UBI: rename sv to av
[linux-2.6.git] / drivers / mtd / ubi / scan.c
blob795d5ed70424ebb09cccc01087ab04861b4c420a
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * UBI scanning sub-system.
24 * This sub-system is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
27 * The attaching information is represented by a &struct ubi_attach_info'
28 * object. Information about found volumes is represented by
29 * &struct ubi_ainf_volume objects which are kept in volume RB-tree with root
30 * at the @volumes field. The RB-tree is indexed by the volume ID.
32 * Scanned logical eraseblocks are represented by &struct ubi_ainf_peb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_ainf_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
50 * UBI tries to distinguish between 2 types of corruptions.
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these case
55 * - we may lose only the data which was being written to the media just before
56 * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to
57 * handle such data losses (e.g., by using the FS journal).
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
63 * 2. Unexpected corruptions which are not caused by power cuts. During
64 * scanning, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
69 * However, it is difficult to reliably distinguish between these types of
70 * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2
71 * if the VID header is corrupted and the data area does not contain all 0xFFs,
72 * and there were no bit-flips or integrity errors while reading the data area.
73 * Otherwise UBI assumes corruption type 1. So the decision criteria are as
74 * follows.
75 * o If the data area contains only 0xFFs, there is no data, and it is safe
76 * to just erase this PEB - this is corruption type 1.
77 * o If the data area has bit-flips or data integrity errors (ECC errors on
78 * NAND), it is probably a PEB which was being erased when power cut
79 * happened, so this is corruption type 1. However, this is just a guess,
80 * which might be wrong.
81 * o Otherwise this it corruption type 2.
84 #include <linux/err.h>
85 #include <linux/slab.h>
86 #include <linux/crc32.h>
87 #include <linux/math64.h>
88 #include <linux/random.h>
89 #include "ubi.h"
91 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93 /* Temporary variables used during scanning */
94 static struct ubi_ec_hdr *ech;
95 static struct ubi_vid_hdr *vidh;
97 /**
98 * add_to_list - add physical eraseblock to a list.
99 * @ai: attaching information
100 * @pnum: physical eraseblock number to add
101 * @ec: erase counter of the physical eraseblock
102 * @to_head: if not zero, add to the head of the list
103 * @list: the list to add to
105 * This function adds physical eraseblock @pnum to free, erase, or alien lists.
106 * If @to_head is not zero, PEB will be added to the head of the list, which
107 * basically means it will be processed first later. E.g., we add corrupted
108 * PEBs (corrupted due to power cuts) to the head of the erase list to make
109 * sure we erase them first and get rid of corruptions ASAP. This function
110 * returns zero in case of success and a negative error code in case of
111 * failure.
113 static int add_to_list(struct ubi_attach_info *ai, int pnum, int ec,
114 int to_head, struct list_head *list)
116 struct ubi_ainf_peb *aeb;
118 if (list == &ai->free) {
119 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
120 } else if (list == &ai->erase) {
121 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
122 } else if (list == &ai->alien) {
123 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
124 ai->alien_peb_count += 1;
125 } else
126 BUG();
128 aeb = kmem_cache_alloc(ai->scan_leb_slab, GFP_KERNEL);
129 if (!aeb)
130 return -ENOMEM;
132 aeb->pnum = pnum;
133 aeb->ec = ec;
134 if (to_head)
135 list_add(&aeb->u.list, list);
136 else
137 list_add_tail(&aeb->u.list, list);
138 return 0;
142 * add_corrupted - add a corrupted physical eraseblock.
143 * @ai: attaching information
144 * @pnum: physical eraseblock number to add
145 * @ec: erase counter of the physical eraseblock
147 * This function adds corrupted physical eraseblock @pnum to the 'corr' list.
148 * The corruption was presumably not caused by a power cut. Returns zero in
149 * case of success and a negative error code in case of failure.
151 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
153 struct ubi_ainf_peb *aeb;
155 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
157 aeb = kmem_cache_alloc(ai->scan_leb_slab, GFP_KERNEL);
158 if (!aeb)
159 return -ENOMEM;
161 ai->corr_peb_count += 1;
162 aeb->pnum = pnum;
163 aeb->ec = ec;
164 list_add(&aeb->u.list, &ai->corr);
165 return 0;
169 * validate_vid_hdr - check volume identifier header.
170 * @vid_hdr: the volume identifier header to check
171 * @av: information about the volume this logical eraseblock belongs to
172 * @pnum: physical eraseblock number the VID header came from
174 * This function checks that data stored in @vid_hdr is consistent. Returns
175 * non-zero if an inconsistency was found and zero if not.
177 * Note, UBI does sanity check of everything it reads from the flash media.
178 * Most of the checks are done in the I/O sub-system. Here we check that the
179 * information in the VID header is consistent to the information in other VID
180 * headers of the same volume.
182 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
183 const struct ubi_ainf_volume *av, int pnum)
185 int vol_type = vid_hdr->vol_type;
186 int vol_id = be32_to_cpu(vid_hdr->vol_id);
187 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
188 int data_pad = be32_to_cpu(vid_hdr->data_pad);
190 if (av->leb_count != 0) {
191 int av_vol_type;
194 * This is not the first logical eraseblock belonging to this
195 * volume. Ensure that the data in its VID header is consistent
196 * to the data in previous logical eraseblock headers.
199 if (vol_id != av->vol_id) {
200 ubi_err("inconsistent vol_id");
201 goto bad;
204 if (av->vol_type == UBI_STATIC_VOLUME)
205 av_vol_type = UBI_VID_STATIC;
206 else
207 av_vol_type = UBI_VID_DYNAMIC;
209 if (vol_type != av_vol_type) {
210 ubi_err("inconsistent vol_type");
211 goto bad;
214 if (used_ebs != av->used_ebs) {
215 ubi_err("inconsistent used_ebs");
216 goto bad;
219 if (data_pad != av->data_pad) {
220 ubi_err("inconsistent data_pad");
221 goto bad;
225 return 0;
227 bad:
228 ubi_err("inconsistent VID header at PEB %d", pnum);
229 ubi_dump_vid_hdr(vid_hdr);
230 ubi_dump_av(av);
231 return -EINVAL;
235 * add_volume - add volume to the attaching information.
236 * @ai: attaching information
237 * @vol_id: ID of the volume to add
238 * @pnum: physical eraseblock number
239 * @vid_hdr: volume identifier header
241 * If the volume corresponding to the @vid_hdr logical eraseblock is already
242 * present in the attaching information, this function does nothing. Otherwise
243 * it adds corresponding volume to the attaching information. Returns a pointer
244 * to the scanning volume object in case of success and a negative error code
245 * in case of failure.
247 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
248 int vol_id, int pnum,
249 const struct ubi_vid_hdr *vid_hdr)
251 struct ubi_ainf_volume *av;
252 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
254 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
256 /* Walk the volume RB-tree to look if this volume is already present */
257 while (*p) {
258 parent = *p;
259 av = rb_entry(parent, struct ubi_ainf_volume, rb);
261 if (vol_id == av->vol_id)
262 return av;
264 if (vol_id > av->vol_id)
265 p = &(*p)->rb_left;
266 else
267 p = &(*p)->rb_right;
270 /* The volume is absent - add it */
271 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
272 if (!av)
273 return ERR_PTR(-ENOMEM);
275 av->highest_lnum = av->leb_count = 0;
276 av->vol_id = vol_id;
277 av->root = RB_ROOT;
278 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
279 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
280 av->compat = vid_hdr->compat;
281 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
282 : UBI_STATIC_VOLUME;
283 if (vol_id > ai->highest_vol_id)
284 ai->highest_vol_id = vol_id;
286 rb_link_node(&av->rb, parent, p);
287 rb_insert_color(&av->rb, &ai->volumes);
288 ai->vols_found += 1;
289 dbg_bld("added volume %d", vol_id);
290 return av;
294 * compare_lebs - find out which logical eraseblock is newer.
295 * @ubi: UBI device description object
296 * @aeb: first logical eraseblock to compare
297 * @pnum: physical eraseblock number of the second logical eraseblock to
298 * compare
299 * @vid_hdr: volume identifier header of the second logical eraseblock
301 * This function compares 2 copies of a LEB and informs which one is newer. In
302 * case of success this function returns a positive value, in case of failure, a
303 * negative error code is returned. The success return codes use the following
304 * bits:
305 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
306 * second PEB (described by @pnum and @vid_hdr);
307 * o bit 0 is set: the second PEB is newer;
308 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
309 * o bit 1 is set: bit-flips were detected in the newer LEB;
310 * o bit 2 is cleared: the older LEB is not corrupted;
311 * o bit 2 is set: the older LEB is corrupted.
313 static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
314 int pnum, const struct ubi_vid_hdr *vid_hdr)
316 void *buf;
317 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
318 uint32_t data_crc, crc;
319 struct ubi_vid_hdr *vh = NULL;
320 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
322 if (sqnum2 == aeb->sqnum) {
324 * This must be a really ancient UBI image which has been
325 * created before sequence numbers support has been added. At
326 * that times we used 32-bit LEB versions stored in logical
327 * eraseblocks. That was before UBI got into mainline. We do not
328 * support these images anymore. Well, those images still work,
329 * but only if no unclean reboots happened.
331 ubi_err("unsupported on-flash UBI format\n");
332 return -EINVAL;
335 /* Obviously the LEB with lower sequence counter is older */
336 second_is_newer = (sqnum2 > aeb->sqnum);
339 * Now we know which copy is newer. If the copy flag of the PEB with
340 * newer version is not set, then we just return, otherwise we have to
341 * check data CRC. For the second PEB we already have the VID header,
342 * for the first one - we'll need to re-read it from flash.
344 * Note: this may be optimized so that we wouldn't read twice.
347 if (second_is_newer) {
348 if (!vid_hdr->copy_flag) {
349 /* It is not a copy, so it is newer */
350 dbg_bld("second PEB %d is newer, copy_flag is unset",
351 pnum);
352 return 1;
354 } else {
355 if (!aeb->copy_flag) {
356 /* It is not a copy, so it is newer */
357 dbg_bld("first PEB %d is newer, copy_flag is unset",
358 pnum);
359 return bitflips << 1;
362 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
363 if (!vh)
364 return -ENOMEM;
366 pnum = aeb->pnum;
367 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
368 if (err) {
369 if (err == UBI_IO_BITFLIPS)
370 bitflips = 1;
371 else {
372 ubi_err("VID of PEB %d header is bad, but it "
373 "was OK earlier, err %d", pnum, err);
374 if (err > 0)
375 err = -EIO;
377 goto out_free_vidh;
381 vid_hdr = vh;
384 /* Read the data of the copy and check the CRC */
386 len = be32_to_cpu(vid_hdr->data_size);
387 buf = vmalloc(len);
388 if (!buf) {
389 err = -ENOMEM;
390 goto out_free_vidh;
393 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
394 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
395 goto out_free_buf;
397 data_crc = be32_to_cpu(vid_hdr->data_crc);
398 crc = crc32(UBI_CRC32_INIT, buf, len);
399 if (crc != data_crc) {
400 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
401 pnum, crc, data_crc);
402 corrupted = 1;
403 bitflips = 0;
404 second_is_newer = !second_is_newer;
405 } else {
406 dbg_bld("PEB %d CRC is OK", pnum);
407 bitflips = !!err;
410 vfree(buf);
411 ubi_free_vid_hdr(ubi, vh);
413 if (second_is_newer)
414 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
415 else
416 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
418 return second_is_newer | (bitflips << 1) | (corrupted << 2);
420 out_free_buf:
421 vfree(buf);
422 out_free_vidh:
423 ubi_free_vid_hdr(ubi, vh);
424 return err;
428 * ubi_scan_add_used - add physical eraseblock to the attaching information.
429 * @ubi: UBI device description object
430 * @ai: attaching information
431 * @pnum: the physical eraseblock number
432 * @ec: erase counter
433 * @vid_hdr: the volume identifier header
434 * @bitflips: if bit-flips were detected when this physical eraseblock was read
436 * This function adds information about a used physical eraseblock to the
437 * 'used' tree of the corresponding volume. The function is rather complex
438 * because it has to handle cases when this is not the first physical
439 * eraseblock belonging to the same logical eraseblock, and the newer one has
440 * to be picked, while the older one has to be dropped. This function returns
441 * zero in case of success and a negative error code in case of failure.
443 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_attach_info *ai,
444 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
445 int bitflips)
447 int err, vol_id, lnum;
448 unsigned long long sqnum;
449 struct ubi_ainf_volume *av;
450 struct ubi_ainf_peb *aeb;
451 struct rb_node **p, *parent = NULL;
453 vol_id = be32_to_cpu(vid_hdr->vol_id);
454 lnum = be32_to_cpu(vid_hdr->lnum);
455 sqnum = be64_to_cpu(vid_hdr->sqnum);
457 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
458 pnum, vol_id, lnum, ec, sqnum, bitflips);
460 av = add_volume(ai, vol_id, pnum, vid_hdr);
461 if (IS_ERR(av))
462 return PTR_ERR(av);
464 if (ai->max_sqnum < sqnum)
465 ai->max_sqnum = sqnum;
468 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
469 * if this is the first instance of this logical eraseblock or not.
471 p = &av->root.rb_node;
472 while (*p) {
473 int cmp_res;
475 parent = *p;
476 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
477 if (lnum != aeb->lnum) {
478 if (lnum < aeb->lnum)
479 p = &(*p)->rb_left;
480 else
481 p = &(*p)->rb_right;
482 continue;
486 * There is already a physical eraseblock describing the same
487 * logical eraseblock present.
490 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
491 aeb->pnum, aeb->sqnum, aeb->ec);
494 * Make sure that the logical eraseblocks have different
495 * sequence numbers. Otherwise the image is bad.
497 * However, if the sequence number is zero, we assume it must
498 * be an ancient UBI image from the era when UBI did not have
499 * sequence numbers. We still can attach these images, unless
500 * there is a need to distinguish between old and new
501 * eraseblocks, in which case we'll refuse the image in
502 * 'compare_lebs()'. In other words, we attach old clean
503 * images, but refuse attaching old images with duplicated
504 * logical eraseblocks because there was an unclean reboot.
506 if (aeb->sqnum == sqnum && sqnum != 0) {
507 ubi_err("two LEBs with same sequence number %llu",
508 sqnum);
509 ubi_dump_aeb(aeb, 0);
510 ubi_dump_vid_hdr(vid_hdr);
511 return -EINVAL;
515 * Now we have to drop the older one and preserve the newer
516 * one.
518 cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr);
519 if (cmp_res < 0)
520 return cmp_res;
522 if (cmp_res & 1) {
524 * This logical eraseblock is newer than the one
525 * found earlier.
527 err = validate_vid_hdr(vid_hdr, av, pnum);
528 if (err)
529 return err;
531 err = add_to_list(ai, aeb->pnum, aeb->ec, cmp_res & 4,
532 &ai->erase);
533 if (err)
534 return err;
536 aeb->ec = ec;
537 aeb->pnum = pnum;
538 aeb->scrub = ((cmp_res & 2) || bitflips);
539 aeb->copy_flag = vid_hdr->copy_flag;
540 aeb->sqnum = sqnum;
542 if (av->highest_lnum == lnum)
543 av->last_data_size =
544 be32_to_cpu(vid_hdr->data_size);
546 return 0;
547 } else {
549 * This logical eraseblock is older than the one found
550 * previously.
552 return add_to_list(ai, pnum, ec, cmp_res & 4,
553 &ai->erase);
558 * We've met this logical eraseblock for the first time, add it to the
559 * attaching information.
562 err = validate_vid_hdr(vid_hdr, av, pnum);
563 if (err)
564 return err;
566 aeb = kmem_cache_alloc(ai->scan_leb_slab, GFP_KERNEL);
567 if (!aeb)
568 return -ENOMEM;
570 aeb->ec = ec;
571 aeb->pnum = pnum;
572 aeb->lnum = lnum;
573 aeb->scrub = bitflips;
574 aeb->copy_flag = vid_hdr->copy_flag;
575 aeb->sqnum = sqnum;
577 if (av->highest_lnum <= lnum) {
578 av->highest_lnum = lnum;
579 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
582 av->leb_count += 1;
583 rb_link_node(&aeb->u.rb, parent, p);
584 rb_insert_color(&aeb->u.rb, &av->root);
585 return 0;
589 * ubi_scan_find_av - find volume in the attaching information.
590 * @ai: attaching information
591 * @vol_id: the requested volume ID
593 * This function returns a pointer to the volume description or %NULL if there
594 * are no data about this volume in the attaching information.
596 struct ubi_ainf_volume *ubi_scan_find_av(const struct ubi_attach_info *ai,
597 int vol_id)
599 struct ubi_ainf_volume *av;
600 struct rb_node *p = ai->volumes.rb_node;
602 while (p) {
603 av = rb_entry(p, struct ubi_ainf_volume, rb);
605 if (vol_id == av->vol_id)
606 return av;
608 if (vol_id > av->vol_id)
609 p = p->rb_left;
610 else
611 p = p->rb_right;
614 return NULL;
618 * ubi_scan_find_aeb - find LEB in the volume attaching information.
619 * @av: a pointer to the volume attaching information
620 * @lnum: the requested logical eraseblock
622 * This function returns a pointer to the scanning logical eraseblock or %NULL
623 * if there are no data about it in the scanning volume information.
625 struct ubi_ainf_peb *ubi_scan_find_aeb(const struct ubi_ainf_volume *av,
626 int lnum)
628 struct ubi_ainf_peb *aeb;
629 struct rb_node *p = av->root.rb_node;
631 while (p) {
632 aeb = rb_entry(p, struct ubi_ainf_peb, u.rb);
634 if (lnum == aeb->lnum)
635 return aeb;
637 if (lnum > aeb->lnum)
638 p = p->rb_left;
639 else
640 p = p->rb_right;
643 return NULL;
647 * ubi_scan_rm_volume - delete attaching information about a volume.
648 * @ai: attaching information
649 * @av: the volume attaching information to delete
651 void ubi_scan_rm_volume(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
653 struct rb_node *rb;
654 struct ubi_ainf_peb *aeb;
656 dbg_bld("remove attaching information about volume %d", av->vol_id);
658 while ((rb = rb_first(&av->root))) {
659 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
660 rb_erase(&aeb->u.rb, &av->root);
661 list_add_tail(&aeb->u.list, &ai->erase);
664 rb_erase(&av->rb, &ai->volumes);
665 kfree(av);
666 ai->vols_found -= 1;
670 * ubi_scan_erase_peb - erase a physical eraseblock.
671 * @ubi: UBI device description object
672 * @ai: attaching information
673 * @pnum: physical eraseblock number to erase;
674 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
676 * This function erases physical eraseblock 'pnum', and writes the erase
677 * counter header to it. This function should only be used on UBI device
678 * initialization stages, when the EBA sub-system had not been yet initialized.
679 * This function returns zero in case of success and a negative error code in
680 * case of failure.
682 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_attach_info *ai,
683 int pnum, int ec)
685 int err;
686 struct ubi_ec_hdr *ec_hdr;
688 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
690 * Erase counter overflow. Upgrade UBI and use 64-bit
691 * erase counters internally.
693 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
694 return -EINVAL;
697 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
698 if (!ec_hdr)
699 return -ENOMEM;
701 ec_hdr->ec = cpu_to_be64(ec);
703 err = ubi_io_sync_erase(ubi, pnum, 0);
704 if (err < 0)
705 goto out_free;
707 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
709 out_free:
710 kfree(ec_hdr);
711 return err;
715 * ubi_scan_get_free_peb - get a free physical eraseblock.
716 * @ubi: UBI device description object
717 * @ai: attaching information
719 * This function returns a free physical eraseblock. It is supposed to be
720 * called on the UBI initialization stages when the wear-leveling sub-system is
721 * not initialized yet. This function picks a physical eraseblocks from one of
722 * the lists, writes the EC header if it is needed, and removes it from the
723 * list.
725 * This function returns scanning physical eraseblock information in case of
726 * success and an error code in case of failure.
728 struct ubi_ainf_peb *ubi_scan_get_free_peb(struct ubi_device *ubi,
729 struct ubi_attach_info *ai)
731 int err = 0;
732 struct ubi_ainf_peb *aeb, *tmp_aeb;
734 if (!list_empty(&ai->free)) {
735 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
736 list_del(&aeb->u.list);
737 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
738 return aeb;
742 * We try to erase the first physical eraseblock from the erase list
743 * and pick it if we succeed, or try to erase the next one if not. And
744 * so forth. We don't want to take care about bad eraseblocks here -
745 * they'll be handled later.
747 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
748 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
749 aeb->ec = ai->mean_ec;
751 err = ubi_scan_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
752 if (err)
753 continue;
755 aeb->ec += 1;
756 list_del(&aeb->u.list);
757 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
758 return aeb;
761 ubi_err("no free eraseblocks");
762 return ERR_PTR(-ENOSPC);
766 * check_corruption - check the data area of PEB.
767 * @ubi: UBI device description object
768 * @vid_hrd: the (corrupted) VID header of this PEB
769 * @pnum: the physical eraseblock number to check
771 * This is a helper function which is used to distinguish between VID header
772 * corruptions caused by power cuts and other reasons. If the PEB contains only
773 * 0xFF bytes in the data area, the VID header is most probably corrupted
774 * because of a power cut (%0 is returned in this case). Otherwise, it was
775 * probably corrupted for some other reasons (%1 is returned in this case). A
776 * negative error code is returned if a read error occurred.
778 * If the corruption reason was a power cut, UBI can safely erase this PEB.
779 * Otherwise, it should preserve it to avoid possibly destroying important
780 * information.
782 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
783 int pnum)
785 int err;
787 mutex_lock(&ubi->buf_mutex);
788 memset(ubi->peb_buf, 0x00, ubi->leb_size);
790 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
791 ubi->leb_size);
792 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
794 * Bit-flips or integrity errors while reading the data area.
795 * It is difficult to say for sure what type of corruption is
796 * this, but presumably a power cut happened while this PEB was
797 * erased, so it became unstable and corrupted, and should be
798 * erased.
800 err = 0;
801 goto out_unlock;
804 if (err)
805 goto out_unlock;
807 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
808 goto out_unlock;
810 ubi_err("PEB %d contains corrupted VID header, and the data does not "
811 "contain all 0xFF, this may be a non-UBI PEB or a severe VID "
812 "header corruption which requires manual inspection", pnum);
813 ubi_dump_vid_hdr(vid_hdr);
814 dbg_msg("hexdump of PEB %d offset %d, length %d",
815 pnum, ubi->leb_start, ubi->leb_size);
816 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
817 ubi->peb_buf, ubi->leb_size, 1);
818 err = 1;
820 out_unlock:
821 mutex_unlock(&ubi->buf_mutex);
822 return err;
826 * process_eb - read, check UBI headers, and add them to attaching information.
827 * @ubi: UBI device description object
828 * @ai: attaching information
829 * @pnum: the physical eraseblock number
831 * This function returns a zero if the physical eraseblock was successfully
832 * handled and a negative error code in case of failure.
834 static int process_eb(struct ubi_device *ubi, struct ubi_attach_info *ai,
835 int pnum)
837 long long uninitialized_var(ec);
838 int err, bitflips = 0, vol_id, ec_err = 0;
840 dbg_bld("scan PEB %d", pnum);
842 /* Skip bad physical eraseblocks */
843 err = ubi_io_is_bad(ubi, pnum);
844 if (err < 0)
845 return err;
846 else if (err) {
848 * FIXME: this is actually duty of the I/O sub-system to
849 * initialize this, but MTD does not provide enough
850 * information.
852 ai->bad_peb_count += 1;
853 return 0;
856 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
857 if (err < 0)
858 return err;
859 switch (err) {
860 case 0:
861 break;
862 case UBI_IO_BITFLIPS:
863 bitflips = 1;
864 break;
865 case UBI_IO_FF:
866 ai->empty_peb_count += 1;
867 return add_to_list(ai, pnum, UBI_SCAN_UNKNOWN_EC, 0,
868 &ai->erase);
869 case UBI_IO_FF_BITFLIPS:
870 ai->empty_peb_count += 1;
871 return add_to_list(ai, pnum, UBI_SCAN_UNKNOWN_EC, 1,
872 &ai->erase);
873 case UBI_IO_BAD_HDR_EBADMSG:
874 case UBI_IO_BAD_HDR:
876 * We have to also look at the VID header, possibly it is not
877 * corrupted. Set %bitflips flag in order to make this PEB be
878 * moved and EC be re-created.
880 ec_err = err;
881 ec = UBI_SCAN_UNKNOWN_EC;
882 bitflips = 1;
883 break;
884 default:
885 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
886 return -EINVAL;
889 if (!ec_err) {
890 int image_seq;
892 /* Make sure UBI version is OK */
893 if (ech->version != UBI_VERSION) {
894 ubi_err("this UBI version is %d, image version is %d",
895 UBI_VERSION, (int)ech->version);
896 return -EINVAL;
899 ec = be64_to_cpu(ech->ec);
900 if (ec > UBI_MAX_ERASECOUNTER) {
902 * Erase counter overflow. The EC headers have 64 bits
903 * reserved, but we anyway make use of only 31 bit
904 * values, as this seems to be enough for any existing
905 * flash. Upgrade UBI and use 64-bit erase counters
906 * internally.
908 ubi_err("erase counter overflow, max is %d",
909 UBI_MAX_ERASECOUNTER);
910 ubi_dump_ec_hdr(ech);
911 return -EINVAL;
915 * Make sure that all PEBs have the same image sequence number.
916 * This allows us to detect situations when users flash UBI
917 * images incorrectly, so that the flash has the new UBI image
918 * and leftovers from the old one. This feature was added
919 * relatively recently, and the sequence number was always
920 * zero, because old UBI implementations always set it to zero.
921 * For this reasons, we do not panic if some PEBs have zero
922 * sequence number, while other PEBs have non-zero sequence
923 * number.
925 image_seq = be32_to_cpu(ech->image_seq);
926 if (!ubi->image_seq && image_seq)
927 ubi->image_seq = image_seq;
928 if (ubi->image_seq && image_seq &&
929 ubi->image_seq != image_seq) {
930 ubi_err("bad image sequence number %d in PEB %d, "
931 "expected %d", image_seq, pnum, ubi->image_seq);
932 ubi_dump_ec_hdr(ech);
933 return -EINVAL;
937 /* OK, we've done with the EC header, let's look at the VID header */
939 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
940 if (err < 0)
941 return err;
942 switch (err) {
943 case 0:
944 break;
945 case UBI_IO_BITFLIPS:
946 bitflips = 1;
947 break;
948 case UBI_IO_BAD_HDR_EBADMSG:
949 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
951 * Both EC and VID headers are corrupted and were read
952 * with data integrity error, probably this is a bad
953 * PEB, bit it is not marked as bad yet. This may also
954 * be a result of power cut during erasure.
956 ai->maybe_bad_peb_count += 1;
957 case UBI_IO_BAD_HDR:
958 if (ec_err)
960 * Both headers are corrupted. There is a possibility
961 * that this a valid UBI PEB which has corresponding
962 * LEB, but the headers are corrupted. However, it is
963 * impossible to distinguish it from a PEB which just
964 * contains garbage because of a power cut during erase
965 * operation. So we just schedule this PEB for erasure.
967 * Besides, in case of NOR flash, we deliberately
968 * corrupt both headers because NOR flash erasure is
969 * slow and can start from the end.
971 err = 0;
972 else
974 * The EC was OK, but the VID header is corrupted. We
975 * have to check what is in the data area.
977 err = check_corruption(ubi, vidh, pnum);
979 if (err < 0)
980 return err;
981 else if (!err)
982 /* This corruption is caused by a power cut */
983 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
984 else
985 /* This is an unexpected corruption */
986 err = add_corrupted(ai, pnum, ec);
987 if (err)
988 return err;
989 goto adjust_mean_ec;
990 case UBI_IO_FF_BITFLIPS:
991 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
992 if (err)
993 return err;
994 goto adjust_mean_ec;
995 case UBI_IO_FF:
996 if (ec_err)
997 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
998 else
999 err = add_to_list(ai, pnum, ec, 0, &ai->free);
1000 if (err)
1001 return err;
1002 goto adjust_mean_ec;
1003 default:
1004 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
1005 err);
1006 return -EINVAL;
1009 vol_id = be32_to_cpu(vidh->vol_id);
1010 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
1011 int lnum = be32_to_cpu(vidh->lnum);
1013 /* Unsupported internal volume */
1014 switch (vidh->compat) {
1015 case UBI_COMPAT_DELETE:
1016 ubi_msg("\"delete\" compatible internal volume %d:%d"
1017 " found, will remove it", vol_id, lnum);
1018 err = add_to_list(ai, pnum, ec, 1, &ai->erase);
1019 if (err)
1020 return err;
1021 return 0;
1023 case UBI_COMPAT_RO:
1024 ubi_msg("read-only compatible internal volume %d:%d"
1025 " found, switch to read-only mode",
1026 vol_id, lnum);
1027 ubi->ro_mode = 1;
1028 break;
1030 case UBI_COMPAT_PRESERVE:
1031 ubi_msg("\"preserve\" compatible internal volume %d:%d"
1032 " found", vol_id, lnum);
1033 err = add_to_list(ai, pnum, ec, 0, &ai->alien);
1034 if (err)
1035 return err;
1036 return 0;
1038 case UBI_COMPAT_REJECT:
1039 ubi_err("incompatible internal volume %d:%d found",
1040 vol_id, lnum);
1041 return -EINVAL;
1045 if (ec_err)
1046 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1047 pnum);
1048 err = ubi_scan_add_used(ubi, ai, pnum, ec, vidh, bitflips);
1049 if (err)
1050 return err;
1052 adjust_mean_ec:
1053 if (!ec_err) {
1054 ai->ec_sum += ec;
1055 ai->ec_count += 1;
1056 if (ec > ai->max_ec)
1057 ai->max_ec = ec;
1058 if (ec < ai->min_ec)
1059 ai->min_ec = ec;
1062 return 0;
1066 * check_what_we_have - check what PEB were found by scanning.
1067 * @ubi: UBI device description object
1068 * @ai: attaching information
1070 * This is a helper function which takes a look what PEBs were found by
1071 * scanning, and decides whether the flash is empty and should be formatted and
1072 * whether there are too many corrupted PEBs and we should not attach this
1073 * MTD device. Returns zero if we should proceed with attaching the MTD device,
1074 * and %-EINVAL if we should not.
1076 static int check_what_we_have(struct ubi_device *ubi,
1077 struct ubi_attach_info *ai)
1079 struct ubi_ainf_peb *aeb;
1080 int max_corr, peb_count;
1082 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1083 max_corr = peb_count / 20 ?: 8;
1086 * Few corrupted PEBs is not a problem and may be just a result of
1087 * unclean reboots. However, many of them may indicate some problems
1088 * with the flash HW or driver.
1090 if (ai->corr_peb_count) {
1091 ubi_err("%d PEBs are corrupted and preserved",
1092 ai->corr_peb_count);
1093 printk(KERN_ERR "Corrupted PEBs are:");
1094 list_for_each_entry(aeb, &ai->corr, u.list)
1095 printk(KERN_CONT " %d", aeb->pnum);
1096 printk(KERN_CONT "\n");
1099 * If too many PEBs are corrupted, we refuse attaching,
1100 * otherwise, only print a warning.
1102 if (ai->corr_peb_count >= max_corr) {
1103 ubi_err("too many corrupted PEBs, refusing");
1104 return -EINVAL;
1108 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1110 * All PEBs are empty, or almost all - a couple PEBs look like
1111 * they may be bad PEBs which were not marked as bad yet.
1113 * This piece of code basically tries to distinguish between
1114 * the following situations:
1116 * 1. Flash is empty, but there are few bad PEBs, which are not
1117 * marked as bad so far, and which were read with error. We
1118 * want to go ahead and format this flash. While formatting,
1119 * the faulty PEBs will probably be marked as bad.
1121 * 2. Flash contains non-UBI data and we do not want to format
1122 * it and destroy possibly important information.
1124 if (ai->maybe_bad_peb_count <= 2) {
1125 ai->is_empty = 1;
1126 ubi_msg("empty MTD device detected");
1127 get_random_bytes(&ubi->image_seq,
1128 sizeof(ubi->image_seq));
1129 } else {
1130 ubi_err("MTD device is not UBI-formatted and possibly "
1131 "contains non-UBI data - refusing it");
1132 return -EINVAL;
1137 return 0;
1141 * ubi_scan - scan an MTD device.
1142 * @ubi: UBI device description object
1144 * This function does full scanning of an MTD device and returns complete
1145 * information about it. In case of failure, an error code is returned.
1147 struct ubi_attach_info *ubi_scan(struct ubi_device *ubi)
1149 int err, pnum;
1150 struct rb_node *rb1, *rb2;
1151 struct ubi_ainf_volume *av;
1152 struct ubi_ainf_peb *aeb;
1153 struct ubi_attach_info *ai;
1155 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1156 if (!ai)
1157 return ERR_PTR(-ENOMEM);
1159 INIT_LIST_HEAD(&ai->corr);
1160 INIT_LIST_HEAD(&ai->free);
1161 INIT_LIST_HEAD(&ai->erase);
1162 INIT_LIST_HEAD(&ai->alien);
1163 ai->volumes = RB_ROOT;
1165 err = -ENOMEM;
1166 ai->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab",
1167 sizeof(struct ubi_ainf_peb),
1168 0, 0, NULL);
1169 if (!ai->scan_leb_slab)
1170 goto out_ai;
1172 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1173 if (!ech)
1174 goto out_ai;
1176 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1177 if (!vidh)
1178 goto out_ech;
1180 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1181 cond_resched();
1183 dbg_gen("process PEB %d", pnum);
1184 err = process_eb(ubi, ai, pnum);
1185 if (err < 0)
1186 goto out_vidh;
1189 dbg_msg("scanning is finished");
1191 /* Calculate mean erase counter */
1192 if (ai->ec_count)
1193 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1195 err = check_what_we_have(ubi, ai);
1196 if (err)
1197 goto out_vidh;
1200 * In case of unknown erase counter we use the mean erase counter
1201 * value.
1203 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1204 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1205 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1206 aeb->ec = ai->mean_ec;
1209 list_for_each_entry(aeb, &ai->free, u.list) {
1210 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1211 aeb->ec = ai->mean_ec;
1214 list_for_each_entry(aeb, &ai->corr, u.list)
1215 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1216 aeb->ec = ai->mean_ec;
1218 list_for_each_entry(aeb, &ai->erase, u.list)
1219 if (aeb->ec == UBI_SCAN_UNKNOWN_EC)
1220 aeb->ec = ai->mean_ec;
1222 err = self_check_ai(ubi, ai);
1223 if (err)
1224 goto out_vidh;
1226 ubi_free_vid_hdr(ubi, vidh);
1227 kfree(ech);
1229 return ai;
1231 out_vidh:
1232 ubi_free_vid_hdr(ubi, vidh);
1233 out_ech:
1234 kfree(ech);
1235 out_ai:
1236 ubi_scan_destroy_ai(ai);
1237 return ERR_PTR(err);
1241 * destroy_av - free the scanning volume information
1242 * @av: scanning volume information
1243 * @ai: attaching information
1245 * This function destroys the volume RB-tree (@av->root) and the scanning
1246 * volume information.
1248 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1250 struct ubi_ainf_peb *aeb;
1251 struct rb_node *this = av->root.rb_node;
1253 while (this) {
1254 if (this->rb_left)
1255 this = this->rb_left;
1256 else if (this->rb_right)
1257 this = this->rb_right;
1258 else {
1259 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1260 this = rb_parent(this);
1261 if (this) {
1262 if (this->rb_left == &aeb->u.rb)
1263 this->rb_left = NULL;
1264 else
1265 this->rb_right = NULL;
1268 kmem_cache_free(ai->scan_leb_slab, aeb);
1271 kfree(av);
1275 * ubi_scan_destroy_ai - destroy attaching information.
1276 * @ai: attaching information
1278 void ubi_scan_destroy_ai(struct ubi_attach_info *ai)
1280 struct ubi_ainf_peb *aeb, *aeb_tmp;
1281 struct ubi_ainf_volume *av;
1282 struct rb_node *rb;
1284 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1285 list_del(&aeb->u.list);
1286 kmem_cache_free(ai->scan_leb_slab, aeb);
1288 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1289 list_del(&aeb->u.list);
1290 kmem_cache_free(ai->scan_leb_slab, aeb);
1292 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1293 list_del(&aeb->u.list);
1294 kmem_cache_free(ai->scan_leb_slab, aeb);
1296 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1297 list_del(&aeb->u.list);
1298 kmem_cache_free(ai->scan_leb_slab, aeb);
1301 /* Destroy the volume RB-tree */
1302 rb = ai->volumes.rb_node;
1303 while (rb) {
1304 if (rb->rb_left)
1305 rb = rb->rb_left;
1306 else if (rb->rb_right)
1307 rb = rb->rb_right;
1308 else {
1309 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1311 rb = rb_parent(rb);
1312 if (rb) {
1313 if (rb->rb_left == &av->rb)
1314 rb->rb_left = NULL;
1315 else
1316 rb->rb_right = NULL;
1319 destroy_av(ai, av);
1323 if (ai->scan_leb_slab)
1324 kmem_cache_destroy(ai->scan_leb_slab);
1326 kfree(ai);
1330 * self_check_ai - check the attaching information.
1331 * @ubi: UBI device description object
1332 * @ai: attaching information
1334 * This function returns zero if the attaching information is all right, and a
1335 * negative error code if not or if an error occurred.
1337 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1339 int pnum, err, vols_found = 0;
1340 struct rb_node *rb1, *rb2;
1341 struct ubi_ainf_volume *av;
1342 struct ubi_ainf_peb *aeb, *last_aeb;
1343 uint8_t *buf;
1345 if (!ubi->dbg->chk_gen)
1346 return 0;
1349 * At first, check that attaching information is OK.
1351 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1352 int leb_count = 0;
1354 cond_resched();
1356 vols_found += 1;
1358 if (ai->is_empty) {
1359 ubi_err("bad is_empty flag");
1360 goto bad_av;
1363 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1364 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1365 av->data_pad < 0 || av->last_data_size < 0) {
1366 ubi_err("negative values");
1367 goto bad_av;
1370 if (av->vol_id >= UBI_MAX_VOLUMES &&
1371 av->vol_id < UBI_INTERNAL_VOL_START) {
1372 ubi_err("bad vol_id");
1373 goto bad_av;
1376 if (av->vol_id > ai->highest_vol_id) {
1377 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1378 ai->highest_vol_id, av->vol_id);
1379 goto out;
1382 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1383 av->vol_type != UBI_STATIC_VOLUME) {
1384 ubi_err("bad vol_type");
1385 goto bad_av;
1388 if (av->data_pad > ubi->leb_size / 2) {
1389 ubi_err("bad data_pad");
1390 goto bad_av;
1393 last_aeb = NULL;
1394 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1395 cond_resched();
1397 last_aeb = aeb;
1398 leb_count += 1;
1400 if (aeb->pnum < 0 || aeb->ec < 0) {
1401 ubi_err("negative values");
1402 goto bad_aeb;
1405 if (aeb->ec < ai->min_ec) {
1406 ubi_err("bad ai->min_ec (%d), %d found",
1407 ai->min_ec, aeb->ec);
1408 goto bad_aeb;
1411 if (aeb->ec > ai->max_ec) {
1412 ubi_err("bad ai->max_ec (%d), %d found",
1413 ai->max_ec, aeb->ec);
1414 goto bad_aeb;
1417 if (aeb->pnum >= ubi->peb_count) {
1418 ubi_err("too high PEB number %d, total PEBs %d",
1419 aeb->pnum, ubi->peb_count);
1420 goto bad_aeb;
1423 if (av->vol_type == UBI_STATIC_VOLUME) {
1424 if (aeb->lnum >= av->used_ebs) {
1425 ubi_err("bad lnum or used_ebs");
1426 goto bad_aeb;
1428 } else {
1429 if (av->used_ebs != 0) {
1430 ubi_err("non-zero used_ebs");
1431 goto bad_aeb;
1435 if (aeb->lnum > av->highest_lnum) {
1436 ubi_err("incorrect highest_lnum or lnum");
1437 goto bad_aeb;
1441 if (av->leb_count != leb_count) {
1442 ubi_err("bad leb_count, %d objects in the tree",
1443 leb_count);
1444 goto bad_av;
1447 if (!last_aeb)
1448 continue;
1450 aeb = last_aeb;
1452 if (aeb->lnum != av->highest_lnum) {
1453 ubi_err("bad highest_lnum");
1454 goto bad_aeb;
1458 if (vols_found != ai->vols_found) {
1459 ubi_err("bad ai->vols_found %d, should be %d",
1460 ai->vols_found, vols_found);
1461 goto out;
1464 /* Check that attaching information is correct */
1465 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1466 last_aeb = NULL;
1467 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1468 int vol_type;
1470 cond_resched();
1472 last_aeb = aeb;
1474 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1475 if (err && err != UBI_IO_BITFLIPS) {
1476 ubi_err("VID header is not OK (%d)", err);
1477 if (err > 0)
1478 err = -EIO;
1479 return err;
1482 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1483 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1484 if (av->vol_type != vol_type) {
1485 ubi_err("bad vol_type");
1486 goto bad_vid_hdr;
1489 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1490 ubi_err("bad sqnum %llu", aeb->sqnum);
1491 goto bad_vid_hdr;
1494 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1495 ubi_err("bad vol_id %d", av->vol_id);
1496 goto bad_vid_hdr;
1499 if (av->compat != vidh->compat) {
1500 ubi_err("bad compat %d", vidh->compat);
1501 goto bad_vid_hdr;
1504 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1505 ubi_err("bad lnum %d", aeb->lnum);
1506 goto bad_vid_hdr;
1509 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1510 ubi_err("bad used_ebs %d", av->used_ebs);
1511 goto bad_vid_hdr;
1514 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1515 ubi_err("bad data_pad %d", av->data_pad);
1516 goto bad_vid_hdr;
1520 if (!last_aeb)
1521 continue;
1523 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1524 ubi_err("bad highest_lnum %d", av->highest_lnum);
1525 goto bad_vid_hdr;
1528 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1529 ubi_err("bad last_data_size %d", av->last_data_size);
1530 goto bad_vid_hdr;
1535 * Make sure that all the physical eraseblocks are in one of the lists
1536 * or trees.
1538 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1539 if (!buf)
1540 return -ENOMEM;
1542 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1543 err = ubi_io_is_bad(ubi, pnum);
1544 if (err < 0) {
1545 kfree(buf);
1546 return err;
1547 } else if (err)
1548 buf[pnum] = 1;
1551 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1552 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1553 buf[aeb->pnum] = 1;
1555 list_for_each_entry(aeb, &ai->free, u.list)
1556 buf[aeb->pnum] = 1;
1558 list_for_each_entry(aeb, &ai->corr, u.list)
1559 buf[aeb->pnum] = 1;
1561 list_for_each_entry(aeb, &ai->erase, u.list)
1562 buf[aeb->pnum] = 1;
1564 list_for_each_entry(aeb, &ai->alien, u.list)
1565 buf[aeb->pnum] = 1;
1567 err = 0;
1568 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1569 if (!buf[pnum]) {
1570 ubi_err("PEB %d is not referred", pnum);
1571 err = 1;
1574 kfree(buf);
1575 if (err)
1576 goto out;
1577 return 0;
1579 bad_aeb:
1580 ubi_err("bad attaching information about LEB %d", aeb->lnum);
1581 ubi_dump_aeb(aeb, 0);
1582 ubi_dump_av(av);
1583 goto out;
1585 bad_av:
1586 ubi_err("bad attaching information about volume %d", av->vol_id);
1587 ubi_dump_av(av);
1588 goto out;
1590 bad_vid_hdr:
1591 ubi_err("bad attaching information about volume %d", av->vol_id);
1592 ubi_dump_av(av);
1593 ubi_dump_vid_hdr(vidh);
1595 out:
1596 dump_stack();
1597 return -EINVAL;