2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
38 #include "blk-cgroup.h"
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
44 DEFINE_IDA(blk_queue_ida
);
47 * For the allocated request tables
49 static struct kmem_cache
*request_cachep
;
52 * For queue allocation
54 struct kmem_cache
*blk_requestq_cachep
;
57 * Controlling structure to kblockd
59 static struct workqueue_struct
*kblockd_workqueue
;
61 static void drive_stat_acct(struct request
*rq
, int new_io
)
63 struct hd_struct
*part
;
64 int rw
= rq_data_dir(rq
);
67 if (!blk_do_io_stat(rq
))
70 cpu
= part_stat_lock();
74 part_stat_inc(cpu
, part
, merges
[rw
]);
76 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
77 if (!hd_struct_try_get(part
)) {
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
86 part
= &rq
->rq_disk
->part0
;
89 part_round_stats(cpu
, part
);
90 part_inc_in_flight(part
, rw
);
97 void blk_queue_congestion_threshold(struct request_queue
*q
)
101 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
102 if (nr
> q
->nr_requests
)
104 q
->nr_congestion_on
= nr
;
106 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
109 q
->nr_congestion_off
= nr
;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * Locates the passed device's request queue and returns the address of its
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
123 struct backing_dev_info
*ret
= NULL
;
124 struct request_queue
*q
= bdev_get_queue(bdev
);
127 ret
= &q
->backing_dev_info
;
130 EXPORT_SYMBOL(blk_get_backing_dev_info
);
132 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
134 memset(rq
, 0, sizeof(*rq
));
136 INIT_LIST_HEAD(&rq
->queuelist
);
137 INIT_LIST_HEAD(&rq
->timeout_list
);
140 rq
->__sector
= (sector_t
) -1;
141 INIT_HLIST_NODE(&rq
->hash
);
142 RB_CLEAR_NODE(&rq
->rb_node
);
144 rq
->cmd_len
= BLK_MAX_CDB
;
147 rq
->start_time
= jiffies
;
148 set_start_time_ns(rq
);
151 EXPORT_SYMBOL(blk_rq_init
);
153 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
154 unsigned int nbytes
, int error
)
157 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
158 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
161 if (unlikely(nbytes
> bio
->bi_size
)) {
162 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
163 __func__
, nbytes
, bio
->bi_size
);
164 nbytes
= bio
->bi_size
;
167 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
168 set_bit(BIO_QUIET
, &bio
->bi_flags
);
170 bio
->bi_size
-= nbytes
;
171 bio
->bi_sector
+= (nbytes
>> 9);
173 if (bio_integrity(bio
))
174 bio_integrity_advance(bio
, nbytes
);
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
178 bio_endio(bio
, error
);
181 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
185 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
186 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
189 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq
),
191 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
192 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
193 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
195 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
196 printk(KERN_INFO
" cdb: ");
197 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
198 printk("%02x ", rq
->cmd
[bit
]);
202 EXPORT_SYMBOL(blk_dump_rq_flags
);
204 static void blk_delay_work(struct work_struct
*work
)
206 struct request_queue
*q
;
208 q
= container_of(work
, struct request_queue
, delay_work
.work
);
209 spin_lock_irq(q
->queue_lock
);
211 spin_unlock_irq(q
->queue_lock
);
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time. Queue lock must be held.
224 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
226 if (likely(!blk_queue_dead(q
)))
227 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
228 msecs_to_jiffies(msecs
));
230 EXPORT_SYMBOL(blk_delay_queue
);
233 * blk_start_queue - restart a previously stopped queue
234 * @q: The &struct request_queue in question
237 * blk_start_queue() will clear the stop flag on the queue, and call
238 * the request_fn for the queue if it was in a stopped state when
239 * entered. Also see blk_stop_queue(). Queue lock must be held.
241 void blk_start_queue(struct request_queue
*q
)
243 WARN_ON(!irqs_disabled());
245 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
248 EXPORT_SYMBOL(blk_start_queue
);
251 * blk_stop_queue - stop a queue
252 * @q: The &struct request_queue in question
255 * The Linux block layer assumes that a block driver will consume all
256 * entries on the request queue when the request_fn strategy is called.
257 * Often this will not happen, because of hardware limitations (queue
258 * depth settings). If a device driver gets a 'queue full' response,
259 * or if it simply chooses not to queue more I/O at one point, it can
260 * call this function to prevent the request_fn from being called until
261 * the driver has signalled it's ready to go again. This happens by calling
262 * blk_start_queue() to restart queue operations. Queue lock must be held.
264 void blk_stop_queue(struct request_queue
*q
)
266 cancel_delayed_work(&q
->delay_work
);
267 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
269 EXPORT_SYMBOL(blk_stop_queue
);
272 * blk_sync_queue - cancel any pending callbacks on a queue
276 * The block layer may perform asynchronous callback activity
277 * on a queue, such as calling the unplug function after a timeout.
278 * A block device may call blk_sync_queue to ensure that any
279 * such activity is cancelled, thus allowing it to release resources
280 * that the callbacks might use. The caller must already have made sure
281 * that its ->make_request_fn will not re-add plugging prior to calling
284 * This function does not cancel any asynchronous activity arising
285 * out of elevator or throttling code. That would require elevaotor_exit()
286 * and blkcg_exit_queue() to be called with queue lock initialized.
289 void blk_sync_queue(struct request_queue
*q
)
291 del_timer_sync(&q
->timeout
);
292 cancel_delayed_work_sync(&q
->delay_work
);
294 EXPORT_SYMBOL(blk_sync_queue
);
297 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
298 * @q: The queue to run
301 * Invoke request handling on a queue if there are any pending requests.
302 * May be used to restart request handling after a request has completed.
303 * This variant runs the queue whether or not the queue has been
304 * stopped. Must be called with the queue lock held and interrupts
305 * disabled. See also @blk_run_queue.
307 inline void __blk_run_queue_uncond(struct request_queue
*q
)
309 if (unlikely(blk_queue_dead(q
)))
313 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
314 * the queue lock internally. As a result multiple threads may be
315 * running such a request function concurrently. Keep track of the
316 * number of active request_fn invocations such that blk_drain_queue()
317 * can wait until all these request_fn calls have finished.
319 q
->request_fn_active
++;
321 q
->request_fn_active
--;
325 * __blk_run_queue - run a single device queue
326 * @q: The queue to run
329 * See @blk_run_queue. This variant must be called with the queue lock
330 * held and interrupts disabled.
332 void __blk_run_queue(struct request_queue
*q
)
334 if (unlikely(blk_queue_stopped(q
)))
337 __blk_run_queue_uncond(q
);
339 EXPORT_SYMBOL(__blk_run_queue
);
342 * blk_run_queue_async - run a single device queue in workqueue context
343 * @q: The queue to run
346 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
347 * of us. The caller must hold the queue lock.
349 void blk_run_queue_async(struct request_queue
*q
)
351 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
352 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
354 EXPORT_SYMBOL(blk_run_queue_async
);
357 * blk_run_queue - run a single device queue
358 * @q: The queue to run
361 * Invoke request handling on this queue, if it has pending work to do.
362 * May be used to restart queueing when a request has completed.
364 void blk_run_queue(struct request_queue
*q
)
368 spin_lock_irqsave(q
->queue_lock
, flags
);
370 spin_unlock_irqrestore(q
->queue_lock
, flags
);
372 EXPORT_SYMBOL(blk_run_queue
);
374 void blk_put_queue(struct request_queue
*q
)
376 kobject_put(&q
->kobj
);
378 EXPORT_SYMBOL(blk_put_queue
);
381 * __blk_drain_queue - drain requests from request_queue
383 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
385 * Drain requests from @q. If @drain_all is set, all requests are drained.
386 * If not, only ELVPRIV requests are drained. The caller is responsible
387 * for ensuring that no new requests which need to be drained are queued.
389 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
390 __releases(q
->queue_lock
)
391 __acquires(q
->queue_lock
)
395 lockdep_assert_held(q
->queue_lock
);
401 * The caller might be trying to drain @q before its
402 * elevator is initialized.
405 elv_drain_elevator(q
);
407 blkcg_drain_queue(q
);
410 * This function might be called on a queue which failed
411 * driver init after queue creation or is not yet fully
412 * active yet. Some drivers (e.g. fd and loop) get unhappy
413 * in such cases. Kick queue iff dispatch queue has
414 * something on it and @q has request_fn set.
416 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
419 drain
|= q
->nr_rqs_elvpriv
;
420 drain
|= q
->request_fn_active
;
423 * Unfortunately, requests are queued at and tracked from
424 * multiple places and there's no single counter which can
425 * be drained. Check all the queues and counters.
428 drain
|= !list_empty(&q
->queue_head
);
429 for (i
= 0; i
< 2; i
++) {
430 drain
|= q
->nr_rqs
[i
];
431 drain
|= q
->in_flight
[i
];
432 drain
|= !list_empty(&q
->flush_queue
[i
]);
439 spin_unlock_irq(q
->queue_lock
);
443 spin_lock_irq(q
->queue_lock
);
447 * With queue marked dead, any woken up waiter will fail the
448 * allocation path, so the wakeup chaining is lost and we're
449 * left with hung waiters. We need to wake up those waiters.
452 struct request_list
*rl
;
454 blk_queue_for_each_rl(rl
, q
)
455 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
456 wake_up_all(&rl
->wait
[i
]);
461 * blk_queue_bypass_start - enter queue bypass mode
462 * @q: queue of interest
464 * In bypass mode, only the dispatch FIFO queue of @q is used. This
465 * function makes @q enter bypass mode and drains all requests which were
466 * throttled or issued before. On return, it's guaranteed that no request
467 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
468 * inside queue or RCU read lock.
470 void blk_queue_bypass_start(struct request_queue
*q
)
474 spin_lock_irq(q
->queue_lock
);
475 drain
= !q
->bypass_depth
++;
476 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
477 spin_unlock_irq(q
->queue_lock
);
480 spin_lock_irq(q
->queue_lock
);
481 __blk_drain_queue(q
, false);
482 spin_unlock_irq(q
->queue_lock
);
484 /* ensure blk_queue_bypass() is %true inside RCU read lock */
488 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
491 * blk_queue_bypass_end - leave queue bypass mode
492 * @q: queue of interest
494 * Leave bypass mode and restore the normal queueing behavior.
496 void blk_queue_bypass_end(struct request_queue
*q
)
498 spin_lock_irq(q
->queue_lock
);
499 if (!--q
->bypass_depth
)
500 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
501 WARN_ON_ONCE(q
->bypass_depth
< 0);
502 spin_unlock_irq(q
->queue_lock
);
504 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
507 * blk_cleanup_queue - shutdown a request queue
508 * @q: request queue to shutdown
510 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
511 * put it. All future requests will be failed immediately with -ENODEV.
513 void blk_cleanup_queue(struct request_queue
*q
)
515 spinlock_t
*lock
= q
->queue_lock
;
517 /* mark @q DYING, no new request or merges will be allowed afterwards */
518 mutex_lock(&q
->sysfs_lock
);
519 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
523 * A dying queue is permanently in bypass mode till released. Note
524 * that, unlike blk_queue_bypass_start(), we aren't performing
525 * synchronize_rcu() after entering bypass mode to avoid the delay
526 * as some drivers create and destroy a lot of queues while
527 * probing. This is still safe because blk_release_queue() will be
528 * called only after the queue refcnt drops to zero and nothing,
529 * RCU or not, would be traversing the queue by then.
532 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
534 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
535 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
536 queue_flag_set(QUEUE_FLAG_DYING
, q
);
537 spin_unlock_irq(lock
);
538 mutex_unlock(&q
->sysfs_lock
);
541 * Drain all requests queued before DYING marking. Set DEAD flag to
542 * prevent that q->request_fn() gets invoked after draining finished.
545 __blk_drain_queue(q
, true);
546 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
547 spin_unlock_irq(lock
);
549 /* @q won't process any more request, flush async actions */
550 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
554 if (q
->queue_lock
!= &q
->__queue_lock
)
555 q
->queue_lock
= &q
->__queue_lock
;
556 spin_unlock_irq(lock
);
558 /* @q is and will stay empty, shutdown and put */
561 EXPORT_SYMBOL(blk_cleanup_queue
);
563 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
566 if (unlikely(rl
->rq_pool
))
570 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
571 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
572 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
573 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
575 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
576 mempool_free_slab
, request_cachep
,
584 void blk_exit_rl(struct request_list
*rl
)
587 mempool_destroy(rl
->rq_pool
);
590 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
592 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
594 EXPORT_SYMBOL(blk_alloc_queue
);
596 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
598 struct request_queue
*q
;
601 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
602 gfp_mask
| __GFP_ZERO
, node_id
);
606 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
610 q
->backing_dev_info
.ra_pages
=
611 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
612 q
->backing_dev_info
.state
= 0;
613 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
614 q
->backing_dev_info
.name
= "block";
617 err
= bdi_init(&q
->backing_dev_info
);
621 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
622 laptop_mode_timer_fn
, (unsigned long) q
);
623 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
624 INIT_LIST_HEAD(&q
->queue_head
);
625 INIT_LIST_HEAD(&q
->timeout_list
);
626 INIT_LIST_HEAD(&q
->icq_list
);
627 #ifdef CONFIG_BLK_CGROUP
628 INIT_LIST_HEAD(&q
->blkg_list
);
630 INIT_LIST_HEAD(&q
->flush_queue
[0]);
631 INIT_LIST_HEAD(&q
->flush_queue
[1]);
632 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
633 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
635 kobject_init(&q
->kobj
, &blk_queue_ktype
);
637 mutex_init(&q
->sysfs_lock
);
638 spin_lock_init(&q
->__queue_lock
);
641 * By default initialize queue_lock to internal lock and driver can
642 * override it later if need be.
644 q
->queue_lock
= &q
->__queue_lock
;
647 * A queue starts its life with bypass turned on to avoid
648 * unnecessary bypass on/off overhead and nasty surprises during
649 * init. The initial bypass will be finished when the queue is
650 * registered by blk_register_queue().
653 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
655 if (blkcg_init_queue(q
))
661 ida_simple_remove(&blk_queue_ida
, q
->id
);
663 kmem_cache_free(blk_requestq_cachep
, q
);
666 EXPORT_SYMBOL(blk_alloc_queue_node
);
669 * blk_init_queue - prepare a request queue for use with a block device
670 * @rfn: The function to be called to process requests that have been
671 * placed on the queue.
672 * @lock: Request queue spin lock
675 * If a block device wishes to use the standard request handling procedures,
676 * which sorts requests and coalesces adjacent requests, then it must
677 * call blk_init_queue(). The function @rfn will be called when there
678 * are requests on the queue that need to be processed. If the device
679 * supports plugging, then @rfn may not be called immediately when requests
680 * are available on the queue, but may be called at some time later instead.
681 * Plugged queues are generally unplugged when a buffer belonging to one
682 * of the requests on the queue is needed, or due to memory pressure.
684 * @rfn is not required, or even expected, to remove all requests off the
685 * queue, but only as many as it can handle at a time. If it does leave
686 * requests on the queue, it is responsible for arranging that the requests
687 * get dealt with eventually.
689 * The queue spin lock must be held while manipulating the requests on the
690 * request queue; this lock will be taken also from interrupt context, so irq
691 * disabling is needed for it.
693 * Function returns a pointer to the initialized request queue, or %NULL if
697 * blk_init_queue() must be paired with a blk_cleanup_queue() call
698 * when the block device is deactivated (such as at module unload).
701 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
703 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
705 EXPORT_SYMBOL(blk_init_queue
);
707 struct request_queue
*
708 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
710 struct request_queue
*uninit_q
, *q
;
712 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
716 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
718 blk_cleanup_queue(uninit_q
);
722 EXPORT_SYMBOL(blk_init_queue_node
);
724 struct request_queue
*
725 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
731 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
735 q
->prep_rq_fn
= NULL
;
736 q
->unprep_rq_fn
= NULL
;
737 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
739 /* Override internal queue lock with supplied lock pointer */
741 q
->queue_lock
= lock
;
744 * This also sets hw/phys segments, boundary and size
746 blk_queue_make_request(q
, blk_queue_bio
);
748 q
->sg_reserved_size
= INT_MAX
;
751 if (elevator_init(q
, NULL
))
755 EXPORT_SYMBOL(blk_init_allocated_queue
);
757 bool blk_get_queue(struct request_queue
*q
)
759 if (likely(!blk_queue_dying(q
))) {
766 EXPORT_SYMBOL(blk_get_queue
);
768 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
770 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
771 elv_put_request(rl
->q
, rq
);
773 put_io_context(rq
->elv
.icq
->ioc
);
776 mempool_free(rq
, rl
->rq_pool
);
780 * ioc_batching returns true if the ioc is a valid batching request and
781 * should be given priority access to a request.
783 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
789 * Make sure the process is able to allocate at least 1 request
790 * even if the batch times out, otherwise we could theoretically
793 return ioc
->nr_batch_requests
== q
->nr_batching
||
794 (ioc
->nr_batch_requests
> 0
795 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
799 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
800 * will cause the process to be a "batcher" on all queues in the system. This
801 * is the behaviour we want though - once it gets a wakeup it should be given
804 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
806 if (!ioc
|| ioc_batching(q
, ioc
))
809 ioc
->nr_batch_requests
= q
->nr_batching
;
810 ioc
->last_waited
= jiffies
;
813 static void __freed_request(struct request_list
*rl
, int sync
)
815 struct request_queue
*q
= rl
->q
;
818 * bdi isn't aware of blkcg yet. As all async IOs end up root
819 * blkcg anyway, just use root blkcg state.
821 if (rl
== &q
->root_rl
&&
822 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
823 blk_clear_queue_congested(q
, sync
);
825 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
826 if (waitqueue_active(&rl
->wait
[sync
]))
827 wake_up(&rl
->wait
[sync
]);
829 blk_clear_rl_full(rl
, sync
);
834 * A request has just been released. Account for it, update the full and
835 * congestion status, wake up any waiters. Called under q->queue_lock.
837 static void freed_request(struct request_list
*rl
, unsigned int flags
)
839 struct request_queue
*q
= rl
->q
;
840 int sync
= rw_is_sync(flags
);
844 if (flags
& REQ_ELVPRIV
)
847 __freed_request(rl
, sync
);
849 if (unlikely(rl
->starved
[sync
^ 1]))
850 __freed_request(rl
, sync
^ 1);
854 * Determine if elevator data should be initialized when allocating the
855 * request associated with @bio.
857 static bool blk_rq_should_init_elevator(struct bio
*bio
)
863 * Flush requests do not use the elevator so skip initialization.
864 * This allows a request to share the flush and elevator data.
866 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
873 * rq_ioc - determine io_context for request allocation
874 * @bio: request being allocated is for this bio (can be %NULL)
876 * Determine io_context to use for request allocation for @bio. May return
877 * %NULL if %current->io_context doesn't exist.
879 static struct io_context
*rq_ioc(struct bio
*bio
)
881 #ifdef CONFIG_BLK_CGROUP
882 if (bio
&& bio
->bi_ioc
)
885 return current
->io_context
;
889 * __get_request - get a free request
890 * @rl: request list to allocate from
891 * @rw_flags: RW and SYNC flags
892 * @bio: bio to allocate request for (can be %NULL)
893 * @gfp_mask: allocation mask
895 * Get a free request from @q. This function may fail under memory
896 * pressure or if @q is dead.
898 * Must be callled with @q->queue_lock held and,
899 * Returns %NULL on failure, with @q->queue_lock held.
900 * Returns !%NULL on success, with @q->queue_lock *not held*.
902 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
903 struct bio
*bio
, gfp_t gfp_mask
)
905 struct request_queue
*q
= rl
->q
;
907 struct elevator_type
*et
= q
->elevator
->type
;
908 struct io_context
*ioc
= rq_ioc(bio
);
909 struct io_cq
*icq
= NULL
;
910 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
913 if (unlikely(blk_queue_dying(q
)))
916 may_queue
= elv_may_queue(q
, rw_flags
);
917 if (may_queue
== ELV_MQUEUE_NO
)
920 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
921 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
923 * The queue will fill after this allocation, so set
924 * it as full, and mark this process as "batching".
925 * This process will be allowed to complete a batch of
926 * requests, others will be blocked.
928 if (!blk_rl_full(rl
, is_sync
)) {
929 ioc_set_batching(q
, ioc
);
930 blk_set_rl_full(rl
, is_sync
);
932 if (may_queue
!= ELV_MQUEUE_MUST
933 && !ioc_batching(q
, ioc
)) {
935 * The queue is full and the allocating
936 * process is not a "batcher", and not
937 * exempted by the IO scheduler
944 * bdi isn't aware of blkcg yet. As all async IOs end up
945 * root blkcg anyway, just use root blkcg state.
947 if (rl
== &q
->root_rl
)
948 blk_set_queue_congested(q
, is_sync
);
952 * Only allow batching queuers to allocate up to 50% over the defined
953 * limit of requests, otherwise we could have thousands of requests
954 * allocated with any setting of ->nr_requests
956 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
959 q
->nr_rqs
[is_sync
]++;
960 rl
->count
[is_sync
]++;
961 rl
->starved
[is_sync
] = 0;
964 * Decide whether the new request will be managed by elevator. If
965 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
966 * prevent the current elevator from being destroyed until the new
967 * request is freed. This guarantees icq's won't be destroyed and
968 * makes creating new ones safe.
970 * Also, lookup icq while holding queue_lock. If it doesn't exist,
971 * it will be created after releasing queue_lock.
973 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
974 rw_flags
|= REQ_ELVPRIV
;
976 if (et
->icq_cache
&& ioc
)
977 icq
= ioc_lookup_icq(ioc
, q
);
980 if (blk_queue_io_stat(q
))
981 rw_flags
|= REQ_IO_STAT
;
982 spin_unlock_irq(q
->queue_lock
);
984 /* allocate and init request */
985 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
990 blk_rq_set_rl(rq
, rl
);
991 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
994 if (rw_flags
& REQ_ELVPRIV
) {
995 if (unlikely(et
->icq_cache
&& !icq
)) {
997 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1003 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1006 /* @rq->elv.icq holds io_context until @rq is freed */
1008 get_io_context(icq
->ioc
);
1012 * ioc may be NULL here, and ioc_batching will be false. That's
1013 * OK, if the queue is under the request limit then requests need
1014 * not count toward the nr_batch_requests limit. There will always
1015 * be some limit enforced by BLK_BATCH_TIME.
1017 if (ioc_batching(q
, ioc
))
1018 ioc
->nr_batch_requests
--;
1020 trace_block_getrq(q
, bio
, rw_flags
& 1);
1025 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1026 * and may fail indefinitely under memory pressure and thus
1027 * shouldn't stall IO. Treat this request as !elvpriv. This will
1028 * disturb iosched and blkcg but weird is bettern than dead.
1030 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
1031 dev_name(q
->backing_dev_info
.dev
));
1033 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1036 spin_lock_irq(q
->queue_lock
);
1037 q
->nr_rqs_elvpriv
--;
1038 spin_unlock_irq(q
->queue_lock
);
1043 * Allocation failed presumably due to memory. Undo anything we
1044 * might have messed up.
1046 * Allocating task should really be put onto the front of the wait
1047 * queue, but this is pretty rare.
1049 spin_lock_irq(q
->queue_lock
);
1050 freed_request(rl
, rw_flags
);
1053 * in the very unlikely event that allocation failed and no
1054 * requests for this direction was pending, mark us starved so that
1055 * freeing of a request in the other direction will notice
1056 * us. another possible fix would be to split the rq mempool into
1060 if (unlikely(rl
->count
[is_sync
] == 0))
1061 rl
->starved
[is_sync
] = 1;
1066 * get_request - get a free request
1067 * @q: request_queue to allocate request from
1068 * @rw_flags: RW and SYNC flags
1069 * @bio: bio to allocate request for (can be %NULL)
1070 * @gfp_mask: allocation mask
1072 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1073 * function keeps retrying under memory pressure and fails iff @q is dead.
1075 * Must be callled with @q->queue_lock held and,
1076 * Returns %NULL on failure, with @q->queue_lock held.
1077 * Returns !%NULL on success, with @q->queue_lock *not held*.
1079 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1080 struct bio
*bio
, gfp_t gfp_mask
)
1082 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1084 struct request_list
*rl
;
1087 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1089 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1093 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1098 /* wait on @rl and retry */
1099 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1100 TASK_UNINTERRUPTIBLE
);
1102 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1104 spin_unlock_irq(q
->queue_lock
);
1108 * After sleeping, we become a "batching" process and will be able
1109 * to allocate at least one request, and up to a big batch of them
1110 * for a small period time. See ioc_batching, ioc_set_batching
1112 ioc_set_batching(q
, current
->io_context
);
1114 spin_lock_irq(q
->queue_lock
);
1115 finish_wait(&rl
->wait
[is_sync
], &wait
);
1120 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1124 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1126 /* create ioc upfront */
1127 create_io_context(gfp_mask
, q
->node
);
1129 spin_lock_irq(q
->queue_lock
);
1130 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1132 spin_unlock_irq(q
->queue_lock
);
1133 /* q->queue_lock is unlocked at this point */
1137 EXPORT_SYMBOL(blk_get_request
);
1140 * blk_make_request - given a bio, allocate a corresponding struct request.
1141 * @q: target request queue
1142 * @bio: The bio describing the memory mappings that will be submitted for IO.
1143 * It may be a chained-bio properly constructed by block/bio layer.
1144 * @gfp_mask: gfp flags to be used for memory allocation
1146 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1147 * type commands. Where the struct request needs to be farther initialized by
1148 * the caller. It is passed a &struct bio, which describes the memory info of
1151 * The caller of blk_make_request must make sure that bi_io_vec
1152 * are set to describe the memory buffers. That bio_data_dir() will return
1153 * the needed direction of the request. (And all bio's in the passed bio-chain
1154 * are properly set accordingly)
1156 * If called under none-sleepable conditions, mapped bio buffers must not
1157 * need bouncing, by calling the appropriate masked or flagged allocator,
1158 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1161 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1162 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1163 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1164 * completion of a bio that hasn't been submitted yet, thus resulting in a
1165 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1166 * of bio_alloc(), as that avoids the mempool deadlock.
1167 * If possible a big IO should be split into smaller parts when allocation
1168 * fails. Partial allocation should not be an error, or you risk a live-lock.
1170 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1173 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1176 return ERR_PTR(-ENOMEM
);
1179 struct bio
*bounce_bio
= bio
;
1182 blk_queue_bounce(q
, &bounce_bio
);
1183 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1184 if (unlikely(ret
)) {
1185 blk_put_request(rq
);
1186 return ERR_PTR(ret
);
1192 EXPORT_SYMBOL(blk_make_request
);
1195 * blk_requeue_request - put a request back on queue
1196 * @q: request queue where request should be inserted
1197 * @rq: request to be inserted
1200 * Drivers often keep queueing requests until the hardware cannot accept
1201 * more, when that condition happens we need to put the request back
1202 * on the queue. Must be called with queue lock held.
1204 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1206 blk_delete_timer(rq
);
1207 blk_clear_rq_complete(rq
);
1208 trace_block_rq_requeue(q
, rq
);
1210 if (blk_rq_tagged(rq
))
1211 blk_queue_end_tag(q
, rq
);
1213 BUG_ON(blk_queued_rq(rq
));
1215 elv_requeue_request(q
, rq
);
1217 EXPORT_SYMBOL(blk_requeue_request
);
1219 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1222 drive_stat_acct(rq
, 1);
1223 __elv_add_request(q
, rq
, where
);
1226 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1229 if (now
== part
->stamp
)
1232 if (part_in_flight(part
)) {
1233 __part_stat_add(cpu
, part
, time_in_queue
,
1234 part_in_flight(part
) * (now
- part
->stamp
));
1235 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1241 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1242 * @cpu: cpu number for stats access
1243 * @part: target partition
1245 * The average IO queue length and utilisation statistics are maintained
1246 * by observing the current state of the queue length and the amount of
1247 * time it has been in this state for.
1249 * Normally, that accounting is done on IO completion, but that can result
1250 * in more than a second's worth of IO being accounted for within any one
1251 * second, leading to >100% utilisation. To deal with that, we call this
1252 * function to do a round-off before returning the results when reading
1253 * /proc/diskstats. This accounts immediately for all queue usage up to
1254 * the current jiffies and restarts the counters again.
1256 void part_round_stats(int cpu
, struct hd_struct
*part
)
1258 unsigned long now
= jiffies
;
1261 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1262 part_round_stats_single(cpu
, part
, now
);
1264 EXPORT_SYMBOL_GPL(part_round_stats
);
1267 * queue lock must be held
1269 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1273 if (unlikely(--req
->ref_count
))
1276 elv_completed_request(q
, req
);
1278 /* this is a bio leak */
1279 WARN_ON(req
->bio
!= NULL
);
1282 * Request may not have originated from ll_rw_blk. if not,
1283 * it didn't come out of our reserved rq pools
1285 if (req
->cmd_flags
& REQ_ALLOCED
) {
1286 unsigned int flags
= req
->cmd_flags
;
1287 struct request_list
*rl
= blk_rq_rl(req
);
1289 BUG_ON(!list_empty(&req
->queuelist
));
1290 BUG_ON(!hlist_unhashed(&req
->hash
));
1292 blk_free_request(rl
, req
);
1293 freed_request(rl
, flags
);
1297 EXPORT_SYMBOL_GPL(__blk_put_request
);
1299 void blk_put_request(struct request
*req
)
1301 unsigned long flags
;
1302 struct request_queue
*q
= req
->q
;
1304 spin_lock_irqsave(q
->queue_lock
, flags
);
1305 __blk_put_request(q
, req
);
1306 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1308 EXPORT_SYMBOL(blk_put_request
);
1311 * blk_add_request_payload - add a payload to a request
1312 * @rq: request to update
1313 * @page: page backing the payload
1314 * @len: length of the payload.
1316 * This allows to later add a payload to an already submitted request by
1317 * a block driver. The driver needs to take care of freeing the payload
1320 * Note that this is a quite horrible hack and nothing but handling of
1321 * discard requests should ever use it.
1323 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1326 struct bio
*bio
= rq
->bio
;
1328 bio
->bi_io_vec
->bv_page
= page
;
1329 bio
->bi_io_vec
->bv_offset
= 0;
1330 bio
->bi_io_vec
->bv_len
= len
;
1334 bio
->bi_phys_segments
= 1;
1336 rq
->__data_len
= rq
->resid_len
= len
;
1337 rq
->nr_phys_segments
= 1;
1338 rq
->buffer
= bio_data(bio
);
1340 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1342 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1345 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1347 if (!ll_back_merge_fn(q
, req
, bio
))
1350 trace_block_bio_backmerge(q
, req
, bio
);
1352 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1353 blk_rq_set_mixed_merge(req
);
1355 req
->biotail
->bi_next
= bio
;
1357 req
->__data_len
+= bio
->bi_size
;
1358 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1360 drive_stat_acct(req
, 0);
1364 static bool bio_attempt_front_merge(struct request_queue
*q
,
1365 struct request
*req
, struct bio
*bio
)
1367 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1369 if (!ll_front_merge_fn(q
, req
, bio
))
1372 trace_block_bio_frontmerge(q
, req
, bio
);
1374 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1375 blk_rq_set_mixed_merge(req
);
1377 bio
->bi_next
= req
->bio
;
1381 * may not be valid. if the low level driver said
1382 * it didn't need a bounce buffer then it better
1383 * not touch req->buffer either...
1385 req
->buffer
= bio_data(bio
);
1386 req
->__sector
= bio
->bi_sector
;
1387 req
->__data_len
+= bio
->bi_size
;
1388 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1390 drive_stat_acct(req
, 0);
1395 * attempt_plug_merge - try to merge with %current's plugged list
1396 * @q: request_queue new bio is being queued at
1397 * @bio: new bio being queued
1398 * @request_count: out parameter for number of traversed plugged requests
1400 * Determine whether @bio being queued on @q can be merged with a request
1401 * on %current's plugged list. Returns %true if merge was successful,
1404 * Plugging coalesces IOs from the same issuer for the same purpose without
1405 * going through @q->queue_lock. As such it's more of an issuing mechanism
1406 * than scheduling, and the request, while may have elvpriv data, is not
1407 * added on the elevator at this point. In addition, we don't have
1408 * reliable access to the elevator outside queue lock. Only check basic
1409 * merging parameters without querying the elevator.
1411 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1412 unsigned int *request_count
)
1414 struct blk_plug
*plug
;
1418 plug
= current
->plug
;
1423 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1429 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1432 el_ret
= blk_try_merge(rq
, bio
);
1433 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1434 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1437 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1438 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1447 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1449 req
->cmd_type
= REQ_TYPE_FS
;
1451 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1452 if (bio
->bi_rw
& REQ_RAHEAD
)
1453 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1456 req
->__sector
= bio
->bi_sector
;
1457 req
->ioprio
= bio_prio(bio
);
1458 blk_rq_bio_prep(req
->q
, req
, bio
);
1461 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1463 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1464 struct blk_plug
*plug
;
1465 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1466 struct request
*req
;
1467 unsigned int request_count
= 0;
1470 * low level driver can indicate that it wants pages above a
1471 * certain limit bounced to low memory (ie for highmem, or even
1472 * ISA dma in theory)
1474 blk_queue_bounce(q
, &bio
);
1476 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1477 bio_endio(bio
, -EIO
);
1481 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1482 spin_lock_irq(q
->queue_lock
);
1483 where
= ELEVATOR_INSERT_FLUSH
;
1488 * Check if we can merge with the plugged list before grabbing
1491 if (attempt_plug_merge(q
, bio
, &request_count
))
1494 spin_lock_irq(q
->queue_lock
);
1496 el_ret
= elv_merge(q
, &req
, bio
);
1497 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1498 if (bio_attempt_back_merge(q
, req
, bio
)) {
1499 elv_bio_merged(q
, req
, bio
);
1500 if (!attempt_back_merge(q
, req
))
1501 elv_merged_request(q
, req
, el_ret
);
1504 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1505 if (bio_attempt_front_merge(q
, req
, bio
)) {
1506 elv_bio_merged(q
, req
, bio
);
1507 if (!attempt_front_merge(q
, req
))
1508 elv_merged_request(q
, req
, el_ret
);
1515 * This sync check and mask will be re-done in init_request_from_bio(),
1516 * but we need to set it earlier to expose the sync flag to the
1517 * rq allocator and io schedulers.
1519 rw_flags
= bio_data_dir(bio
);
1521 rw_flags
|= REQ_SYNC
;
1524 * Grab a free request. This is might sleep but can not fail.
1525 * Returns with the queue unlocked.
1527 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1528 if (unlikely(!req
)) {
1529 bio_endio(bio
, -ENODEV
); /* @q is dead */
1534 * After dropping the lock and possibly sleeping here, our request
1535 * may now be mergeable after it had proven unmergeable (above).
1536 * We don't worry about that case for efficiency. It won't happen
1537 * often, and the elevators are able to handle it.
1539 init_request_from_bio(req
, bio
);
1541 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1542 req
->cpu
= raw_smp_processor_id();
1544 plug
= current
->plug
;
1547 * If this is the first request added after a plug, fire
1548 * of a plug trace. If others have been added before, check
1549 * if we have multiple devices in this plug. If so, make a
1550 * note to sort the list before dispatch.
1552 if (list_empty(&plug
->list
))
1553 trace_block_plug(q
);
1555 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1556 blk_flush_plug_list(plug
, false);
1557 trace_block_plug(q
);
1560 list_add_tail(&req
->queuelist
, &plug
->list
);
1561 drive_stat_acct(req
, 1);
1563 spin_lock_irq(q
->queue_lock
);
1564 add_acct_request(q
, req
, where
);
1567 spin_unlock_irq(q
->queue_lock
);
1570 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1573 * If bio->bi_dev is a partition, remap the location
1575 static inline void blk_partition_remap(struct bio
*bio
)
1577 struct block_device
*bdev
= bio
->bi_bdev
;
1579 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1580 struct hd_struct
*p
= bdev
->bd_part
;
1582 bio
->bi_sector
+= p
->start_sect
;
1583 bio
->bi_bdev
= bdev
->bd_contains
;
1585 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1587 bio
->bi_sector
- p
->start_sect
);
1591 static void handle_bad_sector(struct bio
*bio
)
1593 char b
[BDEVNAME_SIZE
];
1595 printk(KERN_INFO
"attempt to access beyond end of device\n");
1596 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1597 bdevname(bio
->bi_bdev
, b
),
1599 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1600 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1602 set_bit(BIO_EOF
, &bio
->bi_flags
);
1605 #ifdef CONFIG_FAIL_MAKE_REQUEST
1607 static DECLARE_FAULT_ATTR(fail_make_request
);
1609 static int __init
setup_fail_make_request(char *str
)
1611 return setup_fault_attr(&fail_make_request
, str
);
1613 __setup("fail_make_request=", setup_fail_make_request
);
1615 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1617 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1620 static int __init
fail_make_request_debugfs(void)
1622 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1623 NULL
, &fail_make_request
);
1625 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1628 late_initcall(fail_make_request_debugfs
);
1630 #else /* CONFIG_FAIL_MAKE_REQUEST */
1632 static inline bool should_fail_request(struct hd_struct
*part
,
1638 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1641 * Check whether this bio extends beyond the end of the device.
1643 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1650 /* Test device or partition size, when known. */
1651 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1653 sector_t sector
= bio
->bi_sector
;
1655 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1657 * This may well happen - the kernel calls bread()
1658 * without checking the size of the device, e.g., when
1659 * mounting a device.
1661 handle_bad_sector(bio
);
1669 static noinline_for_stack
bool
1670 generic_make_request_checks(struct bio
*bio
)
1672 struct request_queue
*q
;
1673 int nr_sectors
= bio_sectors(bio
);
1675 char b
[BDEVNAME_SIZE
];
1676 struct hd_struct
*part
;
1680 if (bio_check_eod(bio
, nr_sectors
))
1683 q
= bdev_get_queue(bio
->bi_bdev
);
1686 "generic_make_request: Trying to access "
1687 "nonexistent block-device %s (%Lu)\n",
1688 bdevname(bio
->bi_bdev
, b
),
1689 (long long) bio
->bi_sector
);
1693 if (likely(bio_is_rw(bio
) &&
1694 nr_sectors
> queue_max_hw_sectors(q
))) {
1695 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1696 bdevname(bio
->bi_bdev
, b
),
1698 queue_max_hw_sectors(q
));
1702 part
= bio
->bi_bdev
->bd_part
;
1703 if (should_fail_request(part
, bio
->bi_size
) ||
1704 should_fail_request(&part_to_disk(part
)->part0
,
1709 * If this device has partitions, remap block n
1710 * of partition p to block n+start(p) of the disk.
1712 blk_partition_remap(bio
);
1714 if (bio_check_eod(bio
, nr_sectors
))
1718 * Filter flush bio's early so that make_request based
1719 * drivers without flush support don't have to worry
1722 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1723 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1730 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1731 (!blk_queue_discard(q
) ||
1732 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1737 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1743 * Various block parts want %current->io_context and lazy ioc
1744 * allocation ends up trading a lot of pain for a small amount of
1745 * memory. Just allocate it upfront. This may fail and block
1746 * layer knows how to live with it.
1748 create_io_context(GFP_ATOMIC
, q
->node
);
1750 if (blk_throtl_bio(q
, bio
))
1751 return false; /* throttled, will be resubmitted later */
1753 trace_block_bio_queue(q
, bio
);
1757 bio_endio(bio
, err
);
1762 * generic_make_request - hand a buffer to its device driver for I/O
1763 * @bio: The bio describing the location in memory and on the device.
1765 * generic_make_request() is used to make I/O requests of block
1766 * devices. It is passed a &struct bio, which describes the I/O that needs
1769 * generic_make_request() does not return any status. The
1770 * success/failure status of the request, along with notification of
1771 * completion, is delivered asynchronously through the bio->bi_end_io
1772 * function described (one day) else where.
1774 * The caller of generic_make_request must make sure that bi_io_vec
1775 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1776 * set to describe the device address, and the
1777 * bi_end_io and optionally bi_private are set to describe how
1778 * completion notification should be signaled.
1780 * generic_make_request and the drivers it calls may use bi_next if this
1781 * bio happens to be merged with someone else, and may resubmit the bio to
1782 * a lower device by calling into generic_make_request recursively, which
1783 * means the bio should NOT be touched after the call to ->make_request_fn.
1785 void generic_make_request(struct bio
*bio
)
1787 struct bio_list bio_list_on_stack
;
1789 if (!generic_make_request_checks(bio
))
1793 * We only want one ->make_request_fn to be active at a time, else
1794 * stack usage with stacked devices could be a problem. So use
1795 * current->bio_list to keep a list of requests submited by a
1796 * make_request_fn function. current->bio_list is also used as a
1797 * flag to say if generic_make_request is currently active in this
1798 * task or not. If it is NULL, then no make_request is active. If
1799 * it is non-NULL, then a make_request is active, and new requests
1800 * should be added at the tail
1802 if (current
->bio_list
) {
1803 bio_list_add(current
->bio_list
, bio
);
1807 /* following loop may be a bit non-obvious, and so deserves some
1809 * Before entering the loop, bio->bi_next is NULL (as all callers
1810 * ensure that) so we have a list with a single bio.
1811 * We pretend that we have just taken it off a longer list, so
1812 * we assign bio_list to a pointer to the bio_list_on_stack,
1813 * thus initialising the bio_list of new bios to be
1814 * added. ->make_request() may indeed add some more bios
1815 * through a recursive call to generic_make_request. If it
1816 * did, we find a non-NULL value in bio_list and re-enter the loop
1817 * from the top. In this case we really did just take the bio
1818 * of the top of the list (no pretending) and so remove it from
1819 * bio_list, and call into ->make_request() again.
1821 BUG_ON(bio
->bi_next
);
1822 bio_list_init(&bio_list_on_stack
);
1823 current
->bio_list
= &bio_list_on_stack
;
1825 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1827 q
->make_request_fn(q
, bio
);
1829 bio
= bio_list_pop(current
->bio_list
);
1831 current
->bio_list
= NULL
; /* deactivate */
1833 EXPORT_SYMBOL(generic_make_request
);
1836 * submit_bio - submit a bio to the block device layer for I/O
1837 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1838 * @bio: The &struct bio which describes the I/O
1840 * submit_bio() is very similar in purpose to generic_make_request(), and
1841 * uses that function to do most of the work. Both are fairly rough
1842 * interfaces; @bio must be presetup and ready for I/O.
1845 void submit_bio(int rw
, struct bio
*bio
)
1850 * If it's a regular read/write or a barrier with data attached,
1851 * go through the normal accounting stuff before submission.
1853 if (bio_has_data(bio
)) {
1856 if (unlikely(rw
& REQ_WRITE_SAME
))
1857 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1859 count
= bio_sectors(bio
);
1862 count_vm_events(PGPGOUT
, count
);
1864 task_io_account_read(bio
->bi_size
);
1865 count_vm_events(PGPGIN
, count
);
1868 if (unlikely(block_dump
)) {
1869 char b
[BDEVNAME_SIZE
];
1870 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1871 current
->comm
, task_pid_nr(current
),
1872 (rw
& WRITE
) ? "WRITE" : "READ",
1873 (unsigned long long)bio
->bi_sector
,
1874 bdevname(bio
->bi_bdev
, b
),
1879 generic_make_request(bio
);
1881 EXPORT_SYMBOL(submit_bio
);
1884 * blk_rq_check_limits - Helper function to check a request for the queue limit
1886 * @rq: the request being checked
1889 * @rq may have been made based on weaker limitations of upper-level queues
1890 * in request stacking drivers, and it may violate the limitation of @q.
1891 * Since the block layer and the underlying device driver trust @rq
1892 * after it is inserted to @q, it should be checked against @q before
1893 * the insertion using this generic function.
1895 * This function should also be useful for request stacking drivers
1896 * in some cases below, so export this function.
1897 * Request stacking drivers like request-based dm may change the queue
1898 * limits while requests are in the queue (e.g. dm's table swapping).
1899 * Such request stacking drivers should check those requests agaist
1900 * the new queue limits again when they dispatch those requests,
1901 * although such checkings are also done against the old queue limits
1902 * when submitting requests.
1904 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1906 if (!rq_mergeable(rq
))
1909 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1910 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1915 * queue's settings related to segment counting like q->bounce_pfn
1916 * may differ from that of other stacking queues.
1917 * Recalculate it to check the request correctly on this queue's
1920 blk_recalc_rq_segments(rq
);
1921 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1922 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1928 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1931 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1932 * @q: the queue to submit the request
1933 * @rq: the request being queued
1935 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1937 unsigned long flags
;
1938 int where
= ELEVATOR_INSERT_BACK
;
1940 if (blk_rq_check_limits(q
, rq
))
1944 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1947 spin_lock_irqsave(q
->queue_lock
, flags
);
1948 if (unlikely(blk_queue_dying(q
))) {
1949 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1954 * Submitting request must be dequeued before calling this function
1955 * because it will be linked to another request_queue
1957 BUG_ON(blk_queued_rq(rq
));
1959 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1960 where
= ELEVATOR_INSERT_FLUSH
;
1962 add_acct_request(q
, rq
, where
);
1963 if (where
== ELEVATOR_INSERT_FLUSH
)
1965 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1969 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1972 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1973 * @rq: request to examine
1976 * A request could be merge of IOs which require different failure
1977 * handling. This function determines the number of bytes which
1978 * can be failed from the beginning of the request without
1979 * crossing into area which need to be retried further.
1982 * The number of bytes to fail.
1985 * queue_lock must be held.
1987 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1989 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1990 unsigned int bytes
= 0;
1993 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1994 return blk_rq_bytes(rq
);
1997 * Currently the only 'mixing' which can happen is between
1998 * different fastfail types. We can safely fail portions
1999 * which have all the failfast bits that the first one has -
2000 * the ones which are at least as eager to fail as the first
2003 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2004 if ((bio
->bi_rw
& ff
) != ff
)
2006 bytes
+= bio
->bi_size
;
2009 /* this could lead to infinite loop */
2010 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2013 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2015 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2017 if (blk_do_io_stat(req
)) {
2018 const int rw
= rq_data_dir(req
);
2019 struct hd_struct
*part
;
2022 cpu
= part_stat_lock();
2024 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2029 static void blk_account_io_done(struct request
*req
)
2032 * Account IO completion. flush_rq isn't accounted as a
2033 * normal IO on queueing nor completion. Accounting the
2034 * containing request is enough.
2036 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2037 unsigned long duration
= jiffies
- req
->start_time
;
2038 const int rw
= rq_data_dir(req
);
2039 struct hd_struct
*part
;
2042 cpu
= part_stat_lock();
2045 part_stat_inc(cpu
, part
, ios
[rw
]);
2046 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2047 part_round_stats(cpu
, part
);
2048 part_dec_in_flight(part
, rw
);
2050 hd_struct_put(part
);
2056 * blk_peek_request - peek at the top of a request queue
2057 * @q: request queue to peek at
2060 * Return the request at the top of @q. The returned request
2061 * should be started using blk_start_request() before LLD starts
2065 * Pointer to the request at the top of @q if available. Null
2069 * queue_lock must be held.
2071 struct request
*blk_peek_request(struct request_queue
*q
)
2076 while ((rq
= __elv_next_request(q
)) != NULL
) {
2077 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2079 * This is the first time the device driver
2080 * sees this request (possibly after
2081 * requeueing). Notify IO scheduler.
2083 if (rq
->cmd_flags
& REQ_SORTED
)
2084 elv_activate_rq(q
, rq
);
2087 * just mark as started even if we don't start
2088 * it, a request that has been delayed should
2089 * not be passed by new incoming requests
2091 rq
->cmd_flags
|= REQ_STARTED
;
2092 trace_block_rq_issue(q
, rq
);
2095 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2096 q
->end_sector
= rq_end_sector(rq
);
2097 q
->boundary_rq
= NULL
;
2100 if (rq
->cmd_flags
& REQ_DONTPREP
)
2103 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2105 * make sure space for the drain appears we
2106 * know we can do this because max_hw_segments
2107 * has been adjusted to be one fewer than the
2110 rq
->nr_phys_segments
++;
2116 ret
= q
->prep_rq_fn(q
, rq
);
2117 if (ret
== BLKPREP_OK
) {
2119 } else if (ret
== BLKPREP_DEFER
) {
2121 * the request may have been (partially) prepped.
2122 * we need to keep this request in the front to
2123 * avoid resource deadlock. REQ_STARTED will
2124 * prevent other fs requests from passing this one.
2126 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2127 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2129 * remove the space for the drain we added
2130 * so that we don't add it again
2132 --rq
->nr_phys_segments
;
2137 } else if (ret
== BLKPREP_KILL
) {
2138 rq
->cmd_flags
|= REQ_QUIET
;
2140 * Mark this request as started so we don't trigger
2141 * any debug logic in the end I/O path.
2143 blk_start_request(rq
);
2144 __blk_end_request_all(rq
, -EIO
);
2146 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2153 EXPORT_SYMBOL(blk_peek_request
);
2155 void blk_dequeue_request(struct request
*rq
)
2157 struct request_queue
*q
= rq
->q
;
2159 BUG_ON(list_empty(&rq
->queuelist
));
2160 BUG_ON(ELV_ON_HASH(rq
));
2162 list_del_init(&rq
->queuelist
);
2165 * the time frame between a request being removed from the lists
2166 * and to it is freed is accounted as io that is in progress at
2169 if (blk_account_rq(rq
)) {
2170 q
->in_flight
[rq_is_sync(rq
)]++;
2171 set_io_start_time_ns(rq
);
2176 * blk_start_request - start request processing on the driver
2177 * @req: request to dequeue
2180 * Dequeue @req and start timeout timer on it. This hands off the
2181 * request to the driver.
2183 * Block internal functions which don't want to start timer should
2184 * call blk_dequeue_request().
2187 * queue_lock must be held.
2189 void blk_start_request(struct request
*req
)
2191 blk_dequeue_request(req
);
2194 * We are now handing the request to the hardware, initialize
2195 * resid_len to full count and add the timeout handler.
2197 req
->resid_len
= blk_rq_bytes(req
);
2198 if (unlikely(blk_bidi_rq(req
)))
2199 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2203 EXPORT_SYMBOL(blk_start_request
);
2206 * blk_fetch_request - fetch a request from a request queue
2207 * @q: request queue to fetch a request from
2210 * Return the request at the top of @q. The request is started on
2211 * return and LLD can start processing it immediately.
2214 * Pointer to the request at the top of @q if available. Null
2218 * queue_lock must be held.
2220 struct request
*blk_fetch_request(struct request_queue
*q
)
2224 rq
= blk_peek_request(q
);
2226 blk_start_request(rq
);
2229 EXPORT_SYMBOL(blk_fetch_request
);
2232 * blk_update_request - Special helper function for request stacking drivers
2233 * @req: the request being processed
2234 * @error: %0 for success, < %0 for error
2235 * @nr_bytes: number of bytes to complete @req
2238 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2239 * the request structure even if @req doesn't have leftover.
2240 * If @req has leftover, sets it up for the next range of segments.
2242 * This special helper function is only for request stacking drivers
2243 * (e.g. request-based dm) so that they can handle partial completion.
2244 * Actual device drivers should use blk_end_request instead.
2246 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2247 * %false return from this function.
2250 * %false - this request doesn't have any more data
2251 * %true - this request has more data
2253 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2255 int total_bytes
, bio_nbytes
, next_idx
= 0;
2261 trace_block_rq_complete(req
->q
, req
);
2264 * For fs requests, rq is just carrier of independent bio's
2265 * and each partial completion should be handled separately.
2266 * Reset per-request error on each partial completion.
2268 * TODO: tj: This is too subtle. It would be better to let
2269 * low level drivers do what they see fit.
2271 if (req
->cmd_type
== REQ_TYPE_FS
)
2274 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2275 !(req
->cmd_flags
& REQ_QUIET
)) {
2280 error_type
= "recoverable transport";
2283 error_type
= "critical target";
2286 error_type
= "critical nexus";
2293 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2294 error_type
, req
->rq_disk
?
2295 req
->rq_disk
->disk_name
: "?",
2296 (unsigned long long)blk_rq_pos(req
));
2300 blk_account_io_completion(req
, nr_bytes
);
2302 total_bytes
= bio_nbytes
= 0;
2303 while ((bio
= req
->bio
) != NULL
) {
2306 if (nr_bytes
>= bio
->bi_size
) {
2307 req
->bio
= bio
->bi_next
;
2308 nbytes
= bio
->bi_size
;
2309 req_bio_endio(req
, bio
, nbytes
, error
);
2313 int idx
= bio
->bi_idx
+ next_idx
;
2315 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2316 blk_dump_rq_flags(req
, "__end_that");
2317 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2318 __func__
, idx
, bio
->bi_vcnt
);
2322 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2323 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2326 * not a complete bvec done
2328 if (unlikely(nbytes
> nr_bytes
)) {
2329 bio_nbytes
+= nr_bytes
;
2330 total_bytes
+= nr_bytes
;
2335 * advance to the next vector
2338 bio_nbytes
+= nbytes
;
2341 total_bytes
+= nbytes
;
2347 * end more in this run, or just return 'not-done'
2349 if (unlikely(nr_bytes
<= 0))
2359 * Reset counters so that the request stacking driver
2360 * can find how many bytes remain in the request
2363 req
->__data_len
= 0;
2368 * if the request wasn't completed, update state
2371 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2372 bio
->bi_idx
+= next_idx
;
2373 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2374 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2377 req
->__data_len
-= total_bytes
;
2378 req
->buffer
= bio_data(req
->bio
);
2380 /* update sector only for requests with clear definition of sector */
2381 if (req
->cmd_type
== REQ_TYPE_FS
)
2382 req
->__sector
+= total_bytes
>> 9;
2384 /* mixed attributes always follow the first bio */
2385 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2386 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2387 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2391 * If total number of sectors is less than the first segment
2392 * size, something has gone terribly wrong.
2394 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2395 blk_dump_rq_flags(req
, "request botched");
2396 req
->__data_len
= blk_rq_cur_bytes(req
);
2399 /* recalculate the number of segments */
2400 blk_recalc_rq_segments(req
);
2404 EXPORT_SYMBOL_GPL(blk_update_request
);
2406 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2407 unsigned int nr_bytes
,
2408 unsigned int bidi_bytes
)
2410 if (blk_update_request(rq
, error
, nr_bytes
))
2413 /* Bidi request must be completed as a whole */
2414 if (unlikely(blk_bidi_rq(rq
)) &&
2415 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2418 if (blk_queue_add_random(rq
->q
))
2419 add_disk_randomness(rq
->rq_disk
);
2425 * blk_unprep_request - unprepare a request
2428 * This function makes a request ready for complete resubmission (or
2429 * completion). It happens only after all error handling is complete,
2430 * so represents the appropriate moment to deallocate any resources
2431 * that were allocated to the request in the prep_rq_fn. The queue
2432 * lock is held when calling this.
2434 void blk_unprep_request(struct request
*req
)
2436 struct request_queue
*q
= req
->q
;
2438 req
->cmd_flags
&= ~REQ_DONTPREP
;
2439 if (q
->unprep_rq_fn
)
2440 q
->unprep_rq_fn(q
, req
);
2442 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2445 * queue lock must be held
2447 static void blk_finish_request(struct request
*req
, int error
)
2449 if (blk_rq_tagged(req
))
2450 blk_queue_end_tag(req
->q
, req
);
2452 BUG_ON(blk_queued_rq(req
));
2454 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2455 laptop_io_completion(&req
->q
->backing_dev_info
);
2457 blk_delete_timer(req
);
2459 if (req
->cmd_flags
& REQ_DONTPREP
)
2460 blk_unprep_request(req
);
2463 blk_account_io_done(req
);
2466 req
->end_io(req
, error
);
2468 if (blk_bidi_rq(req
))
2469 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2471 __blk_put_request(req
->q
, req
);
2476 * blk_end_bidi_request - Complete a bidi request
2477 * @rq: the request to complete
2478 * @error: %0 for success, < %0 for error
2479 * @nr_bytes: number of bytes to complete @rq
2480 * @bidi_bytes: number of bytes to complete @rq->next_rq
2483 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2484 * Drivers that supports bidi can safely call this member for any
2485 * type of request, bidi or uni. In the later case @bidi_bytes is
2489 * %false - we are done with this request
2490 * %true - still buffers pending for this request
2492 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2493 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2495 struct request_queue
*q
= rq
->q
;
2496 unsigned long flags
;
2498 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2501 spin_lock_irqsave(q
->queue_lock
, flags
);
2502 blk_finish_request(rq
, error
);
2503 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2509 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2510 * @rq: the request to complete
2511 * @error: %0 for success, < %0 for error
2512 * @nr_bytes: number of bytes to complete @rq
2513 * @bidi_bytes: number of bytes to complete @rq->next_rq
2516 * Identical to blk_end_bidi_request() except that queue lock is
2517 * assumed to be locked on entry and remains so on return.
2520 * %false - we are done with this request
2521 * %true - still buffers pending for this request
2523 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2524 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2526 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2529 blk_finish_request(rq
, error
);
2535 * blk_end_request - Helper function for drivers to complete the request.
2536 * @rq: the request being processed
2537 * @error: %0 for success, < %0 for error
2538 * @nr_bytes: number of bytes to complete
2541 * Ends I/O on a number of bytes attached to @rq.
2542 * If @rq has leftover, sets it up for the next range of segments.
2545 * %false - we are done with this request
2546 * %true - still buffers pending for this request
2548 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2550 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2552 EXPORT_SYMBOL(blk_end_request
);
2555 * blk_end_request_all - Helper function for drives to finish the request.
2556 * @rq: the request to finish
2557 * @error: %0 for success, < %0 for error
2560 * Completely finish @rq.
2562 void blk_end_request_all(struct request
*rq
, int error
)
2565 unsigned int bidi_bytes
= 0;
2567 if (unlikely(blk_bidi_rq(rq
)))
2568 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2570 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2573 EXPORT_SYMBOL(blk_end_request_all
);
2576 * blk_end_request_cur - Helper function to finish the current request chunk.
2577 * @rq: the request to finish the current chunk for
2578 * @error: %0 for success, < %0 for error
2581 * Complete the current consecutively mapped chunk from @rq.
2584 * %false - we are done with this request
2585 * %true - still buffers pending for this request
2587 bool blk_end_request_cur(struct request
*rq
, int error
)
2589 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2591 EXPORT_SYMBOL(blk_end_request_cur
);
2594 * blk_end_request_err - Finish a request till the next failure boundary.
2595 * @rq: the request to finish till the next failure boundary for
2596 * @error: must be negative errno
2599 * Complete @rq till the next failure boundary.
2602 * %false - we are done with this request
2603 * %true - still buffers pending for this request
2605 bool blk_end_request_err(struct request
*rq
, int error
)
2607 WARN_ON(error
>= 0);
2608 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2610 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2613 * __blk_end_request - Helper function for drivers to complete the request.
2614 * @rq: the request being processed
2615 * @error: %0 for success, < %0 for error
2616 * @nr_bytes: number of bytes to complete
2619 * Must be called with queue lock held unlike blk_end_request().
2622 * %false - we are done with this request
2623 * %true - still buffers pending for this request
2625 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2627 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2629 EXPORT_SYMBOL(__blk_end_request
);
2632 * __blk_end_request_all - Helper function for drives to finish the request.
2633 * @rq: the request to finish
2634 * @error: %0 for success, < %0 for error
2637 * Completely finish @rq. Must be called with queue lock held.
2639 void __blk_end_request_all(struct request
*rq
, int error
)
2642 unsigned int bidi_bytes
= 0;
2644 if (unlikely(blk_bidi_rq(rq
)))
2645 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2647 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2650 EXPORT_SYMBOL(__blk_end_request_all
);
2653 * __blk_end_request_cur - Helper function to finish the current request chunk.
2654 * @rq: the request to finish the current chunk for
2655 * @error: %0 for success, < %0 for error
2658 * Complete the current consecutively mapped chunk from @rq. Must
2659 * be called with queue lock held.
2662 * %false - we are done with this request
2663 * %true - still buffers pending for this request
2665 bool __blk_end_request_cur(struct request
*rq
, int error
)
2667 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2669 EXPORT_SYMBOL(__blk_end_request_cur
);
2672 * __blk_end_request_err - Finish a request till the next failure boundary.
2673 * @rq: the request to finish till the next failure boundary for
2674 * @error: must be negative errno
2677 * Complete @rq till the next failure boundary. Must be called
2678 * with queue lock held.
2681 * %false - we are done with this request
2682 * %true - still buffers pending for this request
2684 bool __blk_end_request_err(struct request
*rq
, int error
)
2686 WARN_ON(error
>= 0);
2687 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2689 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2691 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2694 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2695 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2697 if (bio_has_data(bio
)) {
2698 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2699 rq
->buffer
= bio_data(bio
);
2701 rq
->__data_len
= bio
->bi_size
;
2702 rq
->bio
= rq
->biotail
= bio
;
2705 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2708 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2710 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2711 * @rq: the request to be flushed
2714 * Flush all pages in @rq.
2716 void rq_flush_dcache_pages(struct request
*rq
)
2718 struct req_iterator iter
;
2719 struct bio_vec
*bvec
;
2721 rq_for_each_segment(bvec
, rq
, iter
)
2722 flush_dcache_page(bvec
->bv_page
);
2724 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2728 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2729 * @q : the queue of the device being checked
2732 * Check if underlying low-level drivers of a device are busy.
2733 * If the drivers want to export their busy state, they must set own
2734 * exporting function using blk_queue_lld_busy() first.
2736 * Basically, this function is used only by request stacking drivers
2737 * to stop dispatching requests to underlying devices when underlying
2738 * devices are busy. This behavior helps more I/O merging on the queue
2739 * of the request stacking driver and prevents I/O throughput regression
2740 * on burst I/O load.
2743 * 0 - Not busy (The request stacking driver should dispatch request)
2744 * 1 - Busy (The request stacking driver should stop dispatching request)
2746 int blk_lld_busy(struct request_queue
*q
)
2749 return q
->lld_busy_fn(q
);
2753 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2756 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2757 * @rq: the clone request to be cleaned up
2760 * Free all bios in @rq for a cloned request.
2762 void blk_rq_unprep_clone(struct request
*rq
)
2766 while ((bio
= rq
->bio
) != NULL
) {
2767 rq
->bio
= bio
->bi_next
;
2772 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2775 * Copy attributes of the original request to the clone request.
2776 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2778 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2780 dst
->cpu
= src
->cpu
;
2781 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2782 dst
->cmd_type
= src
->cmd_type
;
2783 dst
->__sector
= blk_rq_pos(src
);
2784 dst
->__data_len
= blk_rq_bytes(src
);
2785 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2786 dst
->ioprio
= src
->ioprio
;
2787 dst
->extra_len
= src
->extra_len
;
2791 * blk_rq_prep_clone - Helper function to setup clone request
2792 * @rq: the request to be setup
2793 * @rq_src: original request to be cloned
2794 * @bs: bio_set that bios for clone are allocated from
2795 * @gfp_mask: memory allocation mask for bio
2796 * @bio_ctr: setup function to be called for each clone bio.
2797 * Returns %0 for success, non %0 for failure.
2798 * @data: private data to be passed to @bio_ctr
2801 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2802 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2803 * are not copied, and copying such parts is the caller's responsibility.
2804 * Also, pages which the original bios are pointing to are not copied
2805 * and the cloned bios just point same pages.
2806 * So cloned bios must be completed before original bios, which means
2807 * the caller must complete @rq before @rq_src.
2809 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2810 struct bio_set
*bs
, gfp_t gfp_mask
,
2811 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2814 struct bio
*bio
, *bio_src
;
2819 blk_rq_init(NULL
, rq
);
2821 __rq_for_each_bio(bio_src
, rq_src
) {
2822 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2826 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2830 rq
->biotail
->bi_next
= bio
;
2833 rq
->bio
= rq
->biotail
= bio
;
2836 __blk_rq_prep_clone(rq
, rq_src
);
2843 blk_rq_unprep_clone(rq
);
2847 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2849 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2851 return queue_work(kblockd_workqueue
, work
);
2853 EXPORT_SYMBOL(kblockd_schedule_work
);
2855 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2856 struct delayed_work
*dwork
, unsigned long delay
)
2858 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2860 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2862 #define PLUG_MAGIC 0x91827364
2865 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2866 * @plug: The &struct blk_plug that needs to be initialized
2869 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2870 * pending I/O should the task end up blocking between blk_start_plug() and
2871 * blk_finish_plug(). This is important from a performance perspective, but
2872 * also ensures that we don't deadlock. For instance, if the task is blocking
2873 * for a memory allocation, memory reclaim could end up wanting to free a
2874 * page belonging to that request that is currently residing in our private
2875 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2876 * this kind of deadlock.
2878 void blk_start_plug(struct blk_plug
*plug
)
2880 struct task_struct
*tsk
= current
;
2882 plug
->magic
= PLUG_MAGIC
;
2883 INIT_LIST_HEAD(&plug
->list
);
2884 INIT_LIST_HEAD(&plug
->cb_list
);
2887 * If this is a nested plug, don't actually assign it. It will be
2888 * flushed on its own.
2892 * Store ordering should not be needed here, since a potential
2893 * preempt will imply a full memory barrier
2898 EXPORT_SYMBOL(blk_start_plug
);
2900 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2902 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2903 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2905 return !(rqa
->q
< rqb
->q
||
2906 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
2910 * If 'from_schedule' is true, then postpone the dispatch of requests
2911 * until a safe kblockd context. We due this to avoid accidental big
2912 * additional stack usage in driver dispatch, in places where the originally
2913 * plugger did not intend it.
2915 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2917 __releases(q
->queue_lock
)
2919 trace_block_unplug(q
, depth
, !from_schedule
);
2922 blk_run_queue_async(q
);
2925 spin_unlock(q
->queue_lock
);
2928 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
2930 LIST_HEAD(callbacks
);
2932 while (!list_empty(&plug
->cb_list
)) {
2933 list_splice_init(&plug
->cb_list
, &callbacks
);
2935 while (!list_empty(&callbacks
)) {
2936 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2939 list_del(&cb
->list
);
2940 cb
->callback(cb
, from_schedule
);
2945 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
2948 struct blk_plug
*plug
= current
->plug
;
2949 struct blk_plug_cb
*cb
;
2954 list_for_each_entry(cb
, &plug
->cb_list
, list
)
2955 if (cb
->callback
== unplug
&& cb
->data
== data
)
2958 /* Not currently on the callback list */
2959 BUG_ON(size
< sizeof(*cb
));
2960 cb
= kzalloc(size
, GFP_ATOMIC
);
2963 cb
->callback
= unplug
;
2964 list_add(&cb
->list
, &plug
->cb_list
);
2968 EXPORT_SYMBOL(blk_check_plugged
);
2970 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2972 struct request_queue
*q
;
2973 unsigned long flags
;
2978 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2980 flush_plug_callbacks(plug
, from_schedule
);
2981 if (list_empty(&plug
->list
))
2984 list_splice_init(&plug
->list
, &list
);
2986 list_sort(NULL
, &list
, plug_rq_cmp
);
2992 * Save and disable interrupts here, to avoid doing it for every
2993 * queue lock we have to take.
2995 local_irq_save(flags
);
2996 while (!list_empty(&list
)) {
2997 rq
= list_entry_rq(list
.next
);
2998 list_del_init(&rq
->queuelist
);
3002 * This drops the queue lock
3005 queue_unplugged(q
, depth
, from_schedule
);
3008 spin_lock(q
->queue_lock
);
3012 * Short-circuit if @q is dead
3014 if (unlikely(blk_queue_dying(q
))) {
3015 __blk_end_request_all(rq
, -ENODEV
);
3020 * rq is already accounted, so use raw insert
3022 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3023 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3025 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3031 * This drops the queue lock
3034 queue_unplugged(q
, depth
, from_schedule
);
3036 local_irq_restore(flags
);
3039 void blk_finish_plug(struct blk_plug
*plug
)
3041 blk_flush_plug_list(plug
, false);
3043 if (plug
== current
->plug
)
3044 current
->plug
= NULL
;
3046 EXPORT_SYMBOL(blk_finish_plug
);
3048 int __init
blk_dev_init(void)
3050 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3051 sizeof(((struct request
*)0)->cmd_flags
));
3053 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3054 kblockd_workqueue
= alloc_workqueue("kblockd",
3055 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3056 if (!kblockd_workqueue
)
3057 panic("Failed to create kblockd\n");
3059 request_cachep
= kmem_cache_create("blkdev_requests",
3060 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3062 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3063 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);