igb: rework handling of the vfta and vlvf registers in relation to mng_vlan
[linux-2.6.git] / drivers / net / igb / igb_main.c
blob91709272ae1f90acfb1a8dbb9d0cff0b462698f2
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 static void igb_setup_mrqc(struct igb_adapter *);
86 void igb_update_stats(struct igb_adapter *);
87 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88 static void __devexit igb_remove(struct pci_dev *pdev);
89 static int igb_sw_init(struct igb_adapter *);
90 static int igb_open(struct net_device *);
91 static int igb_close(struct net_device *);
92 static void igb_configure_tx(struct igb_adapter *);
93 static void igb_configure_rx(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static void igb_set_uta(struct igb_adapter *adapter);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_ring(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_dca(struct igb_q_vector *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_q_vector *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 static void igb_ping_all_vfs(struct igb_adapter *);
127 static void igb_msg_task(struct igb_adapter *);
128 static void igb_vmm_control(struct igb_adapter *);
129 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
132 #ifdef CONFIG_PM
133 static int igb_suspend(struct pci_dev *, pm_message_t);
134 static int igb_resume(struct pci_dev *);
135 #endif
136 static void igb_shutdown(struct pci_dev *);
137 #ifdef CONFIG_IGB_DCA
138 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139 static struct notifier_block dca_notifier = {
140 .notifier_call = igb_notify_dca,
141 .next = NULL,
142 .priority = 0
144 #endif
145 #ifdef CONFIG_NET_POLL_CONTROLLER
146 /* for netdump / net console */
147 static void igb_netpoll(struct net_device *);
148 #endif
149 #ifdef CONFIG_PCI_IOV
150 static unsigned int max_vfs = 0;
151 module_param(max_vfs, uint, 0);
152 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153 "per physical function");
154 #endif /* CONFIG_PCI_IOV */
156 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157 pci_channel_state_t);
158 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159 static void igb_io_resume(struct pci_dev *);
161 static struct pci_error_handlers igb_err_handler = {
162 .error_detected = igb_io_error_detected,
163 .slot_reset = igb_io_slot_reset,
164 .resume = igb_io_resume,
168 static struct pci_driver igb_driver = {
169 .name = igb_driver_name,
170 .id_table = igb_pci_tbl,
171 .probe = igb_probe,
172 .remove = __devexit_p(igb_remove),
173 #ifdef CONFIG_PM
174 /* Power Managment Hooks */
175 .suspend = igb_suspend,
176 .resume = igb_resume,
177 #endif
178 .shutdown = igb_shutdown,
179 .err_handler = &igb_err_handler
182 static int global_quad_port_a; /* global quad port a indication */
184 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
185 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
186 MODULE_LICENSE("GPL");
187 MODULE_VERSION(DRV_VERSION);
190 * igb_read_clock - read raw cycle counter (to be used by time counter)
192 static cycle_t igb_read_clock(const struct cyclecounter *tc)
194 struct igb_adapter *adapter =
195 container_of(tc, struct igb_adapter, cycles);
196 struct e1000_hw *hw = &adapter->hw;
197 u64 stamp = 0;
198 int shift = 0;
200 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
201 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
202 return stamp;
205 #ifdef DEBUG
207 * igb_get_hw_dev_name - return device name string
208 * used by hardware layer to print debugging information
210 char *igb_get_hw_dev_name(struct e1000_hw *hw)
212 struct igb_adapter *adapter = hw->back;
213 return adapter->netdev->name;
217 * igb_get_time_str - format current NIC and system time as string
219 static char *igb_get_time_str(struct igb_adapter *adapter,
220 char buffer[160])
222 cycle_t hw = adapter->cycles.read(&adapter->cycles);
223 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
224 struct timespec sys;
225 struct timespec delta;
226 getnstimeofday(&sys);
228 delta = timespec_sub(nic, sys);
230 sprintf(buffer,
231 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
233 (long)nic.tv_sec, nic.tv_nsec,
234 (long)sys.tv_sec, sys.tv_nsec,
235 (long)delta.tv_sec, delta.tv_nsec);
237 return buffer;
239 #endif
242 * igb_init_module - Driver Registration Routine
244 * igb_init_module is the first routine called when the driver is
245 * loaded. All it does is register with the PCI subsystem.
247 static int __init igb_init_module(void)
249 int ret;
250 printk(KERN_INFO "%s - version %s\n",
251 igb_driver_string, igb_driver_version);
253 printk(KERN_INFO "%s\n", igb_copyright);
255 global_quad_port_a = 0;
257 #ifdef CONFIG_IGB_DCA
258 dca_register_notify(&dca_notifier);
259 #endif
261 ret = pci_register_driver(&igb_driver);
262 return ret;
265 module_init(igb_init_module);
268 * igb_exit_module - Driver Exit Cleanup Routine
270 * igb_exit_module is called just before the driver is removed
271 * from memory.
273 static void __exit igb_exit_module(void)
275 #ifdef CONFIG_IGB_DCA
276 dca_unregister_notify(&dca_notifier);
277 #endif
278 pci_unregister_driver(&igb_driver);
281 module_exit(igb_exit_module);
283 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
285 * igb_cache_ring_register - Descriptor ring to register mapping
286 * @adapter: board private structure to initialize
288 * Once we know the feature-set enabled for the device, we'll cache
289 * the register offset the descriptor ring is assigned to.
291 static void igb_cache_ring_register(struct igb_adapter *adapter)
293 int i;
294 u32 rbase_offset = adapter->vfs_allocated_count;
296 switch (adapter->hw.mac.type) {
297 case e1000_82576:
298 /* The queues are allocated for virtualization such that VF 0
299 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
300 * In order to avoid collision we start at the first free queue
301 * and continue consuming queues in the same sequence
303 for (i = 0; i < adapter->num_rx_queues; i++)
304 adapter->rx_ring[i].reg_idx = rbase_offset +
305 Q_IDX_82576(i);
306 for (i = 0; i < adapter->num_tx_queues; i++)
307 adapter->tx_ring[i].reg_idx = rbase_offset +
308 Q_IDX_82576(i);
309 break;
310 case e1000_82575:
311 default:
312 for (i = 0; i < adapter->num_rx_queues; i++)
313 adapter->rx_ring[i].reg_idx = i;
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 adapter->tx_ring[i].reg_idx = i;
316 break;
320 static void igb_free_queues(struct igb_adapter *adapter)
322 kfree(adapter->tx_ring);
323 kfree(adapter->rx_ring);
325 adapter->tx_ring = NULL;
326 adapter->rx_ring = NULL;
328 adapter->num_rx_queues = 0;
329 adapter->num_tx_queues = 0;
333 * igb_alloc_queues - Allocate memory for all rings
334 * @adapter: board private structure to initialize
336 * We allocate one ring per queue at run-time since we don't know the
337 * number of queues at compile-time.
339 static int igb_alloc_queues(struct igb_adapter *adapter)
341 int i;
343 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
344 sizeof(struct igb_ring), GFP_KERNEL);
345 if (!adapter->tx_ring)
346 goto err;
348 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
349 sizeof(struct igb_ring), GFP_KERNEL);
350 if (!adapter->rx_ring)
351 goto err;
353 for (i = 0; i < adapter->num_tx_queues; i++) {
354 struct igb_ring *ring = &(adapter->tx_ring[i]);
355 ring->count = adapter->tx_ring_count;
356 ring->queue_index = i;
357 ring->pdev = adapter->pdev;
358 ring->netdev = adapter->netdev;
359 /* For 82575, context index must be unique per ring. */
360 if (adapter->hw.mac.type == e1000_82575)
361 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
364 for (i = 0; i < adapter->num_rx_queues; i++) {
365 struct igb_ring *ring = &(adapter->rx_ring[i]);
366 ring->count = adapter->rx_ring_count;
367 ring->queue_index = i;
368 ring->pdev = adapter->pdev;
369 ring->netdev = adapter->netdev;
370 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
371 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
372 /* set flag indicating ring supports SCTP checksum offload */
373 if (adapter->hw.mac.type >= e1000_82576)
374 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
377 igb_cache_ring_register(adapter);
379 return 0;
381 err:
382 igb_free_queues(adapter);
384 return -ENOMEM;
387 #define IGB_N0_QUEUE -1
388 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
390 u32 msixbm = 0;
391 struct igb_adapter *adapter = q_vector->adapter;
392 struct e1000_hw *hw = &adapter->hw;
393 u32 ivar, index;
394 int rx_queue = IGB_N0_QUEUE;
395 int tx_queue = IGB_N0_QUEUE;
397 if (q_vector->rx_ring)
398 rx_queue = q_vector->rx_ring->reg_idx;
399 if (q_vector->tx_ring)
400 tx_queue = q_vector->tx_ring->reg_idx;
402 switch (hw->mac.type) {
403 case e1000_82575:
404 /* The 82575 assigns vectors using a bitmask, which matches the
405 bitmask for the EICR/EIMS/EIMC registers. To assign one
406 or more queues to a vector, we write the appropriate bits
407 into the MSIXBM register for that vector. */
408 if (rx_queue > IGB_N0_QUEUE)
409 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
410 if (tx_queue > IGB_N0_QUEUE)
411 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
412 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
413 q_vector->eims_value = msixbm;
414 break;
415 case e1000_82576:
416 /* 82576 uses a table-based method for assigning vectors.
417 Each queue has a single entry in the table to which we write
418 a vector number along with a "valid" bit. Sadly, the layout
419 of the table is somewhat counterintuitive. */
420 if (rx_queue > IGB_N0_QUEUE) {
421 index = (rx_queue & 0x7);
422 ivar = array_rd32(E1000_IVAR0, index);
423 if (rx_queue < 8) {
424 /* vector goes into low byte of register */
425 ivar = ivar & 0xFFFFFF00;
426 ivar |= msix_vector | E1000_IVAR_VALID;
427 } else {
428 /* vector goes into third byte of register */
429 ivar = ivar & 0xFF00FFFF;
430 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
432 array_wr32(E1000_IVAR0, index, ivar);
434 if (tx_queue > IGB_N0_QUEUE) {
435 index = (tx_queue & 0x7);
436 ivar = array_rd32(E1000_IVAR0, index);
437 if (tx_queue < 8) {
438 /* vector goes into second byte of register */
439 ivar = ivar & 0xFFFF00FF;
440 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
441 } else {
442 /* vector goes into high byte of register */
443 ivar = ivar & 0x00FFFFFF;
444 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
446 array_wr32(E1000_IVAR0, index, ivar);
448 q_vector->eims_value = 1 << msix_vector;
449 break;
450 default:
451 BUG();
452 break;
457 * igb_configure_msix - Configure MSI-X hardware
459 * igb_configure_msix sets up the hardware to properly
460 * generate MSI-X interrupts.
462 static void igb_configure_msix(struct igb_adapter *adapter)
464 u32 tmp;
465 int i, vector = 0;
466 struct e1000_hw *hw = &adapter->hw;
468 adapter->eims_enable_mask = 0;
470 /* set vector for other causes, i.e. link changes */
471 switch (hw->mac.type) {
472 case e1000_82575:
473 tmp = rd32(E1000_CTRL_EXT);
474 /* enable MSI-X PBA support*/
475 tmp |= E1000_CTRL_EXT_PBA_CLR;
477 /* Auto-Mask interrupts upon ICR read. */
478 tmp |= E1000_CTRL_EXT_EIAME;
479 tmp |= E1000_CTRL_EXT_IRCA;
481 wr32(E1000_CTRL_EXT, tmp);
483 /* enable msix_other interrupt */
484 array_wr32(E1000_MSIXBM(0), vector++,
485 E1000_EIMS_OTHER);
486 adapter->eims_other = E1000_EIMS_OTHER;
488 break;
490 case e1000_82576:
491 /* Turn on MSI-X capability first, or our settings
492 * won't stick. And it will take days to debug. */
493 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
494 E1000_GPIE_PBA | E1000_GPIE_EIAME |
495 E1000_GPIE_NSICR);
497 /* enable msix_other interrupt */
498 adapter->eims_other = 1 << vector;
499 tmp = (vector++ | E1000_IVAR_VALID) << 8;
501 wr32(E1000_IVAR_MISC, tmp);
502 break;
503 default:
504 /* do nothing, since nothing else supports MSI-X */
505 break;
506 } /* switch (hw->mac.type) */
508 adapter->eims_enable_mask |= adapter->eims_other;
510 for (i = 0; i < adapter->num_q_vectors; i++) {
511 struct igb_q_vector *q_vector = adapter->q_vector[i];
512 igb_assign_vector(q_vector, vector++);
513 adapter->eims_enable_mask |= q_vector->eims_value;
516 wrfl();
520 * igb_request_msix - Initialize MSI-X interrupts
522 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
523 * kernel.
525 static int igb_request_msix(struct igb_adapter *adapter)
527 struct net_device *netdev = adapter->netdev;
528 struct e1000_hw *hw = &adapter->hw;
529 int i, err = 0, vector = 0;
531 err = request_irq(adapter->msix_entries[vector].vector,
532 &igb_msix_other, 0, netdev->name, adapter);
533 if (err)
534 goto out;
535 vector++;
537 for (i = 0; i < adapter->num_q_vectors; i++) {
538 struct igb_q_vector *q_vector = adapter->q_vector[i];
540 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
542 if (q_vector->rx_ring && q_vector->tx_ring)
543 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
544 q_vector->rx_ring->queue_index);
545 else if (q_vector->tx_ring)
546 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
547 q_vector->tx_ring->queue_index);
548 else if (q_vector->rx_ring)
549 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
550 q_vector->rx_ring->queue_index);
551 else
552 sprintf(q_vector->name, "%s-unused", netdev->name);
554 err = request_irq(adapter->msix_entries[vector].vector,
555 &igb_msix_ring, 0, q_vector->name,
556 q_vector);
557 if (err)
558 goto out;
559 vector++;
562 igb_configure_msix(adapter);
563 return 0;
564 out:
565 return err;
568 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
570 if (adapter->msix_entries) {
571 pci_disable_msix(adapter->pdev);
572 kfree(adapter->msix_entries);
573 adapter->msix_entries = NULL;
574 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
575 pci_disable_msi(adapter->pdev);
580 * igb_free_q_vectors - Free memory allocated for interrupt vectors
581 * @adapter: board private structure to initialize
583 * This function frees the memory allocated to the q_vectors. In addition if
584 * NAPI is enabled it will delete any references to the NAPI struct prior
585 * to freeing the q_vector.
587 static void igb_free_q_vectors(struct igb_adapter *adapter)
589 int v_idx;
591 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
592 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
593 adapter->q_vector[v_idx] = NULL;
594 netif_napi_del(&q_vector->napi);
595 kfree(q_vector);
597 adapter->num_q_vectors = 0;
601 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
603 * This function resets the device so that it has 0 rx queues, tx queues, and
604 * MSI-X interrupts allocated.
606 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
608 igb_free_queues(adapter);
609 igb_free_q_vectors(adapter);
610 igb_reset_interrupt_capability(adapter);
614 * igb_set_interrupt_capability - set MSI or MSI-X if supported
616 * Attempt to configure interrupts using the best available
617 * capabilities of the hardware and kernel.
619 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
621 int err;
622 int numvecs, i;
624 /* Number of supported queues. */
625 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
626 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
628 /* start with one vector for every rx queue */
629 numvecs = adapter->num_rx_queues;
631 /* if tx handler is seperate add 1 for every tx queue */
632 numvecs += adapter->num_tx_queues;
634 /* store the number of vectors reserved for queues */
635 adapter->num_q_vectors = numvecs;
637 /* add 1 vector for link status interrupts */
638 numvecs++;
639 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
640 GFP_KERNEL);
641 if (!adapter->msix_entries)
642 goto msi_only;
644 for (i = 0; i < numvecs; i++)
645 adapter->msix_entries[i].entry = i;
647 err = pci_enable_msix(adapter->pdev,
648 adapter->msix_entries,
649 numvecs);
650 if (err == 0)
651 goto out;
653 igb_reset_interrupt_capability(adapter);
655 /* If we can't do MSI-X, try MSI */
656 msi_only:
657 #ifdef CONFIG_PCI_IOV
658 /* disable SR-IOV for non MSI-X configurations */
659 if (adapter->vf_data) {
660 struct e1000_hw *hw = &adapter->hw;
661 /* disable iov and allow time for transactions to clear */
662 pci_disable_sriov(adapter->pdev);
663 msleep(500);
665 kfree(adapter->vf_data);
666 adapter->vf_data = NULL;
667 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
668 msleep(100);
669 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
671 #endif
672 adapter->vfs_allocated_count = 0;
673 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
674 adapter->num_rx_queues = 1;
675 adapter->num_tx_queues = 1;
676 adapter->num_q_vectors = 1;
677 if (!pci_enable_msi(adapter->pdev))
678 adapter->flags |= IGB_FLAG_HAS_MSI;
679 out:
680 /* Notify the stack of the (possibly) reduced Tx Queue count. */
681 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
682 return;
686 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
687 * @adapter: board private structure to initialize
689 * We allocate one q_vector per queue interrupt. If allocation fails we
690 * return -ENOMEM.
692 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
694 struct igb_q_vector *q_vector;
695 struct e1000_hw *hw = &adapter->hw;
696 int v_idx;
698 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
699 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
700 if (!q_vector)
701 goto err_out;
702 q_vector->adapter = adapter;
703 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
704 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
705 q_vector->itr_val = IGB_START_ITR;
706 q_vector->set_itr = 1;
707 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
708 adapter->q_vector[v_idx] = q_vector;
710 return 0;
712 err_out:
713 while (v_idx) {
714 v_idx--;
715 q_vector = adapter->q_vector[v_idx];
716 netif_napi_del(&q_vector->napi);
717 kfree(q_vector);
718 adapter->q_vector[v_idx] = NULL;
720 return -ENOMEM;
723 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
724 int ring_idx, int v_idx)
726 struct igb_q_vector *q_vector;
728 q_vector = adapter->q_vector[v_idx];
729 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
730 q_vector->rx_ring->q_vector = q_vector;
731 q_vector->itr_val = adapter->rx_itr_setting;
732 if (q_vector->itr_val && q_vector->itr_val <= 3)
733 q_vector->itr_val = IGB_START_ITR;
736 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
737 int ring_idx, int v_idx)
739 struct igb_q_vector *q_vector;
741 q_vector = adapter->q_vector[v_idx];
742 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
743 q_vector->tx_ring->q_vector = q_vector;
744 q_vector->itr_val = adapter->tx_itr_setting;
745 if (q_vector->itr_val && q_vector->itr_val <= 3)
746 q_vector->itr_val = IGB_START_ITR;
750 * igb_map_ring_to_vector - maps allocated queues to vectors
752 * This function maps the recently allocated queues to vectors.
754 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
756 int i;
757 int v_idx = 0;
759 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
760 (adapter->num_q_vectors < adapter->num_tx_queues))
761 return -ENOMEM;
763 if (adapter->num_q_vectors >=
764 (adapter->num_rx_queues + adapter->num_tx_queues)) {
765 for (i = 0; i < adapter->num_rx_queues; i++)
766 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
767 for (i = 0; i < adapter->num_tx_queues; i++)
768 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
769 } else {
770 for (i = 0; i < adapter->num_rx_queues; i++) {
771 if (i < adapter->num_tx_queues)
772 igb_map_tx_ring_to_vector(adapter, i, v_idx);
773 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
775 for (; i < adapter->num_tx_queues; i++)
776 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
778 return 0;
782 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
784 * This function initializes the interrupts and allocates all of the queues.
786 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
788 struct pci_dev *pdev = adapter->pdev;
789 int err;
791 igb_set_interrupt_capability(adapter);
793 err = igb_alloc_q_vectors(adapter);
794 if (err) {
795 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
796 goto err_alloc_q_vectors;
799 err = igb_alloc_queues(adapter);
800 if (err) {
801 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
802 goto err_alloc_queues;
805 err = igb_map_ring_to_vector(adapter);
806 if (err) {
807 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
808 goto err_map_queues;
812 return 0;
813 err_map_queues:
814 igb_free_queues(adapter);
815 err_alloc_queues:
816 igb_free_q_vectors(adapter);
817 err_alloc_q_vectors:
818 igb_reset_interrupt_capability(adapter);
819 return err;
823 * igb_request_irq - initialize interrupts
825 * Attempts to configure interrupts using the best available
826 * capabilities of the hardware and kernel.
828 static int igb_request_irq(struct igb_adapter *adapter)
830 struct net_device *netdev = adapter->netdev;
831 struct pci_dev *pdev = adapter->pdev;
832 struct e1000_hw *hw = &adapter->hw;
833 int err = 0;
835 if (adapter->msix_entries) {
836 err = igb_request_msix(adapter);
837 if (!err)
838 goto request_done;
839 /* fall back to MSI */
840 igb_clear_interrupt_scheme(adapter);
841 if (!pci_enable_msi(adapter->pdev))
842 adapter->flags |= IGB_FLAG_HAS_MSI;
843 igb_free_all_tx_resources(adapter);
844 igb_free_all_rx_resources(adapter);
845 adapter->num_tx_queues = 1;
846 adapter->num_rx_queues = 1;
847 adapter->num_q_vectors = 1;
848 err = igb_alloc_q_vectors(adapter);
849 if (err) {
850 dev_err(&pdev->dev,
851 "Unable to allocate memory for vectors\n");
852 goto request_done;
854 err = igb_alloc_queues(adapter);
855 if (err) {
856 dev_err(&pdev->dev,
857 "Unable to allocate memory for queues\n");
858 igb_free_q_vectors(adapter);
859 goto request_done;
861 igb_setup_all_tx_resources(adapter);
862 igb_setup_all_rx_resources(adapter);
863 } else {
864 switch (hw->mac.type) {
865 case e1000_82575:
866 wr32(E1000_MSIXBM(0),
867 (E1000_EICR_RX_QUEUE0 |
868 E1000_EICR_TX_QUEUE0 |
869 E1000_EIMS_OTHER));
870 break;
871 case e1000_82576:
872 wr32(E1000_IVAR0, E1000_IVAR_VALID);
873 break;
874 default:
875 break;
879 if (adapter->flags & IGB_FLAG_HAS_MSI) {
880 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
881 netdev->name, adapter);
882 if (!err)
883 goto request_done;
885 /* fall back to legacy interrupts */
886 igb_reset_interrupt_capability(adapter);
887 adapter->flags &= ~IGB_FLAG_HAS_MSI;
890 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
891 netdev->name, adapter);
893 if (err)
894 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
895 err);
897 request_done:
898 return err;
901 static void igb_free_irq(struct igb_adapter *adapter)
903 if (adapter->msix_entries) {
904 int vector = 0, i;
906 free_irq(adapter->msix_entries[vector++].vector, adapter);
908 for (i = 0; i < adapter->num_q_vectors; i++) {
909 struct igb_q_vector *q_vector = adapter->q_vector[i];
910 free_irq(adapter->msix_entries[vector++].vector,
911 q_vector);
913 } else {
914 free_irq(adapter->pdev->irq, adapter);
919 * igb_irq_disable - Mask off interrupt generation on the NIC
920 * @adapter: board private structure
922 static void igb_irq_disable(struct igb_adapter *adapter)
924 struct e1000_hw *hw = &adapter->hw;
926 if (adapter->msix_entries) {
927 u32 regval = rd32(E1000_EIAM);
928 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
929 wr32(E1000_EIMC, adapter->eims_enable_mask);
930 regval = rd32(E1000_EIAC);
931 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
934 wr32(E1000_IAM, 0);
935 wr32(E1000_IMC, ~0);
936 wrfl();
937 synchronize_irq(adapter->pdev->irq);
941 * igb_irq_enable - Enable default interrupt generation settings
942 * @adapter: board private structure
944 static void igb_irq_enable(struct igb_adapter *adapter)
946 struct e1000_hw *hw = &adapter->hw;
948 if (adapter->msix_entries) {
949 u32 regval = rd32(E1000_EIAC);
950 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
951 regval = rd32(E1000_EIAM);
952 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
953 wr32(E1000_EIMS, adapter->eims_enable_mask);
954 if (adapter->vfs_allocated_count)
955 wr32(E1000_MBVFIMR, 0xFF);
956 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
957 E1000_IMS_DOUTSYNC));
958 } else {
959 wr32(E1000_IMS, IMS_ENABLE_MASK);
960 wr32(E1000_IAM, IMS_ENABLE_MASK);
964 static void igb_update_mng_vlan(struct igb_adapter *adapter)
966 struct e1000_hw *hw = &adapter->hw;
967 u16 vid = adapter->hw.mng_cookie.vlan_id;
968 u16 old_vid = adapter->mng_vlan_id;
970 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
971 /* add VID to filter table */
972 igb_vfta_set(hw, vid, true);
973 adapter->mng_vlan_id = vid;
974 } else {
975 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
978 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
979 (vid != old_vid) &&
980 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
981 /* remove VID from filter table */
982 igb_vfta_set(hw, old_vid, false);
987 * igb_release_hw_control - release control of the h/w to f/w
988 * @adapter: address of board private structure
990 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
991 * For ASF and Pass Through versions of f/w this means that the
992 * driver is no longer loaded.
995 static void igb_release_hw_control(struct igb_adapter *adapter)
997 struct e1000_hw *hw = &adapter->hw;
998 u32 ctrl_ext;
1000 /* Let firmware take over control of h/w */
1001 ctrl_ext = rd32(E1000_CTRL_EXT);
1002 wr32(E1000_CTRL_EXT,
1003 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1008 * igb_get_hw_control - get control of the h/w from f/w
1009 * @adapter: address of board private structure
1011 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1012 * For ASF and Pass Through versions of f/w this means that
1013 * the driver is loaded.
1016 static void igb_get_hw_control(struct igb_adapter *adapter)
1018 struct e1000_hw *hw = &adapter->hw;
1019 u32 ctrl_ext;
1021 /* Let firmware know the driver has taken over */
1022 ctrl_ext = rd32(E1000_CTRL_EXT);
1023 wr32(E1000_CTRL_EXT,
1024 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1028 * igb_configure - configure the hardware for RX and TX
1029 * @adapter: private board structure
1031 static void igb_configure(struct igb_adapter *adapter)
1033 struct net_device *netdev = adapter->netdev;
1034 int i;
1036 igb_get_hw_control(adapter);
1037 igb_set_rx_mode(netdev);
1039 igb_restore_vlan(adapter);
1041 igb_setup_tctl(adapter);
1042 igb_setup_mrqc(adapter);
1043 igb_setup_rctl(adapter);
1045 igb_configure_tx(adapter);
1046 igb_configure_rx(adapter);
1048 igb_rx_fifo_flush_82575(&adapter->hw);
1050 /* call igb_desc_unused which always leaves
1051 * at least 1 descriptor unused to make sure
1052 * next_to_use != next_to_clean */
1053 for (i = 0; i < adapter->num_rx_queues; i++) {
1054 struct igb_ring *ring = &adapter->rx_ring[i];
1055 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1059 adapter->tx_queue_len = netdev->tx_queue_len;
1064 * igb_up - Open the interface and prepare it to handle traffic
1065 * @adapter: board private structure
1068 int igb_up(struct igb_adapter *adapter)
1070 struct e1000_hw *hw = &adapter->hw;
1071 int i;
1073 /* hardware has been reset, we need to reload some things */
1074 igb_configure(adapter);
1076 clear_bit(__IGB_DOWN, &adapter->state);
1078 for (i = 0; i < adapter->num_q_vectors; i++) {
1079 struct igb_q_vector *q_vector = adapter->q_vector[i];
1080 napi_enable(&q_vector->napi);
1082 if (adapter->msix_entries)
1083 igb_configure_msix(adapter);
1085 /* Clear any pending interrupts. */
1086 rd32(E1000_ICR);
1087 igb_irq_enable(adapter);
1089 /* notify VFs that reset has been completed */
1090 if (adapter->vfs_allocated_count) {
1091 u32 reg_data = rd32(E1000_CTRL_EXT);
1092 reg_data |= E1000_CTRL_EXT_PFRSTD;
1093 wr32(E1000_CTRL_EXT, reg_data);
1096 netif_tx_start_all_queues(adapter->netdev);
1098 /* Fire a link change interrupt to start the watchdog. */
1099 wr32(E1000_ICS, E1000_ICS_LSC);
1100 return 0;
1103 void igb_down(struct igb_adapter *adapter)
1105 struct e1000_hw *hw = &adapter->hw;
1106 struct net_device *netdev = adapter->netdev;
1107 u32 tctl, rctl;
1108 int i;
1110 /* signal that we're down so the interrupt handler does not
1111 * reschedule our watchdog timer */
1112 set_bit(__IGB_DOWN, &adapter->state);
1114 /* disable receives in the hardware */
1115 rctl = rd32(E1000_RCTL);
1116 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1117 /* flush and sleep below */
1119 netif_tx_stop_all_queues(netdev);
1121 /* disable transmits in the hardware */
1122 tctl = rd32(E1000_TCTL);
1123 tctl &= ~E1000_TCTL_EN;
1124 wr32(E1000_TCTL, tctl);
1125 /* flush both disables and wait for them to finish */
1126 wrfl();
1127 msleep(10);
1129 for (i = 0; i < adapter->num_q_vectors; i++) {
1130 struct igb_q_vector *q_vector = adapter->q_vector[i];
1131 napi_disable(&q_vector->napi);
1134 igb_irq_disable(adapter);
1136 del_timer_sync(&adapter->watchdog_timer);
1137 del_timer_sync(&adapter->phy_info_timer);
1139 netdev->tx_queue_len = adapter->tx_queue_len;
1140 netif_carrier_off(netdev);
1142 /* record the stats before reset*/
1143 igb_update_stats(adapter);
1145 adapter->link_speed = 0;
1146 adapter->link_duplex = 0;
1148 if (!pci_channel_offline(adapter->pdev))
1149 igb_reset(adapter);
1150 igb_clean_all_tx_rings(adapter);
1151 igb_clean_all_rx_rings(adapter);
1152 #ifdef CONFIG_IGB_DCA
1154 /* since we reset the hardware DCA settings were cleared */
1155 igb_setup_dca(adapter);
1156 #endif
1159 void igb_reinit_locked(struct igb_adapter *adapter)
1161 WARN_ON(in_interrupt());
1162 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1163 msleep(1);
1164 igb_down(adapter);
1165 igb_up(adapter);
1166 clear_bit(__IGB_RESETTING, &adapter->state);
1169 void igb_reset(struct igb_adapter *adapter)
1171 struct e1000_hw *hw = &adapter->hw;
1172 struct e1000_mac_info *mac = &hw->mac;
1173 struct e1000_fc_info *fc = &hw->fc;
1174 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1175 u16 hwm;
1177 /* Repartition Pba for greater than 9k mtu
1178 * To take effect CTRL.RST is required.
1180 switch (mac->type) {
1181 case e1000_82576:
1182 pba = rd32(E1000_RXPBS);
1183 pba &= E1000_RXPBS_SIZE_MASK_82576;
1184 break;
1185 case e1000_82575:
1186 default:
1187 pba = E1000_PBA_34K;
1188 break;
1191 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1192 (mac->type < e1000_82576)) {
1193 /* adjust PBA for jumbo frames */
1194 wr32(E1000_PBA, pba);
1196 /* To maintain wire speed transmits, the Tx FIFO should be
1197 * large enough to accommodate two full transmit packets,
1198 * rounded up to the next 1KB and expressed in KB. Likewise,
1199 * the Rx FIFO should be large enough to accommodate at least
1200 * one full receive packet and is similarly rounded up and
1201 * expressed in KB. */
1202 pba = rd32(E1000_PBA);
1203 /* upper 16 bits has Tx packet buffer allocation size in KB */
1204 tx_space = pba >> 16;
1205 /* lower 16 bits has Rx packet buffer allocation size in KB */
1206 pba &= 0xffff;
1207 /* the tx fifo also stores 16 bytes of information about the tx
1208 * but don't include ethernet FCS because hardware appends it */
1209 min_tx_space = (adapter->max_frame_size +
1210 sizeof(union e1000_adv_tx_desc) -
1211 ETH_FCS_LEN) * 2;
1212 min_tx_space = ALIGN(min_tx_space, 1024);
1213 min_tx_space >>= 10;
1214 /* software strips receive CRC, so leave room for it */
1215 min_rx_space = adapter->max_frame_size;
1216 min_rx_space = ALIGN(min_rx_space, 1024);
1217 min_rx_space >>= 10;
1219 /* If current Tx allocation is less than the min Tx FIFO size,
1220 * and the min Tx FIFO size is less than the current Rx FIFO
1221 * allocation, take space away from current Rx allocation */
1222 if (tx_space < min_tx_space &&
1223 ((min_tx_space - tx_space) < pba)) {
1224 pba = pba - (min_tx_space - tx_space);
1226 /* if short on rx space, rx wins and must trump tx
1227 * adjustment */
1228 if (pba < min_rx_space)
1229 pba = min_rx_space;
1231 wr32(E1000_PBA, pba);
1234 /* flow control settings */
1235 /* The high water mark must be low enough to fit one full frame
1236 * (or the size used for early receive) above it in the Rx FIFO.
1237 * Set it to the lower of:
1238 * - 90% of the Rx FIFO size, or
1239 * - the full Rx FIFO size minus one full frame */
1240 hwm = min(((pba << 10) * 9 / 10),
1241 ((pba << 10) - 2 * adapter->max_frame_size));
1243 if (mac->type < e1000_82576) {
1244 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1245 fc->low_water = fc->high_water - 8;
1246 } else {
1247 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1248 fc->low_water = fc->high_water - 16;
1250 fc->pause_time = 0xFFFF;
1251 fc->send_xon = 1;
1252 fc->current_mode = fc->requested_mode;
1254 /* disable receive for all VFs and wait one second */
1255 if (adapter->vfs_allocated_count) {
1256 int i;
1257 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1258 adapter->vf_data[i].flags = 0;
1260 /* ping all the active vfs to let them know we are going down */
1261 igb_ping_all_vfs(adapter);
1263 /* disable transmits and receives */
1264 wr32(E1000_VFRE, 0);
1265 wr32(E1000_VFTE, 0);
1268 /* Allow time for pending master requests to run */
1269 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1270 wr32(E1000_WUC, 0);
1272 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1273 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1275 igb_update_mng_vlan(adapter);
1277 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1278 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1280 igb_reset_adaptive(&adapter->hw);
1281 igb_get_phy_info(&adapter->hw);
1284 static const struct net_device_ops igb_netdev_ops = {
1285 .ndo_open = igb_open,
1286 .ndo_stop = igb_close,
1287 .ndo_start_xmit = igb_xmit_frame_adv,
1288 .ndo_get_stats = igb_get_stats,
1289 .ndo_set_rx_mode = igb_set_rx_mode,
1290 .ndo_set_multicast_list = igb_set_rx_mode,
1291 .ndo_set_mac_address = igb_set_mac,
1292 .ndo_change_mtu = igb_change_mtu,
1293 .ndo_do_ioctl = igb_ioctl,
1294 .ndo_tx_timeout = igb_tx_timeout,
1295 .ndo_validate_addr = eth_validate_addr,
1296 .ndo_vlan_rx_register = igb_vlan_rx_register,
1297 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1298 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1299 #ifdef CONFIG_NET_POLL_CONTROLLER
1300 .ndo_poll_controller = igb_netpoll,
1301 #endif
1305 * igb_probe - Device Initialization Routine
1306 * @pdev: PCI device information struct
1307 * @ent: entry in igb_pci_tbl
1309 * Returns 0 on success, negative on failure
1311 * igb_probe initializes an adapter identified by a pci_dev structure.
1312 * The OS initialization, configuring of the adapter private structure,
1313 * and a hardware reset occur.
1315 static int __devinit igb_probe(struct pci_dev *pdev,
1316 const struct pci_device_id *ent)
1318 struct net_device *netdev;
1319 struct igb_adapter *adapter;
1320 struct e1000_hw *hw;
1321 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1322 unsigned long mmio_start, mmio_len;
1323 int err, pci_using_dac;
1324 u16 eeprom_data = 0;
1325 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1326 u32 part_num;
1328 err = pci_enable_device_mem(pdev);
1329 if (err)
1330 return err;
1332 pci_using_dac = 0;
1333 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1334 if (!err) {
1335 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1336 if (!err)
1337 pci_using_dac = 1;
1338 } else {
1339 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1340 if (err) {
1341 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1342 if (err) {
1343 dev_err(&pdev->dev, "No usable DMA "
1344 "configuration, aborting\n");
1345 goto err_dma;
1350 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1351 IORESOURCE_MEM),
1352 igb_driver_name);
1353 if (err)
1354 goto err_pci_reg;
1356 pci_enable_pcie_error_reporting(pdev);
1358 pci_set_master(pdev);
1359 pci_save_state(pdev);
1361 err = -ENOMEM;
1362 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1363 IGB_ABS_MAX_TX_QUEUES);
1364 if (!netdev)
1365 goto err_alloc_etherdev;
1367 SET_NETDEV_DEV(netdev, &pdev->dev);
1369 pci_set_drvdata(pdev, netdev);
1370 adapter = netdev_priv(netdev);
1371 adapter->netdev = netdev;
1372 adapter->pdev = pdev;
1373 hw = &adapter->hw;
1374 hw->back = adapter;
1375 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1377 mmio_start = pci_resource_start(pdev, 0);
1378 mmio_len = pci_resource_len(pdev, 0);
1380 err = -EIO;
1381 hw->hw_addr = ioremap(mmio_start, mmio_len);
1382 if (!hw->hw_addr)
1383 goto err_ioremap;
1385 netdev->netdev_ops = &igb_netdev_ops;
1386 igb_set_ethtool_ops(netdev);
1387 netdev->watchdog_timeo = 5 * HZ;
1389 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1391 netdev->mem_start = mmio_start;
1392 netdev->mem_end = mmio_start + mmio_len;
1394 /* PCI config space info */
1395 hw->vendor_id = pdev->vendor;
1396 hw->device_id = pdev->device;
1397 hw->revision_id = pdev->revision;
1398 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1399 hw->subsystem_device_id = pdev->subsystem_device;
1401 /* setup the private structure */
1402 hw->back = adapter;
1403 /* Copy the default MAC, PHY and NVM function pointers */
1404 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1405 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1406 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1407 /* Initialize skew-specific constants */
1408 err = ei->get_invariants(hw);
1409 if (err)
1410 goto err_sw_init;
1412 #ifdef CONFIG_PCI_IOV
1413 /* since iov functionality isn't critical to base device function we
1414 * can accept failure. If it fails we don't allow iov to be enabled */
1415 if (hw->mac.type == e1000_82576) {
1416 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1417 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1418 int i;
1419 unsigned char mac_addr[ETH_ALEN];
1421 if (num_vfs) {
1422 adapter->vf_data = kcalloc(num_vfs,
1423 sizeof(struct vf_data_storage),
1424 GFP_KERNEL);
1425 if (!adapter->vf_data) {
1426 dev_err(&pdev->dev,
1427 "Could not allocate VF private data - "
1428 "IOV enable failed\n");
1429 } else {
1430 err = pci_enable_sriov(pdev, num_vfs);
1431 if (!err) {
1432 adapter->vfs_allocated_count = num_vfs;
1433 dev_info(&pdev->dev,
1434 "%d vfs allocated\n",
1435 num_vfs);
1436 for (i = 0;
1437 i < adapter->vfs_allocated_count;
1438 i++) {
1439 random_ether_addr(mac_addr);
1440 igb_set_vf_mac(adapter, i,
1441 mac_addr);
1443 } else {
1444 kfree(adapter->vf_data);
1445 adapter->vf_data = NULL;
1451 #endif
1452 /* setup the private structure */
1453 err = igb_sw_init(adapter);
1454 if (err)
1455 goto err_sw_init;
1457 igb_get_bus_info_pcie(hw);
1459 hw->phy.autoneg_wait_to_complete = false;
1460 hw->mac.adaptive_ifs = true;
1462 /* Copper options */
1463 if (hw->phy.media_type == e1000_media_type_copper) {
1464 hw->phy.mdix = AUTO_ALL_MODES;
1465 hw->phy.disable_polarity_correction = false;
1466 hw->phy.ms_type = e1000_ms_hw_default;
1469 if (igb_check_reset_block(hw))
1470 dev_info(&pdev->dev,
1471 "PHY reset is blocked due to SOL/IDER session.\n");
1473 netdev->features = NETIF_F_SG |
1474 NETIF_F_IP_CSUM |
1475 NETIF_F_HW_VLAN_TX |
1476 NETIF_F_HW_VLAN_RX |
1477 NETIF_F_HW_VLAN_FILTER;
1479 netdev->features |= NETIF_F_IPV6_CSUM;
1480 netdev->features |= NETIF_F_TSO;
1481 netdev->features |= NETIF_F_TSO6;
1483 netdev->features |= NETIF_F_GRO;
1485 netdev->vlan_features |= NETIF_F_TSO;
1486 netdev->vlan_features |= NETIF_F_TSO6;
1487 netdev->vlan_features |= NETIF_F_IP_CSUM;
1488 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1489 netdev->vlan_features |= NETIF_F_SG;
1491 if (pci_using_dac)
1492 netdev->features |= NETIF_F_HIGHDMA;
1494 if (adapter->hw.mac.type == e1000_82576)
1495 netdev->features |= NETIF_F_SCTP_CSUM;
1497 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1499 /* before reading the NVM, reset the controller to put the device in a
1500 * known good starting state */
1501 hw->mac.ops.reset_hw(hw);
1503 /* make sure the NVM is good */
1504 if (igb_validate_nvm_checksum(hw) < 0) {
1505 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1506 err = -EIO;
1507 goto err_eeprom;
1510 /* copy the MAC address out of the NVM */
1511 if (hw->mac.ops.read_mac_addr(hw))
1512 dev_err(&pdev->dev, "NVM Read Error\n");
1514 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1515 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1517 if (!is_valid_ether_addr(netdev->perm_addr)) {
1518 dev_err(&pdev->dev, "Invalid MAC Address\n");
1519 err = -EIO;
1520 goto err_eeprom;
1523 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1524 (unsigned long) adapter);
1525 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1526 (unsigned long) adapter);
1528 INIT_WORK(&adapter->reset_task, igb_reset_task);
1529 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1531 /* Initialize link properties that are user-changeable */
1532 adapter->fc_autoneg = true;
1533 hw->mac.autoneg = true;
1534 hw->phy.autoneg_advertised = 0x2f;
1536 hw->fc.requested_mode = e1000_fc_default;
1537 hw->fc.current_mode = e1000_fc_default;
1539 igb_validate_mdi_setting(hw);
1541 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1542 * enable the ACPI Magic Packet filter
1545 if (hw->bus.func == 0)
1546 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1547 else if (hw->bus.func == 1)
1548 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1550 if (eeprom_data & eeprom_apme_mask)
1551 adapter->eeprom_wol |= E1000_WUFC_MAG;
1553 /* now that we have the eeprom settings, apply the special cases where
1554 * the eeprom may be wrong or the board simply won't support wake on
1555 * lan on a particular port */
1556 switch (pdev->device) {
1557 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1558 adapter->eeprom_wol = 0;
1559 break;
1560 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1561 case E1000_DEV_ID_82576_FIBER:
1562 case E1000_DEV_ID_82576_SERDES:
1563 /* Wake events only supported on port A for dual fiber
1564 * regardless of eeprom setting */
1565 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1566 adapter->eeprom_wol = 0;
1567 break;
1568 case E1000_DEV_ID_82576_QUAD_COPPER:
1569 /* if quad port adapter, disable WoL on all but port A */
1570 if (global_quad_port_a != 0)
1571 adapter->eeprom_wol = 0;
1572 else
1573 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1574 /* Reset for multiple quad port adapters */
1575 if (++global_quad_port_a == 4)
1576 global_quad_port_a = 0;
1577 break;
1580 /* initialize the wol settings based on the eeprom settings */
1581 adapter->wol = adapter->eeprom_wol;
1582 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1584 /* reset the hardware with the new settings */
1585 igb_reset(adapter);
1587 /* let the f/w know that the h/w is now under the control of the
1588 * driver. */
1589 igb_get_hw_control(adapter);
1591 strcpy(netdev->name, "eth%d");
1592 err = register_netdev(netdev);
1593 if (err)
1594 goto err_register;
1596 /* carrier off reporting is important to ethtool even BEFORE open */
1597 netif_carrier_off(netdev);
1599 #ifdef CONFIG_IGB_DCA
1600 if (dca_add_requester(&pdev->dev) == 0) {
1601 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1602 dev_info(&pdev->dev, "DCA enabled\n");
1603 igb_setup_dca(adapter);
1606 #endif
1608 switch (hw->mac.type) {
1609 case e1000_82576:
1611 * Initialize hardware timer: we keep it running just in case
1612 * that some program needs it later on.
1614 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1615 adapter->cycles.read = igb_read_clock;
1616 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1617 adapter->cycles.mult = 1;
1619 * Scale the NIC clock cycle by a large factor so that
1620 * relatively small clock corrections can be added or
1621 * substracted at each clock tick. The drawbacks of a large
1622 * factor are a) that the clock register overflows more quickly
1623 * (not such a big deal) and b) that the increment per tick has
1624 * to fit into 24 bits. As a result we need to use a shift of
1625 * 19 so we can fit a value of 16 into the TIMINCA register.
1627 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1628 wr32(E1000_TIMINCA,
1629 (1 << E1000_TIMINCA_16NS_SHIFT) |
1630 (16 << IGB_82576_TSYNC_SHIFT));
1632 /* Set registers so that rollover occurs soon to test this. */
1633 wr32(E1000_SYSTIML, 0x00000000);
1634 wr32(E1000_SYSTIMH, 0xFF800000);
1635 wrfl();
1637 timecounter_init(&adapter->clock,
1638 &adapter->cycles,
1639 ktime_to_ns(ktime_get_real()));
1641 * Synchronize our NIC clock against system wall clock. NIC
1642 * time stamp reading requires ~3us per sample, each sample
1643 * was pretty stable even under load => only require 10
1644 * samples for each offset comparison.
1646 memset(&adapter->compare, 0, sizeof(adapter->compare));
1647 adapter->compare.source = &adapter->clock;
1648 adapter->compare.target = ktime_get_real;
1649 adapter->compare.num_samples = 10;
1650 timecompare_update(&adapter->compare, 0);
1651 break;
1652 case e1000_82575:
1653 /* 82575 does not support timesync */
1654 default:
1655 break;
1658 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1659 /* print bus type/speed/width info */
1660 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1661 netdev->name,
1662 ((hw->bus.speed == e1000_bus_speed_2500)
1663 ? "2.5Gb/s" : "unknown"),
1664 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1665 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1666 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1667 "unknown"),
1668 netdev->dev_addr);
1670 igb_read_part_num(hw, &part_num);
1671 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1672 (part_num >> 8), (part_num & 0xff));
1674 dev_info(&pdev->dev,
1675 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1676 adapter->msix_entries ? "MSI-X" :
1677 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1678 adapter->num_rx_queues, adapter->num_tx_queues);
1680 return 0;
1682 err_register:
1683 igb_release_hw_control(adapter);
1684 err_eeprom:
1685 if (!igb_check_reset_block(hw))
1686 igb_reset_phy(hw);
1688 if (hw->flash_address)
1689 iounmap(hw->flash_address);
1690 err_sw_init:
1691 igb_clear_interrupt_scheme(adapter);
1692 iounmap(hw->hw_addr);
1693 err_ioremap:
1694 free_netdev(netdev);
1695 err_alloc_etherdev:
1696 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1697 IORESOURCE_MEM));
1698 err_pci_reg:
1699 err_dma:
1700 pci_disable_device(pdev);
1701 return err;
1705 * igb_remove - Device Removal Routine
1706 * @pdev: PCI device information struct
1708 * igb_remove is called by the PCI subsystem to alert the driver
1709 * that it should release a PCI device. The could be caused by a
1710 * Hot-Plug event, or because the driver is going to be removed from
1711 * memory.
1713 static void __devexit igb_remove(struct pci_dev *pdev)
1715 struct net_device *netdev = pci_get_drvdata(pdev);
1716 struct igb_adapter *adapter = netdev_priv(netdev);
1717 struct e1000_hw *hw = &adapter->hw;
1719 /* flush_scheduled work may reschedule our watchdog task, so
1720 * explicitly disable watchdog tasks from being rescheduled */
1721 set_bit(__IGB_DOWN, &adapter->state);
1722 del_timer_sync(&adapter->watchdog_timer);
1723 del_timer_sync(&adapter->phy_info_timer);
1725 flush_scheduled_work();
1727 #ifdef CONFIG_IGB_DCA
1728 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1729 dev_info(&pdev->dev, "DCA disabled\n");
1730 dca_remove_requester(&pdev->dev);
1731 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1732 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1734 #endif
1736 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1737 * would have already happened in close and is redundant. */
1738 igb_release_hw_control(adapter);
1740 unregister_netdev(netdev);
1742 if (!igb_check_reset_block(&adapter->hw))
1743 igb_reset_phy(&adapter->hw);
1745 igb_clear_interrupt_scheme(adapter);
1747 #ifdef CONFIG_PCI_IOV
1748 /* reclaim resources allocated to VFs */
1749 if (adapter->vf_data) {
1750 /* disable iov and allow time for transactions to clear */
1751 pci_disable_sriov(pdev);
1752 msleep(500);
1754 kfree(adapter->vf_data);
1755 adapter->vf_data = NULL;
1756 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1757 msleep(100);
1758 dev_info(&pdev->dev, "IOV Disabled\n");
1760 #endif
1761 iounmap(hw->hw_addr);
1762 if (hw->flash_address)
1763 iounmap(hw->flash_address);
1764 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1765 IORESOURCE_MEM));
1767 free_netdev(netdev);
1769 pci_disable_pcie_error_reporting(pdev);
1771 pci_disable_device(pdev);
1775 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1776 * @adapter: board private structure to initialize
1778 * igb_sw_init initializes the Adapter private data structure.
1779 * Fields are initialized based on PCI device information and
1780 * OS network device settings (MTU size).
1782 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1784 struct e1000_hw *hw = &adapter->hw;
1785 struct net_device *netdev = adapter->netdev;
1786 struct pci_dev *pdev = adapter->pdev;
1788 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1790 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1791 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1792 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1793 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1795 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1796 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1798 /* This call may decrease the number of queues depending on
1799 * interrupt mode. */
1800 if (igb_init_interrupt_scheme(adapter)) {
1801 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1802 return -ENOMEM;
1805 /* Explicitly disable IRQ since the NIC can be in any state. */
1806 igb_irq_disable(adapter);
1808 set_bit(__IGB_DOWN, &adapter->state);
1809 return 0;
1813 * igb_open - Called when a network interface is made active
1814 * @netdev: network interface device structure
1816 * Returns 0 on success, negative value on failure
1818 * The open entry point is called when a network interface is made
1819 * active by the system (IFF_UP). At this point all resources needed
1820 * for transmit and receive operations are allocated, the interrupt
1821 * handler is registered with the OS, the watchdog timer is started,
1822 * and the stack is notified that the interface is ready.
1824 static int igb_open(struct net_device *netdev)
1826 struct igb_adapter *adapter = netdev_priv(netdev);
1827 struct e1000_hw *hw = &adapter->hw;
1828 int err;
1829 int i;
1831 /* disallow open during test */
1832 if (test_bit(__IGB_TESTING, &adapter->state))
1833 return -EBUSY;
1835 netif_carrier_off(netdev);
1837 /* allocate transmit descriptors */
1838 err = igb_setup_all_tx_resources(adapter);
1839 if (err)
1840 goto err_setup_tx;
1842 /* allocate receive descriptors */
1843 err = igb_setup_all_rx_resources(adapter);
1844 if (err)
1845 goto err_setup_rx;
1847 /* e1000_power_up_phy(adapter); */
1849 /* before we allocate an interrupt, we must be ready to handle it.
1850 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1851 * as soon as we call pci_request_irq, so we have to setup our
1852 * clean_rx handler before we do so. */
1853 igb_configure(adapter);
1855 err = igb_request_irq(adapter);
1856 if (err)
1857 goto err_req_irq;
1859 /* From here on the code is the same as igb_up() */
1860 clear_bit(__IGB_DOWN, &adapter->state);
1862 for (i = 0; i < adapter->num_q_vectors; i++) {
1863 struct igb_q_vector *q_vector = adapter->q_vector[i];
1864 napi_enable(&q_vector->napi);
1867 /* Clear any pending interrupts. */
1868 rd32(E1000_ICR);
1870 igb_irq_enable(adapter);
1872 /* notify VFs that reset has been completed */
1873 if (adapter->vfs_allocated_count) {
1874 u32 reg_data = rd32(E1000_CTRL_EXT);
1875 reg_data |= E1000_CTRL_EXT_PFRSTD;
1876 wr32(E1000_CTRL_EXT, reg_data);
1879 netif_tx_start_all_queues(netdev);
1881 /* Fire a link status change interrupt to start the watchdog. */
1882 wr32(E1000_ICS, E1000_ICS_LSC);
1884 return 0;
1886 err_req_irq:
1887 igb_release_hw_control(adapter);
1888 /* e1000_power_down_phy(adapter); */
1889 igb_free_all_rx_resources(adapter);
1890 err_setup_rx:
1891 igb_free_all_tx_resources(adapter);
1892 err_setup_tx:
1893 igb_reset(adapter);
1895 return err;
1899 * igb_close - Disables a network interface
1900 * @netdev: network interface device structure
1902 * Returns 0, this is not allowed to fail
1904 * The close entry point is called when an interface is de-activated
1905 * by the OS. The hardware is still under the driver's control, but
1906 * needs to be disabled. A global MAC reset is issued to stop the
1907 * hardware, and all transmit and receive resources are freed.
1909 static int igb_close(struct net_device *netdev)
1911 struct igb_adapter *adapter = netdev_priv(netdev);
1913 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1914 igb_down(adapter);
1916 igb_free_irq(adapter);
1918 igb_free_all_tx_resources(adapter);
1919 igb_free_all_rx_resources(adapter);
1921 return 0;
1925 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1926 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1928 * Return 0 on success, negative on failure
1930 int igb_setup_tx_resources(struct igb_ring *tx_ring)
1932 struct pci_dev *pdev = tx_ring->pdev;
1933 int size;
1935 size = sizeof(struct igb_buffer) * tx_ring->count;
1936 tx_ring->buffer_info = vmalloc(size);
1937 if (!tx_ring->buffer_info)
1938 goto err;
1939 memset(tx_ring->buffer_info, 0, size);
1941 /* round up to nearest 4K */
1942 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1943 tx_ring->size = ALIGN(tx_ring->size, 4096);
1945 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1946 &tx_ring->dma);
1948 if (!tx_ring->desc)
1949 goto err;
1951 tx_ring->next_to_use = 0;
1952 tx_ring->next_to_clean = 0;
1953 return 0;
1955 err:
1956 vfree(tx_ring->buffer_info);
1957 dev_err(&pdev->dev,
1958 "Unable to allocate memory for the transmit descriptor ring\n");
1959 return -ENOMEM;
1963 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1964 * (Descriptors) for all queues
1965 * @adapter: board private structure
1967 * Return 0 on success, negative on failure
1969 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1971 int i, err = 0;
1972 int r_idx;
1974 for (i = 0; i < adapter->num_tx_queues; i++) {
1975 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
1976 if (err) {
1977 dev_err(&adapter->pdev->dev,
1978 "Allocation for Tx Queue %u failed\n", i);
1979 for (i--; i >= 0; i--)
1980 igb_free_tx_resources(&adapter->tx_ring[i]);
1981 break;
1985 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1986 r_idx = i % adapter->num_tx_queues;
1987 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1989 return err;
1993 * igb_setup_tctl - configure the transmit control registers
1994 * @adapter: Board private structure
1996 void igb_setup_tctl(struct igb_adapter *adapter)
1998 struct e1000_hw *hw = &adapter->hw;
1999 u32 tctl;
2001 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2002 wr32(E1000_TXDCTL(0), 0);
2004 /* Program the Transmit Control Register */
2005 tctl = rd32(E1000_TCTL);
2006 tctl &= ~E1000_TCTL_CT;
2007 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2008 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2010 igb_config_collision_dist(hw);
2012 /* Enable transmits */
2013 tctl |= E1000_TCTL_EN;
2015 wr32(E1000_TCTL, tctl);
2019 * igb_configure_tx_ring - Configure transmit ring after Reset
2020 * @adapter: board private structure
2021 * @ring: tx ring to configure
2023 * Configure a transmit ring after a reset.
2025 void igb_configure_tx_ring(struct igb_adapter *adapter,
2026 struct igb_ring *ring)
2028 struct e1000_hw *hw = &adapter->hw;
2029 u32 txdctl;
2030 u64 tdba = ring->dma;
2031 int reg_idx = ring->reg_idx;
2033 /* disable the queue */
2034 txdctl = rd32(E1000_TXDCTL(reg_idx));
2035 wr32(E1000_TXDCTL(reg_idx),
2036 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2037 wrfl();
2038 mdelay(10);
2040 wr32(E1000_TDLEN(reg_idx),
2041 ring->count * sizeof(union e1000_adv_tx_desc));
2042 wr32(E1000_TDBAL(reg_idx),
2043 tdba & 0x00000000ffffffffULL);
2044 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2046 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2047 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2048 writel(0, ring->head);
2049 writel(0, ring->tail);
2051 txdctl |= IGB_TX_PTHRESH;
2052 txdctl |= IGB_TX_HTHRESH << 8;
2053 txdctl |= IGB_TX_WTHRESH << 16;
2055 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2056 wr32(E1000_TXDCTL(reg_idx), txdctl);
2060 * igb_configure_tx - Configure transmit Unit after Reset
2061 * @adapter: board private structure
2063 * Configure the Tx unit of the MAC after a reset.
2065 static void igb_configure_tx(struct igb_adapter *adapter)
2067 int i;
2069 for (i = 0; i < adapter->num_tx_queues; i++)
2070 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2074 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2075 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2077 * Returns 0 on success, negative on failure
2079 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2081 struct pci_dev *pdev = rx_ring->pdev;
2082 int size, desc_len;
2084 size = sizeof(struct igb_buffer) * rx_ring->count;
2085 rx_ring->buffer_info = vmalloc(size);
2086 if (!rx_ring->buffer_info)
2087 goto err;
2088 memset(rx_ring->buffer_info, 0, size);
2090 desc_len = sizeof(union e1000_adv_rx_desc);
2092 /* Round up to nearest 4K */
2093 rx_ring->size = rx_ring->count * desc_len;
2094 rx_ring->size = ALIGN(rx_ring->size, 4096);
2096 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2097 &rx_ring->dma);
2099 if (!rx_ring->desc)
2100 goto err;
2102 rx_ring->next_to_clean = 0;
2103 rx_ring->next_to_use = 0;
2105 return 0;
2107 err:
2108 vfree(rx_ring->buffer_info);
2109 dev_err(&pdev->dev, "Unable to allocate memory for "
2110 "the receive descriptor ring\n");
2111 return -ENOMEM;
2115 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2116 * (Descriptors) for all queues
2117 * @adapter: board private structure
2119 * Return 0 on success, negative on failure
2121 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2123 int i, err = 0;
2125 for (i = 0; i < adapter->num_rx_queues; i++) {
2126 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2127 if (err) {
2128 dev_err(&adapter->pdev->dev,
2129 "Allocation for Rx Queue %u failed\n", i);
2130 for (i--; i >= 0; i--)
2131 igb_free_rx_resources(&adapter->rx_ring[i]);
2132 break;
2136 return err;
2140 * igb_setup_mrqc - configure the multiple receive queue control registers
2141 * @adapter: Board private structure
2143 static void igb_setup_mrqc(struct igb_adapter *adapter)
2145 struct e1000_hw *hw = &adapter->hw;
2146 u32 mrqc, rxcsum;
2147 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2148 union e1000_reta {
2149 u32 dword;
2150 u8 bytes[4];
2151 } reta;
2152 static const u8 rsshash[40] = {
2153 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2154 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2155 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2156 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2158 /* Fill out hash function seeds */
2159 for (j = 0; j < 10; j++) {
2160 u32 rsskey = rsshash[(j * 4)];
2161 rsskey |= rsshash[(j * 4) + 1] << 8;
2162 rsskey |= rsshash[(j * 4) + 2] << 16;
2163 rsskey |= rsshash[(j * 4) + 3] << 24;
2164 array_wr32(E1000_RSSRK(0), j, rsskey);
2167 num_rx_queues = adapter->num_rx_queues;
2169 if (adapter->vfs_allocated_count) {
2170 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2171 switch (hw->mac.type) {
2172 case e1000_82576:
2173 shift = 3;
2174 num_rx_queues = 2;
2175 break;
2176 case e1000_82575:
2177 shift = 2;
2178 shift2 = 6;
2179 default:
2180 break;
2182 } else {
2183 if (hw->mac.type == e1000_82575)
2184 shift = 6;
2187 for (j = 0; j < (32 * 4); j++) {
2188 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2189 if (shift2)
2190 reta.bytes[j & 3] |= num_rx_queues << shift2;
2191 if ((j & 3) == 3)
2192 wr32(E1000_RETA(j >> 2), reta.dword);
2196 * Disable raw packet checksumming so that RSS hash is placed in
2197 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2198 * offloads as they are enabled by default
2200 rxcsum = rd32(E1000_RXCSUM);
2201 rxcsum |= E1000_RXCSUM_PCSD;
2203 if (adapter->hw.mac.type >= e1000_82576)
2204 /* Enable Receive Checksum Offload for SCTP */
2205 rxcsum |= E1000_RXCSUM_CRCOFL;
2207 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2208 wr32(E1000_RXCSUM, rxcsum);
2210 /* If VMDq is enabled then we set the appropriate mode for that, else
2211 * we default to RSS so that an RSS hash is calculated per packet even
2212 * if we are only using one queue */
2213 if (adapter->vfs_allocated_count) {
2214 if (hw->mac.type > e1000_82575) {
2215 /* Set the default pool for the PF's first queue */
2216 u32 vtctl = rd32(E1000_VT_CTL);
2217 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2218 E1000_VT_CTL_DISABLE_DEF_POOL);
2219 vtctl |= adapter->vfs_allocated_count <<
2220 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2221 wr32(E1000_VT_CTL, vtctl);
2223 if (adapter->num_rx_queues > 1)
2224 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2225 else
2226 mrqc = E1000_MRQC_ENABLE_VMDQ;
2227 } else {
2228 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2230 igb_vmm_control(adapter);
2232 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2233 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2234 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2235 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2236 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2237 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2238 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2239 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2241 wr32(E1000_MRQC, mrqc);
2245 * igb_setup_rctl - configure the receive control registers
2246 * @adapter: Board private structure
2248 void igb_setup_rctl(struct igb_adapter *adapter)
2250 struct e1000_hw *hw = &adapter->hw;
2251 u32 rctl;
2253 rctl = rd32(E1000_RCTL);
2255 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2256 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2258 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2259 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2262 * enable stripping of CRC. It's unlikely this will break BMC
2263 * redirection as it did with e1000. Newer features require
2264 * that the HW strips the CRC.
2266 rctl |= E1000_RCTL_SECRC;
2269 * disable store bad packets and clear size bits.
2271 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2273 /* enable LPE to prevent packets larger than max_frame_size */
2274 rctl |= E1000_RCTL_LPE;
2276 /* disable queue 0 to prevent tail write w/o re-config */
2277 wr32(E1000_RXDCTL(0), 0);
2279 /* Attention!!! For SR-IOV PF driver operations you must enable
2280 * queue drop for all VF and PF queues to prevent head of line blocking
2281 * if an un-trusted VF does not provide descriptors to hardware.
2283 if (adapter->vfs_allocated_count) {
2284 /* set all queue drop enable bits */
2285 wr32(E1000_QDE, ALL_QUEUES);
2288 wr32(E1000_RCTL, rctl);
2291 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2292 int vfn)
2294 struct e1000_hw *hw = &adapter->hw;
2295 u32 vmolr;
2297 /* if it isn't the PF check to see if VFs are enabled and
2298 * increase the size to support vlan tags */
2299 if (vfn < adapter->vfs_allocated_count &&
2300 adapter->vf_data[vfn].vlans_enabled)
2301 size += VLAN_TAG_SIZE;
2303 vmolr = rd32(E1000_VMOLR(vfn));
2304 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2305 vmolr |= size | E1000_VMOLR_LPE;
2306 wr32(E1000_VMOLR(vfn), vmolr);
2308 return 0;
2312 * igb_rlpml_set - set maximum receive packet size
2313 * @adapter: board private structure
2315 * Configure maximum receivable packet size.
2317 static void igb_rlpml_set(struct igb_adapter *adapter)
2319 u32 max_frame_size = adapter->max_frame_size;
2320 struct e1000_hw *hw = &adapter->hw;
2321 u16 pf_id = adapter->vfs_allocated_count;
2323 if (adapter->vlgrp)
2324 max_frame_size += VLAN_TAG_SIZE;
2326 /* if vfs are enabled we set RLPML to the largest possible request
2327 * size and set the VMOLR RLPML to the size we need */
2328 if (pf_id) {
2329 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2330 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2333 wr32(E1000_RLPML, max_frame_size);
2336 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2338 struct e1000_hw *hw = &adapter->hw;
2339 u32 vmolr;
2342 * This register exists only on 82576 and newer so if we are older then
2343 * we should exit and do nothing
2345 if (hw->mac.type < e1000_82576)
2346 return;
2348 vmolr = rd32(E1000_VMOLR(vfn));
2349 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2350 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2352 /* clear all bits that might not be set */
2353 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2355 if (adapter->num_rx_queues > 1 && vfn == adapter->vfs_allocated_count)
2356 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2358 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2359 * multicast packets
2361 if (vfn <= adapter->vfs_allocated_count)
2362 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2364 wr32(E1000_VMOLR(vfn), vmolr);
2368 * igb_configure_rx_ring - Configure a receive ring after Reset
2369 * @adapter: board private structure
2370 * @ring: receive ring to be configured
2372 * Configure the Rx unit of the MAC after a reset.
2374 void igb_configure_rx_ring(struct igb_adapter *adapter,
2375 struct igb_ring *ring)
2377 struct e1000_hw *hw = &adapter->hw;
2378 u64 rdba = ring->dma;
2379 int reg_idx = ring->reg_idx;
2380 u32 srrctl, rxdctl;
2382 /* disable the queue */
2383 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2384 wr32(E1000_RXDCTL(reg_idx),
2385 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2387 /* Set DMA base address registers */
2388 wr32(E1000_RDBAL(reg_idx),
2389 rdba & 0x00000000ffffffffULL);
2390 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2391 wr32(E1000_RDLEN(reg_idx),
2392 ring->count * sizeof(union e1000_adv_rx_desc));
2394 /* initialize head and tail */
2395 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2396 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2397 writel(0, ring->head);
2398 writel(0, ring->tail);
2400 /* set descriptor configuration */
2401 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2402 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2403 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2404 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2405 srrctl |= IGB_RXBUFFER_16384 >>
2406 E1000_SRRCTL_BSIZEPKT_SHIFT;
2407 #else
2408 srrctl |= (PAGE_SIZE / 2) >>
2409 E1000_SRRCTL_BSIZEPKT_SHIFT;
2410 #endif
2411 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2412 } else {
2413 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2414 E1000_SRRCTL_BSIZEPKT_SHIFT;
2415 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2418 wr32(E1000_SRRCTL(reg_idx), srrctl);
2420 /* set filtering for VMDQ pools */
2421 igb_set_vmolr(adapter, reg_idx & 0x7);
2423 /* enable receive descriptor fetching */
2424 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2425 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2426 rxdctl &= 0xFFF00000;
2427 rxdctl |= IGB_RX_PTHRESH;
2428 rxdctl |= IGB_RX_HTHRESH << 8;
2429 rxdctl |= IGB_RX_WTHRESH << 16;
2430 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2434 * igb_configure_rx - Configure receive Unit after Reset
2435 * @adapter: board private structure
2437 * Configure the Rx unit of the MAC after a reset.
2439 static void igb_configure_rx(struct igb_adapter *adapter)
2441 int i;
2443 /* set UTA to appropriate mode */
2444 igb_set_uta(adapter);
2446 /* set the correct pool for the PF default MAC address in entry 0 */
2447 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2448 adapter->vfs_allocated_count);
2450 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2451 * the Base and Length of the Rx Descriptor Ring */
2452 for (i = 0; i < adapter->num_rx_queues; i++)
2453 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2457 * igb_free_tx_resources - Free Tx Resources per Queue
2458 * @tx_ring: Tx descriptor ring for a specific queue
2460 * Free all transmit software resources
2462 void igb_free_tx_resources(struct igb_ring *tx_ring)
2464 igb_clean_tx_ring(tx_ring);
2466 vfree(tx_ring->buffer_info);
2467 tx_ring->buffer_info = NULL;
2469 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2470 tx_ring->desc, tx_ring->dma);
2472 tx_ring->desc = NULL;
2476 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2477 * @adapter: board private structure
2479 * Free all transmit software resources
2481 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2483 int i;
2485 for (i = 0; i < adapter->num_tx_queues; i++)
2486 igb_free_tx_resources(&adapter->tx_ring[i]);
2489 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2490 struct igb_buffer *buffer_info)
2492 buffer_info->dma = 0;
2493 if (buffer_info->skb) {
2494 skb_dma_unmap(&tx_ring->pdev->dev,
2495 buffer_info->skb,
2496 DMA_TO_DEVICE);
2497 dev_kfree_skb_any(buffer_info->skb);
2498 buffer_info->skb = NULL;
2500 buffer_info->time_stamp = 0;
2501 /* buffer_info must be completely set up in the transmit path */
2505 * igb_clean_tx_ring - Free Tx Buffers
2506 * @tx_ring: ring to be cleaned
2508 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2510 struct igb_buffer *buffer_info;
2511 unsigned long size;
2512 unsigned int i;
2514 if (!tx_ring->buffer_info)
2515 return;
2516 /* Free all the Tx ring sk_buffs */
2518 for (i = 0; i < tx_ring->count; i++) {
2519 buffer_info = &tx_ring->buffer_info[i];
2520 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2523 size = sizeof(struct igb_buffer) * tx_ring->count;
2524 memset(tx_ring->buffer_info, 0, size);
2526 /* Zero out the descriptor ring */
2528 memset(tx_ring->desc, 0, tx_ring->size);
2530 tx_ring->next_to_use = 0;
2531 tx_ring->next_to_clean = 0;
2533 writel(0, tx_ring->head);
2534 writel(0, tx_ring->tail);
2538 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2539 * @adapter: board private structure
2541 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2543 int i;
2545 for (i = 0; i < adapter->num_tx_queues; i++)
2546 igb_clean_tx_ring(&adapter->tx_ring[i]);
2550 * igb_free_rx_resources - Free Rx Resources
2551 * @rx_ring: ring to clean the resources from
2553 * Free all receive software resources
2555 void igb_free_rx_resources(struct igb_ring *rx_ring)
2557 igb_clean_rx_ring(rx_ring);
2559 vfree(rx_ring->buffer_info);
2560 rx_ring->buffer_info = NULL;
2562 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2563 rx_ring->desc, rx_ring->dma);
2565 rx_ring->desc = NULL;
2569 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2570 * @adapter: board private structure
2572 * Free all receive software resources
2574 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2576 int i;
2578 for (i = 0; i < adapter->num_rx_queues; i++)
2579 igb_free_rx_resources(&adapter->rx_ring[i]);
2583 * igb_clean_rx_ring - Free Rx Buffers per Queue
2584 * @rx_ring: ring to free buffers from
2586 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2588 struct igb_buffer *buffer_info;
2589 unsigned long size;
2590 unsigned int i;
2592 if (!rx_ring->buffer_info)
2593 return;
2594 /* Free all the Rx ring sk_buffs */
2595 for (i = 0; i < rx_ring->count; i++) {
2596 buffer_info = &rx_ring->buffer_info[i];
2597 if (buffer_info->dma) {
2598 pci_unmap_single(rx_ring->pdev,
2599 buffer_info->dma,
2600 rx_ring->rx_buffer_len,
2601 PCI_DMA_FROMDEVICE);
2602 buffer_info->dma = 0;
2605 if (buffer_info->skb) {
2606 dev_kfree_skb(buffer_info->skb);
2607 buffer_info->skb = NULL;
2609 if (buffer_info->page_dma) {
2610 pci_unmap_page(rx_ring->pdev,
2611 buffer_info->page_dma,
2612 PAGE_SIZE / 2,
2613 PCI_DMA_FROMDEVICE);
2614 buffer_info->page_dma = 0;
2616 if (buffer_info->page) {
2617 put_page(buffer_info->page);
2618 buffer_info->page = NULL;
2619 buffer_info->page_offset = 0;
2623 size = sizeof(struct igb_buffer) * rx_ring->count;
2624 memset(rx_ring->buffer_info, 0, size);
2626 /* Zero out the descriptor ring */
2627 memset(rx_ring->desc, 0, rx_ring->size);
2629 rx_ring->next_to_clean = 0;
2630 rx_ring->next_to_use = 0;
2632 writel(0, rx_ring->head);
2633 writel(0, rx_ring->tail);
2637 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2638 * @adapter: board private structure
2640 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2642 int i;
2644 for (i = 0; i < adapter->num_rx_queues; i++)
2645 igb_clean_rx_ring(&adapter->rx_ring[i]);
2649 * igb_set_mac - Change the Ethernet Address of the NIC
2650 * @netdev: network interface device structure
2651 * @p: pointer to an address structure
2653 * Returns 0 on success, negative on failure
2655 static int igb_set_mac(struct net_device *netdev, void *p)
2657 struct igb_adapter *adapter = netdev_priv(netdev);
2658 struct e1000_hw *hw = &adapter->hw;
2659 struct sockaddr *addr = p;
2661 if (!is_valid_ether_addr(addr->sa_data))
2662 return -EADDRNOTAVAIL;
2664 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2665 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2667 /* set the correct pool for the new PF MAC address in entry 0 */
2668 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2669 adapter->vfs_allocated_count);
2671 return 0;
2675 * igb_write_mc_addr_list - write multicast addresses to MTA
2676 * @netdev: network interface device structure
2678 * Writes multicast address list to the MTA hash table.
2679 * Returns: -ENOMEM on failure
2680 * 0 on no addresses written
2681 * X on writing X addresses to MTA
2683 static int igb_write_mc_addr_list(struct net_device *netdev)
2685 struct igb_adapter *adapter = netdev_priv(netdev);
2686 struct e1000_hw *hw = &adapter->hw;
2687 struct dev_mc_list *mc_ptr = netdev->mc_list;
2688 u8 *mta_list;
2689 u32 vmolr = 0;
2690 int i;
2692 if (!netdev->mc_count) {
2693 /* nothing to program, so clear mc list */
2694 igb_update_mc_addr_list(hw, NULL, 0);
2695 igb_restore_vf_multicasts(adapter);
2696 return 0;
2699 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2700 if (!mta_list)
2701 return -ENOMEM;
2703 /* set vmolr receive overflow multicast bit */
2704 vmolr |= E1000_VMOLR_ROMPE;
2706 /* The shared function expects a packed array of only addresses. */
2707 mc_ptr = netdev->mc_list;
2709 for (i = 0; i < netdev->mc_count; i++) {
2710 if (!mc_ptr)
2711 break;
2712 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2713 mc_ptr = mc_ptr->next;
2715 igb_update_mc_addr_list(hw, mta_list, i);
2716 kfree(mta_list);
2718 return netdev->mc_count;
2722 * igb_write_uc_addr_list - write unicast addresses to RAR table
2723 * @netdev: network interface device structure
2725 * Writes unicast address list to the RAR table.
2726 * Returns: -ENOMEM on failure/insufficient address space
2727 * 0 on no addresses written
2728 * X on writing X addresses to the RAR table
2730 static int igb_write_uc_addr_list(struct net_device *netdev)
2732 struct igb_adapter *adapter = netdev_priv(netdev);
2733 struct e1000_hw *hw = &adapter->hw;
2734 unsigned int vfn = adapter->vfs_allocated_count;
2735 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2736 int count = 0;
2738 /* return ENOMEM indicating insufficient memory for addresses */
2739 if (netdev->uc.count > rar_entries)
2740 return -ENOMEM;
2742 if (netdev->uc.count && rar_entries) {
2743 struct netdev_hw_addr *ha;
2744 list_for_each_entry(ha, &netdev->uc.list, list) {
2745 if (!rar_entries)
2746 break;
2747 igb_rar_set_qsel(adapter, ha->addr,
2748 rar_entries--,
2749 vfn);
2750 count++;
2753 /* write the addresses in reverse order to avoid write combining */
2754 for (; rar_entries > 0 ; rar_entries--) {
2755 wr32(E1000_RAH(rar_entries), 0);
2756 wr32(E1000_RAL(rar_entries), 0);
2758 wrfl();
2760 return count;
2764 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2765 * @netdev: network interface device structure
2767 * The set_rx_mode entry point is called whenever the unicast or multicast
2768 * address lists or the network interface flags are updated. This routine is
2769 * responsible for configuring the hardware for proper unicast, multicast,
2770 * promiscuous mode, and all-multi behavior.
2772 static void igb_set_rx_mode(struct net_device *netdev)
2774 struct igb_adapter *adapter = netdev_priv(netdev);
2775 struct e1000_hw *hw = &adapter->hw;
2776 unsigned int vfn = adapter->vfs_allocated_count;
2777 u32 rctl, vmolr = 0;
2778 int count;
2780 /* Check for Promiscuous and All Multicast modes */
2781 rctl = rd32(E1000_RCTL);
2783 /* clear the effected bits */
2784 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2786 if (netdev->flags & IFF_PROMISC) {
2787 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2788 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2789 } else {
2790 if (netdev->flags & IFF_ALLMULTI) {
2791 rctl |= E1000_RCTL_MPE;
2792 vmolr |= E1000_VMOLR_MPME;
2793 } else {
2795 * Write addresses to the MTA, if the attempt fails
2796 * then we should just turn on promiscous mode so
2797 * that we can at least receive multicast traffic
2799 count = igb_write_mc_addr_list(netdev);
2800 if (count < 0) {
2801 rctl |= E1000_RCTL_MPE;
2802 vmolr |= E1000_VMOLR_MPME;
2803 } else if (count) {
2804 vmolr |= E1000_VMOLR_ROMPE;
2808 * Write addresses to available RAR registers, if there is not
2809 * sufficient space to store all the addresses then enable
2810 * unicast promiscous mode
2812 count = igb_write_uc_addr_list(netdev);
2813 if (count < 0) {
2814 rctl |= E1000_RCTL_UPE;
2815 vmolr |= E1000_VMOLR_ROPE;
2817 rctl |= E1000_RCTL_VFE;
2819 wr32(E1000_RCTL, rctl);
2822 * In order to support SR-IOV and eventually VMDq it is necessary to set
2823 * the VMOLR to enable the appropriate modes. Without this workaround
2824 * we will have issues with VLAN tag stripping not being done for frames
2825 * that are only arriving because we are the default pool
2827 if (hw->mac.type < e1000_82576)
2828 return;
2830 vmolr |= rd32(E1000_VMOLR(vfn)) &
2831 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2832 wr32(E1000_VMOLR(vfn), vmolr);
2833 igb_restore_vf_multicasts(adapter);
2836 /* Need to wait a few seconds after link up to get diagnostic information from
2837 * the phy */
2838 static void igb_update_phy_info(unsigned long data)
2840 struct igb_adapter *adapter = (struct igb_adapter *) data;
2841 igb_get_phy_info(&adapter->hw);
2845 * igb_has_link - check shared code for link and determine up/down
2846 * @adapter: pointer to driver private info
2848 static bool igb_has_link(struct igb_adapter *adapter)
2850 struct e1000_hw *hw = &adapter->hw;
2851 bool link_active = false;
2852 s32 ret_val = 0;
2854 /* get_link_status is set on LSC (link status) interrupt or
2855 * rx sequence error interrupt. get_link_status will stay
2856 * false until the e1000_check_for_link establishes link
2857 * for copper adapters ONLY
2859 switch (hw->phy.media_type) {
2860 case e1000_media_type_copper:
2861 if (hw->mac.get_link_status) {
2862 ret_val = hw->mac.ops.check_for_link(hw);
2863 link_active = !hw->mac.get_link_status;
2864 } else {
2865 link_active = true;
2867 break;
2868 case e1000_media_type_internal_serdes:
2869 ret_val = hw->mac.ops.check_for_link(hw);
2870 link_active = hw->mac.serdes_has_link;
2871 break;
2872 default:
2873 case e1000_media_type_unknown:
2874 break;
2877 return link_active;
2881 * igb_watchdog - Timer Call-back
2882 * @data: pointer to adapter cast into an unsigned long
2884 static void igb_watchdog(unsigned long data)
2886 struct igb_adapter *adapter = (struct igb_adapter *)data;
2887 /* Do the rest outside of interrupt context */
2888 schedule_work(&adapter->watchdog_task);
2891 static void igb_watchdog_task(struct work_struct *work)
2893 struct igb_adapter *adapter = container_of(work,
2894 struct igb_adapter, watchdog_task);
2895 struct e1000_hw *hw = &adapter->hw;
2896 struct net_device *netdev = adapter->netdev;
2897 struct igb_ring *tx_ring = adapter->tx_ring;
2898 u32 link;
2899 int i;
2901 link = igb_has_link(adapter);
2902 if ((netif_carrier_ok(netdev)) && link)
2903 goto link_up;
2905 if (link) {
2906 if (!netif_carrier_ok(netdev)) {
2907 u32 ctrl;
2908 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2909 &adapter->link_speed,
2910 &adapter->link_duplex);
2912 ctrl = rd32(E1000_CTRL);
2913 /* Links status message must follow this format */
2914 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2915 "Flow Control: %s\n",
2916 netdev->name,
2917 adapter->link_speed,
2918 adapter->link_duplex == FULL_DUPLEX ?
2919 "Full Duplex" : "Half Duplex",
2920 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2921 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2922 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2923 E1000_CTRL_TFCE) ? "TX" : "None")));
2925 /* tweak tx_queue_len according to speed/duplex and
2926 * adjust the timeout factor */
2927 netdev->tx_queue_len = adapter->tx_queue_len;
2928 adapter->tx_timeout_factor = 1;
2929 switch (adapter->link_speed) {
2930 case SPEED_10:
2931 netdev->tx_queue_len = 10;
2932 adapter->tx_timeout_factor = 14;
2933 break;
2934 case SPEED_100:
2935 netdev->tx_queue_len = 100;
2936 /* maybe add some timeout factor ? */
2937 break;
2940 netif_carrier_on(netdev);
2942 igb_ping_all_vfs(adapter);
2944 /* link state has changed, schedule phy info update */
2945 if (!test_bit(__IGB_DOWN, &adapter->state))
2946 mod_timer(&adapter->phy_info_timer,
2947 round_jiffies(jiffies + 2 * HZ));
2949 } else {
2950 if (netif_carrier_ok(netdev)) {
2951 adapter->link_speed = 0;
2952 adapter->link_duplex = 0;
2953 /* Links status message must follow this format */
2954 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2955 netdev->name);
2956 netif_carrier_off(netdev);
2958 igb_ping_all_vfs(adapter);
2960 /* link state has changed, schedule phy info update */
2961 if (!test_bit(__IGB_DOWN, &adapter->state))
2962 mod_timer(&adapter->phy_info_timer,
2963 round_jiffies(jiffies + 2 * HZ));
2967 link_up:
2968 igb_update_stats(adapter);
2970 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2971 adapter->tpt_old = adapter->stats.tpt;
2972 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2973 adapter->colc_old = adapter->stats.colc;
2975 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2976 adapter->gorc_old = adapter->stats.gorc;
2977 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2978 adapter->gotc_old = adapter->stats.gotc;
2980 igb_update_adaptive(&adapter->hw);
2982 if (!netif_carrier_ok(netdev)) {
2983 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2984 /* We've lost link, so the controller stops DMA,
2985 * but we've got queued Tx work that's never going
2986 * to get done, so reset controller to flush Tx.
2987 * (Do the reset outside of interrupt context). */
2988 adapter->tx_timeout_count++;
2989 schedule_work(&adapter->reset_task);
2990 /* return immediately since reset is imminent */
2991 return;
2995 /* Cause software interrupt to ensure rx ring is cleaned */
2996 if (adapter->msix_entries) {
2997 u32 eics = 0;
2998 for (i = 0; i < adapter->num_q_vectors; i++) {
2999 struct igb_q_vector *q_vector = adapter->q_vector[i];
3000 eics |= q_vector->eims_value;
3002 wr32(E1000_EICS, eics);
3003 } else {
3004 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3007 /* Force detection of hung controller every watchdog period */
3008 tx_ring->detect_tx_hung = true;
3010 /* Reset the timer */
3011 if (!test_bit(__IGB_DOWN, &adapter->state))
3012 mod_timer(&adapter->watchdog_timer,
3013 round_jiffies(jiffies + 2 * HZ));
3016 enum latency_range {
3017 lowest_latency = 0,
3018 low_latency = 1,
3019 bulk_latency = 2,
3020 latency_invalid = 255
3024 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3026 * Stores a new ITR value based on strictly on packet size. This
3027 * algorithm is less sophisticated than that used in igb_update_itr,
3028 * due to the difficulty of synchronizing statistics across multiple
3029 * receive rings. The divisors and thresholds used by this fuction
3030 * were determined based on theoretical maximum wire speed and testing
3031 * data, in order to minimize response time while increasing bulk
3032 * throughput.
3033 * This functionality is controlled by the InterruptThrottleRate module
3034 * parameter (see igb_param.c)
3035 * NOTE: This function is called only when operating in a multiqueue
3036 * receive environment.
3037 * @q_vector: pointer to q_vector
3039 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3041 int new_val = q_vector->itr_val;
3042 int avg_wire_size = 0;
3043 struct igb_adapter *adapter = q_vector->adapter;
3045 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3046 * ints/sec - ITR timer value of 120 ticks.
3048 if (adapter->link_speed != SPEED_1000) {
3049 new_val = 976;
3050 goto set_itr_val;
3053 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3054 struct igb_ring *ring = q_vector->rx_ring;
3055 avg_wire_size = ring->total_bytes / ring->total_packets;
3058 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3059 struct igb_ring *ring = q_vector->tx_ring;
3060 avg_wire_size = max_t(u32, avg_wire_size,
3061 (ring->total_bytes /
3062 ring->total_packets));
3065 /* if avg_wire_size isn't set no work was done */
3066 if (!avg_wire_size)
3067 goto clear_counts;
3069 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3070 avg_wire_size += 24;
3072 /* Don't starve jumbo frames */
3073 avg_wire_size = min(avg_wire_size, 3000);
3075 /* Give a little boost to mid-size frames */
3076 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3077 new_val = avg_wire_size / 3;
3078 else
3079 new_val = avg_wire_size / 2;
3081 set_itr_val:
3082 if (new_val != q_vector->itr_val) {
3083 q_vector->itr_val = new_val;
3084 q_vector->set_itr = 1;
3086 clear_counts:
3087 if (q_vector->rx_ring) {
3088 q_vector->rx_ring->total_bytes = 0;
3089 q_vector->rx_ring->total_packets = 0;
3091 if (q_vector->tx_ring) {
3092 q_vector->tx_ring->total_bytes = 0;
3093 q_vector->tx_ring->total_packets = 0;
3098 * igb_update_itr - update the dynamic ITR value based on statistics
3099 * Stores a new ITR value based on packets and byte
3100 * counts during the last interrupt. The advantage of per interrupt
3101 * computation is faster updates and more accurate ITR for the current
3102 * traffic pattern. Constants in this function were computed
3103 * based on theoretical maximum wire speed and thresholds were set based
3104 * on testing data as well as attempting to minimize response time
3105 * while increasing bulk throughput.
3106 * this functionality is controlled by the InterruptThrottleRate module
3107 * parameter (see igb_param.c)
3108 * NOTE: These calculations are only valid when operating in a single-
3109 * queue environment.
3110 * @adapter: pointer to adapter
3111 * @itr_setting: current q_vector->itr_val
3112 * @packets: the number of packets during this measurement interval
3113 * @bytes: the number of bytes during this measurement interval
3115 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3116 int packets, int bytes)
3118 unsigned int retval = itr_setting;
3120 if (packets == 0)
3121 goto update_itr_done;
3123 switch (itr_setting) {
3124 case lowest_latency:
3125 /* handle TSO and jumbo frames */
3126 if (bytes/packets > 8000)
3127 retval = bulk_latency;
3128 else if ((packets < 5) && (bytes > 512))
3129 retval = low_latency;
3130 break;
3131 case low_latency: /* 50 usec aka 20000 ints/s */
3132 if (bytes > 10000) {
3133 /* this if handles the TSO accounting */
3134 if (bytes/packets > 8000) {
3135 retval = bulk_latency;
3136 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3137 retval = bulk_latency;
3138 } else if ((packets > 35)) {
3139 retval = lowest_latency;
3141 } else if (bytes/packets > 2000) {
3142 retval = bulk_latency;
3143 } else if (packets <= 2 && bytes < 512) {
3144 retval = lowest_latency;
3146 break;
3147 case bulk_latency: /* 250 usec aka 4000 ints/s */
3148 if (bytes > 25000) {
3149 if (packets > 35)
3150 retval = low_latency;
3151 } else if (bytes < 1500) {
3152 retval = low_latency;
3154 break;
3157 update_itr_done:
3158 return retval;
3161 static void igb_set_itr(struct igb_adapter *adapter)
3163 struct igb_q_vector *q_vector = adapter->q_vector[0];
3164 u16 current_itr;
3165 u32 new_itr = q_vector->itr_val;
3167 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3168 if (adapter->link_speed != SPEED_1000) {
3169 current_itr = 0;
3170 new_itr = 4000;
3171 goto set_itr_now;
3174 adapter->rx_itr = igb_update_itr(adapter,
3175 adapter->rx_itr,
3176 adapter->rx_ring->total_packets,
3177 adapter->rx_ring->total_bytes);
3179 adapter->tx_itr = igb_update_itr(adapter,
3180 adapter->tx_itr,
3181 adapter->tx_ring->total_packets,
3182 adapter->tx_ring->total_bytes);
3183 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3185 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3186 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3187 current_itr = low_latency;
3189 switch (current_itr) {
3190 /* counts and packets in update_itr are dependent on these numbers */
3191 case lowest_latency:
3192 new_itr = 56; /* aka 70,000 ints/sec */
3193 break;
3194 case low_latency:
3195 new_itr = 196; /* aka 20,000 ints/sec */
3196 break;
3197 case bulk_latency:
3198 new_itr = 980; /* aka 4,000 ints/sec */
3199 break;
3200 default:
3201 break;
3204 set_itr_now:
3205 adapter->rx_ring->total_bytes = 0;
3206 adapter->rx_ring->total_packets = 0;
3207 adapter->tx_ring->total_bytes = 0;
3208 adapter->tx_ring->total_packets = 0;
3210 if (new_itr != q_vector->itr_val) {
3211 /* this attempts to bias the interrupt rate towards Bulk
3212 * by adding intermediate steps when interrupt rate is
3213 * increasing */
3214 new_itr = new_itr > q_vector->itr_val ?
3215 max((new_itr * q_vector->itr_val) /
3216 (new_itr + (q_vector->itr_val >> 2)),
3217 new_itr) :
3218 new_itr;
3219 /* Don't write the value here; it resets the adapter's
3220 * internal timer, and causes us to delay far longer than
3221 * we should between interrupts. Instead, we write the ITR
3222 * value at the beginning of the next interrupt so the timing
3223 * ends up being correct.
3225 q_vector->itr_val = new_itr;
3226 q_vector->set_itr = 1;
3229 return;
3232 #define IGB_TX_FLAGS_CSUM 0x00000001
3233 #define IGB_TX_FLAGS_VLAN 0x00000002
3234 #define IGB_TX_FLAGS_TSO 0x00000004
3235 #define IGB_TX_FLAGS_IPV4 0x00000008
3236 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3237 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3238 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3240 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3241 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3243 struct e1000_adv_tx_context_desc *context_desc;
3244 unsigned int i;
3245 int err;
3246 struct igb_buffer *buffer_info;
3247 u32 info = 0, tu_cmd = 0;
3248 u32 mss_l4len_idx, l4len;
3249 *hdr_len = 0;
3251 if (skb_header_cloned(skb)) {
3252 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3253 if (err)
3254 return err;
3257 l4len = tcp_hdrlen(skb);
3258 *hdr_len += l4len;
3260 if (skb->protocol == htons(ETH_P_IP)) {
3261 struct iphdr *iph = ip_hdr(skb);
3262 iph->tot_len = 0;
3263 iph->check = 0;
3264 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3265 iph->daddr, 0,
3266 IPPROTO_TCP,
3268 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3269 ipv6_hdr(skb)->payload_len = 0;
3270 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3271 &ipv6_hdr(skb)->daddr,
3272 0, IPPROTO_TCP, 0);
3275 i = tx_ring->next_to_use;
3277 buffer_info = &tx_ring->buffer_info[i];
3278 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3279 /* VLAN MACLEN IPLEN */
3280 if (tx_flags & IGB_TX_FLAGS_VLAN)
3281 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3282 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3283 *hdr_len += skb_network_offset(skb);
3284 info |= skb_network_header_len(skb);
3285 *hdr_len += skb_network_header_len(skb);
3286 context_desc->vlan_macip_lens = cpu_to_le32(info);
3288 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3289 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3291 if (skb->protocol == htons(ETH_P_IP))
3292 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3293 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3295 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3297 /* MSS L4LEN IDX */
3298 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3299 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3301 /* For 82575, context index must be unique per ring. */
3302 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3303 mss_l4len_idx |= tx_ring->reg_idx << 4;
3305 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3306 context_desc->seqnum_seed = 0;
3308 buffer_info->time_stamp = jiffies;
3309 buffer_info->next_to_watch = i;
3310 buffer_info->dma = 0;
3311 i++;
3312 if (i == tx_ring->count)
3313 i = 0;
3315 tx_ring->next_to_use = i;
3317 return true;
3320 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3321 struct sk_buff *skb, u32 tx_flags)
3323 struct e1000_adv_tx_context_desc *context_desc;
3324 struct pci_dev *pdev = tx_ring->pdev;
3325 struct igb_buffer *buffer_info;
3326 u32 info = 0, tu_cmd = 0;
3327 unsigned int i;
3329 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3330 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3331 i = tx_ring->next_to_use;
3332 buffer_info = &tx_ring->buffer_info[i];
3333 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3335 if (tx_flags & IGB_TX_FLAGS_VLAN)
3336 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3337 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3338 if (skb->ip_summed == CHECKSUM_PARTIAL)
3339 info |= skb_network_header_len(skb);
3341 context_desc->vlan_macip_lens = cpu_to_le32(info);
3343 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3345 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3346 __be16 protocol;
3348 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3349 const struct vlan_ethhdr *vhdr =
3350 (const struct vlan_ethhdr*)skb->data;
3352 protocol = vhdr->h_vlan_encapsulated_proto;
3353 } else {
3354 protocol = skb->protocol;
3357 switch (protocol) {
3358 case cpu_to_be16(ETH_P_IP):
3359 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3360 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3361 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3362 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3363 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3364 break;
3365 case cpu_to_be16(ETH_P_IPV6):
3366 /* XXX what about other V6 headers?? */
3367 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3368 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3369 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3370 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3371 break;
3372 default:
3373 if (unlikely(net_ratelimit()))
3374 dev_warn(&pdev->dev,
3375 "partial checksum but proto=%x!\n",
3376 skb->protocol);
3377 break;
3381 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3382 context_desc->seqnum_seed = 0;
3383 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3384 context_desc->mss_l4len_idx =
3385 cpu_to_le32(tx_ring->reg_idx << 4);
3387 buffer_info->time_stamp = jiffies;
3388 buffer_info->next_to_watch = i;
3389 buffer_info->dma = 0;
3391 i++;
3392 if (i == tx_ring->count)
3393 i = 0;
3394 tx_ring->next_to_use = i;
3396 return true;
3398 return false;
3401 #define IGB_MAX_TXD_PWR 16
3402 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3404 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3405 unsigned int first)
3407 struct igb_buffer *buffer_info;
3408 struct pci_dev *pdev = tx_ring->pdev;
3409 unsigned int len = skb_headlen(skb);
3410 unsigned int count = 0, i;
3411 unsigned int f;
3412 dma_addr_t *map;
3414 i = tx_ring->next_to_use;
3416 if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3417 dev_err(&pdev->dev, "TX DMA map failed\n");
3418 return 0;
3421 map = skb_shinfo(skb)->dma_maps;
3423 buffer_info = &tx_ring->buffer_info[i];
3424 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3425 buffer_info->length = len;
3426 /* set time_stamp *before* dma to help avoid a possible race */
3427 buffer_info->time_stamp = jiffies;
3428 buffer_info->next_to_watch = i;
3429 buffer_info->dma = skb_shinfo(skb)->dma_head;
3431 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3432 struct skb_frag_struct *frag;
3434 i++;
3435 if (i == tx_ring->count)
3436 i = 0;
3438 frag = &skb_shinfo(skb)->frags[f];
3439 len = frag->size;
3441 buffer_info = &tx_ring->buffer_info[i];
3442 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3443 buffer_info->length = len;
3444 buffer_info->time_stamp = jiffies;
3445 buffer_info->next_to_watch = i;
3446 buffer_info->dma = map[count];
3447 count++;
3450 tx_ring->buffer_info[i].skb = skb;
3451 tx_ring->buffer_info[first].next_to_watch = i;
3453 return count + 1;
3456 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3457 int tx_flags, int count, u32 paylen,
3458 u8 hdr_len)
3460 union e1000_adv_tx_desc *tx_desc = NULL;
3461 struct igb_buffer *buffer_info;
3462 u32 olinfo_status = 0, cmd_type_len;
3463 unsigned int i;
3465 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3466 E1000_ADVTXD_DCMD_DEXT);
3468 if (tx_flags & IGB_TX_FLAGS_VLAN)
3469 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3471 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3472 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3474 if (tx_flags & IGB_TX_FLAGS_TSO) {
3475 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3477 /* insert tcp checksum */
3478 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3480 /* insert ip checksum */
3481 if (tx_flags & IGB_TX_FLAGS_IPV4)
3482 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3484 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3485 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3488 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3489 (tx_flags & (IGB_TX_FLAGS_CSUM |
3490 IGB_TX_FLAGS_TSO |
3491 IGB_TX_FLAGS_VLAN)))
3492 olinfo_status |= tx_ring->reg_idx << 4;
3494 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3496 i = tx_ring->next_to_use;
3497 while (count--) {
3498 buffer_info = &tx_ring->buffer_info[i];
3499 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3500 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3501 tx_desc->read.cmd_type_len =
3502 cpu_to_le32(cmd_type_len | buffer_info->length);
3503 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3504 i++;
3505 if (i == tx_ring->count)
3506 i = 0;
3509 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3510 /* Force memory writes to complete before letting h/w
3511 * know there are new descriptors to fetch. (Only
3512 * applicable for weak-ordered memory model archs,
3513 * such as IA-64). */
3514 wmb();
3516 tx_ring->next_to_use = i;
3517 writel(i, tx_ring->tail);
3518 /* we need this if more than one processor can write to our tail
3519 * at a time, it syncronizes IO on IA64/Altix systems */
3520 mmiowb();
3523 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3525 struct net_device *netdev = tx_ring->netdev;
3527 netif_stop_subqueue(netdev, tx_ring->queue_index);
3529 /* Herbert's original patch had:
3530 * smp_mb__after_netif_stop_queue();
3531 * but since that doesn't exist yet, just open code it. */
3532 smp_mb();
3534 /* We need to check again in a case another CPU has just
3535 * made room available. */
3536 if (igb_desc_unused(tx_ring) < size)
3537 return -EBUSY;
3539 /* A reprieve! */
3540 netif_wake_subqueue(netdev, tx_ring->queue_index);
3541 tx_ring->tx_stats.restart_queue++;
3542 return 0;
3545 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3547 if (igb_desc_unused(tx_ring) >= size)
3548 return 0;
3549 return __igb_maybe_stop_tx(tx_ring, size);
3552 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3553 struct igb_ring *tx_ring)
3555 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3556 unsigned int first;
3557 unsigned int tx_flags = 0;
3558 u8 hdr_len = 0;
3559 int count = 0;
3560 int tso = 0;
3561 union skb_shared_tx *shtx = skb_tx(skb);
3563 /* need: 1 descriptor per page,
3564 * + 2 desc gap to keep tail from touching head,
3565 * + 1 desc for skb->data,
3566 * + 1 desc for context descriptor,
3567 * otherwise try next time */
3568 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3569 /* this is a hard error */
3570 return NETDEV_TX_BUSY;
3573 if (unlikely(shtx->hardware)) {
3574 shtx->in_progress = 1;
3575 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3578 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3579 tx_flags |= IGB_TX_FLAGS_VLAN;
3580 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3583 if (skb->protocol == htons(ETH_P_IP))
3584 tx_flags |= IGB_TX_FLAGS_IPV4;
3586 first = tx_ring->next_to_use;
3587 if (skb_is_gso(skb)) {
3588 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3589 if (tso < 0) {
3590 dev_kfree_skb_any(skb);
3591 return NETDEV_TX_OK;
3595 if (tso)
3596 tx_flags |= IGB_TX_FLAGS_TSO;
3597 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3598 (skb->ip_summed == CHECKSUM_PARTIAL))
3599 tx_flags |= IGB_TX_FLAGS_CSUM;
3602 * count reflects descriptors mapped, if 0 then mapping error
3603 * has occured and we need to rewind the descriptor queue
3605 count = igb_tx_map_adv(tx_ring, skb, first);
3607 if (!count) {
3608 dev_kfree_skb_any(skb);
3609 tx_ring->buffer_info[first].time_stamp = 0;
3610 tx_ring->next_to_use = first;
3611 return NETDEV_TX_OK;
3614 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3616 /* Make sure there is space in the ring for the next send. */
3617 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3619 return NETDEV_TX_OK;
3622 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3623 struct net_device *netdev)
3625 struct igb_adapter *adapter = netdev_priv(netdev);
3626 struct igb_ring *tx_ring;
3627 int r_idx = 0;
3629 if (test_bit(__IGB_DOWN, &adapter->state)) {
3630 dev_kfree_skb_any(skb);
3631 return NETDEV_TX_OK;
3634 if (skb->len <= 0) {
3635 dev_kfree_skb_any(skb);
3636 return NETDEV_TX_OK;
3639 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3640 tx_ring = adapter->multi_tx_table[r_idx];
3642 /* This goes back to the question of how to logically map a tx queue
3643 * to a flow. Right now, performance is impacted slightly negatively
3644 * if using multiple tx queues. If the stack breaks away from a
3645 * single qdisc implementation, we can look at this again. */
3646 return igb_xmit_frame_ring_adv(skb, tx_ring);
3650 * igb_tx_timeout - Respond to a Tx Hang
3651 * @netdev: network interface device structure
3653 static void igb_tx_timeout(struct net_device *netdev)
3655 struct igb_adapter *adapter = netdev_priv(netdev);
3656 struct e1000_hw *hw = &adapter->hw;
3658 /* Do the reset outside of interrupt context */
3659 adapter->tx_timeout_count++;
3660 schedule_work(&adapter->reset_task);
3661 wr32(E1000_EICS,
3662 (adapter->eims_enable_mask & ~adapter->eims_other));
3665 static void igb_reset_task(struct work_struct *work)
3667 struct igb_adapter *adapter;
3668 adapter = container_of(work, struct igb_adapter, reset_task);
3670 igb_reinit_locked(adapter);
3674 * igb_get_stats - Get System Network Statistics
3675 * @netdev: network interface device structure
3677 * Returns the address of the device statistics structure.
3678 * The statistics are actually updated from the timer callback.
3680 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3682 /* only return the current stats */
3683 return &netdev->stats;
3687 * igb_change_mtu - Change the Maximum Transfer Unit
3688 * @netdev: network interface device structure
3689 * @new_mtu: new value for maximum frame size
3691 * Returns 0 on success, negative on failure
3693 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3695 struct igb_adapter *adapter = netdev_priv(netdev);
3696 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3697 u32 rx_buffer_len, i;
3699 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3700 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3701 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3702 return -EINVAL;
3705 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3706 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3707 return -EINVAL;
3710 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3711 msleep(1);
3713 /* igb_down has a dependency on max_frame_size */
3714 adapter->max_frame_size = max_frame;
3715 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3716 * means we reserve 2 more, this pushes us to allocate from the next
3717 * larger slab size.
3718 * i.e. RXBUFFER_2048 --> size-4096 slab
3721 if (max_frame <= IGB_RXBUFFER_1024)
3722 rx_buffer_len = IGB_RXBUFFER_1024;
3723 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3724 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3725 else
3726 rx_buffer_len = IGB_RXBUFFER_128;
3728 if (netif_running(netdev))
3729 igb_down(adapter);
3731 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3732 netdev->mtu, new_mtu);
3733 netdev->mtu = new_mtu;
3735 for (i = 0; i < adapter->num_rx_queues; i++)
3736 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3738 if (netif_running(netdev))
3739 igb_up(adapter);
3740 else
3741 igb_reset(adapter);
3743 clear_bit(__IGB_RESETTING, &adapter->state);
3745 return 0;
3749 * igb_update_stats - Update the board statistics counters
3750 * @adapter: board private structure
3753 void igb_update_stats(struct igb_adapter *adapter)
3755 struct net_device *netdev = adapter->netdev;
3756 struct e1000_hw *hw = &adapter->hw;
3757 struct pci_dev *pdev = adapter->pdev;
3758 u16 phy_tmp;
3760 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3763 * Prevent stats update while adapter is being reset, or if the pci
3764 * connection is down.
3766 if (adapter->link_speed == 0)
3767 return;
3768 if (pci_channel_offline(pdev))
3769 return;
3771 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3772 adapter->stats.gprc += rd32(E1000_GPRC);
3773 adapter->stats.gorc += rd32(E1000_GORCL);
3774 rd32(E1000_GORCH); /* clear GORCL */
3775 adapter->stats.bprc += rd32(E1000_BPRC);
3776 adapter->stats.mprc += rd32(E1000_MPRC);
3777 adapter->stats.roc += rd32(E1000_ROC);
3779 adapter->stats.prc64 += rd32(E1000_PRC64);
3780 adapter->stats.prc127 += rd32(E1000_PRC127);
3781 adapter->stats.prc255 += rd32(E1000_PRC255);
3782 adapter->stats.prc511 += rd32(E1000_PRC511);
3783 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3784 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3785 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3786 adapter->stats.sec += rd32(E1000_SEC);
3788 adapter->stats.mpc += rd32(E1000_MPC);
3789 adapter->stats.scc += rd32(E1000_SCC);
3790 adapter->stats.ecol += rd32(E1000_ECOL);
3791 adapter->stats.mcc += rd32(E1000_MCC);
3792 adapter->stats.latecol += rd32(E1000_LATECOL);
3793 adapter->stats.dc += rd32(E1000_DC);
3794 adapter->stats.rlec += rd32(E1000_RLEC);
3795 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3796 adapter->stats.xontxc += rd32(E1000_XONTXC);
3797 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3798 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3799 adapter->stats.fcruc += rd32(E1000_FCRUC);
3800 adapter->stats.gptc += rd32(E1000_GPTC);
3801 adapter->stats.gotc += rd32(E1000_GOTCL);
3802 rd32(E1000_GOTCH); /* clear GOTCL */
3803 adapter->stats.rnbc += rd32(E1000_RNBC);
3804 adapter->stats.ruc += rd32(E1000_RUC);
3805 adapter->stats.rfc += rd32(E1000_RFC);
3806 adapter->stats.rjc += rd32(E1000_RJC);
3807 adapter->stats.tor += rd32(E1000_TORH);
3808 adapter->stats.tot += rd32(E1000_TOTH);
3809 adapter->stats.tpr += rd32(E1000_TPR);
3811 adapter->stats.ptc64 += rd32(E1000_PTC64);
3812 adapter->stats.ptc127 += rd32(E1000_PTC127);
3813 adapter->stats.ptc255 += rd32(E1000_PTC255);
3814 adapter->stats.ptc511 += rd32(E1000_PTC511);
3815 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3816 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3818 adapter->stats.mptc += rd32(E1000_MPTC);
3819 adapter->stats.bptc += rd32(E1000_BPTC);
3821 /* used for adaptive IFS */
3823 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3824 adapter->stats.tpt += hw->mac.tx_packet_delta;
3825 hw->mac.collision_delta = rd32(E1000_COLC);
3826 adapter->stats.colc += hw->mac.collision_delta;
3828 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3829 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3830 adapter->stats.tncrs += rd32(E1000_TNCRS);
3831 adapter->stats.tsctc += rd32(E1000_TSCTC);
3832 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3834 adapter->stats.iac += rd32(E1000_IAC);
3835 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3836 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3837 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3838 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3839 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3840 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3841 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3842 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3844 /* Fill out the OS statistics structure */
3845 netdev->stats.multicast = adapter->stats.mprc;
3846 netdev->stats.collisions = adapter->stats.colc;
3848 /* Rx Errors */
3850 if (hw->mac.type != e1000_82575) {
3851 u32 rqdpc_tmp;
3852 u64 rqdpc_total = 0;
3853 int i;
3854 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3855 * Queue Drop Packet Count) stats only gets incremented, if
3856 * the DROP_EN but it set (in the SRRCTL register for that
3857 * queue). If DROP_EN bit is NOT set, then the some what
3858 * equivalent count is stored in RNBC (not per queue basis).
3859 * Also note the drop count is due to lack of available
3860 * descriptors.
3862 for (i = 0; i < adapter->num_rx_queues; i++) {
3863 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3864 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3865 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3867 netdev->stats.rx_fifo_errors = rqdpc_total;
3870 /* Note RNBC (Receive No Buffers Count) is an not an exact
3871 * drop count as the hardware FIFO might save the day. Thats
3872 * one of the reason for saving it in rx_fifo_errors, as its
3873 * potentially not a true drop.
3875 netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3877 /* RLEC on some newer hardware can be incorrect so build
3878 * our own version based on RUC and ROC */
3879 netdev->stats.rx_errors = adapter->stats.rxerrc +
3880 adapter->stats.crcerrs + adapter->stats.algnerrc +
3881 adapter->stats.ruc + adapter->stats.roc +
3882 adapter->stats.cexterr;
3883 netdev->stats.rx_length_errors = adapter->stats.ruc +
3884 adapter->stats.roc;
3885 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3886 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3887 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3889 /* Tx Errors */
3890 netdev->stats.tx_errors = adapter->stats.ecol +
3891 adapter->stats.latecol;
3892 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3893 netdev->stats.tx_window_errors = adapter->stats.latecol;
3894 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3896 /* Tx Dropped needs to be maintained elsewhere */
3898 /* Phy Stats */
3899 if (hw->phy.media_type == e1000_media_type_copper) {
3900 if ((adapter->link_speed == SPEED_1000) &&
3901 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3902 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3903 adapter->phy_stats.idle_errors += phy_tmp;
3907 /* Management Stats */
3908 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3909 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3910 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3913 static irqreturn_t igb_msix_other(int irq, void *data)
3915 struct igb_adapter *adapter = data;
3916 struct e1000_hw *hw = &adapter->hw;
3917 u32 icr = rd32(E1000_ICR);
3918 /* reading ICR causes bit 31 of EICR to be cleared */
3920 if (icr & E1000_ICR_DOUTSYNC) {
3921 /* HW is reporting DMA is out of sync */
3922 adapter->stats.doosync++;
3925 /* Check for a mailbox event */
3926 if (icr & E1000_ICR_VMMB)
3927 igb_msg_task(adapter);
3929 if (icr & E1000_ICR_LSC) {
3930 hw->mac.get_link_status = 1;
3931 /* guard against interrupt when we're going down */
3932 if (!test_bit(__IGB_DOWN, &adapter->state))
3933 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3936 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3937 wr32(E1000_EIMS, adapter->eims_other);
3939 return IRQ_HANDLED;
3942 static void igb_write_itr(struct igb_q_vector *q_vector)
3944 u32 itr_val = q_vector->itr_val & 0x7FFC;
3946 if (!q_vector->set_itr)
3947 return;
3949 if (!itr_val)
3950 itr_val = 0x4;
3952 if (q_vector->itr_shift)
3953 itr_val |= itr_val << q_vector->itr_shift;
3954 else
3955 itr_val |= 0x8000000;
3957 writel(itr_val, q_vector->itr_register);
3958 q_vector->set_itr = 0;
3961 static irqreturn_t igb_msix_ring(int irq, void *data)
3963 struct igb_q_vector *q_vector = data;
3965 /* Write the ITR value calculated from the previous interrupt. */
3966 igb_write_itr(q_vector);
3968 napi_schedule(&q_vector->napi);
3970 return IRQ_HANDLED;
3973 #ifdef CONFIG_IGB_DCA
3974 static void igb_update_dca(struct igb_q_vector *q_vector)
3976 struct igb_adapter *adapter = q_vector->adapter;
3977 struct e1000_hw *hw = &adapter->hw;
3978 int cpu = get_cpu();
3980 if (q_vector->cpu == cpu)
3981 goto out_no_update;
3983 if (q_vector->tx_ring) {
3984 int q = q_vector->tx_ring->reg_idx;
3985 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3986 if (hw->mac.type == e1000_82575) {
3987 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3988 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3989 } else {
3990 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3991 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3992 E1000_DCA_TXCTRL_CPUID_SHIFT;
3994 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3995 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3997 if (q_vector->rx_ring) {
3998 int q = q_vector->rx_ring->reg_idx;
3999 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4000 if (hw->mac.type == e1000_82575) {
4001 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4002 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4003 } else {
4004 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4005 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4006 E1000_DCA_RXCTRL_CPUID_SHIFT;
4008 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4009 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4010 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4011 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4013 q_vector->cpu = cpu;
4014 out_no_update:
4015 put_cpu();
4018 static void igb_setup_dca(struct igb_adapter *adapter)
4020 struct e1000_hw *hw = &adapter->hw;
4021 int i;
4023 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4024 return;
4026 /* Always use CB2 mode, difference is masked in the CB driver. */
4027 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4029 for (i = 0; i < adapter->num_q_vectors; i++) {
4030 struct igb_q_vector *q_vector = adapter->q_vector[i];
4031 q_vector->cpu = -1;
4032 igb_update_dca(q_vector);
4036 static int __igb_notify_dca(struct device *dev, void *data)
4038 struct net_device *netdev = dev_get_drvdata(dev);
4039 struct igb_adapter *adapter = netdev_priv(netdev);
4040 struct e1000_hw *hw = &adapter->hw;
4041 unsigned long event = *(unsigned long *)data;
4043 switch (event) {
4044 case DCA_PROVIDER_ADD:
4045 /* if already enabled, don't do it again */
4046 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4047 break;
4048 /* Always use CB2 mode, difference is masked
4049 * in the CB driver. */
4050 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4051 if (dca_add_requester(dev) == 0) {
4052 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4053 dev_info(&adapter->pdev->dev, "DCA enabled\n");
4054 igb_setup_dca(adapter);
4055 break;
4057 /* Fall Through since DCA is disabled. */
4058 case DCA_PROVIDER_REMOVE:
4059 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4060 /* without this a class_device is left
4061 * hanging around in the sysfs model */
4062 dca_remove_requester(dev);
4063 dev_info(&adapter->pdev->dev, "DCA disabled\n");
4064 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4065 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4067 break;
4070 return 0;
4073 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4074 void *p)
4076 int ret_val;
4078 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4079 __igb_notify_dca);
4081 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4083 #endif /* CONFIG_IGB_DCA */
4085 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4087 struct e1000_hw *hw = &adapter->hw;
4088 u32 ping;
4089 int i;
4091 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4092 ping = E1000_PF_CONTROL_MSG;
4093 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4094 ping |= E1000_VT_MSGTYPE_CTS;
4095 igb_write_mbx(hw, &ping, 1, i);
4099 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4101 struct e1000_hw *hw = &adapter->hw;
4102 u32 vmolr = rd32(E1000_VMOLR(vf));
4103 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4105 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4106 IGB_VF_FLAG_MULTI_PROMISC);
4107 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4109 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4110 vmolr |= E1000_VMOLR_MPME;
4111 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4112 } else {
4114 * if we have hashes and we are clearing a multicast promisc
4115 * flag we need to write the hashes to the MTA as this step
4116 * was previously skipped
4118 if (vf_data->num_vf_mc_hashes > 30) {
4119 vmolr |= E1000_VMOLR_MPME;
4120 } else if (vf_data->num_vf_mc_hashes) {
4121 int j;
4122 vmolr |= E1000_VMOLR_ROMPE;
4123 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4124 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4128 wr32(E1000_VMOLR(vf), vmolr);
4130 /* there are flags left unprocessed, likely not supported */
4131 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4132 return -EINVAL;
4134 return 0;
4138 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4139 u32 *msgbuf, u32 vf)
4141 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4142 u16 *hash_list = (u16 *)&msgbuf[1];
4143 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4144 int i;
4146 /* salt away the number of multicast addresses assigned
4147 * to this VF for later use to restore when the PF multi cast
4148 * list changes
4150 vf_data->num_vf_mc_hashes = n;
4152 /* only up to 30 hash values supported */
4153 if (n > 30)
4154 n = 30;
4156 /* store the hashes for later use */
4157 for (i = 0; i < n; i++)
4158 vf_data->vf_mc_hashes[i] = hash_list[i];
4160 /* Flush and reset the mta with the new values */
4161 igb_set_rx_mode(adapter->netdev);
4163 return 0;
4166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4168 struct e1000_hw *hw = &adapter->hw;
4169 struct vf_data_storage *vf_data;
4170 int i, j;
4172 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4173 u32 vmolr = rd32(E1000_VMOLR(i));
4174 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4176 vf_data = &adapter->vf_data[i];
4178 if ((vf_data->num_vf_mc_hashes > 30) ||
4179 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4180 vmolr |= E1000_VMOLR_MPME;
4181 } else if (vf_data->num_vf_mc_hashes) {
4182 vmolr |= E1000_VMOLR_ROMPE;
4183 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4184 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4186 wr32(E1000_VMOLR(i), vmolr);
4190 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4192 struct e1000_hw *hw = &adapter->hw;
4193 u32 pool_mask, reg, vid;
4194 int i;
4196 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4198 /* Find the vlan filter for this id */
4199 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4200 reg = rd32(E1000_VLVF(i));
4202 /* remove the vf from the pool */
4203 reg &= ~pool_mask;
4205 /* if pool is empty then remove entry from vfta */
4206 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4207 (reg & E1000_VLVF_VLANID_ENABLE)) {
4208 reg = 0;
4209 vid = reg & E1000_VLVF_VLANID_MASK;
4210 igb_vfta_set(hw, vid, false);
4213 wr32(E1000_VLVF(i), reg);
4216 adapter->vf_data[vf].vlans_enabled = 0;
4219 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4221 struct e1000_hw *hw = &adapter->hw;
4222 u32 reg, i;
4224 /* The vlvf table only exists on 82576 hardware and newer */
4225 if (hw->mac.type < e1000_82576)
4226 return -1;
4228 /* we only need to do this if VMDq is enabled */
4229 if (!adapter->vfs_allocated_count)
4230 return -1;
4232 /* Find the vlan filter for this id */
4233 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4234 reg = rd32(E1000_VLVF(i));
4235 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4236 vid == (reg & E1000_VLVF_VLANID_MASK))
4237 break;
4240 if (add) {
4241 if (i == E1000_VLVF_ARRAY_SIZE) {
4242 /* Did not find a matching VLAN ID entry that was
4243 * enabled. Search for a free filter entry, i.e.
4244 * one without the enable bit set
4246 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4247 reg = rd32(E1000_VLVF(i));
4248 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4249 break;
4252 if (i < E1000_VLVF_ARRAY_SIZE) {
4253 /* Found an enabled/available entry */
4254 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4256 /* if !enabled we need to set this up in vfta */
4257 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4258 /* add VID to filter table */
4259 igb_vfta_set(hw, vid, true);
4260 reg |= E1000_VLVF_VLANID_ENABLE;
4262 reg &= ~E1000_VLVF_VLANID_MASK;
4263 reg |= vid;
4264 wr32(E1000_VLVF(i), reg);
4266 /* do not modify RLPML for PF devices */
4267 if (vf >= adapter->vfs_allocated_count)
4268 return 0;
4270 if (!adapter->vf_data[vf].vlans_enabled) {
4271 u32 size;
4272 reg = rd32(E1000_VMOLR(vf));
4273 size = reg & E1000_VMOLR_RLPML_MASK;
4274 size += 4;
4275 reg &= ~E1000_VMOLR_RLPML_MASK;
4276 reg |= size;
4277 wr32(E1000_VMOLR(vf), reg);
4280 adapter->vf_data[vf].vlans_enabled++;
4281 return 0;
4283 } else {
4284 if (i < E1000_VLVF_ARRAY_SIZE) {
4285 /* remove vf from the pool */
4286 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4287 /* if pool is empty then remove entry from vfta */
4288 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4289 reg = 0;
4290 igb_vfta_set(hw, vid, false);
4292 wr32(E1000_VLVF(i), reg);
4294 /* do not modify RLPML for PF devices */
4295 if (vf >= adapter->vfs_allocated_count)
4296 return 0;
4298 adapter->vf_data[vf].vlans_enabled--;
4299 if (!adapter->vf_data[vf].vlans_enabled) {
4300 u32 size;
4301 reg = rd32(E1000_VMOLR(vf));
4302 size = reg & E1000_VMOLR_RLPML_MASK;
4303 size -= 4;
4304 reg &= ~E1000_VMOLR_RLPML_MASK;
4305 reg |= size;
4306 wr32(E1000_VMOLR(vf), reg);
4308 return 0;
4311 return -1;
4314 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4316 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4317 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4319 return igb_vlvf_set(adapter, vid, add, vf);
4322 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4324 /* clear all flags */
4325 adapter->vf_data[vf].flags = 0;
4326 adapter->vf_data[vf].last_nack = jiffies;
4328 /* reset offloads to defaults */
4329 igb_set_vmolr(adapter, vf);
4331 /* reset vlans for device */
4332 igb_clear_vf_vfta(adapter, vf);
4334 /* reset multicast table array for vf */
4335 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4337 /* Flush and reset the mta with the new values */
4338 igb_set_rx_mode(adapter->netdev);
4341 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4343 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4345 /* generate a new mac address as we were hotplug removed/added */
4346 random_ether_addr(vf_mac);
4348 /* process remaining reset events */
4349 igb_vf_reset(adapter, vf);
4352 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4354 struct e1000_hw *hw = &adapter->hw;
4355 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4356 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4357 u32 reg, msgbuf[3];
4358 u8 *addr = (u8 *)(&msgbuf[1]);
4360 /* process all the same items cleared in a function level reset */
4361 igb_vf_reset(adapter, vf);
4363 /* set vf mac address */
4364 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4366 /* enable transmit and receive for vf */
4367 reg = rd32(E1000_VFTE);
4368 wr32(E1000_VFTE, reg | (1 << vf));
4369 reg = rd32(E1000_VFRE);
4370 wr32(E1000_VFRE, reg | (1 << vf));
4372 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4374 /* reply to reset with ack and vf mac address */
4375 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4376 memcpy(addr, vf_mac, 6);
4377 igb_write_mbx(hw, msgbuf, 3, vf);
4380 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4382 unsigned char *addr = (char *)&msg[1];
4383 int err = -1;
4385 if (is_valid_ether_addr(addr))
4386 err = igb_set_vf_mac(adapter, vf, addr);
4388 return err;
4391 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4393 struct e1000_hw *hw = &adapter->hw;
4394 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4395 u32 msg = E1000_VT_MSGTYPE_NACK;
4397 /* if device isn't clear to send it shouldn't be reading either */
4398 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4399 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4400 igb_write_mbx(hw, &msg, 1, vf);
4401 vf_data->last_nack = jiffies;
4405 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4407 struct pci_dev *pdev = adapter->pdev;
4408 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4409 struct e1000_hw *hw = &adapter->hw;
4410 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4411 s32 retval;
4413 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4415 if (retval)
4416 dev_err(&pdev->dev, "Error receiving message from VF\n");
4418 /* this is a message we already processed, do nothing */
4419 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4420 return;
4423 * until the vf completes a reset it should not be
4424 * allowed to start any configuration.
4427 if (msgbuf[0] == E1000_VF_RESET) {
4428 igb_vf_reset_msg(adapter, vf);
4429 return;
4432 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4433 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4434 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4435 igb_write_mbx(hw, msgbuf, 1, vf);
4436 vf_data->last_nack = jiffies;
4438 return;
4441 switch ((msgbuf[0] & 0xFFFF)) {
4442 case E1000_VF_SET_MAC_ADDR:
4443 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4444 break;
4445 case E1000_VF_SET_PROMISC:
4446 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4447 break;
4448 case E1000_VF_SET_MULTICAST:
4449 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4450 break;
4451 case E1000_VF_SET_LPE:
4452 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4453 break;
4454 case E1000_VF_SET_VLAN:
4455 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4456 break;
4457 default:
4458 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4459 retval = -1;
4460 break;
4463 /* notify the VF of the results of what it sent us */
4464 if (retval)
4465 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4466 else
4467 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4469 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4471 igb_write_mbx(hw, msgbuf, 1, vf);
4474 static void igb_msg_task(struct igb_adapter *adapter)
4476 struct e1000_hw *hw = &adapter->hw;
4477 u32 vf;
4479 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4480 /* process any reset requests */
4481 if (!igb_check_for_rst(hw, vf))
4482 igb_vf_reset_event(adapter, vf);
4484 /* process any messages pending */
4485 if (!igb_check_for_msg(hw, vf))
4486 igb_rcv_msg_from_vf(adapter, vf);
4488 /* process any acks */
4489 if (!igb_check_for_ack(hw, vf))
4490 igb_rcv_ack_from_vf(adapter, vf);
4495 * igb_set_uta - Set unicast filter table address
4496 * @adapter: board private structure
4498 * The unicast table address is a register array of 32-bit registers.
4499 * The table is meant to be used in a way similar to how the MTA is used
4500 * however due to certain limitations in the hardware it is necessary to
4501 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4502 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4504 static void igb_set_uta(struct igb_adapter *adapter)
4506 struct e1000_hw *hw = &adapter->hw;
4507 int i;
4509 /* The UTA table only exists on 82576 hardware and newer */
4510 if (hw->mac.type < e1000_82576)
4511 return;
4513 /* we only need to do this if VMDq is enabled */
4514 if (!adapter->vfs_allocated_count)
4515 return;
4517 for (i = 0; i < hw->mac.uta_reg_count; i++)
4518 array_wr32(E1000_UTA, i, ~0);
4522 * igb_intr_msi - Interrupt Handler
4523 * @irq: interrupt number
4524 * @data: pointer to a network interface device structure
4526 static irqreturn_t igb_intr_msi(int irq, void *data)
4528 struct igb_adapter *adapter = data;
4529 struct igb_q_vector *q_vector = adapter->q_vector[0];
4530 struct e1000_hw *hw = &adapter->hw;
4531 /* read ICR disables interrupts using IAM */
4532 u32 icr = rd32(E1000_ICR);
4534 igb_write_itr(q_vector);
4536 if (icr & E1000_ICR_DOUTSYNC) {
4537 /* HW is reporting DMA is out of sync */
4538 adapter->stats.doosync++;
4541 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4542 hw->mac.get_link_status = 1;
4543 if (!test_bit(__IGB_DOWN, &adapter->state))
4544 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4547 napi_schedule(&q_vector->napi);
4549 return IRQ_HANDLED;
4553 * igb_intr - Legacy Interrupt Handler
4554 * @irq: interrupt number
4555 * @data: pointer to a network interface device structure
4557 static irqreturn_t igb_intr(int irq, void *data)
4559 struct igb_adapter *adapter = data;
4560 struct igb_q_vector *q_vector = adapter->q_vector[0];
4561 struct e1000_hw *hw = &adapter->hw;
4562 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4563 * need for the IMC write */
4564 u32 icr = rd32(E1000_ICR);
4565 if (!icr)
4566 return IRQ_NONE; /* Not our interrupt */
4568 igb_write_itr(q_vector);
4570 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4571 * not set, then the adapter didn't send an interrupt */
4572 if (!(icr & E1000_ICR_INT_ASSERTED))
4573 return IRQ_NONE;
4575 if (icr & E1000_ICR_DOUTSYNC) {
4576 /* HW is reporting DMA is out of sync */
4577 adapter->stats.doosync++;
4580 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4581 hw->mac.get_link_status = 1;
4582 /* guard against interrupt when we're going down */
4583 if (!test_bit(__IGB_DOWN, &adapter->state))
4584 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4587 napi_schedule(&q_vector->napi);
4589 return IRQ_HANDLED;
4592 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4594 struct igb_adapter *adapter = q_vector->adapter;
4595 struct e1000_hw *hw = &adapter->hw;
4597 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4598 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4599 if (!adapter->msix_entries)
4600 igb_set_itr(adapter);
4601 else
4602 igb_update_ring_itr(q_vector);
4605 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4606 if (adapter->msix_entries)
4607 wr32(E1000_EIMS, q_vector->eims_value);
4608 else
4609 igb_irq_enable(adapter);
4614 * igb_poll - NAPI Rx polling callback
4615 * @napi: napi polling structure
4616 * @budget: count of how many packets we should handle
4618 static int igb_poll(struct napi_struct *napi, int budget)
4620 struct igb_q_vector *q_vector = container_of(napi,
4621 struct igb_q_vector,
4622 napi);
4623 int tx_clean_complete = 1, work_done = 0;
4625 #ifdef CONFIG_IGB_DCA
4626 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4627 igb_update_dca(q_vector);
4628 #endif
4629 if (q_vector->tx_ring)
4630 tx_clean_complete = igb_clean_tx_irq(q_vector);
4632 if (q_vector->rx_ring)
4633 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4635 if (!tx_clean_complete)
4636 work_done = budget;
4638 /* If not enough Rx work done, exit the polling mode */
4639 if (work_done < budget) {
4640 napi_complete(napi);
4641 igb_ring_irq_enable(q_vector);
4644 return work_done;
4648 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4649 * @adapter: board private structure
4650 * @shhwtstamps: timestamp structure to update
4651 * @regval: unsigned 64bit system time value.
4653 * We need to convert the system time value stored in the RX/TXSTMP registers
4654 * into a hwtstamp which can be used by the upper level timestamping functions
4656 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4657 struct skb_shared_hwtstamps *shhwtstamps,
4658 u64 regval)
4660 u64 ns;
4662 ns = timecounter_cyc2time(&adapter->clock, regval);
4663 timecompare_update(&adapter->compare, ns);
4664 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4665 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4666 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4670 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4671 * @q_vector: pointer to q_vector containing needed info
4672 * @skb: packet that was just sent
4674 * If we were asked to do hardware stamping and such a time stamp is
4675 * available, then it must have been for this skb here because we only
4676 * allow only one such packet into the queue.
4678 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4680 struct igb_adapter *adapter = q_vector->adapter;
4681 union skb_shared_tx *shtx = skb_tx(skb);
4682 struct e1000_hw *hw = &adapter->hw;
4683 struct skb_shared_hwtstamps shhwtstamps;
4684 u64 regval;
4686 /* if skb does not support hw timestamp or TX stamp not valid exit */
4687 if (likely(!shtx->hardware) ||
4688 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4689 return;
4691 regval = rd32(E1000_TXSTMPL);
4692 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4694 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4695 skb_tstamp_tx(skb, &shhwtstamps);
4699 * igb_clean_tx_irq - Reclaim resources after transmit completes
4700 * @q_vector: pointer to q_vector containing needed info
4701 * returns true if ring is completely cleaned
4703 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4705 struct igb_adapter *adapter = q_vector->adapter;
4706 struct igb_ring *tx_ring = q_vector->tx_ring;
4707 struct net_device *netdev = tx_ring->netdev;
4708 struct e1000_hw *hw = &adapter->hw;
4709 struct igb_buffer *buffer_info;
4710 struct sk_buff *skb;
4711 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4712 unsigned int total_bytes = 0, total_packets = 0;
4713 unsigned int i, eop, count = 0;
4714 bool cleaned = false;
4716 i = tx_ring->next_to_clean;
4717 eop = tx_ring->buffer_info[i].next_to_watch;
4718 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4720 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4721 (count < tx_ring->count)) {
4722 for (cleaned = false; !cleaned; count++) {
4723 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4724 buffer_info = &tx_ring->buffer_info[i];
4725 cleaned = (i == eop);
4726 skb = buffer_info->skb;
4728 if (skb) {
4729 unsigned int segs, bytecount;
4730 /* gso_segs is currently only valid for tcp */
4731 segs = skb_shinfo(skb)->gso_segs ?: 1;
4732 /* multiply data chunks by size of headers */
4733 bytecount = ((segs - 1) * skb_headlen(skb)) +
4734 skb->len;
4735 total_packets += segs;
4736 total_bytes += bytecount;
4738 igb_tx_hwtstamp(q_vector, skb);
4741 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4742 tx_desc->wb.status = 0;
4744 i++;
4745 if (i == tx_ring->count)
4746 i = 0;
4748 eop = tx_ring->buffer_info[i].next_to_watch;
4749 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4752 tx_ring->next_to_clean = i;
4754 if (unlikely(count &&
4755 netif_carrier_ok(netdev) &&
4756 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4757 /* Make sure that anybody stopping the queue after this
4758 * sees the new next_to_clean.
4760 smp_mb();
4761 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4762 !(test_bit(__IGB_DOWN, &adapter->state))) {
4763 netif_wake_subqueue(netdev, tx_ring->queue_index);
4764 tx_ring->tx_stats.restart_queue++;
4768 if (tx_ring->detect_tx_hung) {
4769 /* Detect a transmit hang in hardware, this serializes the
4770 * check with the clearing of time_stamp and movement of i */
4771 tx_ring->detect_tx_hung = false;
4772 if (tx_ring->buffer_info[i].time_stamp &&
4773 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4774 (adapter->tx_timeout_factor * HZ))
4775 && !(rd32(E1000_STATUS) &
4776 E1000_STATUS_TXOFF)) {
4778 /* detected Tx unit hang */
4779 dev_err(&tx_ring->pdev->dev,
4780 "Detected Tx Unit Hang\n"
4781 " Tx Queue <%d>\n"
4782 " TDH <%x>\n"
4783 " TDT <%x>\n"
4784 " next_to_use <%x>\n"
4785 " next_to_clean <%x>\n"
4786 "buffer_info[next_to_clean]\n"
4787 " time_stamp <%lx>\n"
4788 " next_to_watch <%x>\n"
4789 " jiffies <%lx>\n"
4790 " desc.status <%x>\n",
4791 tx_ring->queue_index,
4792 readl(tx_ring->head),
4793 readl(tx_ring->tail),
4794 tx_ring->next_to_use,
4795 tx_ring->next_to_clean,
4796 tx_ring->buffer_info[i].time_stamp,
4797 eop,
4798 jiffies,
4799 eop_desc->wb.status);
4800 netif_stop_subqueue(netdev, tx_ring->queue_index);
4803 tx_ring->total_bytes += total_bytes;
4804 tx_ring->total_packets += total_packets;
4805 tx_ring->tx_stats.bytes += total_bytes;
4806 tx_ring->tx_stats.packets += total_packets;
4807 netdev->stats.tx_bytes += total_bytes;
4808 netdev->stats.tx_packets += total_packets;
4809 return (count < tx_ring->count);
4813 * igb_receive_skb - helper function to handle rx indications
4814 * @q_vector: structure containing interrupt and ring information
4815 * @skb: packet to send up
4816 * @vlan_tag: vlan tag for packet
4818 static void igb_receive_skb(struct igb_q_vector *q_vector,
4819 struct sk_buff *skb,
4820 u16 vlan_tag)
4822 struct igb_adapter *adapter = q_vector->adapter;
4824 if (vlan_tag)
4825 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4826 vlan_tag, skb);
4827 else
4828 napi_gro_receive(&q_vector->napi, skb);
4831 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4832 u32 status_err, struct sk_buff *skb)
4834 skb->ip_summed = CHECKSUM_NONE;
4836 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4837 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4838 (status_err & E1000_RXD_STAT_IXSM))
4839 return;
4841 /* TCP/UDP checksum error bit is set */
4842 if (status_err &
4843 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4845 * work around errata with sctp packets where the TCPE aka
4846 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4847 * packets, (aka let the stack check the crc32c)
4849 if ((skb->len == 60) &&
4850 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4851 ring->rx_stats.csum_err++;
4853 /* let the stack verify checksum errors */
4854 return;
4856 /* It must be a TCP or UDP packet with a valid checksum */
4857 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4858 skb->ip_summed = CHECKSUM_UNNECESSARY;
4860 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4863 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4864 struct sk_buff *skb)
4866 struct igb_adapter *adapter = q_vector->adapter;
4867 struct e1000_hw *hw = &adapter->hw;
4868 u64 regval;
4871 * If this bit is set, then the RX registers contain the time stamp. No
4872 * other packet will be time stamped until we read these registers, so
4873 * read the registers to make them available again. Because only one
4874 * packet can be time stamped at a time, we know that the register
4875 * values must belong to this one here and therefore we don't need to
4876 * compare any of the additional attributes stored for it.
4878 * If nothing went wrong, then it should have a skb_shared_tx that we
4879 * can turn into a skb_shared_hwtstamps.
4881 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4882 return;
4883 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4884 return;
4886 regval = rd32(E1000_RXSTMPL);
4887 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4889 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4891 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4892 union e1000_adv_rx_desc *rx_desc)
4894 /* HW will not DMA in data larger than the given buffer, even if it
4895 * parses the (NFS, of course) header to be larger. In that case, it
4896 * fills the header buffer and spills the rest into the page.
4898 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4899 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4900 if (hlen > rx_ring->rx_buffer_len)
4901 hlen = rx_ring->rx_buffer_len;
4902 return hlen;
4905 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4906 int *work_done, int budget)
4908 struct igb_ring *rx_ring = q_vector->rx_ring;
4909 struct net_device *netdev = rx_ring->netdev;
4910 struct pci_dev *pdev = rx_ring->pdev;
4911 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4912 struct igb_buffer *buffer_info , *next_buffer;
4913 struct sk_buff *skb;
4914 bool cleaned = false;
4915 int cleaned_count = 0;
4916 unsigned int total_bytes = 0, total_packets = 0;
4917 unsigned int i;
4918 u32 staterr;
4919 u16 length;
4920 u16 vlan_tag;
4922 i = rx_ring->next_to_clean;
4923 buffer_info = &rx_ring->buffer_info[i];
4924 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4925 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4927 while (staterr & E1000_RXD_STAT_DD) {
4928 if (*work_done >= budget)
4929 break;
4930 (*work_done)++;
4932 skb = buffer_info->skb;
4933 prefetch(skb->data - NET_IP_ALIGN);
4934 buffer_info->skb = NULL;
4936 i++;
4937 if (i == rx_ring->count)
4938 i = 0;
4939 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4940 prefetch(next_rxd);
4941 next_buffer = &rx_ring->buffer_info[i];
4943 length = le16_to_cpu(rx_desc->wb.upper.length);
4944 cleaned = true;
4945 cleaned_count++;
4947 if (buffer_info->dma) {
4948 pci_unmap_single(pdev, buffer_info->dma,
4949 rx_ring->rx_buffer_len,
4950 PCI_DMA_FROMDEVICE);
4951 buffer_info->dma = 0;
4952 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4953 skb_put(skb, length);
4954 goto send_up;
4956 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4959 if (length) {
4960 pci_unmap_page(pdev, buffer_info->page_dma,
4961 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4962 buffer_info->page_dma = 0;
4964 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4965 buffer_info->page,
4966 buffer_info->page_offset,
4967 length);
4969 if (page_count(buffer_info->page) != 1)
4970 buffer_info->page = NULL;
4971 else
4972 get_page(buffer_info->page);
4974 skb->len += length;
4975 skb->data_len += length;
4977 skb->truesize += length;
4980 if (!(staterr & E1000_RXD_STAT_EOP)) {
4981 buffer_info->skb = next_buffer->skb;
4982 buffer_info->dma = next_buffer->dma;
4983 next_buffer->skb = skb;
4984 next_buffer->dma = 0;
4985 goto next_desc;
4987 send_up:
4988 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4989 dev_kfree_skb_irq(skb);
4990 goto next_desc;
4993 igb_rx_hwtstamp(q_vector, staterr, skb);
4994 total_bytes += skb->len;
4995 total_packets++;
4997 igb_rx_checksum_adv(rx_ring, staterr, skb);
4999 skb->protocol = eth_type_trans(skb, netdev);
5000 skb_record_rx_queue(skb, rx_ring->queue_index);
5002 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5003 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5005 igb_receive_skb(q_vector, skb, vlan_tag);
5007 next_desc:
5008 rx_desc->wb.upper.status_error = 0;
5010 /* return some buffers to hardware, one at a time is too slow */
5011 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5012 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5013 cleaned_count = 0;
5016 /* use prefetched values */
5017 rx_desc = next_rxd;
5018 buffer_info = next_buffer;
5019 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5022 rx_ring->next_to_clean = i;
5023 cleaned_count = igb_desc_unused(rx_ring);
5025 if (cleaned_count)
5026 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5028 rx_ring->total_packets += total_packets;
5029 rx_ring->total_bytes += total_bytes;
5030 rx_ring->rx_stats.packets += total_packets;
5031 rx_ring->rx_stats.bytes += total_bytes;
5032 netdev->stats.rx_bytes += total_bytes;
5033 netdev->stats.rx_packets += total_packets;
5034 return cleaned;
5038 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5039 * @adapter: address of board private structure
5041 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5043 struct net_device *netdev = rx_ring->netdev;
5044 union e1000_adv_rx_desc *rx_desc;
5045 struct igb_buffer *buffer_info;
5046 struct sk_buff *skb;
5047 unsigned int i;
5048 int bufsz;
5050 i = rx_ring->next_to_use;
5051 buffer_info = &rx_ring->buffer_info[i];
5053 bufsz = rx_ring->rx_buffer_len;
5055 while (cleaned_count--) {
5056 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5058 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5059 if (!buffer_info->page) {
5060 buffer_info->page = alloc_page(GFP_ATOMIC);
5061 if (!buffer_info->page) {
5062 rx_ring->rx_stats.alloc_failed++;
5063 goto no_buffers;
5065 buffer_info->page_offset = 0;
5066 } else {
5067 buffer_info->page_offset ^= PAGE_SIZE / 2;
5069 buffer_info->page_dma =
5070 pci_map_page(rx_ring->pdev, buffer_info->page,
5071 buffer_info->page_offset,
5072 PAGE_SIZE / 2,
5073 PCI_DMA_FROMDEVICE);
5076 if (!buffer_info->skb) {
5077 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5078 if (!skb) {
5079 rx_ring->rx_stats.alloc_failed++;
5080 goto no_buffers;
5083 buffer_info->skb = skb;
5084 buffer_info->dma = pci_map_single(rx_ring->pdev,
5085 skb->data,
5086 bufsz,
5087 PCI_DMA_FROMDEVICE);
5089 /* Refresh the desc even if buffer_addrs didn't change because
5090 * each write-back erases this info. */
5091 if (bufsz < IGB_RXBUFFER_1024) {
5092 rx_desc->read.pkt_addr =
5093 cpu_to_le64(buffer_info->page_dma);
5094 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5095 } else {
5096 rx_desc->read.pkt_addr =
5097 cpu_to_le64(buffer_info->dma);
5098 rx_desc->read.hdr_addr = 0;
5101 i++;
5102 if (i == rx_ring->count)
5103 i = 0;
5104 buffer_info = &rx_ring->buffer_info[i];
5107 no_buffers:
5108 if (rx_ring->next_to_use != i) {
5109 rx_ring->next_to_use = i;
5110 if (i == 0)
5111 i = (rx_ring->count - 1);
5112 else
5113 i--;
5115 /* Force memory writes to complete before letting h/w
5116 * know there are new descriptors to fetch. (Only
5117 * applicable for weak-ordered memory model archs,
5118 * such as IA-64). */
5119 wmb();
5120 writel(i, rx_ring->tail);
5125 * igb_mii_ioctl -
5126 * @netdev:
5127 * @ifreq:
5128 * @cmd:
5130 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5132 struct igb_adapter *adapter = netdev_priv(netdev);
5133 struct mii_ioctl_data *data = if_mii(ifr);
5135 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5136 return -EOPNOTSUPP;
5138 switch (cmd) {
5139 case SIOCGMIIPHY:
5140 data->phy_id = adapter->hw.phy.addr;
5141 break;
5142 case SIOCGMIIREG:
5143 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5144 &data->val_out))
5145 return -EIO;
5146 break;
5147 case SIOCSMIIREG:
5148 default:
5149 return -EOPNOTSUPP;
5151 return 0;
5155 * igb_hwtstamp_ioctl - control hardware time stamping
5156 * @netdev:
5157 * @ifreq:
5158 * @cmd:
5160 * Outgoing time stamping can be enabled and disabled. Play nice and
5161 * disable it when requested, although it shouldn't case any overhead
5162 * when no packet needs it. At most one packet in the queue may be
5163 * marked for time stamping, otherwise it would be impossible to tell
5164 * for sure to which packet the hardware time stamp belongs.
5166 * Incoming time stamping has to be configured via the hardware
5167 * filters. Not all combinations are supported, in particular event
5168 * type has to be specified. Matching the kind of event packet is
5169 * not supported, with the exception of "all V2 events regardless of
5170 * level 2 or 4".
5173 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5174 struct ifreq *ifr, int cmd)
5176 struct igb_adapter *adapter = netdev_priv(netdev);
5177 struct e1000_hw *hw = &adapter->hw;
5178 struct hwtstamp_config config;
5179 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5180 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5181 u32 tsync_rx_cfg = 0;
5182 bool is_l4 = false;
5183 bool is_l2 = false;
5184 u32 regval;
5186 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5187 return -EFAULT;
5189 /* reserved for future extensions */
5190 if (config.flags)
5191 return -EINVAL;
5193 switch (config.tx_type) {
5194 case HWTSTAMP_TX_OFF:
5195 tsync_tx_ctl = 0;
5196 case HWTSTAMP_TX_ON:
5197 break;
5198 default:
5199 return -ERANGE;
5202 switch (config.rx_filter) {
5203 case HWTSTAMP_FILTER_NONE:
5204 tsync_rx_ctl = 0;
5205 break;
5206 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5207 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5208 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5209 case HWTSTAMP_FILTER_ALL:
5211 * register TSYNCRXCFG must be set, therefore it is not
5212 * possible to time stamp both Sync and Delay_Req messages
5213 * => fall back to time stamping all packets
5215 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5216 config.rx_filter = HWTSTAMP_FILTER_ALL;
5217 break;
5218 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5219 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5220 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5221 is_l4 = true;
5222 break;
5223 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5224 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5225 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5226 is_l4 = true;
5227 break;
5228 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5229 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5230 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5231 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5232 is_l2 = true;
5233 is_l4 = true;
5234 config.rx_filter = HWTSTAMP_FILTER_SOME;
5235 break;
5236 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5237 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5238 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5239 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5240 is_l2 = true;
5241 is_l4 = true;
5242 config.rx_filter = HWTSTAMP_FILTER_SOME;
5243 break;
5244 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5245 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5246 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5247 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5248 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5249 is_l2 = true;
5250 break;
5251 default:
5252 return -ERANGE;
5255 if (hw->mac.type == e1000_82575) {
5256 if (tsync_rx_ctl | tsync_tx_ctl)
5257 return -EINVAL;
5258 return 0;
5261 /* enable/disable TX */
5262 regval = rd32(E1000_TSYNCTXCTL);
5263 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5264 regval |= tsync_tx_ctl;
5265 wr32(E1000_TSYNCTXCTL, regval);
5267 /* enable/disable RX */
5268 regval = rd32(E1000_TSYNCRXCTL);
5269 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5270 regval |= tsync_rx_ctl;
5271 wr32(E1000_TSYNCRXCTL, regval);
5273 /* define which PTP packets are time stamped */
5274 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5276 /* define ethertype filter for timestamped packets */
5277 if (is_l2)
5278 wr32(E1000_ETQF(3),
5279 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5280 E1000_ETQF_1588 | /* enable timestamping */
5281 ETH_P_1588)); /* 1588 eth protocol type */
5282 else
5283 wr32(E1000_ETQF(3), 0);
5285 #define PTP_PORT 319
5286 /* L4 Queue Filter[3]: filter by destination port and protocol */
5287 if (is_l4) {
5288 u32 ftqf = (IPPROTO_UDP /* UDP */
5289 | E1000_FTQF_VF_BP /* VF not compared */
5290 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5291 | E1000_FTQF_MASK); /* mask all inputs */
5292 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5294 wr32(E1000_IMIR(3), htons(PTP_PORT));
5295 wr32(E1000_IMIREXT(3),
5296 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5297 if (hw->mac.type == e1000_82576) {
5298 /* enable source port check */
5299 wr32(E1000_SPQF(3), htons(PTP_PORT));
5300 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5302 wr32(E1000_FTQF(3), ftqf);
5303 } else {
5304 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5306 wrfl();
5308 adapter->hwtstamp_config = config;
5310 /* clear TX/RX time stamp registers, just to be sure */
5311 regval = rd32(E1000_TXSTMPH);
5312 regval = rd32(E1000_RXSTMPH);
5314 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5315 -EFAULT : 0;
5319 * igb_ioctl -
5320 * @netdev:
5321 * @ifreq:
5322 * @cmd:
5324 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5326 switch (cmd) {
5327 case SIOCGMIIPHY:
5328 case SIOCGMIIREG:
5329 case SIOCSMIIREG:
5330 return igb_mii_ioctl(netdev, ifr, cmd);
5331 case SIOCSHWTSTAMP:
5332 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5333 default:
5334 return -EOPNOTSUPP;
5338 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5340 struct igb_adapter *adapter = hw->back;
5341 u16 cap_offset;
5343 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5344 if (!cap_offset)
5345 return -E1000_ERR_CONFIG;
5347 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5349 return 0;
5352 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5354 struct igb_adapter *adapter = hw->back;
5355 u16 cap_offset;
5357 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5358 if (!cap_offset)
5359 return -E1000_ERR_CONFIG;
5361 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5363 return 0;
5366 static void igb_vlan_rx_register(struct net_device *netdev,
5367 struct vlan_group *grp)
5369 struct igb_adapter *adapter = netdev_priv(netdev);
5370 struct e1000_hw *hw = &adapter->hw;
5371 u32 ctrl, rctl;
5373 igb_irq_disable(adapter);
5374 adapter->vlgrp = grp;
5376 if (grp) {
5377 /* enable VLAN tag insert/strip */
5378 ctrl = rd32(E1000_CTRL);
5379 ctrl |= E1000_CTRL_VME;
5380 wr32(E1000_CTRL, ctrl);
5382 /* Disable CFI check */
5383 rctl = rd32(E1000_RCTL);
5384 rctl &= ~E1000_RCTL_CFIEN;
5385 wr32(E1000_RCTL, rctl);
5386 } else {
5387 /* disable VLAN tag insert/strip */
5388 ctrl = rd32(E1000_CTRL);
5389 ctrl &= ~E1000_CTRL_VME;
5390 wr32(E1000_CTRL, ctrl);
5393 igb_rlpml_set(adapter);
5395 if (!test_bit(__IGB_DOWN, &adapter->state))
5396 igb_irq_enable(adapter);
5399 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5401 struct igb_adapter *adapter = netdev_priv(netdev);
5402 struct e1000_hw *hw = &adapter->hw;
5403 int pf_id = adapter->vfs_allocated_count;
5405 /* attempt to add filter to vlvf array */
5406 igb_vlvf_set(adapter, vid, true, pf_id);
5408 /* add the filter since PF can receive vlans w/o entry in vlvf */
5409 igb_vfta_set(hw, vid, true);
5412 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5414 struct igb_adapter *adapter = netdev_priv(netdev);
5415 struct e1000_hw *hw = &adapter->hw;
5416 int pf_id = adapter->vfs_allocated_count;
5417 s32 err;
5419 igb_irq_disable(adapter);
5420 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5422 if (!test_bit(__IGB_DOWN, &adapter->state))
5423 igb_irq_enable(adapter);
5425 /* remove vlan from VLVF table array */
5426 err = igb_vlvf_set(adapter, vid, false, pf_id);
5428 /* if vid was not present in VLVF just remove it from table */
5429 if (err)
5430 igb_vfta_set(hw, vid, false);
5433 static void igb_restore_vlan(struct igb_adapter *adapter)
5435 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5437 if (adapter->vlgrp) {
5438 u16 vid;
5439 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5440 if (!vlan_group_get_device(adapter->vlgrp, vid))
5441 continue;
5442 igb_vlan_rx_add_vid(adapter->netdev, vid);
5447 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5449 struct e1000_mac_info *mac = &adapter->hw.mac;
5451 mac->autoneg = 0;
5453 switch (spddplx) {
5454 case SPEED_10 + DUPLEX_HALF:
5455 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5456 break;
5457 case SPEED_10 + DUPLEX_FULL:
5458 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5459 break;
5460 case SPEED_100 + DUPLEX_HALF:
5461 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5462 break;
5463 case SPEED_100 + DUPLEX_FULL:
5464 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5465 break;
5466 case SPEED_1000 + DUPLEX_FULL:
5467 mac->autoneg = 1;
5468 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5469 break;
5470 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5471 default:
5472 dev_err(&adapter->pdev->dev,
5473 "Unsupported Speed/Duplex configuration\n");
5474 return -EINVAL;
5476 return 0;
5479 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5481 struct net_device *netdev = pci_get_drvdata(pdev);
5482 struct igb_adapter *adapter = netdev_priv(netdev);
5483 struct e1000_hw *hw = &adapter->hw;
5484 u32 ctrl, rctl, status;
5485 u32 wufc = adapter->wol;
5486 #ifdef CONFIG_PM
5487 int retval = 0;
5488 #endif
5490 netif_device_detach(netdev);
5492 if (netif_running(netdev))
5493 igb_close(netdev);
5495 igb_clear_interrupt_scheme(adapter);
5497 #ifdef CONFIG_PM
5498 retval = pci_save_state(pdev);
5499 if (retval)
5500 return retval;
5501 #endif
5503 status = rd32(E1000_STATUS);
5504 if (status & E1000_STATUS_LU)
5505 wufc &= ~E1000_WUFC_LNKC;
5507 if (wufc) {
5508 igb_setup_rctl(adapter);
5509 igb_set_rx_mode(netdev);
5511 /* turn on all-multi mode if wake on multicast is enabled */
5512 if (wufc & E1000_WUFC_MC) {
5513 rctl = rd32(E1000_RCTL);
5514 rctl |= E1000_RCTL_MPE;
5515 wr32(E1000_RCTL, rctl);
5518 ctrl = rd32(E1000_CTRL);
5519 /* advertise wake from D3Cold */
5520 #define E1000_CTRL_ADVD3WUC 0x00100000
5521 /* phy power management enable */
5522 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5523 ctrl |= E1000_CTRL_ADVD3WUC;
5524 wr32(E1000_CTRL, ctrl);
5526 /* Allow time for pending master requests to run */
5527 igb_disable_pcie_master(&adapter->hw);
5529 wr32(E1000_WUC, E1000_WUC_PME_EN);
5530 wr32(E1000_WUFC, wufc);
5531 } else {
5532 wr32(E1000_WUC, 0);
5533 wr32(E1000_WUFC, 0);
5536 *enable_wake = wufc || adapter->en_mng_pt;
5537 if (!*enable_wake)
5538 igb_shutdown_serdes_link_82575(hw);
5540 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5541 * would have already happened in close and is redundant. */
5542 igb_release_hw_control(adapter);
5544 pci_disable_device(pdev);
5546 return 0;
5549 #ifdef CONFIG_PM
5550 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5552 int retval;
5553 bool wake;
5555 retval = __igb_shutdown(pdev, &wake);
5556 if (retval)
5557 return retval;
5559 if (wake) {
5560 pci_prepare_to_sleep(pdev);
5561 } else {
5562 pci_wake_from_d3(pdev, false);
5563 pci_set_power_state(pdev, PCI_D3hot);
5566 return 0;
5569 static int igb_resume(struct pci_dev *pdev)
5571 struct net_device *netdev = pci_get_drvdata(pdev);
5572 struct igb_adapter *adapter = netdev_priv(netdev);
5573 struct e1000_hw *hw = &adapter->hw;
5574 u32 err;
5576 pci_set_power_state(pdev, PCI_D0);
5577 pci_restore_state(pdev);
5579 err = pci_enable_device_mem(pdev);
5580 if (err) {
5581 dev_err(&pdev->dev,
5582 "igb: Cannot enable PCI device from suspend\n");
5583 return err;
5585 pci_set_master(pdev);
5587 pci_enable_wake(pdev, PCI_D3hot, 0);
5588 pci_enable_wake(pdev, PCI_D3cold, 0);
5590 if (igb_init_interrupt_scheme(adapter)) {
5591 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5592 return -ENOMEM;
5595 /* e1000_power_up_phy(adapter); */
5597 igb_reset(adapter);
5599 /* let the f/w know that the h/w is now under the control of the
5600 * driver. */
5601 igb_get_hw_control(adapter);
5603 wr32(E1000_WUS, ~0);
5605 if (netif_running(netdev)) {
5606 err = igb_open(netdev);
5607 if (err)
5608 return err;
5611 netif_device_attach(netdev);
5613 return 0;
5615 #endif
5617 static void igb_shutdown(struct pci_dev *pdev)
5619 bool wake;
5621 __igb_shutdown(pdev, &wake);
5623 if (system_state == SYSTEM_POWER_OFF) {
5624 pci_wake_from_d3(pdev, wake);
5625 pci_set_power_state(pdev, PCI_D3hot);
5629 #ifdef CONFIG_NET_POLL_CONTROLLER
5631 * Polling 'interrupt' - used by things like netconsole to send skbs
5632 * without having to re-enable interrupts. It's not called while
5633 * the interrupt routine is executing.
5635 static void igb_netpoll(struct net_device *netdev)
5637 struct igb_adapter *adapter = netdev_priv(netdev);
5638 struct e1000_hw *hw = &adapter->hw;
5639 int i;
5641 if (!adapter->msix_entries) {
5642 struct igb_q_vector *q_vector = adapter->q_vector[0];
5643 igb_irq_disable(adapter);
5644 napi_schedule(&q_vector->napi);
5645 return;
5648 for (i = 0; i < adapter->num_q_vectors; i++) {
5649 struct igb_q_vector *q_vector = adapter->q_vector[i];
5650 wr32(E1000_EIMC, q_vector->eims_value);
5651 napi_schedule(&q_vector->napi);
5654 #endif /* CONFIG_NET_POLL_CONTROLLER */
5657 * igb_io_error_detected - called when PCI error is detected
5658 * @pdev: Pointer to PCI device
5659 * @state: The current pci connection state
5661 * This function is called after a PCI bus error affecting
5662 * this device has been detected.
5664 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5665 pci_channel_state_t state)
5667 struct net_device *netdev = pci_get_drvdata(pdev);
5668 struct igb_adapter *adapter = netdev_priv(netdev);
5670 netif_device_detach(netdev);
5672 if (state == pci_channel_io_perm_failure)
5673 return PCI_ERS_RESULT_DISCONNECT;
5675 if (netif_running(netdev))
5676 igb_down(adapter);
5677 pci_disable_device(pdev);
5679 /* Request a slot slot reset. */
5680 return PCI_ERS_RESULT_NEED_RESET;
5684 * igb_io_slot_reset - called after the pci bus has been reset.
5685 * @pdev: Pointer to PCI device
5687 * Restart the card from scratch, as if from a cold-boot. Implementation
5688 * resembles the first-half of the igb_resume routine.
5690 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5692 struct net_device *netdev = pci_get_drvdata(pdev);
5693 struct igb_adapter *adapter = netdev_priv(netdev);
5694 struct e1000_hw *hw = &adapter->hw;
5695 pci_ers_result_t result;
5696 int err;
5698 if (pci_enable_device_mem(pdev)) {
5699 dev_err(&pdev->dev,
5700 "Cannot re-enable PCI device after reset.\n");
5701 result = PCI_ERS_RESULT_DISCONNECT;
5702 } else {
5703 pci_set_master(pdev);
5704 pci_restore_state(pdev);
5706 pci_enable_wake(pdev, PCI_D3hot, 0);
5707 pci_enable_wake(pdev, PCI_D3cold, 0);
5709 igb_reset(adapter);
5710 wr32(E1000_WUS, ~0);
5711 result = PCI_ERS_RESULT_RECOVERED;
5714 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5715 if (err) {
5716 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5717 "failed 0x%0x\n", err);
5718 /* non-fatal, continue */
5721 return result;
5725 * igb_io_resume - called when traffic can start flowing again.
5726 * @pdev: Pointer to PCI device
5728 * This callback is called when the error recovery driver tells us that
5729 * its OK to resume normal operation. Implementation resembles the
5730 * second-half of the igb_resume routine.
5732 static void igb_io_resume(struct pci_dev *pdev)
5734 struct net_device *netdev = pci_get_drvdata(pdev);
5735 struct igb_adapter *adapter = netdev_priv(netdev);
5737 if (netif_running(netdev)) {
5738 if (igb_up(adapter)) {
5739 dev_err(&pdev->dev, "igb_up failed after reset\n");
5740 return;
5744 netif_device_attach(netdev);
5746 /* let the f/w know that the h/w is now under the control of the
5747 * driver. */
5748 igb_get_hw_control(adapter);
5751 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5752 u8 qsel)
5754 u32 rar_low, rar_high;
5755 struct e1000_hw *hw = &adapter->hw;
5757 /* HW expects these in little endian so we reverse the byte order
5758 * from network order (big endian) to little endian
5760 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5761 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5762 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5764 /* Indicate to hardware the Address is Valid. */
5765 rar_high |= E1000_RAH_AV;
5767 if (hw->mac.type == e1000_82575)
5768 rar_high |= E1000_RAH_POOL_1 * qsel;
5769 else
5770 rar_high |= E1000_RAH_POOL_1 << qsel;
5772 wr32(E1000_RAL(index), rar_low);
5773 wrfl();
5774 wr32(E1000_RAH(index), rar_high);
5775 wrfl();
5778 static int igb_set_vf_mac(struct igb_adapter *adapter,
5779 int vf, unsigned char *mac_addr)
5781 struct e1000_hw *hw = &adapter->hw;
5782 /* VF MAC addresses start at end of receive addresses and moves
5783 * torwards the first, as a result a collision should not be possible */
5784 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5786 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5788 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5790 return 0;
5793 static void igb_vmm_control(struct igb_adapter *adapter)
5795 struct e1000_hw *hw = &adapter->hw;
5796 u32 reg;
5798 /* replication is not supported for 82575 */
5799 if (hw->mac.type == e1000_82575)
5800 return;
5802 /* enable replication vlan tag stripping */
5803 reg = rd32(E1000_RPLOLR);
5804 reg |= E1000_RPLOLR_STRVLAN;
5805 wr32(E1000_RPLOLR, reg);
5807 /* notify HW that the MAC is adding vlan tags */
5808 reg = rd32(E1000_DTXCTL);
5809 reg |= E1000_DTXCTL_VLAN_ADDED;
5810 wr32(E1000_DTXCTL, reg);
5812 if (adapter->vfs_allocated_count) {
5813 igb_vmdq_set_loopback_pf(hw, true);
5814 igb_vmdq_set_replication_pf(hw, true);
5815 } else {
5816 igb_vmdq_set_loopback_pf(hw, false);
5817 igb_vmdq_set_replication_pf(hw, false);
5821 /* igb_main.c */