4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
35 struct vfree_deferred
{
36 struct llist_head list
;
37 struct work_struct wq
;
39 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
41 static void __vunmap(const void *, int);
43 static void free_work(struct work_struct
*w
)
45 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
46 struct llist_node
*llnode
= llist_del_all(&p
->list
);
49 llnode
= llist_next(llnode
);
54 /*** Page table manipulation functions ***/
56 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
60 pte
= pte_offset_kernel(pmd
, addr
);
62 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
63 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
64 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
67 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
72 pmd
= pmd_offset(pud
, addr
);
74 next
= pmd_addr_end(addr
, end
);
75 if (pmd_none_or_clear_bad(pmd
))
77 vunmap_pte_range(pmd
, addr
, next
);
78 } while (pmd
++, addr
= next
, addr
!= end
);
81 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
86 pud
= pud_offset(pgd
, addr
);
88 next
= pud_addr_end(addr
, end
);
89 if (pud_none_or_clear_bad(pud
))
91 vunmap_pmd_range(pud
, addr
, next
);
92 } while (pud
++, addr
= next
, addr
!= end
);
95 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
101 pgd
= pgd_offset_k(addr
);
103 next
= pgd_addr_end(addr
, end
);
104 if (pgd_none_or_clear_bad(pgd
))
106 vunmap_pud_range(pgd
, addr
, next
);
107 } while (pgd
++, addr
= next
, addr
!= end
);
110 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
111 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
120 pte
= pte_alloc_kernel(pmd
, addr
);
124 struct page
*page
= pages
[*nr
];
126 if (WARN_ON(!pte_none(*pte
)))
130 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
132 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
136 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
137 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
142 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
146 next
= pmd_addr_end(addr
, end
);
147 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
149 } while (pmd
++, addr
= next
, addr
!= end
);
153 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
154 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
159 pud
= pud_alloc(&init_mm
, pgd
, addr
);
163 next
= pud_addr_end(addr
, end
);
164 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
166 } while (pud
++, addr
= next
, addr
!= end
);
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
176 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
177 pgprot_t prot
, struct page
**pages
)
181 unsigned long addr
= start
;
186 pgd
= pgd_offset_k(addr
);
188 next
= pgd_addr_end(addr
, end
);
189 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
192 } while (pgd
++, addr
= next
, addr
!= end
);
197 static int vmap_page_range(unsigned long start
, unsigned long end
,
198 pgprot_t prot
, struct page
**pages
)
202 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
203 flush_cache_vmap(start
, end
);
207 int is_vmalloc_or_module_addr(const void *x
)
210 * ARM, x86-64 and sparc64 put modules in a special place,
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr
= (unsigned long)x
;
216 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
219 return is_vmalloc_addr(x
);
223 * Walk a vmap address to the struct page it maps.
225 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
227 unsigned long addr
= (unsigned long) vmalloc_addr
;
228 struct page
*page
= NULL
;
229 pgd_t
*pgd
= pgd_offset_k(addr
);
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
237 if (!pgd_none(*pgd
)) {
238 pud_t
*pud
= pud_offset(pgd
, addr
);
239 if (!pud_none(*pud
)) {
240 pmd_t
*pmd
= pmd_offset(pud
, addr
);
241 if (!pmd_none(*pmd
)) {
244 ptep
= pte_offset_map(pmd
, addr
);
246 if (pte_present(pte
))
247 page
= pte_page(pte
);
254 EXPORT_SYMBOL(vmalloc_to_page
);
257 * Map a vmalloc()-space virtual address to the physical page frame number.
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
263 EXPORT_SYMBOL(vmalloc_to_pfn
);
266 /*** Global kva allocator ***/
268 #define VM_LAZY_FREE 0x01
269 #define VM_LAZY_FREEING 0x02
270 #define VM_VM_AREA 0x04
272 static DEFINE_SPINLOCK(vmap_area_lock
);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list
);
275 static struct rb_root vmap_area_root
= RB_ROOT
;
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node
*free_vmap_cache
;
279 static unsigned long cached_hole_size
;
280 static unsigned long cached_vstart
;
281 static unsigned long cached_align
;
283 static unsigned long vmap_area_pcpu_hole
;
285 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
287 struct rb_node
*n
= vmap_area_root
.rb_node
;
290 struct vmap_area
*va
;
292 va
= rb_entry(n
, struct vmap_area
, rb_node
);
293 if (addr
< va
->va_start
)
295 else if (addr
>= va
->va_end
)
304 static void __insert_vmap_area(struct vmap_area
*va
)
306 struct rb_node
**p
= &vmap_area_root
.rb_node
;
307 struct rb_node
*parent
= NULL
;
311 struct vmap_area
*tmp_va
;
314 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
315 if (va
->va_start
< tmp_va
->va_end
)
317 else if (va
->va_end
> tmp_va
->va_start
)
323 rb_link_node(&va
->rb_node
, parent
, p
);
324 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
326 /* address-sort this list */
327 tmp
= rb_prev(&va
->rb_node
);
329 struct vmap_area
*prev
;
330 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
331 list_add_rcu(&va
->list
, &prev
->list
);
333 list_add_rcu(&va
->list
, &vmap_area_list
);
336 static void purge_vmap_area_lazy(void);
339 * Allocate a region of KVA of the specified size and alignment, within the
342 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
344 unsigned long vstart
, unsigned long vend
,
345 int node
, gfp_t gfp_mask
)
347 struct vmap_area
*va
;
351 struct vmap_area
*first
;
354 BUG_ON(size
& ~PAGE_MASK
);
355 BUG_ON(!is_power_of_2(align
));
357 va
= kmalloc_node(sizeof(struct vmap_area
),
358 gfp_mask
& GFP_RECLAIM_MASK
, node
);
360 return ERR_PTR(-ENOMEM
);
363 spin_lock(&vmap_area_lock
);
365 * Invalidate cache if we have more permissive parameters.
366 * cached_hole_size notes the largest hole noticed _below_
367 * the vmap_area cached in free_vmap_cache: if size fits
368 * into that hole, we want to scan from vstart to reuse
369 * the hole instead of allocating above free_vmap_cache.
370 * Note that __free_vmap_area may update free_vmap_cache
371 * without updating cached_hole_size or cached_align.
373 if (!free_vmap_cache
||
374 size
< cached_hole_size
||
375 vstart
< cached_vstart
||
376 align
< cached_align
) {
378 cached_hole_size
= 0;
379 free_vmap_cache
= NULL
;
381 /* record if we encounter less permissive parameters */
382 cached_vstart
= vstart
;
383 cached_align
= align
;
385 /* find starting point for our search */
386 if (free_vmap_cache
) {
387 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
388 addr
= ALIGN(first
->va_end
, align
);
391 if (addr
+ size
< addr
)
395 addr
= ALIGN(vstart
, align
);
396 if (addr
+ size
< addr
)
399 n
= vmap_area_root
.rb_node
;
403 struct vmap_area
*tmp
;
404 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
405 if (tmp
->va_end
>= addr
) {
407 if (tmp
->va_start
<= addr
)
418 /* from the starting point, walk areas until a suitable hole is found */
419 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
420 if (addr
+ cached_hole_size
< first
->va_start
)
421 cached_hole_size
= first
->va_start
- addr
;
422 addr
= ALIGN(first
->va_end
, align
);
423 if (addr
+ size
< addr
)
426 if (list_is_last(&first
->list
, &vmap_area_list
))
429 first
= list_entry(first
->list
.next
,
430 struct vmap_area
, list
);
434 if (addr
+ size
> vend
)
438 va
->va_end
= addr
+ size
;
440 __insert_vmap_area(va
);
441 free_vmap_cache
= &va
->rb_node
;
442 spin_unlock(&vmap_area_lock
);
444 BUG_ON(va
->va_start
& (align
-1));
445 BUG_ON(va
->va_start
< vstart
);
446 BUG_ON(va
->va_end
> vend
);
451 spin_unlock(&vmap_area_lock
);
453 purge_vmap_area_lazy();
457 if (printk_ratelimit())
459 "vmap allocation for size %lu failed: "
460 "use vmalloc=<size> to increase size.\n", size
);
462 return ERR_PTR(-EBUSY
);
465 static void __free_vmap_area(struct vmap_area
*va
)
467 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
469 if (free_vmap_cache
) {
470 if (va
->va_end
< cached_vstart
) {
471 free_vmap_cache
= NULL
;
473 struct vmap_area
*cache
;
474 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
475 if (va
->va_start
<= cache
->va_start
) {
476 free_vmap_cache
= rb_prev(&va
->rb_node
);
478 * We don't try to update cached_hole_size or
479 * cached_align, but it won't go very wrong.
484 rb_erase(&va
->rb_node
, &vmap_area_root
);
485 RB_CLEAR_NODE(&va
->rb_node
);
486 list_del_rcu(&va
->list
);
489 * Track the highest possible candidate for pcpu area
490 * allocation. Areas outside of vmalloc area can be returned
491 * here too, consider only end addresses which fall inside
492 * vmalloc area proper.
494 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
495 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
497 kfree_rcu(va
, rcu_head
);
501 * Free a region of KVA allocated by alloc_vmap_area
503 static void free_vmap_area(struct vmap_area
*va
)
505 spin_lock(&vmap_area_lock
);
506 __free_vmap_area(va
);
507 spin_unlock(&vmap_area_lock
);
511 * Clear the pagetable entries of a given vmap_area
513 static void unmap_vmap_area(struct vmap_area
*va
)
515 vunmap_page_range(va
->va_start
, va
->va_end
);
518 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
521 * Unmap page tables and force a TLB flush immediately if
522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 * bugs similarly to those in linear kernel virtual address
524 * space after a page has been freed.
526 * All the lazy freeing logic is still retained, in order to
527 * minimise intrusiveness of this debugging feature.
529 * This is going to be *slow* (linear kernel virtual address
530 * debugging doesn't do a broadcast TLB flush so it is a lot
533 #ifdef CONFIG_DEBUG_PAGEALLOC
534 vunmap_page_range(start
, end
);
535 flush_tlb_kernel_range(start
, end
);
540 * lazy_max_pages is the maximum amount of virtual address space we gather up
541 * before attempting to purge with a TLB flush.
543 * There is a tradeoff here: a larger number will cover more kernel page tables
544 * and take slightly longer to purge, but it will linearly reduce the number of
545 * global TLB flushes that must be performed. It would seem natural to scale
546 * this number up linearly with the number of CPUs (because vmapping activity
547 * could also scale linearly with the number of CPUs), however it is likely
548 * that in practice, workloads might be constrained in other ways that mean
549 * vmap activity will not scale linearly with CPUs. Also, I want to be
550 * conservative and not introduce a big latency on huge systems, so go with
551 * a less aggressive log scale. It will still be an improvement over the old
552 * code, and it will be simple to change the scale factor if we find that it
553 * becomes a problem on bigger systems.
555 static unsigned long lazy_max_pages(void)
559 log
= fls(num_online_cpus());
561 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
564 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
566 /* for per-CPU blocks */
567 static void purge_fragmented_blocks_allcpus(void);
570 * called before a call to iounmap() if the caller wants vm_area_struct's
573 void set_iounmap_nonlazy(void)
575 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
579 * Purges all lazily-freed vmap areas.
581 * If sync is 0 then don't purge if there is already a purge in progress.
582 * If force_flush is 1, then flush kernel TLBs between *start and *end even
583 * if we found no lazy vmap areas to unmap (callers can use this to optimise
584 * their own TLB flushing).
585 * Returns with *start = min(*start, lowest purged address)
586 * *end = max(*end, highest purged address)
588 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
589 int sync
, int force_flush
)
591 static DEFINE_SPINLOCK(purge_lock
);
593 struct vmap_area
*va
;
594 struct vmap_area
*n_va
;
598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 * should not expect such behaviour. This just simplifies locking for
600 * the case that isn't actually used at the moment anyway.
602 if (!sync
&& !force_flush
) {
603 if (!spin_trylock(&purge_lock
))
606 spin_lock(&purge_lock
);
609 purge_fragmented_blocks_allcpus();
612 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
613 if (va
->flags
& VM_LAZY_FREE
) {
614 if (va
->va_start
< *start
)
615 *start
= va
->va_start
;
616 if (va
->va_end
> *end
)
618 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
619 list_add_tail(&va
->purge_list
, &valist
);
620 va
->flags
|= VM_LAZY_FREEING
;
621 va
->flags
&= ~VM_LAZY_FREE
;
627 atomic_sub(nr
, &vmap_lazy_nr
);
629 if (nr
|| force_flush
)
630 flush_tlb_kernel_range(*start
, *end
);
633 spin_lock(&vmap_area_lock
);
634 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
635 __free_vmap_area(va
);
636 spin_unlock(&vmap_area_lock
);
638 spin_unlock(&purge_lock
);
642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643 * is already purging.
645 static void try_purge_vmap_area_lazy(void)
647 unsigned long start
= ULONG_MAX
, end
= 0;
649 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
653 * Kick off a purge of the outstanding lazy areas.
655 static void purge_vmap_area_lazy(void)
657 unsigned long start
= ULONG_MAX
, end
= 0;
659 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
663 * Free a vmap area, caller ensuring that the area has been unmapped
664 * and flush_cache_vunmap had been called for the correct range
667 static void free_vmap_area_noflush(struct vmap_area
*va
)
669 va
->flags
|= VM_LAZY_FREE
;
670 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
671 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
672 try_purge_vmap_area_lazy();
676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677 * called for the correct range previously.
679 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
682 free_vmap_area_noflush(va
);
686 * Free and unmap a vmap area
688 static void free_unmap_vmap_area(struct vmap_area
*va
)
690 flush_cache_vunmap(va
->va_start
, va
->va_end
);
691 free_unmap_vmap_area_noflush(va
);
694 static struct vmap_area
*find_vmap_area(unsigned long addr
)
696 struct vmap_area
*va
;
698 spin_lock(&vmap_area_lock
);
699 va
= __find_vmap_area(addr
);
700 spin_unlock(&vmap_area_lock
);
705 static void free_unmap_vmap_area_addr(unsigned long addr
)
707 struct vmap_area
*va
;
709 va
= find_vmap_area(addr
);
711 free_unmap_vmap_area(va
);
715 /*** Per cpu kva allocator ***/
718 * vmap space is limited especially on 32 bit architectures. Ensure there is
719 * room for at least 16 percpu vmap blocks per CPU.
722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
724 * instead (we just need a rough idea)
726 #if BITS_PER_LONG == 32
727 #define VMALLOC_SPACE (128UL*1024*1024)
729 #define VMALLOC_SPACE (128UL*1024*1024*1024)
732 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
733 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
734 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
735 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
736 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
737 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
738 #define VMAP_BBMAP_BITS \
739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
743 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
745 static bool vmap_initialized __read_mostly
= false;
747 struct vmap_block_queue
{
749 struct list_head free
;
754 struct vmap_area
*va
;
755 unsigned long free
, dirty
;
756 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
757 struct list_head free_list
;
758 struct rcu_head rcu_head
;
759 struct list_head purge
;
762 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
763 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
766 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
767 * in the free path. Could get rid of this if we change the API to return a
768 * "cookie" from alloc, to be passed to free. But no big deal yet.
770 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
771 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
774 * We should probably have a fallback mechanism to allocate virtual memory
775 * out of partially filled vmap blocks. However vmap block sizing should be
776 * fairly reasonable according to the vmalloc size, so it shouldn't be a
780 static unsigned long addr_to_vb_idx(unsigned long addr
)
782 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
783 addr
/= VMAP_BLOCK_SIZE
;
787 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
789 struct vmap_block_queue
*vbq
;
790 struct vmap_block
*vb
;
791 struct vmap_area
*va
;
792 unsigned long vb_idx
;
795 node
= numa_node_id();
797 vb
= kmalloc_node(sizeof(struct vmap_block
),
798 gfp_mask
& GFP_RECLAIM_MASK
, node
);
800 return ERR_PTR(-ENOMEM
);
802 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
803 VMALLOC_START
, VMALLOC_END
,
810 err
= radix_tree_preload(gfp_mask
);
817 spin_lock_init(&vb
->lock
);
819 vb
->free
= VMAP_BBMAP_BITS
;
821 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
822 INIT_LIST_HEAD(&vb
->free_list
);
824 vb_idx
= addr_to_vb_idx(va
->va_start
);
825 spin_lock(&vmap_block_tree_lock
);
826 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
827 spin_unlock(&vmap_block_tree_lock
);
829 radix_tree_preload_end();
831 vbq
= &get_cpu_var(vmap_block_queue
);
832 spin_lock(&vbq
->lock
);
833 list_add_rcu(&vb
->free_list
, &vbq
->free
);
834 spin_unlock(&vbq
->lock
);
835 put_cpu_var(vmap_block_queue
);
840 static void free_vmap_block(struct vmap_block
*vb
)
842 struct vmap_block
*tmp
;
843 unsigned long vb_idx
;
845 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
846 spin_lock(&vmap_block_tree_lock
);
847 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
848 spin_unlock(&vmap_block_tree_lock
);
851 free_vmap_area_noflush(vb
->va
);
852 kfree_rcu(vb
, rcu_head
);
855 static void purge_fragmented_blocks(int cpu
)
858 struct vmap_block
*vb
;
859 struct vmap_block
*n_vb
;
860 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
863 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
865 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
868 spin_lock(&vb
->lock
);
869 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
870 vb
->free
= 0; /* prevent further allocs after releasing lock */
871 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
872 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
873 spin_lock(&vbq
->lock
);
874 list_del_rcu(&vb
->free_list
);
875 spin_unlock(&vbq
->lock
);
876 spin_unlock(&vb
->lock
);
877 list_add_tail(&vb
->purge
, &purge
);
879 spin_unlock(&vb
->lock
);
883 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
884 list_del(&vb
->purge
);
889 static void purge_fragmented_blocks_allcpus(void)
893 for_each_possible_cpu(cpu
)
894 purge_fragmented_blocks(cpu
);
897 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
899 struct vmap_block_queue
*vbq
;
900 struct vmap_block
*vb
;
901 unsigned long addr
= 0;
904 BUG_ON(size
& ~PAGE_MASK
);
905 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
906 if (WARN_ON(size
== 0)) {
908 * Allocating 0 bytes isn't what caller wants since
909 * get_order(0) returns funny result. Just warn and terminate
914 order
= get_order(size
);
918 vbq
= &get_cpu_var(vmap_block_queue
);
919 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
922 spin_lock(&vb
->lock
);
923 if (vb
->free
< 1UL << order
)
926 i
= VMAP_BBMAP_BITS
- vb
->free
;
927 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
928 BUG_ON(addr_to_vb_idx(addr
) !=
929 addr_to_vb_idx(vb
->va
->va_start
));
930 vb
->free
-= 1UL << order
;
932 spin_lock(&vbq
->lock
);
933 list_del_rcu(&vb
->free_list
);
934 spin_unlock(&vbq
->lock
);
936 spin_unlock(&vb
->lock
);
939 spin_unlock(&vb
->lock
);
942 put_cpu_var(vmap_block_queue
);
946 vb
= new_vmap_block(gfp_mask
);
955 static void vb_free(const void *addr
, unsigned long size
)
957 unsigned long offset
;
958 unsigned long vb_idx
;
960 struct vmap_block
*vb
;
962 BUG_ON(size
& ~PAGE_MASK
);
963 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
965 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
967 order
= get_order(size
);
969 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
971 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
973 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
977 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
979 spin_lock(&vb
->lock
);
980 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
982 vb
->dirty
+= 1UL << order
;
983 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
985 spin_unlock(&vb
->lock
);
988 spin_unlock(&vb
->lock
);
992 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
994 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
995 * to amortize TLB flushing overheads. What this means is that any page you
996 * have now, may, in a former life, have been mapped into kernel virtual
997 * address by the vmap layer and so there might be some CPUs with TLB entries
998 * still referencing that page (additional to the regular 1:1 kernel mapping).
1000 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1001 * be sure that none of the pages we have control over will have any aliases
1002 * from the vmap layer.
1004 void vm_unmap_aliases(void)
1006 unsigned long start
= ULONG_MAX
, end
= 0;
1010 if (unlikely(!vmap_initialized
))
1013 for_each_possible_cpu(cpu
) {
1014 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1015 struct vmap_block
*vb
;
1018 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1021 spin_lock(&vb
->lock
);
1022 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
1023 if (i
< VMAP_BBMAP_BITS
) {
1026 j
= find_last_bit(vb
->dirty_map
,
1028 j
= j
+ 1; /* need exclusive index */
1030 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
1031 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
1039 spin_unlock(&vb
->lock
);
1044 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1046 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1049 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1050 * @mem: the pointer returned by vm_map_ram
1051 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1053 void vm_unmap_ram(const void *mem
, unsigned int count
)
1055 unsigned long size
= count
<< PAGE_SHIFT
;
1056 unsigned long addr
= (unsigned long)mem
;
1059 BUG_ON(addr
< VMALLOC_START
);
1060 BUG_ON(addr
> VMALLOC_END
);
1061 BUG_ON(addr
& (PAGE_SIZE
-1));
1063 debug_check_no_locks_freed(mem
, size
);
1064 vmap_debug_free_range(addr
, addr
+size
);
1066 if (likely(count
<= VMAP_MAX_ALLOC
))
1069 free_unmap_vmap_area_addr(addr
);
1071 EXPORT_SYMBOL(vm_unmap_ram
);
1074 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1075 * @pages: an array of pointers to the pages to be mapped
1076 * @count: number of pages
1077 * @node: prefer to allocate data structures on this node
1078 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1080 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1082 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1084 unsigned long size
= count
<< PAGE_SHIFT
;
1088 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1089 mem
= vb_alloc(size
, GFP_KERNEL
);
1092 addr
= (unsigned long)mem
;
1094 struct vmap_area
*va
;
1095 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1096 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1100 addr
= va
->va_start
;
1103 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1104 vm_unmap_ram(mem
, count
);
1109 EXPORT_SYMBOL(vm_map_ram
);
1111 static struct vm_struct
*vmlist __initdata
;
1113 * vm_area_add_early - add vmap area early during boot
1114 * @vm: vm_struct to add
1116 * This function is used to add fixed kernel vm area to vmlist before
1117 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1118 * should contain proper values and the other fields should be zero.
1120 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1122 void __init
vm_area_add_early(struct vm_struct
*vm
)
1124 struct vm_struct
*tmp
, **p
;
1126 BUG_ON(vmap_initialized
);
1127 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1128 if (tmp
->addr
>= vm
->addr
) {
1129 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1132 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1139 * vm_area_register_early - register vmap area early during boot
1140 * @vm: vm_struct to register
1141 * @align: requested alignment
1143 * This function is used to register kernel vm area before
1144 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1145 * proper values on entry and other fields should be zero. On return,
1146 * vm->addr contains the allocated address.
1148 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1150 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1152 static size_t vm_init_off __initdata
;
1155 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1156 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1158 vm
->addr
= (void *)addr
;
1160 vm_area_add_early(vm
);
1163 void __init
vmalloc_init(void)
1165 struct vmap_area
*va
;
1166 struct vm_struct
*tmp
;
1169 for_each_possible_cpu(i
) {
1170 struct vmap_block_queue
*vbq
;
1171 struct vfree_deferred
*p
;
1173 vbq
= &per_cpu(vmap_block_queue
, i
);
1174 spin_lock_init(&vbq
->lock
);
1175 INIT_LIST_HEAD(&vbq
->free
);
1176 p
= &per_cpu(vfree_deferred
, i
);
1177 init_llist_head(&p
->list
);
1178 INIT_WORK(&p
->wq
, free_work
);
1181 /* Import existing vmlist entries. */
1182 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1183 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1184 va
->flags
= VM_VM_AREA
;
1185 va
->va_start
= (unsigned long)tmp
->addr
;
1186 va
->va_end
= va
->va_start
+ tmp
->size
;
1188 __insert_vmap_area(va
);
1191 vmap_area_pcpu_hole
= VMALLOC_END
;
1193 vmap_initialized
= true;
1197 * map_kernel_range_noflush - map kernel VM area with the specified pages
1198 * @addr: start of the VM area to map
1199 * @size: size of the VM area to map
1200 * @prot: page protection flags to use
1201 * @pages: pages to map
1203 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1204 * specify should have been allocated using get_vm_area() and its
1208 * This function does NOT do any cache flushing. The caller is
1209 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1210 * before calling this function.
1213 * The number of pages mapped on success, -errno on failure.
1215 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1216 pgprot_t prot
, struct page
**pages
)
1218 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1222 * unmap_kernel_range_noflush - unmap kernel VM area
1223 * @addr: start of the VM area to unmap
1224 * @size: size of the VM area to unmap
1226 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1227 * specify should have been allocated using get_vm_area() and its
1231 * This function does NOT do any cache flushing. The caller is
1232 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1233 * before calling this function and flush_tlb_kernel_range() after.
1235 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1237 vunmap_page_range(addr
, addr
+ size
);
1239 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1242 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1243 * @addr: start of the VM area to unmap
1244 * @size: size of the VM area to unmap
1246 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1247 * the unmapping and tlb after.
1249 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1251 unsigned long end
= addr
+ size
;
1253 flush_cache_vunmap(addr
, end
);
1254 vunmap_page_range(addr
, end
);
1255 flush_tlb_kernel_range(addr
, end
);
1258 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1260 unsigned long addr
= (unsigned long)area
->addr
;
1261 unsigned long end
= addr
+ get_vm_area_size(area
);
1264 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1272 EXPORT_SYMBOL_GPL(map_vm_area
);
1274 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1275 unsigned long flags
, const void *caller
)
1277 spin_lock(&vmap_area_lock
);
1279 vm
->addr
= (void *)va
->va_start
;
1280 vm
->size
= va
->va_end
- va
->va_start
;
1281 vm
->caller
= caller
;
1283 va
->flags
|= VM_VM_AREA
;
1284 spin_unlock(&vmap_area_lock
);
1287 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1290 * Before removing VM_UNINITIALIZED,
1291 * we should make sure that vm has proper values.
1292 * Pair with smp_rmb() in show_numa_info().
1295 vm
->flags
&= ~VM_UNINITIALIZED
;
1298 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1299 unsigned long align
, unsigned long flags
, unsigned long start
,
1300 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1302 struct vmap_area
*va
;
1303 struct vm_struct
*area
;
1305 BUG_ON(in_interrupt());
1306 if (flags
& VM_IOREMAP
)
1307 align
= 1ul << clamp(fls(size
), PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1309 size
= PAGE_ALIGN(size
);
1310 if (unlikely(!size
))
1313 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1314 if (unlikely(!area
))
1318 * We always allocate a guard page.
1322 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1328 setup_vmalloc_vm(area
, va
, flags
, caller
);
1333 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1334 unsigned long start
, unsigned long end
)
1336 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1337 GFP_KERNEL
, __builtin_return_address(0));
1339 EXPORT_SYMBOL_GPL(__get_vm_area
);
1341 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1342 unsigned long start
, unsigned long end
,
1345 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1346 GFP_KERNEL
, caller
);
1350 * get_vm_area - reserve a contiguous kernel virtual area
1351 * @size: size of the area
1352 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1354 * Search an area of @size in the kernel virtual mapping area,
1355 * and reserved it for out purposes. Returns the area descriptor
1356 * on success or %NULL on failure.
1358 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1360 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1361 NUMA_NO_NODE
, GFP_KERNEL
,
1362 __builtin_return_address(0));
1365 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1368 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1369 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1373 * find_vm_area - find a continuous kernel virtual area
1374 * @addr: base address
1376 * Search for the kernel VM area starting at @addr, and return it.
1377 * It is up to the caller to do all required locking to keep the returned
1380 struct vm_struct
*find_vm_area(const void *addr
)
1382 struct vmap_area
*va
;
1384 va
= find_vmap_area((unsigned long)addr
);
1385 if (va
&& va
->flags
& VM_VM_AREA
)
1392 * remove_vm_area - find and remove a continuous kernel virtual area
1393 * @addr: base address
1395 * Search for the kernel VM area starting at @addr, and remove it.
1396 * This function returns the found VM area, but using it is NOT safe
1397 * on SMP machines, except for its size or flags.
1399 struct vm_struct
*remove_vm_area(const void *addr
)
1401 struct vmap_area
*va
;
1403 va
= find_vmap_area((unsigned long)addr
);
1404 if (va
&& va
->flags
& VM_VM_AREA
) {
1405 struct vm_struct
*vm
= va
->vm
;
1407 spin_lock(&vmap_area_lock
);
1409 va
->flags
&= ~VM_VM_AREA
;
1410 spin_unlock(&vmap_area_lock
);
1412 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1413 free_unmap_vmap_area(va
);
1414 vm
->size
-= PAGE_SIZE
;
1421 static void __vunmap(const void *addr
, int deallocate_pages
)
1423 struct vm_struct
*area
;
1428 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1432 area
= remove_vm_area(addr
);
1433 if (unlikely(!area
)) {
1434 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1439 debug_check_no_locks_freed(addr
, area
->size
);
1440 debug_check_no_obj_freed(addr
, area
->size
);
1442 if (deallocate_pages
) {
1445 for (i
= 0; i
< area
->nr_pages
; i
++) {
1446 struct page
*page
= area
->pages
[i
];
1452 if (area
->flags
& VM_VPAGES
)
1463 * vfree - release memory allocated by vmalloc()
1464 * @addr: memory base address
1466 * Free the virtually continuous memory area starting at @addr, as
1467 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1468 * NULL, no operation is performed.
1470 * Must not be called in NMI context (strictly speaking, only if we don't
1471 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1472 * conventions for vfree() arch-depenedent would be a really bad idea)
1474 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1476 void vfree(const void *addr
)
1480 kmemleak_free(addr
);
1484 if (unlikely(in_interrupt())) {
1485 struct vfree_deferred
*p
= &__get_cpu_var(vfree_deferred
);
1486 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1487 schedule_work(&p
->wq
);
1491 EXPORT_SYMBOL(vfree
);
1494 * vunmap - release virtual mapping obtained by vmap()
1495 * @addr: memory base address
1497 * Free the virtually contiguous memory area starting at @addr,
1498 * which was created from the page array passed to vmap().
1500 * Must not be called in interrupt context.
1502 void vunmap(const void *addr
)
1504 BUG_ON(in_interrupt());
1509 EXPORT_SYMBOL(vunmap
);
1512 * vmap - map an array of pages into virtually contiguous space
1513 * @pages: array of page pointers
1514 * @count: number of pages to map
1515 * @flags: vm_area->flags
1516 * @prot: page protection for the mapping
1518 * Maps @count pages from @pages into contiguous kernel virtual
1521 void *vmap(struct page
**pages
, unsigned int count
,
1522 unsigned long flags
, pgprot_t prot
)
1524 struct vm_struct
*area
;
1528 if (count
> totalram_pages
)
1531 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1532 __builtin_return_address(0));
1536 if (map_vm_area(area
, prot
, &pages
)) {
1543 EXPORT_SYMBOL(vmap
);
1545 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1546 gfp_t gfp_mask
, pgprot_t prot
,
1547 int node
, const void *caller
);
1548 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1549 pgprot_t prot
, int node
, const void *caller
)
1551 const int order
= 0;
1552 struct page
**pages
;
1553 unsigned int nr_pages
, array_size
, i
;
1554 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1556 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1557 array_size
= (nr_pages
* sizeof(struct page
*));
1559 area
->nr_pages
= nr_pages
;
1560 /* Please note that the recursion is strictly bounded. */
1561 if (array_size
> PAGE_SIZE
) {
1562 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1563 PAGE_KERNEL
, node
, caller
);
1564 area
->flags
|= VM_VPAGES
;
1566 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1568 area
->pages
= pages
;
1569 area
->caller
= caller
;
1571 remove_vm_area(area
->addr
);
1576 for (i
= 0; i
< area
->nr_pages
; i
++) {
1578 gfp_t tmp_mask
= gfp_mask
| __GFP_NOWARN
;
1581 page
= alloc_page(tmp_mask
);
1583 page
= alloc_pages_node(node
, tmp_mask
, order
);
1585 if (unlikely(!page
)) {
1586 /* Successfully allocated i pages, free them in __vunmap() */
1590 area
->pages
[i
] = page
;
1593 if (map_vm_area(area
, prot
, &pages
))
1598 warn_alloc_failed(gfp_mask
, order
,
1599 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1600 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1606 * __vmalloc_node_range - allocate virtually contiguous memory
1607 * @size: allocation size
1608 * @align: desired alignment
1609 * @start: vm area range start
1610 * @end: vm area range end
1611 * @gfp_mask: flags for the page level allocator
1612 * @prot: protection mask for the allocated pages
1613 * @node: node to use for allocation or NUMA_NO_NODE
1614 * @caller: caller's return address
1616 * Allocate enough pages to cover @size from the page level
1617 * allocator with @gfp_mask flags. Map them into contiguous
1618 * kernel virtual space, using a pagetable protection of @prot.
1620 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1621 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1622 pgprot_t prot
, int node
, const void *caller
)
1624 struct vm_struct
*area
;
1626 unsigned long real_size
= size
;
1628 size
= PAGE_ALIGN(size
);
1629 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1632 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
,
1633 start
, end
, node
, gfp_mask
, caller
);
1637 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1642 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1643 * flag. It means that vm_struct is not fully initialized.
1644 * Now, it is fully initialized, so remove this flag here.
1646 clear_vm_uninitialized_flag(area
);
1649 * A ref_count = 3 is needed because the vm_struct and vmap_area
1650 * structures allocated in the __get_vm_area_node() function contain
1651 * references to the virtual address of the vmalloc'ed block.
1653 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1658 warn_alloc_failed(gfp_mask
, 0,
1659 "vmalloc: allocation failure: %lu bytes\n",
1665 * __vmalloc_node - allocate virtually contiguous memory
1666 * @size: allocation size
1667 * @align: desired alignment
1668 * @gfp_mask: flags for the page level allocator
1669 * @prot: protection mask for the allocated pages
1670 * @node: node to use for allocation or NUMA_NO_NODE
1671 * @caller: caller's return address
1673 * Allocate enough pages to cover @size from the page level
1674 * allocator with @gfp_mask flags. Map them into contiguous
1675 * kernel virtual space, using a pagetable protection of @prot.
1677 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1678 gfp_t gfp_mask
, pgprot_t prot
,
1679 int node
, const void *caller
)
1681 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1682 gfp_mask
, prot
, node
, caller
);
1685 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1687 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1688 __builtin_return_address(0));
1690 EXPORT_SYMBOL(__vmalloc
);
1692 static inline void *__vmalloc_node_flags(unsigned long size
,
1693 int node
, gfp_t flags
)
1695 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1696 node
, __builtin_return_address(0));
1700 * vmalloc - allocate virtually contiguous memory
1701 * @size: allocation size
1702 * Allocate enough pages to cover @size from the page level
1703 * allocator and map them into contiguous kernel virtual space.
1705 * For tight control over page level allocator and protection flags
1706 * use __vmalloc() instead.
1708 void *vmalloc(unsigned long size
)
1710 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1711 GFP_KERNEL
| __GFP_HIGHMEM
);
1713 EXPORT_SYMBOL(vmalloc
);
1716 * vzalloc - allocate virtually contiguous memory with zero fill
1717 * @size: allocation size
1718 * Allocate enough pages to cover @size from the page level
1719 * allocator and map them into contiguous kernel virtual space.
1720 * The memory allocated is set to zero.
1722 * For tight control over page level allocator and protection flags
1723 * use __vmalloc() instead.
1725 void *vzalloc(unsigned long size
)
1727 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1728 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1730 EXPORT_SYMBOL(vzalloc
);
1733 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1734 * @size: allocation size
1736 * The resulting memory area is zeroed so it can be mapped to userspace
1737 * without leaking data.
1739 void *vmalloc_user(unsigned long size
)
1741 struct vm_struct
*area
;
1744 ret
= __vmalloc_node(size
, SHMLBA
,
1745 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1746 PAGE_KERNEL
, NUMA_NO_NODE
,
1747 __builtin_return_address(0));
1749 area
= find_vm_area(ret
);
1750 area
->flags
|= VM_USERMAP
;
1754 EXPORT_SYMBOL(vmalloc_user
);
1757 * vmalloc_node - allocate memory on a specific node
1758 * @size: allocation size
1761 * Allocate enough pages to cover @size from the page level
1762 * allocator and map them into contiguous kernel virtual space.
1764 * For tight control over page level allocator and protection flags
1765 * use __vmalloc() instead.
1767 void *vmalloc_node(unsigned long size
, int node
)
1769 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1770 node
, __builtin_return_address(0));
1772 EXPORT_SYMBOL(vmalloc_node
);
1775 * vzalloc_node - allocate memory on a specific node with zero fill
1776 * @size: allocation size
1779 * Allocate enough pages to cover @size from the page level
1780 * allocator and map them into contiguous kernel virtual space.
1781 * The memory allocated is set to zero.
1783 * For tight control over page level allocator and protection flags
1784 * use __vmalloc_node() instead.
1786 void *vzalloc_node(unsigned long size
, int node
)
1788 return __vmalloc_node_flags(size
, node
,
1789 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1791 EXPORT_SYMBOL(vzalloc_node
);
1793 #ifndef PAGE_KERNEL_EXEC
1794 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1798 * vmalloc_exec - allocate virtually contiguous, executable memory
1799 * @size: allocation size
1801 * Kernel-internal function to allocate enough pages to cover @size
1802 * the page level allocator and map them into contiguous and
1803 * executable kernel virtual space.
1805 * For tight control over page level allocator and protection flags
1806 * use __vmalloc() instead.
1809 void *vmalloc_exec(unsigned long size
)
1811 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1812 NUMA_NO_NODE
, __builtin_return_address(0));
1815 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1816 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1817 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1818 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1820 #define GFP_VMALLOC32 GFP_KERNEL
1824 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1825 * @size: allocation size
1827 * Allocate enough 32bit PA addressable pages to cover @size from the
1828 * page level allocator and map them into contiguous kernel virtual space.
1830 void *vmalloc_32(unsigned long size
)
1832 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1833 NUMA_NO_NODE
, __builtin_return_address(0));
1835 EXPORT_SYMBOL(vmalloc_32
);
1838 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1839 * @size: allocation size
1841 * The resulting memory area is 32bit addressable and zeroed so it can be
1842 * mapped to userspace without leaking data.
1844 void *vmalloc_32_user(unsigned long size
)
1846 struct vm_struct
*area
;
1849 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1850 NUMA_NO_NODE
, __builtin_return_address(0));
1852 area
= find_vm_area(ret
);
1853 area
->flags
|= VM_USERMAP
;
1857 EXPORT_SYMBOL(vmalloc_32_user
);
1860 * small helper routine , copy contents to buf from addr.
1861 * If the page is not present, fill zero.
1864 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1870 unsigned long offset
, length
;
1872 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1873 length
= PAGE_SIZE
- offset
;
1876 p
= vmalloc_to_page(addr
);
1878 * To do safe access to this _mapped_ area, we need
1879 * lock. But adding lock here means that we need to add
1880 * overhead of vmalloc()/vfree() calles for this _debug_
1881 * interface, rarely used. Instead of that, we'll use
1882 * kmap() and get small overhead in this access function.
1886 * we can expect USER0 is not used (see vread/vwrite's
1887 * function description)
1889 void *map
= kmap_atomic(p
);
1890 memcpy(buf
, map
+ offset
, length
);
1893 memset(buf
, 0, length
);
1903 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1909 unsigned long offset
, length
;
1911 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1912 length
= PAGE_SIZE
- offset
;
1915 p
= vmalloc_to_page(addr
);
1917 * To do safe access to this _mapped_ area, we need
1918 * lock. But adding lock here means that we need to add
1919 * overhead of vmalloc()/vfree() calles for this _debug_
1920 * interface, rarely used. Instead of that, we'll use
1921 * kmap() and get small overhead in this access function.
1925 * we can expect USER0 is not used (see vread/vwrite's
1926 * function description)
1928 void *map
= kmap_atomic(p
);
1929 memcpy(map
+ offset
, buf
, length
);
1941 * vread() - read vmalloc area in a safe way.
1942 * @buf: buffer for reading data
1943 * @addr: vm address.
1944 * @count: number of bytes to be read.
1946 * Returns # of bytes which addr and buf should be increased.
1947 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1948 * includes any intersect with alive vmalloc area.
1950 * This function checks that addr is a valid vmalloc'ed area, and
1951 * copy data from that area to a given buffer. If the given memory range
1952 * of [addr...addr+count) includes some valid address, data is copied to
1953 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1954 * IOREMAP area is treated as memory hole and no copy is done.
1956 * If [addr...addr+count) doesn't includes any intersects with alive
1957 * vm_struct area, returns 0. @buf should be kernel's buffer.
1959 * Note: In usual ops, vread() is never necessary because the caller
1960 * should know vmalloc() area is valid and can use memcpy().
1961 * This is for routines which have to access vmalloc area without
1962 * any informaion, as /dev/kmem.
1966 long vread(char *buf
, char *addr
, unsigned long count
)
1968 struct vmap_area
*va
;
1969 struct vm_struct
*vm
;
1970 char *vaddr
, *buf_start
= buf
;
1971 unsigned long buflen
= count
;
1974 /* Don't allow overflow */
1975 if ((unsigned long) addr
+ count
< count
)
1976 count
= -(unsigned long) addr
;
1978 spin_lock(&vmap_area_lock
);
1979 list_for_each_entry(va
, &vmap_area_list
, list
) {
1983 if (!(va
->flags
& VM_VM_AREA
))
1987 vaddr
= (char *) vm
->addr
;
1988 if (addr
>= vaddr
+ get_vm_area_size(vm
))
1990 while (addr
< vaddr
) {
1998 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2001 if (!(vm
->flags
& VM_IOREMAP
))
2002 aligned_vread(buf
, addr
, n
);
2003 else /* IOREMAP area is treated as memory hole */
2010 spin_unlock(&vmap_area_lock
);
2012 if (buf
== buf_start
)
2014 /* zero-fill memory holes */
2015 if (buf
!= buf_start
+ buflen
)
2016 memset(buf
, 0, buflen
- (buf
- buf_start
));
2022 * vwrite() - write vmalloc area in a safe way.
2023 * @buf: buffer for source data
2024 * @addr: vm address.
2025 * @count: number of bytes to be read.
2027 * Returns # of bytes which addr and buf should be incresed.
2028 * (same number to @count).
2029 * If [addr...addr+count) doesn't includes any intersect with valid
2030 * vmalloc area, returns 0.
2032 * This function checks that addr is a valid vmalloc'ed area, and
2033 * copy data from a buffer to the given addr. If specified range of
2034 * [addr...addr+count) includes some valid address, data is copied from
2035 * proper area of @buf. If there are memory holes, no copy to hole.
2036 * IOREMAP area is treated as memory hole and no copy is done.
2038 * If [addr...addr+count) doesn't includes any intersects with alive
2039 * vm_struct area, returns 0. @buf should be kernel's buffer.
2041 * Note: In usual ops, vwrite() is never necessary because the caller
2042 * should know vmalloc() area is valid and can use memcpy().
2043 * This is for routines which have to access vmalloc area without
2044 * any informaion, as /dev/kmem.
2047 long vwrite(char *buf
, char *addr
, unsigned long count
)
2049 struct vmap_area
*va
;
2050 struct vm_struct
*vm
;
2052 unsigned long n
, buflen
;
2055 /* Don't allow overflow */
2056 if ((unsigned long) addr
+ count
< count
)
2057 count
= -(unsigned long) addr
;
2060 spin_lock(&vmap_area_lock
);
2061 list_for_each_entry(va
, &vmap_area_list
, list
) {
2065 if (!(va
->flags
& VM_VM_AREA
))
2069 vaddr
= (char *) vm
->addr
;
2070 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2072 while (addr
< vaddr
) {
2079 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2082 if (!(vm
->flags
& VM_IOREMAP
)) {
2083 aligned_vwrite(buf
, addr
, n
);
2091 spin_unlock(&vmap_area_lock
);
2098 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2099 * @vma: vma to cover
2100 * @uaddr: target user address to start at
2101 * @kaddr: virtual address of vmalloc kernel memory
2102 * @size: size of map area
2104 * Returns: 0 for success, -Exxx on failure
2106 * This function checks that @kaddr is a valid vmalloc'ed area,
2107 * and that it is big enough to cover the range starting at
2108 * @uaddr in @vma. Will return failure if that criteria isn't
2111 * Similar to remap_pfn_range() (see mm/memory.c)
2113 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2114 void *kaddr
, unsigned long size
)
2116 struct vm_struct
*area
;
2118 size
= PAGE_ALIGN(size
);
2120 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2123 area
= find_vm_area(kaddr
);
2127 if (!(area
->flags
& VM_USERMAP
))
2130 if (kaddr
+ size
> area
->addr
+ area
->size
)
2134 struct page
*page
= vmalloc_to_page(kaddr
);
2137 ret
= vm_insert_page(vma
, uaddr
, page
);
2146 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2150 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2153 * remap_vmalloc_range - map vmalloc pages to userspace
2154 * @vma: vma to cover (map full range of vma)
2155 * @addr: vmalloc memory
2156 * @pgoff: number of pages into addr before first page to map
2158 * Returns: 0 for success, -Exxx on failure
2160 * This function checks that addr is a valid vmalloc'ed area, and
2161 * that it is big enough to cover the vma. Will return failure if
2162 * that criteria isn't met.
2164 * Similar to remap_pfn_range() (see mm/memory.c)
2166 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2167 unsigned long pgoff
)
2169 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2170 addr
+ (pgoff
<< PAGE_SHIFT
),
2171 vma
->vm_end
- vma
->vm_start
);
2173 EXPORT_SYMBOL(remap_vmalloc_range
);
2176 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2179 void __attribute__((weak
)) vmalloc_sync_all(void)
2184 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2196 * alloc_vm_area - allocate a range of kernel address space
2197 * @size: size of the area
2198 * @ptes: returns the PTEs for the address space
2200 * Returns: NULL on failure, vm_struct on success
2202 * This function reserves a range of kernel address space, and
2203 * allocates pagetables to map that range. No actual mappings
2206 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2207 * allocated for the VM area are returned.
2209 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2211 struct vm_struct
*area
;
2213 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2214 __builtin_return_address(0));
2219 * This ensures that page tables are constructed for this region
2220 * of kernel virtual address space and mapped into init_mm.
2222 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2223 size
, f
, ptes
? &ptes
: NULL
)) {
2230 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2232 void free_vm_area(struct vm_struct
*area
)
2234 struct vm_struct
*ret
;
2235 ret
= remove_vm_area(area
->addr
);
2236 BUG_ON(ret
!= area
);
2239 EXPORT_SYMBOL_GPL(free_vm_area
);
2242 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2244 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2248 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2249 * @end: target address
2250 * @pnext: out arg for the next vmap_area
2251 * @pprev: out arg for the previous vmap_area
2253 * Returns: %true if either or both of next and prev are found,
2254 * %false if no vmap_area exists
2256 * Find vmap_areas end addresses of which enclose @end. ie. if not
2257 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2259 static bool pvm_find_next_prev(unsigned long end
,
2260 struct vmap_area
**pnext
,
2261 struct vmap_area
**pprev
)
2263 struct rb_node
*n
= vmap_area_root
.rb_node
;
2264 struct vmap_area
*va
= NULL
;
2267 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2268 if (end
< va
->va_end
)
2270 else if (end
> va
->va_end
)
2279 if (va
->va_end
> end
) {
2281 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2284 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2290 * pvm_determine_end - find the highest aligned address between two vmap_areas
2291 * @pnext: in/out arg for the next vmap_area
2292 * @pprev: in/out arg for the previous vmap_area
2295 * Returns: determined end address
2297 * Find the highest aligned address between *@pnext and *@pprev below
2298 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2299 * down address is between the end addresses of the two vmap_areas.
2301 * Please note that the address returned by this function may fall
2302 * inside *@pnext vmap_area. The caller is responsible for checking
2305 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2306 struct vmap_area
**pprev
,
2307 unsigned long align
)
2309 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2313 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2317 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2319 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2326 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2327 * @offsets: array containing offset of each area
2328 * @sizes: array containing size of each area
2329 * @nr_vms: the number of areas to allocate
2330 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2332 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2333 * vm_structs on success, %NULL on failure
2335 * Percpu allocator wants to use congruent vm areas so that it can
2336 * maintain the offsets among percpu areas. This function allocates
2337 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2338 * be scattered pretty far, distance between two areas easily going up
2339 * to gigabytes. To avoid interacting with regular vmallocs, these
2340 * areas are allocated from top.
2342 * Despite its complicated look, this allocator is rather simple. It
2343 * does everything top-down and scans areas from the end looking for
2344 * matching slot. While scanning, if any of the areas overlaps with
2345 * existing vmap_area, the base address is pulled down to fit the
2346 * area. Scanning is repeated till all the areas fit and then all
2347 * necessary data structres are inserted and the result is returned.
2349 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2350 const size_t *sizes
, int nr_vms
,
2353 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2354 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2355 struct vmap_area
**vas
, *prev
, *next
;
2356 struct vm_struct
**vms
;
2357 int area
, area2
, last_area
, term_area
;
2358 unsigned long base
, start
, end
, last_end
;
2359 bool purged
= false;
2361 /* verify parameters and allocate data structures */
2362 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2363 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2364 start
= offsets
[area
];
2365 end
= start
+ sizes
[area
];
2367 /* is everything aligned properly? */
2368 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2369 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2371 /* detect the area with the highest address */
2372 if (start
> offsets
[last_area
])
2375 for (area2
= 0; area2
< nr_vms
; area2
++) {
2376 unsigned long start2
= offsets
[area2
];
2377 unsigned long end2
= start2
+ sizes
[area2
];
2382 BUG_ON(start2
>= start
&& start2
< end
);
2383 BUG_ON(end2
<= end
&& end2
> start
);
2386 last_end
= offsets
[last_area
] + sizes
[last_area
];
2388 if (vmalloc_end
- vmalloc_start
< last_end
) {
2393 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2394 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2398 for (area
= 0; area
< nr_vms
; area
++) {
2399 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2400 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2401 if (!vas
[area
] || !vms
[area
])
2405 spin_lock(&vmap_area_lock
);
2407 /* start scanning - we scan from the top, begin with the last area */
2408 area
= term_area
= last_area
;
2409 start
= offsets
[area
];
2410 end
= start
+ sizes
[area
];
2412 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2413 base
= vmalloc_end
- last_end
;
2416 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2419 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2420 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2423 * base might have underflowed, add last_end before
2426 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2427 spin_unlock(&vmap_area_lock
);
2429 purge_vmap_area_lazy();
2437 * If next overlaps, move base downwards so that it's
2438 * right below next and then recheck.
2440 if (next
&& next
->va_start
< base
+ end
) {
2441 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2447 * If prev overlaps, shift down next and prev and move
2448 * base so that it's right below new next and then
2451 if (prev
&& prev
->va_end
> base
+ start
) {
2453 prev
= node_to_va(rb_prev(&next
->rb_node
));
2454 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2460 * This area fits, move on to the previous one. If
2461 * the previous one is the terminal one, we're done.
2463 area
= (area
+ nr_vms
- 1) % nr_vms
;
2464 if (area
== term_area
)
2466 start
= offsets
[area
];
2467 end
= start
+ sizes
[area
];
2468 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2471 /* we've found a fitting base, insert all va's */
2472 for (area
= 0; area
< nr_vms
; area
++) {
2473 struct vmap_area
*va
= vas
[area
];
2475 va
->va_start
= base
+ offsets
[area
];
2476 va
->va_end
= va
->va_start
+ sizes
[area
];
2477 __insert_vmap_area(va
);
2480 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2482 spin_unlock(&vmap_area_lock
);
2484 /* insert all vm's */
2485 for (area
= 0; area
< nr_vms
; area
++)
2486 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2493 for (area
= 0; area
< nr_vms
; area
++) {
2504 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2505 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2506 * @nr_vms: the number of allocated areas
2508 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2510 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2514 for (i
= 0; i
< nr_vms
; i
++)
2515 free_vm_area(vms
[i
]);
2518 #endif /* CONFIG_SMP */
2520 #ifdef CONFIG_PROC_FS
2521 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2522 __acquires(&vmap_area_lock
)
2525 struct vmap_area
*va
;
2527 spin_lock(&vmap_area_lock
);
2528 va
= list_entry((&vmap_area_list
)->next
, typeof(*va
), list
);
2529 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2531 va
= list_entry(va
->list
.next
, typeof(*va
), list
);
2533 if (!n
&& &va
->list
!= &vmap_area_list
)
2540 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2542 struct vmap_area
*va
= p
, *next
;
2545 next
= list_entry(va
->list
.next
, typeof(*va
), list
);
2546 if (&next
->list
!= &vmap_area_list
)
2552 static void s_stop(struct seq_file
*m
, void *p
)
2553 __releases(&vmap_area_lock
)
2555 spin_unlock(&vmap_area_lock
);
2558 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2560 if (IS_ENABLED(CONFIG_NUMA
)) {
2561 unsigned int nr
, *counters
= m
->private;
2566 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2568 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2569 counters
[page_to_nid(v
->pages
[nr
])]++;
2571 for_each_node_state(nr
, N_HIGH_MEMORY
)
2573 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2577 static int s_show(struct seq_file
*m
, void *p
)
2579 struct vmap_area
*va
= p
;
2580 struct vm_struct
*v
;
2582 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2585 if (!(va
->flags
& VM_VM_AREA
)) {
2586 seq_printf(m
, "0x%pK-0x%pK %7ld vm_map_ram\n",
2587 (void *)va
->va_start
, (void *)va
->va_end
,
2588 va
->va_end
- va
->va_start
);
2594 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2596 if (v
->flags
& VM_UNINITIALIZED
)
2599 seq_printf(m
, "0x%pK-0x%pK %7ld",
2600 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2603 seq_printf(m
, " %pS", v
->caller
);
2606 seq_printf(m
, " pages=%d", v
->nr_pages
);
2609 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2611 if (v
->flags
& VM_IOREMAP
)
2612 seq_printf(m
, " ioremap");
2614 if (v
->flags
& VM_ALLOC
)
2615 seq_printf(m
, " vmalloc");
2617 if (v
->flags
& VM_MAP
)
2618 seq_printf(m
, " vmap");
2620 if (v
->flags
& VM_USERMAP
)
2621 seq_printf(m
, " user");
2623 if (v
->flags
& VM_VPAGES
)
2624 seq_printf(m
, " vpages");
2626 show_numa_info(m
, v
);
2631 static const struct seq_operations vmalloc_op
= {
2638 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2640 unsigned int *ptr
= NULL
;
2643 if (IS_ENABLED(CONFIG_NUMA
)) {
2644 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2648 ret
= seq_open(file
, &vmalloc_op
);
2650 struct seq_file
*m
= file
->private_data
;
2657 static const struct file_operations proc_vmalloc_operations
= {
2658 .open
= vmalloc_open
,
2660 .llseek
= seq_lseek
,
2661 .release
= seq_release_private
,
2664 static int __init
proc_vmalloc_init(void)
2666 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2669 module_init(proc_vmalloc_init
);
2671 void get_vmalloc_info(struct vmalloc_info
*vmi
)
2673 struct vmap_area
*va
;
2674 unsigned long free_area_size
;
2675 unsigned long prev_end
;
2678 vmi
->largest_chunk
= 0;
2680 prev_end
= VMALLOC_START
;
2682 spin_lock(&vmap_area_lock
);
2684 if (list_empty(&vmap_area_list
)) {
2685 vmi
->largest_chunk
= VMALLOC_TOTAL
;
2689 list_for_each_entry(va
, &vmap_area_list
, list
) {
2690 unsigned long addr
= va
->va_start
;
2693 * Some archs keep another range for modules in vmalloc space
2695 if (addr
< VMALLOC_START
)
2697 if (addr
>= VMALLOC_END
)
2700 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2703 vmi
->used
+= (va
->va_end
- va
->va_start
);
2705 free_area_size
= addr
- prev_end
;
2706 if (vmi
->largest_chunk
< free_area_size
)
2707 vmi
->largest_chunk
= free_area_size
;
2709 prev_end
= va
->va_end
;
2712 if (VMALLOC_END
- prev_end
> vmi
->largest_chunk
)
2713 vmi
->largest_chunk
= VMALLOC_END
- prev_end
;
2716 spin_unlock(&vmap_area_lock
);