPORT_SYMBOL(blk_start_request);
2206 * blk_fetch_request - fetch a request from a request queue
2207 * @q: request queue to fetch a request from
2209 * Description:
2210 * Return the request at the top of @q. The request is started on
2211 * return and LLD can start processing it immediately.
2213 * Return:
2214 * Pointer to the request at the top of @q if available. Null
2215 * otherwise.
2217 * Context:
2218 * queue_lock must be held.
2220 struct request *blk_fetch_request(struct request_queue *q)
2222 struct request *rq;
2224 rq = blk_peek_request(q);
2225 if (rq)
2226 blk_start_request(rq);
2227 return rq;
2229 EXPORT_SYMBOL(blk_fetch_request);
2232 * blk_update_request - Special helper function for request stacking drivers
2233 * @req: the request being processed
2234 * @error: %0 for success, < %0 for error
2235 * @nr_bytes: number of bytes to complete @req
2237 * Description:
2238 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2239 * the request structure even if @req doesn't have leftover.
2240 * If @req has leftover, sets it up for the next range of segments.
2242 * This special helper function is only for request stacking drivers
2243 * (e.g. request-based dm) so that they can handle partial completion.
2244 * Actual device drivers should use blk_end_request instead.
2246 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2247 * %false return from this function.
2249 * Return:
2250 * %false - this request doesn't have any more data
2251 * %true - this request has more data
2253 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2255 int total_bytes, bio_nbytes, next_idx = 0;
2256 struct bio *bio;
2258 if (!req->bio)
2259 return false;
2261 trace_block_rq_complete(req->q, req);
2264 * For fs requests, rq is just carrier of independent bio's
2265 * and each partial completion should be handled separately.
2266 * Reset per-request error on each partial completion.
2268 * TODO: tj: This is too subtle. It would be better to let
2269 * low level drivers do what they see fit.
2271 if (req->cmd_type == REQ_TYPE_FS)
2272 req->errors = 0;
2274 if (error && req->cmd_type == REQ_TYPE_FS &&
2275 !(req->cmd_flags & REQ_QUIET)) {
2276 char *error_type;
2278 switch (error) {
2279 case -ENOLINK:
2280 error_type = "recoverable transport";
2281 break;
2282 case -EREMOTEIO:
2283 error_type = "critical target";
2284 break;
2285 case -EBADE:
2286 error_type = "critical nexus";
2287 break;
2288 case -EIO:
2289 default:
2290 error_type = "I/O";
2291 break;
2293 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2294 error_type, req->rq_disk ?
2295 req->rq_disk->disk_name : "?",
2296 (unsigned long long)blk_rq_pos(req));
2300 blk_account_io_completion(req, nr_bytes);
2302 total_bytes = bio_nbytes = 0;
2303 while ((bio = req->bio) != NULL) {
2304 int nbytes;
2306 if (nr_bytes >= bio->bi_size) {
2307 req->bio = bio->bi_next;
2308 nbytes = bio->bi_size;
2309 req_bio_endio(req, bio, nbytes, error);
2310 next_idx = 0;
2311 bio_nbytes = 0;
2312 } else {
2313 int idx = bio->bi_idx + next_idx;
2315 if (unlikely(idx >= bio->bi_vcnt)) {
2316 blk_dump_rq_flags(req, "__end_that");
2317 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2318 __func__, idx, bio->bi_vcnt);
2319 break;
2322 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2323 BIO_BUG_ON(nbytes > bio->bi_size);
2326 * not a complete bvec done
2328 if (unlikely(nbytes > nr_bytes)) {
2329 bio_nbytes += nr_bytes;
2330 total_bytes += nr_bytes;
2331 break;
2335 * advance to the next vector
2337 next_idx++;
2338 bio_nbytes += nbytes;
2341 total_bytes += nbytes;
2342 nr_bytes -= nbytes;
2344 bio = req->bio;
2345 if (bio) {
2347 * end more in this run, or just return 'not-done'
2349 if (unlikely(nr_bytes <= 0))
2350 break;
2355 * completely done
2357 if (!req->bio) {
2359 * Reset counters so that the request stacking driver
2360 * can find how many bytes remain in the request
2361 * later.
2363 req->__data_len = 0;
2364 return false;
2368 * if the request wasn't completed, update state
2370 if (bio_nbytes) {
2371 req_bio_endio(req, bio, bio_nbytes, error);
2372 bio->bi_idx += next_idx;
2373 bio_iovec(bio)->bv_offset += nr_bytes;
2374 bio_iovec(bio)->bv_len -= nr_bytes;
2377 req->__data_len -= total_bytes;
2378 req->buffer = bio_data(req->bio);
2380 /* update sector only for requests with clear definition of sector */
2381 if (req->cmd_type == REQ_TYPE_FS)
2382 req->__sector += total_bytes >> 9;
2384 /* mixed attributes always follow the first bio */
2385 if (req->cmd_flags & REQ_MIXED_MERGE) {
2386 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2387 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2391 * If total number of sectors is less than the first segment
2392 * size, something has gone terribly wrong.
2394 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2395 blk_dump_rq_flags(req, "request botched");
2396 req->__data_len = blk_rq_cur_bytes(req);
2399 /* recalculate the number of segments */
2400 blk_recalc_rq_segments(req);
2402 return true;
2404 EXPORT_SYMBOL_GPL(blk_update_request);
2406 static bool blk_update_bidi_request(struct request *rq, int error,
2407 unsigned int nr_bytes,
2408 unsigned int bidi_bytes)
2410 if (blk_update_request(rq, error, nr_bytes))
2411 return true;
2413 /* Bidi request must be completed as a whole */
2414 if (unlikely(blk_bidi_rq(rq)) &&
2415 blk_update_request(rq->next_rq, error, bidi_bytes))
2416 return true;
2418 if (blk_queue_add_random(rq->q))
2419 add_disk_randomness(rq->rq_disk);
2421 return false;
2425 * blk_unprep_request - unprepare a request
2426 * @req: the request
2428 * This function makes a request ready for complete resubmission (or
2429 * completion). It happens only after all error handling is complete,
2430 * so represents the appropriate moment to deallocate any resources
2431 * that were allocated to the request in the prep_rq_fn. The queue
2432 * lock is held when calling this.
2434 void blk_unprep_request(struct request *req)
2436 struct request_queue *q = req->q;
2438 req->cmd_flags &= ~REQ_DONTPREP;
2439 if (q->unprep_rq_fn)
2440 q->unprep_rq_fn(q, req);
2442 EXPORT_SYMBOL_GPL(blk_unprep_request);
2445 * queue lock must be held
2447 static void blk_finish_request(struct request *req, int error)
2449 if (blk_rq_tagged(req))
2450 blk_queue_end_tag(req->q, req);
2452 BUG_ON(blk_queued_rq(req));
2454 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2455 laptop_io_completion(&req->q->backing_dev_info);
2457 blk_delete_timer(req);
2459 if (req->cmd_flags & REQ_DONTPREP)
2460 blk_unprep_request(req);
2463 blk_account_io_done(req);
2465 if (req->end_io)
2466 req->end_io(req, error);
2467 else {
2468 if (blk_bidi_rq(req))
2469 __blk_put_request(req->next_rq->q, req->next_rq);
2471 __blk_put_request(req->q, req);
2476 * blk_end_bidi_request - Complete a bidi request
2477 * @rq: the request to complete
2478 * @error: %0 for success, < %0 for error
2479 * @nr_bytes: number of bytes to complete @rq
2480 * @bidi_bytes: number of bytes to complete @rq->next_rq
2482 * Description:
2483 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2484 * Drivers that supports bidi can safely call this member for any
2485 * type of request, bidi or uni. In the later case @bidi_bytes is
2486 * just ignored.
2488 * Return:
2489 * %false - we are done with this request
2490 * %true - still buffers pending for this request
2492 static bool blk_end_bidi_request(struct request *rq, int error,
2493 unsigned int nr_bytes, unsigned int bidi_bytes)
2495 struct request_queue *q = rq->q;
2496 unsigned long flags;
2498 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2499 return true;
2501 spin_lock_irqsave(q->queue_lock, flags);
2502 blk_finish_request(rq, error);
2503 spin_unlock_irqrestore(q->queue_lock, flags);
2505 return false;
2509 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2510 * @rq: the request to complete
2511 * @error: %0 for success, < %0 for error
2512 * @nr_bytes: number of bytes to complete @rq
2513 * @bidi_bytes: number of bytes to complete @rq->next_rq
2515 * Description:
2516 * Identical to blk_end_bidi_request() except that queue lock is
2517 * assumed to be locked on entry and remains so on return.
2519 * Return:
2520 * %false - we are done with this request
2521 * %true - still buffers pending for this request
2523 bool __blk_end_bidi_request(struct request *rq, int error,
2524 unsigned int nr_bytes, unsigned int bidi_bytes)
2526 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2527 return true;
2529 blk_finish_request(rq, error);
2531 return false;
2535 * blk_end_request - Helper function for drivers to complete the request.
2536 * @rq: the request being processed
2537 * @error: %0 for success, < %0 for error
2538 * @nr_bytes: number of bytes to complete
2540 * Description:
2541 * Ends I/O on a number of bytes attached to @rq.
2542 * If @rq has leftover, sets it up for the next range of segments.
2544 * Return:
2545 * %false - we are done with this request
2546 * %true - still buffers pending for this request
2548 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2550 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2552 EXPORT_SYMBOL(blk_end_request);
2555 * blk_end_request_all - Helper function for drives to finish the request.
2556 * @rq: the request to finish
2557 * @error: %0 for success, < %0 for error
2559 * Description:
2560 * Completely finish @rq.
2562 void blk_end_request_all(struct request *rq, int error)
2564 bool pending;
2565 unsigned int bidi_bytes = 0;
2567 if (unlikely(blk_bidi_rq(rq)))
2568 bidi_bytes = blk_rq_bytes(rq->next_rq);
2570 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2571 BUG_ON(pending);
2573 EXPORT_SYMBOL(blk_end_request_all);
2576 * blk_end_request_cur - Helper function to finish the current request chunk.
2577 * @rq: the request to finish the current chunk for
2578 * @error: %0 for success, < %0 for error
2580 * Description:
2581 * Complete the current consecutively mapped chunk from @rq.
2583 * Return:
2584 * %false - we are done with this request
2585 * %true - still buffers pending for this request
2587 bool blk_end_request_cur(struct request *rq, int error)
2589 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2591 EXPORT_SYMBOL(blk_end_request_cur);
2594 * blk_end_request_err - Finish a request till the next failure boundary.
2595 * @rq: the request to finish till the next failure boundary for
2596 * @error: must be negative errno
2598 * Description:
2599 * Complete @rq till the next failure boundary.
2601 * Return:
2602 * %false - we are done with this request
2603 * %true - still buffers pending for this request
2605 bool blk_end_request_err(struct request *rq, int error)
2607 WARN_ON(error >= 0);
2608 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2610 EXPORT_SYMBOL_GPL(blk_end_request_err);
2613 * __blk_end_request - Helper function for drivers to complete the request.
2614 * @rq: the request being processed
2615 * @error: %0 for success, < %0 for error
2616 * @nr_bytes: number of bytes to complete
2618 * Description:
2619 * Must be called with queue lock held unlike blk_end_request().
2621 * Return:
2622 * %false - we are done with this request
2623 * %true - still buffers pending for this request
2625 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2627 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2629 EXPORT_SYMBOL(__blk_end_request);
2632 * __blk_end_request_all - Helper function for drives to finish the request.
2633 * @rq: the request to finish
2634 * @error: %0 for success, < %0 for error
2636 * Description:
2637 * Completely finish @rq. Must be called with queue lock held.
2639 void __blk_end_request_all(struct request *rq, int error)
2641 bool pending;
2642 unsigned int bidi_bytes = 0;
2644 if (unlikely(blk_bidi_rq(rq)))
2645 bidi_bytes = blk_rq_bytes(rq->next_rq);
2647 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2648 BUG_ON(pending);
2650 EXPORT_SYMBOL(__blk_end_request_all);
2653 * __blk_end_request_cur - Helper function to finish the current request chunk.
2654 * @rq: the request to finish the current chunk for
2655 * @error: %0 for success, < %0 for error
2657 * Description:
2658 * Complete the current consecutively mapped chunk from @rq. Must
2659 * be called with queue lock held.
2661 * Return:
2662 * %false - we are done with this request
2663 * %true - still buffers pending for this request
2665 bool __blk_end_request_cur(struct request *rq, int error)
2667 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2669 EXPORT_SYMBOL(__blk_end_request_cur);
2672 * __blk_end_request_err - Finish a request till the next failure boundary.
2673 * @rq: the request to finish till the next failure boundary for
2674 * @error: must be negative errno
2676 * Description:
2677 * Complete @rq till the next failure boundary. Must be called
2678 * with queue lock held.
2680 * Return:
2681 * %false - we are done with this request
2682 * %true - still buffers pending for this request
2684 bool __blk_end_request_err(struct request *rq, int error)
2686 WARN_ON(error >= 0);
2687 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2689 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2691 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2692 struct bio *bio)
2694 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2695 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2697 if (bio_has_data(bio)) {
2698 rq->nr_phys_segments = bio_phys_segments(q, bio);
2699 rq->buffer = bio_data(bio);
2701 rq->__data_len = bio->bi_size;
2702 rq->bio = rq->biotail = bio;
2704 if (bio->bi_bdev)
2705 rq->rq_disk = bio->bi_bdev->bd_disk;
2708 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2710 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2711 * @rq: the request to be flushed
2713 * Description:
2714 * Flush all pages in @rq.
2716 void rq_flush_dcache_pages(struct request *rq)
2718 struct req_iterator iter;
2719 struct bio_vec *bvec;
2721 rq_for_each_segment(bvec, rq, iter)
2722 flush_dcache_page(bvec->bv_page);
2724 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2725 #endif
2728 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2729 * @q : the queue of the device being checked
2731 * Description:
2732 * Check if underlying low-level drivers of a device are busy.
2733 * If the drivers want to export their busy state, they must set own
2734 * exporting function using blk_queue_lld_busy() first.
2736 * Basically, this function is used only by request stacking drivers
2737 * to stop dispatching requests to underlying devices when underlying
2738 * devices are busy. This behavior helps more I/O merging on the queue
2739 * of the request stacking driver and prevents I/O throughput regression
2740 * on burst I/O load.
2742 * Return:
2743 * 0 - Not busy (The request stacking driver should dispatch request)
2744 * 1 - Busy (The request stacking driver should stop dispatching request)
2746 int blk_lld_busy(struct request_queue *q)
2748 if (q->lld_busy_fn)
2749 return q->lld_busy_fn(q);
2751 return 0;
2753 EXPORT_SYMBOL_GPL(blk_lld_busy);
2756 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2757 * @rq: the clone request to be cleaned up
2759 * Description:
2760 * Free all bios in @rq for a cloned request.
2762 void blk_rq_unprep_clone(struct request *rq)
2764 struct bio *bio;
2766 while ((bio = rq->bio) != NULL) {
2767 rq->bio = bio->bi_next;
2769 bio_put(bio);
2772 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2775 * Copy attributes of the original request to the clone request.
2776 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2778 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2780 dst->cpu = src->cpu;
2781 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2782 dst->cmd_type = src->cmd_type;
2783 dst->__sector = blk_rq_pos(src);
2784 dst->__data_len = blk_rq_bytes(src);
2785 dst->nr_phys_segments = src->nr_phys_segments;
2786 dst->ioprio = src->ioprio;
2787 dst->extra_len = src->extra_len;
2791 * blk_rq_prep_clone - Helper function to setup clone request
2792 * @rq: the request to be setup
2793 * @rq_src: original request to be cloned
2794 * @bs: bio_set that bios for clone are allocated from
2795 * @gfp_mask: memory allocation mask for bio
2796 * @bio_ctr: setup function to be called for each clone bio.
2797 * Returns %0 for success, non %0 for failure.
2798 * @data: private data to be passed to @bio_ctr
2800 * Description:
2801 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2802 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2803 * are not copied, and copying such parts is the caller's responsibility.
2804 * Also, pages which the original bios are pointing to are not copied
2805 * and the cloned bios just point same pages.
2806 * So cloned bios must be completed before original bios, which means
2807 * the caller must complete @rq before @rq_src.
2809 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2810 struct bio_set *bs, gfp_t gfp_mask,
2811 int (*bio_ctr)(struct bio *, struct bio *, void *),
2812 void *data)
2814 struct bio *bio, *bio_src;
2816 if (!bs)
2817 bs = fs_bio_set;
2819 blk_rq_init(NULL, rq);
2821 __rq_for_each_bio(bio_src, rq_src) {
2822 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2823 if (!bio)
2824 goto free_and_out;
2826 if (bio_ctr && bio_ctr(bio, bio_src, data))
2827 goto free_and_out;
2829 if (rq->bio) {
2830 rq->biotail->bi_next = bio;
2831 rq->biotail = bio;
2832 } else
2833 rq->bio = rq->biotail = bio;
2836 __blk_rq_prep_clone(rq, rq_src);
2838 return 0;
2840 free_and_out:
2841 if (bio)
2842 bio_put(bio);
2843 blk_rq_unprep_clone(rq);
2845 return -ENOMEM;
2847 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2849 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2851 return queue_work(kblockd_workqueue, work);
2853 EXPORT_SYMBOL(kblockd_schedule_work);
2855 int kblockd_schedule_delayed_work(struct request_queue *q,
2856 struct delayed_work *dwork, unsigned long delay)
2858 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2860 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2862 #define PLUG_MAGIC 0x91827364
2865 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2866 * @plug: The &struct blk_plug that needs to be initialized
2868 * Description:
2869 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2870 * pending I/O should the task end up blocking between blk_start_plug() and
2871 * blk_finish_plug(). This is important from a performance perspective, but
2872 * also ensures that we don't deadlock. For instance, if the task is blocking
2873 * for a memory allocation, memory reclaim could end up wanting to free a
2874 * page belonging to that request that is currently residing in our private
2875 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2876 * this kind of deadlock.
2878 void blk_start_plug(struct blk_plug *plug)
2880 struct task_struct *tsk = current;
2882 plug->magic = PLUG_MAGIC;
2883 INIT_LIST_HEAD(&plug->list);
2884 INIT_LIST_HEAD(&plug->cb_list);
2887 * If this is a nested plug, don't actually assign it. It will be
2888 * flushed on its own.
2890 if (!tsk->plug) {
2892 * Store ordering should not be needed here, since a potential
2893 * preempt will imply a full memory barrier
2895 tsk->plug = plug;
2898 EXPORT_SYMBOL(blk_start_plug);
2900 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2902 struct request *rqa = container_of(a, struct request, queuelist);
2903 struct request *rqb = container_of(b, struct request, queuelist);
2905 return !(rqa->q < rqb->q ||
2906 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2910 * If 'from_schedule' is true, then postpone the dispatch of requests
2911 * until a safe kblockd context. We due this to avoid accidental big
2912 * additional stack usage in driver dispatch, in places where the originally
2913 * plugger did not intend it.
2915 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2916 bool from_schedule)
2917 __releases(q->queue_lock)
2919 trace_block_unplug(q, depth, !from_schedule);
2921 if (from_schedule)
2922 blk_run_queue_async(q);
2923 else
2924 __blk_run_queue(q);
2925 spin_unlock(q->queue_lock);
2928 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2930 LIST_HEAD(callbacks);
2932 while (!list_empty(&plug->cb_list)) {
2933 list_splice_init(&plug->cb_list, &callbacks);
2935 while (!list_empty(&callbacks)) {
2936 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2937 struct blk_plug_cb,
2938 list);
2939 list_del(&cb->list);
2940 cb->callback(cb, from_schedule);
2945 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2946 int size)
2948 struct blk_plug *plug = current->plug;
2949 struct blk_plug_cb *cb;
2951 if (!plug)
2952 return NULL;
2954 list_for_each_entry(cb, &plug->cb_list, list)
2955 if (cb->callback == unplug && cb->data == data)
2956 return cb;
2958 /* Not currently on the callback list */
2959 BUG_ON(size < sizeof(*cb));
2960 cb = kzalloc(size, GFP_ATOMIC);
2961 if (cb) {
2962 cb->data = data;
2963 cb->callback = unplug;
2964 list_add(&cb->list, &plug->cb_list);
2966 return cb;
2968 EXPORT_SYMBOL(blk_check_plugged);
2970 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2972 struct request_queue *q;
2973 unsigned long flags;
2974 struct request *rq;
2975 LIST_HEAD(list);
2976 unsigned int depth;
2978 BUG_ON(plug->magic != PLUG_MAGIC);
2980 flush_plug_callbacks(plug, from_schedule);
2981 if (list_empty(&plug->list))
2982 return;
2984 list_splice_init(&plug->list, &list);
2986 list_sort(NULL, &list, plug_rq_cmp);
2988 q = NULL;
2989 depth = 0;
2992 * Save and disable interrupts here, to avoid doing it for every
2993 * queue lock we have to take.
2995 local_irq_save(flags);
2996 while (!list_empty(&list)) {
2997 rq = list_entry_rq(list.next);
2998 list_del_init(&rq->queuelist);
2999 BUG_ON(!rq->q);
3000 if (rq->q != q) {
3002 * This drops the queue lock
3004 if (q)
3005 queue_unplugged(q, depth, from_schedule);
3006 q = rq->q;
3007 depth = 0;
3008 spin_lock(q->queue_lock);
3012 * Short-circuit if @q is dead
3014 if (unlikely(blk_queue_dying(q))) {
3015 __blk_end_request_all(rq, -ENODEV);
3016 continue;
3020 * rq is already accounted, so use raw insert
3022 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3023 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3024 else
3025 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3027 depth++;
3031 * This drops the queue lock
3033 if (q)
3034 queue_unplugged(q, depth, from_schedule);
3036 local_irq_restore(flags);
3039 void blk_finish_plug(struct blk_plug *plug)
3041 blk_flush_plug_list(plug, false);
3043 if (plug == current->plug)
3044 current->plug = NULL;
3046 EXPORT_SYMBOL(blk_finish_plug);
3048 int __init blk_dev_init(void)
3050 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3051 sizeof(((struct request *)0)->cmd_flags));
3053 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3054 kblockd_workqueue = alloc_workqueue("kblockd",
3055 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3056 if (!kblockd_workqueue)
3057 panic("Failed to create kblockd\n");
3059 request_cachep = kmem_cache_create("blkdev_requests",
3060 sizeof(struct request), 0, SLAB_PANIC, NULL);
3062 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3063 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3065 return 0;