ARM: vt8500: add defconfig for v6/v7 chips
[linux-2.6.git] / fs / nfs / file.c
blob1e6bfdbc1aff4403a194798d3c3928993948710d
1 /*
2 * linux/fs/nfs/file.c
4 * Copyright (C) 1992 Rick Sladkey
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 * nfs regular file handling functions
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
33 #include <asm/uaccess.h>
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
40 #include "nfstrace.h"
42 #define NFSDBG_FACILITY NFSDBG_FILE
44 static const struct vm_operations_struct nfs_file_vm_ops;
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode) (0)
49 #endif
51 int nfs_check_flags(int flags)
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 return -EINVAL;
56 return 0;
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
61 * Open file
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
66 int res;
68 dprintk("NFS: open file(%s/%s)\n",
69 filp->f_path.dentry->d_parent->d_name.name,
70 filp->f_path.dentry->d_name.name);
72 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
73 res = nfs_check_flags(filp->f_flags);
74 if (res)
75 return res;
77 res = nfs_open(inode, filp);
78 return res;
81 int
82 nfs_file_release(struct inode *inode, struct file *filp)
84 dprintk("NFS: release(%s/%s)\n",
85 filp->f_path.dentry->d_parent->d_name.name,
86 filp->f_path.dentry->d_name.name);
88 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
89 return nfs_release(inode, filp);
91 EXPORT_SYMBOL_GPL(nfs_file_release);
93 /**
94 * nfs_revalidate_size - Revalidate the file size
95 * @inode - pointer to inode struct
96 * @file - pointer to struct file
98 * Revalidates the file length. This is basically a wrapper around
99 * nfs_revalidate_inode() that takes into account the fact that we may
100 * have cached writes (in which case we don't care about the server's
101 * idea of what the file length is), or O_DIRECT (in which case we
102 * shouldn't trust the cache).
104 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
106 struct nfs_server *server = NFS_SERVER(inode);
107 struct nfs_inode *nfsi = NFS_I(inode);
109 if (nfs_have_delegated_attributes(inode))
110 goto out_noreval;
112 if (filp->f_flags & O_DIRECT)
113 goto force_reval;
114 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
115 goto force_reval;
116 if (nfs_attribute_timeout(inode))
117 goto force_reval;
118 out_noreval:
119 return 0;
120 force_reval:
121 return __nfs_revalidate_inode(server, inode);
124 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
126 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
127 filp->f_path.dentry->d_parent->d_name.name,
128 filp->f_path.dentry->d_name.name,
129 offset, whence);
132 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
133 * the cached file length
135 if (whence != SEEK_SET && whence != SEEK_CUR) {
136 struct inode *inode = filp->f_mapping->host;
138 int retval = nfs_revalidate_file_size(inode, filp);
139 if (retval < 0)
140 return (loff_t)retval;
143 return generic_file_llseek(filp, offset, whence);
145 EXPORT_SYMBOL_GPL(nfs_file_llseek);
148 * Flush all dirty pages, and check for write errors.
151 nfs_file_flush(struct file *file, fl_owner_t id)
153 struct dentry *dentry = file->f_path.dentry;
154 struct inode *inode = dentry->d_inode;
156 dprintk("NFS: flush(%s/%s)\n",
157 dentry->d_parent->d_name.name,
158 dentry->d_name.name);
160 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
161 if ((file->f_mode & FMODE_WRITE) == 0)
162 return 0;
165 * If we're holding a write delegation, then just start the i/o
166 * but don't wait for completion (or send a commit).
168 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
169 return filemap_fdatawrite(file->f_mapping);
171 /* Flush writes to the server and return any errors */
172 return vfs_fsync(file, 0);
174 EXPORT_SYMBOL_GPL(nfs_file_flush);
176 ssize_t
177 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
178 unsigned long nr_segs, loff_t pos)
180 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
181 struct inode * inode = dentry->d_inode;
182 ssize_t result;
184 if (iocb->ki_filp->f_flags & O_DIRECT)
185 return nfs_file_direct_read(iocb, iov, nr_segs, pos, true);
187 dprintk("NFS: read(%s/%s, %lu@%lu)\n",
188 dentry->d_parent->d_name.name, dentry->d_name.name,
189 (unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
191 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
192 if (!result) {
193 result = generic_file_aio_read(iocb, iov, nr_segs, pos);
194 if (result > 0)
195 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
197 return result;
199 EXPORT_SYMBOL_GPL(nfs_file_read);
201 ssize_t
202 nfs_file_splice_read(struct file *filp, loff_t *ppos,
203 struct pipe_inode_info *pipe, size_t count,
204 unsigned int flags)
206 struct dentry *dentry = filp->f_path.dentry;
207 struct inode *inode = dentry->d_inode;
208 ssize_t res;
210 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
211 dentry->d_parent->d_name.name, dentry->d_name.name,
212 (unsigned long) count, (unsigned long long) *ppos);
214 res = nfs_revalidate_mapping(inode, filp->f_mapping);
215 if (!res) {
216 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
217 if (res > 0)
218 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
220 return res;
222 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
225 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
227 struct dentry *dentry = file->f_path.dentry;
228 struct inode *inode = dentry->d_inode;
229 int status;
231 dprintk("NFS: mmap(%s/%s)\n",
232 dentry->d_parent->d_name.name, dentry->d_name.name);
234 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
235 * so we call that before revalidating the mapping
237 status = generic_file_mmap(file, vma);
238 if (!status) {
239 vma->vm_ops = &nfs_file_vm_ops;
240 status = nfs_revalidate_mapping(inode, file->f_mapping);
242 return status;
244 EXPORT_SYMBOL_GPL(nfs_file_mmap);
247 * Flush any dirty pages for this process, and check for write errors.
248 * The return status from this call provides a reliable indication of
249 * whether any write errors occurred for this process.
251 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
252 * disk, but it retrieves and clears ctx->error after synching, despite
253 * the two being set at the same time in nfs_context_set_write_error().
254 * This is because the former is used to notify the _next_ call to
255 * nfs_file_write() that a write error occurred, and hence cause it to
256 * fall back to doing a synchronous write.
259 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
261 struct dentry *dentry = file->f_path.dentry;
262 struct nfs_open_context *ctx = nfs_file_open_context(file);
263 struct inode *inode = dentry->d_inode;
264 int have_error, do_resend, status;
265 int ret = 0;
267 dprintk("NFS: fsync file(%s/%s) datasync %d\n",
268 dentry->d_parent->d_name.name, dentry->d_name.name,
269 datasync);
271 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
272 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
273 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
274 status = nfs_commit_inode(inode, FLUSH_SYNC);
275 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
276 if (have_error) {
277 ret = xchg(&ctx->error, 0);
278 if (ret)
279 goto out;
281 if (status < 0) {
282 ret = status;
283 goto out;
285 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
286 if (do_resend)
287 ret = -EAGAIN;
288 out:
289 return ret;
291 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
293 static int
294 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
296 int ret;
297 struct inode *inode = file_inode(file);
299 trace_nfs_fsync_enter(inode);
301 do {
302 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
303 if (ret != 0)
304 break;
305 mutex_lock(&inode->i_mutex);
306 ret = nfs_file_fsync_commit(file, start, end, datasync);
307 mutex_unlock(&inode->i_mutex);
309 * If nfs_file_fsync_commit detected a server reboot, then
310 * resend all dirty pages that might have been covered by
311 * the NFS_CONTEXT_RESEND_WRITES flag
313 start = 0;
314 end = LLONG_MAX;
315 } while (ret == -EAGAIN);
317 trace_nfs_fsync_exit(inode, ret);
318 return ret;
322 * Decide whether a read/modify/write cycle may be more efficient
323 * then a modify/write/read cycle when writing to a page in the
324 * page cache.
326 * The modify/write/read cycle may occur if a page is read before
327 * being completely filled by the writer. In this situation, the
328 * page must be completely written to stable storage on the server
329 * before it can be refilled by reading in the page from the server.
330 * This can lead to expensive, small, FILE_SYNC mode writes being
331 * done.
333 * It may be more efficient to read the page first if the file is
334 * open for reading in addition to writing, the page is not marked
335 * as Uptodate, it is not dirty or waiting to be committed,
336 * indicating that it was previously allocated and then modified,
337 * that there were valid bytes of data in that range of the file,
338 * and that the new data won't completely replace the old data in
339 * that range of the file.
341 static int nfs_want_read_modify_write(struct file *file, struct page *page,
342 loff_t pos, unsigned len)
344 unsigned int pglen = nfs_page_length(page);
345 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
346 unsigned int end = offset + len;
348 if ((file->f_mode & FMODE_READ) && /* open for read? */
349 !PageUptodate(page) && /* Uptodate? */
350 !PagePrivate(page) && /* i/o request already? */
351 pglen && /* valid bytes of file? */
352 (end < pglen || offset)) /* replace all valid bytes? */
353 return 1;
354 return 0;
358 * This does the "real" work of the write. We must allocate and lock the
359 * page to be sent back to the generic routine, which then copies the
360 * data from user space.
362 * If the writer ends up delaying the write, the writer needs to
363 * increment the page use counts until he is done with the page.
365 static int nfs_write_begin(struct file *file, struct address_space *mapping,
366 loff_t pos, unsigned len, unsigned flags,
367 struct page **pagep, void **fsdata)
369 int ret;
370 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
371 struct page *page;
372 int once_thru = 0;
374 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
375 file->f_path.dentry->d_parent->d_name.name,
376 file->f_path.dentry->d_name.name,
377 mapping->host->i_ino, len, (long long) pos);
379 start:
381 * Prevent starvation issues if someone is doing a consistency
382 * sync-to-disk
384 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
385 nfs_wait_bit_killable, TASK_KILLABLE);
386 if (ret)
387 return ret;
389 page = grab_cache_page_write_begin(mapping, index, flags);
390 if (!page)
391 return -ENOMEM;
392 *pagep = page;
394 ret = nfs_flush_incompatible(file, page);
395 if (ret) {
396 unlock_page(page);
397 page_cache_release(page);
398 } else if (!once_thru &&
399 nfs_want_read_modify_write(file, page, pos, len)) {
400 once_thru = 1;
401 ret = nfs_readpage(file, page);
402 page_cache_release(page);
403 if (!ret)
404 goto start;
406 return ret;
409 static int nfs_write_end(struct file *file, struct address_space *mapping,
410 loff_t pos, unsigned len, unsigned copied,
411 struct page *page, void *fsdata)
413 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
414 struct nfs_open_context *ctx = nfs_file_open_context(file);
415 int status;
417 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
418 file->f_path.dentry->d_parent->d_name.name,
419 file->f_path.dentry->d_name.name,
420 mapping->host->i_ino, len, (long long) pos);
423 * Zero any uninitialised parts of the page, and then mark the page
424 * as up to date if it turns out that we're extending the file.
426 if (!PageUptodate(page)) {
427 unsigned pglen = nfs_page_length(page);
428 unsigned end = offset + len;
430 if (pglen == 0) {
431 zero_user_segments(page, 0, offset,
432 end, PAGE_CACHE_SIZE);
433 SetPageUptodate(page);
434 } else if (end >= pglen) {
435 zero_user_segment(page, end, PAGE_CACHE_SIZE);
436 if (offset == 0)
437 SetPageUptodate(page);
438 } else
439 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
442 status = nfs_updatepage(file, page, offset, copied);
444 unlock_page(page);
445 page_cache_release(page);
447 if (status < 0)
448 return status;
449 NFS_I(mapping->host)->write_io += copied;
451 if (nfs_ctx_key_to_expire(ctx)) {
452 status = nfs_wb_all(mapping->host);
453 if (status < 0)
454 return status;
457 return copied;
461 * Partially or wholly invalidate a page
462 * - Release the private state associated with a page if undergoing complete
463 * page invalidation
464 * - Called if either PG_private or PG_fscache is set on the page
465 * - Caller holds page lock
467 static void nfs_invalidate_page(struct page *page, unsigned int offset,
468 unsigned int length)
470 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
471 page, offset, length);
473 if (offset != 0 || length < PAGE_CACHE_SIZE)
474 return;
475 /* Cancel any unstarted writes on this page */
476 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
478 nfs_fscache_invalidate_page(page, page->mapping->host);
482 * Attempt to release the private state associated with a page
483 * - Called if either PG_private or PG_fscache is set on the page
484 * - Caller holds page lock
485 * - Return true (may release page) or false (may not)
487 static int nfs_release_page(struct page *page, gfp_t gfp)
489 struct address_space *mapping = page->mapping;
491 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
493 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
494 * doing this memory reclaim for a fs-related allocation.
496 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
497 !(current->flags & PF_FSTRANS)) {
498 int how = FLUSH_SYNC;
500 /* Don't let kswapd deadlock waiting for OOM RPC calls */
501 if (current_is_kswapd())
502 how = 0;
503 nfs_commit_inode(mapping->host, how);
505 /* If PagePrivate() is set, then the page is not freeable */
506 if (PagePrivate(page))
507 return 0;
508 return nfs_fscache_release_page(page, gfp);
511 static void nfs_check_dirty_writeback(struct page *page,
512 bool *dirty, bool *writeback)
514 struct nfs_inode *nfsi;
515 struct address_space *mapping = page_file_mapping(page);
517 if (!mapping || PageSwapCache(page))
518 return;
521 * Check if an unstable page is currently being committed and
522 * if so, have the VM treat it as if the page is under writeback
523 * so it will not block due to pages that will shortly be freeable.
525 nfsi = NFS_I(mapping->host);
526 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
527 *writeback = true;
528 return;
532 * If PagePrivate() is set, then the page is not freeable and as the
533 * inode is not being committed, it's not going to be cleaned in the
534 * near future so treat it as dirty
536 if (PagePrivate(page))
537 *dirty = true;
541 * Attempt to clear the private state associated with a page when an error
542 * occurs that requires the cached contents of an inode to be written back or
543 * destroyed
544 * - Called if either PG_private or fscache is set on the page
545 * - Caller holds page lock
546 * - Return 0 if successful, -error otherwise
548 static int nfs_launder_page(struct page *page)
550 struct inode *inode = page_file_mapping(page)->host;
551 struct nfs_inode *nfsi = NFS_I(inode);
553 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
554 inode->i_ino, (long long)page_offset(page));
556 nfs_fscache_wait_on_page_write(nfsi, page);
557 return nfs_wb_page(inode, page);
560 #ifdef CONFIG_NFS_SWAP
561 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
562 sector_t *span)
564 *span = sis->pages;
565 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
568 static void nfs_swap_deactivate(struct file *file)
570 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
572 #endif
574 const struct address_space_operations nfs_file_aops = {
575 .readpage = nfs_readpage,
576 .readpages = nfs_readpages,
577 .set_page_dirty = __set_page_dirty_nobuffers,
578 .writepage = nfs_writepage,
579 .writepages = nfs_writepages,
580 .write_begin = nfs_write_begin,
581 .write_end = nfs_write_end,
582 .invalidatepage = nfs_invalidate_page,
583 .releasepage = nfs_release_page,
584 .direct_IO = nfs_direct_IO,
585 .migratepage = nfs_migrate_page,
586 .launder_page = nfs_launder_page,
587 .is_dirty_writeback = nfs_check_dirty_writeback,
588 .error_remove_page = generic_error_remove_page,
589 #ifdef CONFIG_NFS_SWAP
590 .swap_activate = nfs_swap_activate,
591 .swap_deactivate = nfs_swap_deactivate,
592 #endif
596 * Notification that a PTE pointing to an NFS page is about to be made
597 * writable, implying that someone is about to modify the page through a
598 * shared-writable mapping
600 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
602 struct page *page = vmf->page;
603 struct file *filp = vma->vm_file;
604 struct dentry *dentry = filp->f_path.dentry;
605 unsigned pagelen;
606 int ret = VM_FAULT_NOPAGE;
607 struct address_space *mapping;
609 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
610 dentry->d_parent->d_name.name, dentry->d_name.name,
611 filp->f_mapping->host->i_ino,
612 (long long)page_offset(page));
614 /* make sure the cache has finished storing the page */
615 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
617 lock_page(page);
618 mapping = page_file_mapping(page);
619 if (mapping != dentry->d_inode->i_mapping)
620 goto out_unlock;
622 wait_on_page_writeback(page);
624 pagelen = nfs_page_length(page);
625 if (pagelen == 0)
626 goto out_unlock;
628 ret = VM_FAULT_LOCKED;
629 if (nfs_flush_incompatible(filp, page) == 0 &&
630 nfs_updatepage(filp, page, 0, pagelen) == 0)
631 goto out;
633 ret = VM_FAULT_SIGBUS;
634 out_unlock:
635 unlock_page(page);
636 out:
637 return ret;
640 static const struct vm_operations_struct nfs_file_vm_ops = {
641 .fault = filemap_fault,
642 .page_mkwrite = nfs_vm_page_mkwrite,
643 .remap_pages = generic_file_remap_pages,
646 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
648 struct nfs_open_context *ctx;
650 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
651 return 1;
652 ctx = nfs_file_open_context(filp);
653 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
654 nfs_ctx_key_to_expire(ctx))
655 return 1;
656 return 0;
659 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
660 unsigned long nr_segs, loff_t pos)
662 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
663 struct inode * inode = dentry->d_inode;
664 unsigned long written = 0;
665 ssize_t result;
666 size_t count = iov_length(iov, nr_segs);
668 result = nfs_key_timeout_notify(iocb->ki_filp, inode);
669 if (result)
670 return result;
672 if (iocb->ki_filp->f_flags & O_DIRECT)
673 return nfs_file_direct_write(iocb, iov, nr_segs, pos, true);
675 dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
676 dentry->d_parent->d_name.name, dentry->d_name.name,
677 (unsigned long) count, (long long) pos);
679 result = -EBUSY;
680 if (IS_SWAPFILE(inode))
681 goto out_swapfile;
683 * O_APPEND implies that we must revalidate the file length.
685 if (iocb->ki_filp->f_flags & O_APPEND) {
686 result = nfs_revalidate_file_size(inode, iocb->ki_filp);
687 if (result)
688 goto out;
691 result = count;
692 if (!count)
693 goto out;
695 result = generic_file_aio_write(iocb, iov, nr_segs, pos);
696 if (result > 0)
697 written = result;
699 /* Return error values for O_DSYNC and IS_SYNC() */
700 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
701 int err = vfs_fsync(iocb->ki_filp, 0);
702 if (err < 0)
703 result = err;
705 if (result > 0)
706 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
707 out:
708 return result;
710 out_swapfile:
711 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
712 goto out;
714 EXPORT_SYMBOL_GPL(nfs_file_write);
716 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
717 struct file *filp, loff_t *ppos,
718 size_t count, unsigned int flags)
720 struct dentry *dentry = filp->f_path.dentry;
721 struct inode *inode = dentry->d_inode;
722 unsigned long written = 0;
723 ssize_t ret;
725 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
726 dentry->d_parent->d_name.name, dentry->d_name.name,
727 (unsigned long) count, (unsigned long long) *ppos);
730 * The combination of splice and an O_APPEND destination is disallowed.
733 ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
734 if (ret > 0)
735 written = ret;
737 if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
738 int err = vfs_fsync(filp, 0);
739 if (err < 0)
740 ret = err;
742 if (ret > 0)
743 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
744 return ret;
746 EXPORT_SYMBOL_GPL(nfs_file_splice_write);
748 static int
749 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
751 struct inode *inode = filp->f_mapping->host;
752 int status = 0;
753 unsigned int saved_type = fl->fl_type;
755 /* Try local locking first */
756 posix_test_lock(filp, fl);
757 if (fl->fl_type != F_UNLCK) {
758 /* found a conflict */
759 goto out;
761 fl->fl_type = saved_type;
763 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
764 goto out_noconflict;
766 if (is_local)
767 goto out_noconflict;
769 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
770 out:
771 return status;
772 out_noconflict:
773 fl->fl_type = F_UNLCK;
774 goto out;
777 static int do_vfs_lock(struct file *file, struct file_lock *fl)
779 int res = 0;
780 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
781 case FL_POSIX:
782 res = posix_lock_file_wait(file, fl);
783 break;
784 case FL_FLOCK:
785 res = flock_lock_file_wait(file, fl);
786 break;
787 default:
788 BUG();
790 return res;
793 static int
794 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
796 struct inode *inode = filp->f_mapping->host;
797 struct nfs_lock_context *l_ctx;
798 int status;
801 * Flush all pending writes before doing anything
802 * with locks..
804 nfs_sync_mapping(filp->f_mapping);
806 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
807 if (!IS_ERR(l_ctx)) {
808 status = nfs_iocounter_wait(&l_ctx->io_count);
809 nfs_put_lock_context(l_ctx);
810 if (status < 0)
811 return status;
814 /* NOTE: special case
815 * If we're signalled while cleaning up locks on process exit, we
816 * still need to complete the unlock.
819 * Use local locking if mounted with "-onolock" or with appropriate
820 * "-olocal_lock="
822 if (!is_local)
823 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
824 else
825 status = do_vfs_lock(filp, fl);
826 return status;
829 static int
830 is_time_granular(struct timespec *ts) {
831 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
834 static int
835 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
837 struct inode *inode = filp->f_mapping->host;
838 int status;
841 * Flush all pending writes before doing anything
842 * with locks..
844 status = nfs_sync_mapping(filp->f_mapping);
845 if (status != 0)
846 goto out;
849 * Use local locking if mounted with "-onolock" or with appropriate
850 * "-olocal_lock="
852 if (!is_local)
853 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
854 else
855 status = do_vfs_lock(filp, fl);
856 if (status < 0)
857 goto out;
860 * Revalidate the cache if the server has time stamps granular
861 * enough to detect subsecond changes. Otherwise, clear the
862 * cache to prevent missing any changes.
864 * This makes locking act as a cache coherency point.
866 nfs_sync_mapping(filp->f_mapping);
867 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
868 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
869 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
870 else
871 nfs_zap_caches(inode);
873 out:
874 return status;
878 * Lock a (portion of) a file
880 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
882 struct inode *inode = filp->f_mapping->host;
883 int ret = -ENOLCK;
884 int is_local = 0;
886 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
887 filp->f_path.dentry->d_parent->d_name.name,
888 filp->f_path.dentry->d_name.name,
889 fl->fl_type, fl->fl_flags,
890 (long long)fl->fl_start, (long long)fl->fl_end);
892 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
894 /* No mandatory locks over NFS */
895 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
896 goto out_err;
898 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
899 is_local = 1;
901 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
902 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
903 if (ret < 0)
904 goto out_err;
907 if (IS_GETLK(cmd))
908 ret = do_getlk(filp, cmd, fl, is_local);
909 else if (fl->fl_type == F_UNLCK)
910 ret = do_unlk(filp, cmd, fl, is_local);
911 else
912 ret = do_setlk(filp, cmd, fl, is_local);
913 out_err:
914 return ret;
916 EXPORT_SYMBOL_GPL(nfs_lock);
919 * Lock a (portion of) a file
921 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
923 struct inode *inode = filp->f_mapping->host;
924 int is_local = 0;
926 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
927 filp->f_path.dentry->d_parent->d_name.name,
928 filp->f_path.dentry->d_name.name,
929 fl->fl_type, fl->fl_flags);
931 if (!(fl->fl_flags & FL_FLOCK))
932 return -ENOLCK;
935 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
936 * any standard. In principle we might be able to support LOCK_MAND
937 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
938 * NFS code is not set up for it.
940 if (fl->fl_type & LOCK_MAND)
941 return -EINVAL;
943 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
944 is_local = 1;
946 /* We're simulating flock() locks using posix locks on the server */
947 fl->fl_owner = (fl_owner_t)filp;
948 fl->fl_start = 0;
949 fl->fl_end = OFFSET_MAX;
951 if (fl->fl_type == F_UNLCK)
952 return do_unlk(filp, cmd, fl, is_local);
953 return do_setlk(filp, cmd, fl, is_local);
955 EXPORT_SYMBOL_GPL(nfs_flock);
958 * There is no protocol support for leases, so we have no way to implement
959 * them correctly in the face of opens by other clients.
961 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
963 dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
964 file->f_path.dentry->d_parent->d_name.name,
965 file->f_path.dentry->d_name.name, arg);
966 return -EINVAL;
968 EXPORT_SYMBOL_GPL(nfs_setlease);
970 const struct file_operations nfs_file_operations = {
971 .llseek = nfs_file_llseek,
972 .read = do_sync_read,
973 .write = do_sync_write,
974 .aio_read = nfs_file_read,
975 .aio_write = nfs_file_write,
976 .mmap = nfs_file_mmap,
977 .open = nfs_file_open,
978 .flush = nfs_file_flush,
979 .release = nfs_file_release,
980 .fsync = nfs_file_fsync,
981 .lock = nfs_lock,
982 .flock = nfs_flock,
983 .splice_read = nfs_file_splice_read,
984 .splice_write = nfs_file_splice_write,
985 .check_flags = nfs_check_flags,
986 .setlease = nfs_setlease,
988 EXPORT_SYMBOL_GPL(nfs_file_operations);