1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
31 * lksctp developers <linux-sctp@vger.kernel.org>
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Perry Melange <pmelange@null.cc.uic.edu>
37 * Xingang Guo <xingang.guo@intel.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Sridhar Samudrala <sri@us.ibm.com>
40 * Jon Grimm <jgrimm@us.ibm.com>
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/types.h>
46 #include <linux/list.h> /* For struct list_head */
47 #include <linux/socket.h>
49 #include <linux/slab.h>
50 #include <net/sock.h> /* For skb_set_owner_w */
52 #include <net/sctp/sctp.h>
53 #include <net/sctp/sm.h>
55 /* Declare internal functions here. */
56 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
57 static void sctp_check_transmitted(struct sctp_outq
*q
,
58 struct list_head
*transmitted_queue
,
59 struct sctp_transport
*transport
,
60 union sctp_addr
*saddr
,
61 struct sctp_sackhdr
*sack
,
62 __u32
*highest_new_tsn
);
64 static void sctp_mark_missing(struct sctp_outq
*q
,
65 struct list_head
*transmitted_queue
,
66 struct sctp_transport
*transport
,
67 __u32 highest_new_tsn
,
68 int count_of_newacks
);
70 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
72 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
);
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
76 struct sctp_chunk
*ch
)
78 list_add(&ch
->list
, &q
->out_chunk_list
);
79 q
->out_qlen
+= ch
->skb
->len
;
82 /* Take data from the front of the queue. */
83 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
85 struct sctp_chunk
*ch
= NULL
;
87 if (!list_empty(&q
->out_chunk_list
)) {
88 struct list_head
*entry
= q
->out_chunk_list
.next
;
90 ch
= list_entry(entry
, struct sctp_chunk
, list
);
92 q
->out_qlen
-= ch
->skb
->len
;
96 /* Add data chunk to the end of the queue. */
97 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
98 struct sctp_chunk
*ch
)
100 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
101 q
->out_qlen
+= ch
->skb
->len
;
105 * SFR-CACC algorithm:
106 * D) If count_of_newacks is greater than or equal to 2
107 * and t was not sent to the current primary then the
108 * sender MUST NOT increment missing report count for t.
110 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
111 struct sctp_transport
*transport
,
112 int count_of_newacks
)
114 if (count_of_newacks
>=2 && transport
!= primary
)
120 * SFR-CACC algorithm:
121 * F) If count_of_newacks is less than 2, let d be the
122 * destination to which t was sent. If cacc_saw_newack
123 * is 0 for destination d, then the sender MUST NOT
124 * increment missing report count for t.
126 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
127 int count_of_newacks
)
129 if (count_of_newacks
< 2 &&
130 (transport
&& !transport
->cacc
.cacc_saw_newack
))
136 * SFR-CACC algorithm:
137 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
138 * execute steps C, D, F.
140 * C has been implemented in sctp_outq_sack
142 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
143 struct sctp_transport
*transport
,
144 int count_of_newacks
)
146 if (!primary
->cacc
.cycling_changeover
) {
147 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
149 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
157 * SFR-CACC algorithm:
158 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
159 * than next_tsn_at_change of the current primary, then
160 * the sender MUST NOT increment missing report count
163 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
165 if (primary
->cacc
.cycling_changeover
&&
166 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
172 * SFR-CACC algorithm:
173 * 3) If the missing report count for TSN t is to be
174 * incremented according to [RFC2960] and
175 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
176 * then the sender MUST further execute steps 3.1 and
177 * 3.2 to determine if the missing report count for
178 * TSN t SHOULD NOT be incremented.
180 * 3.3) If 3.1 and 3.2 do not dictate that the missing
181 * report count for t should not be incremented, then
182 * the sender SHOULD increment missing report count for
183 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
185 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
186 struct sctp_transport
*transport
,
187 int count_of_newacks
,
190 if (primary
->cacc
.changeover_active
&&
191 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
) ||
192 sctp_cacc_skip_3_2(primary
, tsn
)))
197 /* Initialize an existing sctp_outq. This does the boring stuff.
198 * You still need to define handlers if you really want to DO
199 * something with this structure...
201 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
203 memset(q
, 0, sizeof(struct sctp_outq
));
206 INIT_LIST_HEAD(&q
->out_chunk_list
);
207 INIT_LIST_HEAD(&q
->control_chunk_list
);
208 INIT_LIST_HEAD(&q
->retransmit
);
209 INIT_LIST_HEAD(&q
->sacked
);
210 INIT_LIST_HEAD(&q
->abandoned
);
215 /* Free the outqueue structure and any related pending chunks.
217 static void __sctp_outq_teardown(struct sctp_outq
*q
)
219 struct sctp_transport
*transport
;
220 struct list_head
*lchunk
, *temp
;
221 struct sctp_chunk
*chunk
, *tmp
;
223 /* Throw away unacknowledged chunks. */
224 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
226 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
227 chunk
= list_entry(lchunk
, struct sctp_chunk
,
229 /* Mark as part of a failed message. */
230 sctp_chunk_fail(chunk
, q
->error
);
231 sctp_chunk_free(chunk
);
235 /* Throw away chunks that have been gap ACKed. */
236 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
237 list_del_init(lchunk
);
238 chunk
= list_entry(lchunk
, struct sctp_chunk
,
240 sctp_chunk_fail(chunk
, q
->error
);
241 sctp_chunk_free(chunk
);
244 /* Throw away any chunks in the retransmit queue. */
245 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
246 list_del_init(lchunk
);
247 chunk
= list_entry(lchunk
, struct sctp_chunk
,
249 sctp_chunk_fail(chunk
, q
->error
);
250 sctp_chunk_free(chunk
);
253 /* Throw away any chunks that are in the abandoned queue. */
254 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
255 list_del_init(lchunk
);
256 chunk
= list_entry(lchunk
, struct sctp_chunk
,
258 sctp_chunk_fail(chunk
, q
->error
);
259 sctp_chunk_free(chunk
);
262 /* Throw away any leftover data chunks. */
263 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
265 /* Mark as send failure. */
266 sctp_chunk_fail(chunk
, q
->error
);
267 sctp_chunk_free(chunk
);
270 /* Throw away any leftover control chunks. */
271 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
272 list_del_init(&chunk
->list
);
273 sctp_chunk_free(chunk
);
277 void sctp_outq_teardown(struct sctp_outq
*q
)
279 __sctp_outq_teardown(q
);
280 sctp_outq_init(q
->asoc
, q
);
283 /* Free the outqueue structure and any related pending chunks. */
284 void sctp_outq_free(struct sctp_outq
*q
)
286 /* Throw away leftover chunks. */
287 __sctp_outq_teardown(q
);
290 /* Put a new chunk in an sctp_outq. */
291 int sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
293 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
296 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__
, q
, chunk
,
297 chunk
&& chunk
->chunk_hdr
?
298 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
301 /* If it is data, queue it up, otherwise, send it
304 if (sctp_chunk_is_data(chunk
)) {
305 /* Is it OK to queue data chunks? */
306 /* From 9. Termination of Association
308 * When either endpoint performs a shutdown, the
309 * association on each peer will stop accepting new
310 * data from its user and only deliver data in queue
311 * at the time of sending or receiving the SHUTDOWN
314 switch (q
->asoc
->state
) {
315 case SCTP_STATE_CLOSED
:
316 case SCTP_STATE_SHUTDOWN_PENDING
:
317 case SCTP_STATE_SHUTDOWN_SENT
:
318 case SCTP_STATE_SHUTDOWN_RECEIVED
:
319 case SCTP_STATE_SHUTDOWN_ACK_SENT
:
320 /* Cannot send after transport endpoint shutdown */
325 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
326 __func__
, q
, chunk
, chunk
&& chunk
->chunk_hdr
?
327 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
330 sctp_outq_tail_data(q
, chunk
);
331 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
332 SCTP_INC_STATS(net
, SCTP_MIB_OUTUNORDERCHUNKS
);
334 SCTP_INC_STATS(net
, SCTP_MIB_OUTORDERCHUNKS
);
339 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
340 SCTP_INC_STATS(net
, SCTP_MIB_OUTCTRLCHUNKS
);
347 error
= sctp_outq_flush(q
, 0);
352 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
353 * and the abandoned list are in ascending order.
355 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
357 struct list_head
*pos
;
358 struct sctp_chunk
*nchunk
, *lchunk
;
362 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
363 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
365 list_for_each(pos
, head
) {
366 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
367 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
368 if (TSN_lt(ntsn
, ltsn
)) {
369 list_add(new, pos
->prev
);
375 list_add_tail(new, head
);
378 /* Mark all the eligible packets on a transport for retransmission. */
379 void sctp_retransmit_mark(struct sctp_outq
*q
,
380 struct sctp_transport
*transport
,
383 struct list_head
*lchunk
, *ltemp
;
384 struct sctp_chunk
*chunk
;
386 /* Walk through the specified transmitted queue. */
387 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
388 chunk
= list_entry(lchunk
, struct sctp_chunk
,
391 /* If the chunk is abandoned, move it to abandoned list. */
392 if (sctp_chunk_abandoned(chunk
)) {
393 list_del_init(lchunk
);
394 sctp_insert_list(&q
->abandoned
, lchunk
);
396 /* If this chunk has not been previousely acked,
397 * stop considering it 'outstanding'. Our peer
398 * will most likely never see it since it will
399 * not be retransmitted
401 if (!chunk
->tsn_gap_acked
) {
402 if (chunk
->transport
)
403 chunk
->transport
->flight_size
-=
404 sctp_data_size(chunk
);
405 q
->outstanding_bytes
-= sctp_data_size(chunk
);
406 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
411 /* If we are doing retransmission due to a timeout or pmtu
412 * discovery, only the chunks that are not yet acked should
413 * be added to the retransmit queue.
415 if ((reason
== SCTP_RTXR_FAST_RTX
&&
416 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
417 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
418 /* RFC 2960 6.2.1 Processing a Received SACK
420 * C) Any time a DATA chunk is marked for
421 * retransmission (via either T3-rtx timer expiration
422 * (Section 6.3.3) or via fast retransmit
423 * (Section 7.2.4)), add the data size of those
424 * chunks to the rwnd.
426 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
427 q
->outstanding_bytes
-= sctp_data_size(chunk
);
428 if (chunk
->transport
)
429 transport
->flight_size
-= sctp_data_size(chunk
);
431 /* sctpimpguide-05 Section 2.8.2
432 * M5) If a T3-rtx timer expires, the
433 * 'TSN.Missing.Report' of all affected TSNs is set
436 chunk
->tsn_missing_report
= 0;
438 /* If a chunk that is being used for RTT measurement
439 * has to be retransmitted, we cannot use this chunk
440 * anymore for RTT measurements. Reset rto_pending so
441 * that a new RTT measurement is started when a new
442 * data chunk is sent.
444 if (chunk
->rtt_in_progress
) {
445 chunk
->rtt_in_progress
= 0;
446 transport
->rto_pending
= 0;
449 /* Move the chunk to the retransmit queue. The chunks
450 * on the retransmit queue are always kept in order.
452 list_del_init(lchunk
);
453 sctp_insert_list(&q
->retransmit
, lchunk
);
457 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
458 "flight_size:%d, pba:%d\n", __func__
, transport
, reason
,
459 transport
->cwnd
, transport
->ssthresh
, transport
->flight_size
,
460 transport
->partial_bytes_acked
);
463 /* Mark all the eligible packets on a transport for retransmission and force
466 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
467 sctp_retransmit_reason_t reason
)
469 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
473 case SCTP_RTXR_T3_RTX
:
474 SCTP_INC_STATS(net
, SCTP_MIB_T3_RETRANSMITS
);
475 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
476 /* Update the retran path if the T3-rtx timer has expired for
477 * the current retran path.
479 if (transport
== transport
->asoc
->peer
.retran_path
)
480 sctp_assoc_update_retran_path(transport
->asoc
);
481 transport
->asoc
->rtx_data_chunks
+=
482 transport
->asoc
->unack_data
;
484 case SCTP_RTXR_FAST_RTX
:
485 SCTP_INC_STATS(net
, SCTP_MIB_FAST_RETRANSMITS
);
486 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
489 case SCTP_RTXR_PMTUD
:
490 SCTP_INC_STATS(net
, SCTP_MIB_PMTUD_RETRANSMITS
);
492 case SCTP_RTXR_T1_RTX
:
493 SCTP_INC_STATS(net
, SCTP_MIB_T1_RETRANSMITS
);
494 transport
->asoc
->init_retries
++;
500 sctp_retransmit_mark(q
, transport
, reason
);
502 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
503 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
504 * following the procedures outlined in C1 - C5.
506 if (reason
== SCTP_RTXR_T3_RTX
)
507 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
509 /* Flush the queues only on timeout, since fast_rtx is only
510 * triggered during sack processing and the queue
511 * will be flushed at the end.
513 if (reason
!= SCTP_RTXR_FAST_RTX
)
514 error
= sctp_outq_flush(q
, /* rtx_timeout */ 1);
517 q
->asoc
->base
.sk
->sk_err
= -error
;
521 * Transmit DATA chunks on the retransmit queue. Upon return from
522 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
523 * need to be transmitted by the caller.
524 * We assume that pkt->transport has already been set.
526 * The return value is a normal kernel error return value.
528 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
529 int rtx_timeout
, int *start_timer
)
531 struct list_head
*lqueue
;
532 struct sctp_transport
*transport
= pkt
->transport
;
534 struct sctp_chunk
*chunk
, *chunk1
;
540 lqueue
= &q
->retransmit
;
541 fast_rtx
= q
->fast_rtx
;
543 /* This loop handles time-out retransmissions, fast retransmissions,
544 * and retransmissions due to opening of whindow.
546 * RFC 2960 6.3.3 Handle T3-rtx Expiration
548 * E3) Determine how many of the earliest (i.e., lowest TSN)
549 * outstanding DATA chunks for the address for which the
550 * T3-rtx has expired will fit into a single packet, subject
551 * to the MTU constraint for the path corresponding to the
552 * destination transport address to which the retransmission
553 * is being sent (this may be different from the address for
554 * which the timer expires [see Section 6.4]). Call this value
555 * K. Bundle and retransmit those K DATA chunks in a single
556 * packet to the destination endpoint.
558 * [Just to be painfully clear, if we are retransmitting
559 * because a timeout just happened, we should send only ONE
560 * packet of retransmitted data.]
562 * For fast retransmissions we also send only ONE packet. However,
563 * if we are just flushing the queue due to open window, we'll
564 * try to send as much as possible.
566 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
567 /* If the chunk is abandoned, move it to abandoned list. */
568 if (sctp_chunk_abandoned(chunk
)) {
569 list_del_init(&chunk
->transmitted_list
);
570 sctp_insert_list(&q
->abandoned
,
571 &chunk
->transmitted_list
);
575 /* Make sure that Gap Acked TSNs are not retransmitted. A
576 * simple approach is just to move such TSNs out of the
577 * way and into a 'transmitted' queue and skip to the
580 if (chunk
->tsn_gap_acked
) {
581 list_move_tail(&chunk
->transmitted_list
,
582 &transport
->transmitted
);
586 /* If we are doing fast retransmit, ignore non-fast_rtransmit
589 if (fast_rtx
&& !chunk
->fast_retransmit
)
593 /* Attempt to append this chunk to the packet. */
594 status
= sctp_packet_append_chunk(pkt
, chunk
);
597 case SCTP_XMIT_PMTU_FULL
:
598 if (!pkt
->has_data
&& !pkt
->has_cookie_echo
) {
599 /* If this packet did not contain DATA then
600 * retransmission did not happen, so do it
601 * again. We'll ignore the error here since
602 * control chunks are already freed so there
603 * is nothing we can do.
605 sctp_packet_transmit(pkt
);
609 /* Send this packet. */
610 error
= sctp_packet_transmit(pkt
);
612 /* If we are retransmitting, we should only
613 * send a single packet.
614 * Otherwise, try appending this chunk again.
616 if (rtx_timeout
|| fast_rtx
)
621 /* Bundle next chunk in the next round. */
624 case SCTP_XMIT_RWND_FULL
:
625 /* Send this packet. */
626 error
= sctp_packet_transmit(pkt
);
628 /* Stop sending DATA as there is no more room
634 case SCTP_XMIT_NAGLE_DELAY
:
635 /* Send this packet. */
636 error
= sctp_packet_transmit(pkt
);
638 /* Stop sending DATA because of nagle delay. */
643 /* The append was successful, so add this chunk to
644 * the transmitted list.
646 list_move_tail(&chunk
->transmitted_list
,
647 &transport
->transmitted
);
649 /* Mark the chunk as ineligible for fast retransmit
650 * after it is retransmitted.
652 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
653 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
656 q
->asoc
->stats
.rtxchunks
++;
660 /* Set the timer if there were no errors */
661 if (!error
&& !timer
)
668 /* If we are here due to a retransmit timeout or a fast
669 * retransmit and if there are any chunks left in the retransmit
670 * queue that could not fit in the PMTU sized packet, they need
671 * to be marked as ineligible for a subsequent fast retransmit.
673 if (rtx_timeout
|| fast_rtx
) {
674 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
675 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
676 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
680 *start_timer
= timer
;
682 /* Clear fast retransmit hint */
689 /* Cork the outqueue so queued chunks are really queued. */
690 int sctp_outq_uncork(struct sctp_outq
*q
)
695 return sctp_outq_flush(q
, 0);
700 * Try to flush an outqueue.
702 * Description: Send everything in q which we legally can, subject to
703 * congestion limitations.
704 * * Note: This function can be called from multiple contexts so appropriate
705 * locking concerns must be made. Today we use the sock lock to protect
708 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
)
710 struct sctp_packet
*packet
;
711 struct sctp_packet singleton
;
712 struct sctp_association
*asoc
= q
->asoc
;
713 __u16 sport
= asoc
->base
.bind_addr
.port
;
714 __u16 dport
= asoc
->peer
.port
;
715 __u32 vtag
= asoc
->peer
.i
.init_tag
;
716 struct sctp_transport
*transport
= NULL
;
717 struct sctp_transport
*new_transport
;
718 struct sctp_chunk
*chunk
, *tmp
;
724 /* These transports have chunks to send. */
725 struct list_head transport_list
;
726 struct list_head
*ltransport
;
728 INIT_LIST_HEAD(&transport_list
);
734 * When bundling control chunks with DATA chunks, an
735 * endpoint MUST place control chunks first in the outbound
736 * SCTP packet. The transmitter MUST transmit DATA chunks
737 * within a SCTP packet in increasing order of TSN.
741 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
743 * F1) This means that until such time as the ASCONF
744 * containing the add is acknowledged, the sender MUST
745 * NOT use the new IP address as a source for ANY SCTP
746 * packet except on carrying an ASCONF Chunk.
748 if (asoc
->src_out_of_asoc_ok
&&
749 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF
)
752 list_del_init(&chunk
->list
);
754 /* Pick the right transport to use. */
755 new_transport
= chunk
->transport
;
757 if (!new_transport
) {
759 * If we have a prior transport pointer, see if
760 * the destination address of the chunk
761 * matches the destination address of the
762 * current transport. If not a match, then
763 * try to look up the transport with a given
764 * destination address. We do this because
765 * after processing ASCONFs, we may have new
766 * transports created.
769 sctp_cmp_addr_exact(&chunk
->dest
,
771 new_transport
= transport
;
773 new_transport
= sctp_assoc_lookup_paddr(asoc
,
776 /* if we still don't have a new transport, then
777 * use the current active path.
780 new_transport
= asoc
->peer
.active_path
;
781 } else if ((new_transport
->state
== SCTP_INACTIVE
) ||
782 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
783 (new_transport
->state
== SCTP_PF
)) {
784 /* If the chunk is Heartbeat or Heartbeat Ack,
785 * send it to chunk->transport, even if it's
788 * 3.3.6 Heartbeat Acknowledgement:
790 * A HEARTBEAT ACK is always sent to the source IP
791 * address of the IP datagram containing the
792 * HEARTBEAT chunk to which this ack is responding.
795 * ASCONF_ACKs also must be sent to the source.
797 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
798 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
&&
799 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF_ACK
)
800 new_transport
= asoc
->peer
.active_path
;
803 /* Are we switching transports?
804 * Take care of transport locks.
806 if (new_transport
!= transport
) {
807 transport
= new_transport
;
808 if (list_empty(&transport
->send_ready
)) {
809 list_add_tail(&transport
->send_ready
,
812 packet
= &transport
->packet
;
813 sctp_packet_config(packet
, vtag
,
814 asoc
->peer
.ecn_capable
);
817 switch (chunk
->chunk_hdr
->type
) {
821 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
822 * COMPLETE with any other chunks. [Send them immediately.]
825 case SCTP_CID_INIT_ACK
:
826 case SCTP_CID_SHUTDOWN_COMPLETE
:
827 sctp_packet_init(&singleton
, transport
, sport
, dport
);
828 sctp_packet_config(&singleton
, vtag
, 0);
829 sctp_packet_append_chunk(&singleton
, chunk
);
830 error
= sctp_packet_transmit(&singleton
);
836 if (sctp_test_T_bit(chunk
)) {
837 packet
->vtag
= asoc
->c
.my_vtag
;
839 /* The following chunks are "response" chunks, i.e.
840 * they are generated in response to something we
841 * received. If we are sending these, then we can
842 * send only 1 packet containing these chunks.
844 case SCTP_CID_HEARTBEAT_ACK
:
845 case SCTP_CID_SHUTDOWN_ACK
:
846 case SCTP_CID_COOKIE_ACK
:
847 case SCTP_CID_COOKIE_ECHO
:
849 case SCTP_CID_ECN_CWR
:
850 case SCTP_CID_ASCONF_ACK
:
855 case SCTP_CID_HEARTBEAT
:
856 case SCTP_CID_SHUTDOWN
:
857 case SCTP_CID_ECN_ECNE
:
858 case SCTP_CID_ASCONF
:
859 case SCTP_CID_FWD_TSN
:
860 status
= sctp_packet_transmit_chunk(packet
, chunk
,
862 if (status
!= SCTP_XMIT_OK
) {
863 /* put the chunk back */
864 list_add(&chunk
->list
, &q
->control_chunk_list
);
866 asoc
->stats
.octrlchunks
++;
867 /* PR-SCTP C5) If a FORWARD TSN is sent, the
868 * sender MUST assure that at least one T3-rtx
871 if (chunk
->chunk_hdr
->type
== SCTP_CID_FWD_TSN
)
872 sctp_transport_reset_timers(transport
);
877 /* We built a chunk with an illegal type! */
882 if (q
->asoc
->src_out_of_asoc_ok
)
885 /* Is it OK to send data chunks? */
886 switch (asoc
->state
) {
887 case SCTP_STATE_COOKIE_ECHOED
:
888 /* Only allow bundling when this packet has a COOKIE-ECHO
891 if (!packet
|| !packet
->has_cookie_echo
)
895 case SCTP_STATE_ESTABLISHED
:
896 case SCTP_STATE_SHUTDOWN_PENDING
:
897 case SCTP_STATE_SHUTDOWN_RECEIVED
:
899 * RFC 2960 6.1 Transmission of DATA Chunks
901 * C) When the time comes for the sender to transmit,
902 * before sending new DATA chunks, the sender MUST
903 * first transmit any outstanding DATA chunks which
904 * are marked for retransmission (limited by the
907 if (!list_empty(&q
->retransmit
)) {
908 if (asoc
->peer
.retran_path
->state
== SCTP_UNCONFIRMED
)
910 if (transport
== asoc
->peer
.retran_path
)
913 /* Switch transports & prepare the packet. */
915 transport
= asoc
->peer
.retran_path
;
917 if (list_empty(&transport
->send_ready
)) {
918 list_add_tail(&transport
->send_ready
,
922 packet
= &transport
->packet
;
923 sctp_packet_config(packet
, vtag
,
924 asoc
->peer
.ecn_capable
);
926 error
= sctp_outq_flush_rtx(q
, packet
,
927 rtx_timeout
, &start_timer
);
930 sctp_transport_reset_timers(transport
);
932 /* This can happen on COOKIE-ECHO resend. Only
933 * one chunk can get bundled with a COOKIE-ECHO.
935 if (packet
->has_cookie_echo
)
938 /* Don't send new data if there is still data
939 * waiting to retransmit.
941 if (!list_empty(&q
->retransmit
))
945 /* Apply Max.Burst limitation to the current transport in
946 * case it will be used for new data. We are going to
947 * rest it before we return, but we want to apply the limit
948 * to the currently queued data.
951 sctp_transport_burst_limited(transport
);
953 /* Finally, transmit new packets. */
954 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
955 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
958 if (chunk
->sinfo
.sinfo_stream
>=
959 asoc
->c
.sinit_num_ostreams
) {
961 /* Mark as failed send. */
962 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
963 sctp_chunk_free(chunk
);
967 /* Has this chunk expired? */
968 if (sctp_chunk_abandoned(chunk
)) {
969 sctp_chunk_fail(chunk
, 0);
970 sctp_chunk_free(chunk
);
974 /* If there is a specified transport, use it.
975 * Otherwise, we want to use the active path.
977 new_transport
= chunk
->transport
;
978 if (!new_transport
||
979 ((new_transport
->state
== SCTP_INACTIVE
) ||
980 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
981 (new_transport
->state
== SCTP_PF
)))
982 new_transport
= asoc
->peer
.active_path
;
983 if (new_transport
->state
== SCTP_UNCONFIRMED
)
986 /* Change packets if necessary. */
987 if (new_transport
!= transport
) {
988 transport
= new_transport
;
990 /* Schedule to have this transport's
993 if (list_empty(&transport
->send_ready
)) {
994 list_add_tail(&transport
->send_ready
,
998 packet
= &transport
->packet
;
999 sctp_packet_config(packet
, vtag
,
1000 asoc
->peer
.ecn_capable
);
1001 /* We've switched transports, so apply the
1002 * Burst limit to the new transport.
1004 sctp_transport_burst_limited(transport
);
1007 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1009 __func__
, q
, chunk
, chunk
&& chunk
->chunk_hdr
?
1010 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
1011 "illegal chunk", ntohl(chunk
->subh
.data_hdr
->tsn
),
1012 chunk
->skb
? chunk
->skb
->head
: NULL
, chunk
->skb
?
1013 atomic_read(&chunk
->skb
->users
) : -1);
1015 /* Add the chunk to the packet. */
1016 status
= sctp_packet_transmit_chunk(packet
, chunk
, 0);
1019 case SCTP_XMIT_PMTU_FULL
:
1020 case SCTP_XMIT_RWND_FULL
:
1021 case SCTP_XMIT_NAGLE_DELAY
:
1022 /* We could not append this chunk, so put
1023 * the chunk back on the output queue.
1025 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1026 __func__
, ntohl(chunk
->subh
.data_hdr
->tsn
),
1029 sctp_outq_head_data(q
, chunk
);
1030 goto sctp_flush_out
;
1034 /* The sender is in the SHUTDOWN-PENDING state,
1035 * The sender MAY set the I-bit in the DATA
1038 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
)
1039 chunk
->chunk_hdr
->flags
|= SCTP_DATA_SACK_IMM
;
1040 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
1041 asoc
->stats
.ouodchunks
++;
1043 asoc
->stats
.oodchunks
++;
1051 /* BUG: We assume that the sctp_packet_transmit()
1052 * call below will succeed all the time and add the
1053 * chunk to the transmitted list and restart the
1055 * It is possible that the call can fail under OOM
1058 * Is this really a problem? Won't this behave
1061 list_add_tail(&chunk
->transmitted_list
,
1062 &transport
->transmitted
);
1064 sctp_transport_reset_timers(transport
);
1068 /* Only let one DATA chunk get bundled with a
1069 * COOKIE-ECHO chunk.
1071 if (packet
->has_cookie_echo
)
1072 goto sctp_flush_out
;
1083 /* Before returning, examine all the transports touched in
1084 * this call. Right now, we bluntly force clear all the
1085 * transports. Things might change after we implement Nagle.
1086 * But such an examination is still required.
1090 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
1091 struct sctp_transport
*t
= list_entry(ltransport
,
1092 struct sctp_transport
,
1094 packet
= &t
->packet
;
1095 if (!sctp_packet_empty(packet
))
1096 error
= sctp_packet_transmit(packet
);
1098 /* Clear the burst limited state, if any */
1099 sctp_transport_burst_reset(t
);
1105 /* Update unack_data based on the incoming SACK chunk */
1106 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1107 struct sctp_sackhdr
*sack
)
1109 sctp_sack_variable_t
*frags
;
1113 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1115 frags
= sack
->variable
;
1116 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1117 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1118 ntohs(frags
[i
].gab
.start
) + 1));
1121 assoc
->unack_data
= unack_data
;
1124 /* This is where we REALLY process a SACK.
1126 * Process the SACK against the outqueue. Mostly, this just frees
1127 * things off the transmitted queue.
1129 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
1131 struct sctp_association
*asoc
= q
->asoc
;
1132 struct sctp_sackhdr
*sack
= chunk
->subh
.sack_hdr
;
1133 struct sctp_transport
*transport
;
1134 struct sctp_chunk
*tchunk
= NULL
;
1135 struct list_head
*lchunk
, *transport_list
, *temp
;
1136 sctp_sack_variable_t
*frags
= sack
->variable
;
1137 __u32 sack_ctsn
, ctsn
, tsn
;
1138 __u32 highest_tsn
, highest_new_tsn
;
1140 unsigned int outstanding
;
1141 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1142 int count_of_newacks
= 0;
1146 /* Grab the association's destination address list. */
1147 transport_list
= &asoc
->peer
.transport_addr_list
;
1149 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1150 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1151 asoc
->stats
.gapcnt
+= gap_ack_blocks
;
1153 * SFR-CACC algorithm:
1154 * On receipt of a SACK the sender SHOULD execute the
1155 * following statements.
1157 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1158 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1159 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1161 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1162 * is set the receiver of the SACK MUST take the following actions:
1164 * A) Initialize the cacc_saw_newack to 0 for all destination
1167 * Only bother if changeover_active is set. Otherwise, this is
1168 * totally suboptimal to do on every SACK.
1170 if (primary
->cacc
.changeover_active
) {
1171 u8 clear_cycling
= 0;
1173 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1174 primary
->cacc
.changeover_active
= 0;
1178 if (clear_cycling
|| gap_ack_blocks
) {
1179 list_for_each_entry(transport
, transport_list
,
1182 transport
->cacc
.cycling_changeover
= 0;
1184 transport
->cacc
.cacc_saw_newack
= 0;
1189 /* Get the highest TSN in the sack. */
1190 highest_tsn
= sack_ctsn
;
1192 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1194 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
))
1195 asoc
->highest_sacked
= highest_tsn
;
1197 highest_new_tsn
= sack_ctsn
;
1199 /* Run through the retransmit queue. Credit bytes received
1200 * and free those chunks that we can.
1202 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, NULL
, sack
, &highest_new_tsn
);
1204 /* Run through the transmitted queue.
1205 * Credit bytes received and free those chunks which we can.
1207 * This is a MASSIVE candidate for optimization.
1209 list_for_each_entry(transport
, transport_list
, transports
) {
1210 sctp_check_transmitted(q
, &transport
->transmitted
,
1211 transport
, &chunk
->source
, sack
,
1214 * SFR-CACC algorithm:
1215 * C) Let count_of_newacks be the number of
1216 * destinations for which cacc_saw_newack is set.
1218 if (transport
->cacc
.cacc_saw_newack
)
1219 count_of_newacks
++;
1222 /* Move the Cumulative TSN Ack Point if appropriate. */
1223 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
)) {
1224 asoc
->ctsn_ack_point
= sack_ctsn
;
1228 if (gap_ack_blocks
) {
1230 if (asoc
->fast_recovery
&& accum_moved
)
1231 highest_new_tsn
= highest_tsn
;
1233 list_for_each_entry(transport
, transport_list
, transports
)
1234 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1235 highest_new_tsn
, count_of_newacks
);
1238 /* Update unack_data field in the assoc. */
1239 sctp_sack_update_unack_data(asoc
, sack
);
1241 ctsn
= asoc
->ctsn_ack_point
;
1243 /* Throw away stuff rotting on the sack queue. */
1244 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1245 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1247 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1248 if (TSN_lte(tsn
, ctsn
)) {
1249 list_del_init(&tchunk
->transmitted_list
);
1250 sctp_chunk_free(tchunk
);
1254 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1255 * number of bytes still outstanding after processing the
1256 * Cumulative TSN Ack and the Gap Ack Blocks.
1259 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1260 outstanding
= q
->outstanding_bytes
;
1262 if (outstanding
< sack_a_rwnd
)
1263 sack_a_rwnd
-= outstanding
;
1267 asoc
->peer
.rwnd
= sack_a_rwnd
;
1269 sctp_generate_fwdtsn(q
, sack_ctsn
);
1271 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__
, sack_ctsn
);
1272 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1273 "advertised peer ack point:0x%x\n", __func__
, asoc
, ctsn
,
1274 asoc
->adv_peer_ack_point
);
1276 /* See if all chunks are acked.
1277 * Make sure the empty queue handler will get run later.
1279 q
->empty
= (list_empty(&q
->out_chunk_list
) &&
1280 list_empty(&q
->retransmit
));
1284 list_for_each_entry(transport
, transport_list
, transports
) {
1285 q
->empty
= q
->empty
&& list_empty(&transport
->transmitted
);
1290 pr_debug("%s: sack queue is empty\n", __func__
);
1295 /* Is the outqueue empty? */
1296 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1301 /********************************************************************
1302 * 2nd Level Abstractions
1303 ********************************************************************/
1305 /* Go through a transport's transmitted list or the association's retransmit
1306 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1307 * The retransmit list will not have an associated transport.
1309 * I added coherent debug information output. --xguo
1311 * Instead of printing 'sacked' or 'kept' for each TSN on the
1312 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1313 * KEPT TSN6-TSN7, etc.
1315 static void sctp_check_transmitted(struct sctp_outq
*q
,
1316 struct list_head
*transmitted_queue
,
1317 struct sctp_transport
*transport
,
1318 union sctp_addr
*saddr
,
1319 struct sctp_sackhdr
*sack
,
1320 __u32
*highest_new_tsn_in_sack
)
1322 struct list_head
*lchunk
;
1323 struct sctp_chunk
*tchunk
;
1324 struct list_head tlist
;
1328 __u8 restart_timer
= 0;
1329 int bytes_acked
= 0;
1330 int migrate_bytes
= 0;
1331 bool forward_progress
= false;
1333 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1335 INIT_LIST_HEAD(&tlist
);
1337 /* The while loop will skip empty transmitted queues. */
1338 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1339 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1342 if (sctp_chunk_abandoned(tchunk
)) {
1343 /* Move the chunk to abandoned list. */
1344 sctp_insert_list(&q
->abandoned
, lchunk
);
1346 /* If this chunk has not been acked, stop
1347 * considering it as 'outstanding'.
1349 if (!tchunk
->tsn_gap_acked
) {
1350 if (tchunk
->transport
)
1351 tchunk
->transport
->flight_size
-=
1352 sctp_data_size(tchunk
);
1353 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1358 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1359 if (sctp_acked(sack
, tsn
)) {
1360 /* If this queue is the retransmit queue, the
1361 * retransmit timer has already reclaimed
1362 * the outstanding bytes for this chunk, so only
1363 * count bytes associated with a transport.
1366 /* If this chunk is being used for RTT
1367 * measurement, calculate the RTT and update
1368 * the RTO using this value.
1370 * 6.3.1 C5) Karn's algorithm: RTT measurements
1371 * MUST NOT be made using packets that were
1372 * retransmitted (and thus for which it is
1373 * ambiguous whether the reply was for the
1374 * first instance of the packet or a later
1377 if (!tchunk
->tsn_gap_acked
&&
1378 tchunk
->rtt_in_progress
) {
1379 tchunk
->rtt_in_progress
= 0;
1380 rtt
= jiffies
- tchunk
->sent_at
;
1381 sctp_transport_update_rto(transport
,
1386 /* If the chunk hasn't been marked as ACKED,
1387 * mark it and account bytes_acked if the
1388 * chunk had a valid transport (it will not
1389 * have a transport if ASCONF had deleted it
1390 * while DATA was outstanding).
1392 if (!tchunk
->tsn_gap_acked
) {
1393 tchunk
->tsn_gap_acked
= 1;
1394 *highest_new_tsn_in_sack
= tsn
;
1395 bytes_acked
+= sctp_data_size(tchunk
);
1396 if (!tchunk
->transport
)
1397 migrate_bytes
+= sctp_data_size(tchunk
);
1398 forward_progress
= true;
1401 if (TSN_lte(tsn
, sack_ctsn
)) {
1402 /* RFC 2960 6.3.2 Retransmission Timer Rules
1404 * R3) Whenever a SACK is received
1405 * that acknowledges the DATA chunk
1406 * with the earliest outstanding TSN
1407 * for that address, restart T3-rtx
1408 * timer for that address with its
1412 forward_progress
= true;
1414 if (!tchunk
->tsn_gap_acked
) {
1416 * SFR-CACC algorithm:
1417 * 2) If the SACK contains gap acks
1418 * and the flag CHANGEOVER_ACTIVE is
1419 * set the receiver of the SACK MUST
1420 * take the following action:
1422 * B) For each TSN t being acked that
1423 * has not been acked in any SACK so
1424 * far, set cacc_saw_newack to 1 for
1425 * the destination that the TSN was
1429 sack
->num_gap_ack_blocks
&&
1430 q
->asoc
->peer
.primary_path
->cacc
.
1432 transport
->cacc
.cacc_saw_newack
1436 list_add_tail(&tchunk
->transmitted_list
,
1439 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1440 * M2) Each time a SACK arrives reporting
1441 * 'Stray DATA chunk(s)' record the highest TSN
1442 * reported as newly acknowledged, call this
1443 * value 'HighestTSNinSack'. A newly
1444 * acknowledged DATA chunk is one not
1445 * previously acknowledged in a SACK.
1447 * When the SCTP sender of data receives a SACK
1448 * chunk that acknowledges, for the first time,
1449 * the receipt of a DATA chunk, all the still
1450 * unacknowledged DATA chunks whose TSN is
1451 * older than that newly acknowledged DATA
1452 * chunk, are qualified as 'Stray DATA chunks'.
1454 list_add_tail(lchunk
, &tlist
);
1457 if (tchunk
->tsn_gap_acked
) {
1458 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1461 tchunk
->tsn_gap_acked
= 0;
1463 if (tchunk
->transport
)
1464 bytes_acked
-= sctp_data_size(tchunk
);
1466 /* RFC 2960 6.3.2 Retransmission Timer Rules
1468 * R4) Whenever a SACK is received missing a
1469 * TSN that was previously acknowledged via a
1470 * Gap Ack Block, start T3-rtx for the
1471 * destination address to which the DATA
1472 * chunk was originally
1473 * transmitted if it is not already running.
1478 list_add_tail(lchunk
, &tlist
);
1484 struct sctp_association
*asoc
= transport
->asoc
;
1486 /* We may have counted DATA that was migrated
1487 * to this transport due to DEL-IP operation.
1488 * Subtract those bytes, since the were never
1489 * send on this transport and shouldn't be
1490 * credited to this transport.
1492 bytes_acked
-= migrate_bytes
;
1494 /* 8.2. When an outstanding TSN is acknowledged,
1495 * the endpoint shall clear the error counter of
1496 * the destination transport address to which the
1497 * DATA chunk was last sent.
1498 * The association's overall error counter is
1501 transport
->error_count
= 0;
1502 transport
->asoc
->overall_error_count
= 0;
1503 forward_progress
= true;
1506 * While in SHUTDOWN PENDING, we may have started
1507 * the T5 shutdown guard timer after reaching the
1508 * retransmission limit. Stop that timer as soon
1509 * as the receiver acknowledged any data.
1511 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
&&
1512 del_timer(&asoc
->timers
1513 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD
]))
1514 sctp_association_put(asoc
);
1516 /* Mark the destination transport address as
1517 * active if it is not so marked.
1519 if ((transport
->state
== SCTP_INACTIVE
||
1520 transport
->state
== SCTP_UNCONFIRMED
) &&
1521 sctp_cmp_addr_exact(&transport
->ipaddr
, saddr
)) {
1522 sctp_assoc_control_transport(
1526 SCTP_RECEIVED_SACK
);
1529 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1532 transport
->flight_size
-= bytes_acked
;
1533 if (transport
->flight_size
== 0)
1534 transport
->partial_bytes_acked
= 0;
1535 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1537 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1538 * When a sender is doing zero window probing, it
1539 * should not timeout the association if it continues
1540 * to receive new packets from the receiver. The
1541 * reason is that the receiver MAY keep its window
1542 * closed for an indefinite time.
1543 * A sender is doing zero window probing when the
1544 * receiver's advertised window is zero, and there is
1545 * only one data chunk in flight to the receiver.
1547 * Allow the association to timeout while in SHUTDOWN
1548 * PENDING or SHUTDOWN RECEIVED in case the receiver
1549 * stays in zero window mode forever.
1551 if (!q
->asoc
->peer
.rwnd
&&
1552 !list_empty(&tlist
) &&
1553 (sack_ctsn
+2 == q
->asoc
->next_tsn
) &&
1554 q
->asoc
->state
< SCTP_STATE_SHUTDOWN_PENDING
) {
1555 pr_debug("%s: sack received for zero window "
1556 "probe:%u\n", __func__
, sack_ctsn
);
1558 q
->asoc
->overall_error_count
= 0;
1559 transport
->error_count
= 0;
1563 /* RFC 2960 6.3.2 Retransmission Timer Rules
1565 * R2) Whenever all outstanding data sent to an address have
1566 * been acknowledged, turn off the T3-rtx timer of that
1569 if (!transport
->flight_size
) {
1570 if (del_timer(&transport
->T3_rtx_timer
))
1571 sctp_transport_put(transport
);
1572 } else if (restart_timer
) {
1573 if (!mod_timer(&transport
->T3_rtx_timer
,
1574 jiffies
+ transport
->rto
))
1575 sctp_transport_hold(transport
);
1578 if (forward_progress
) {
1580 dst_confirm(transport
->dst
);
1584 list_splice(&tlist
, transmitted_queue
);
1587 /* Mark chunks as missing and consequently may get retransmitted. */
1588 static void sctp_mark_missing(struct sctp_outq
*q
,
1589 struct list_head
*transmitted_queue
,
1590 struct sctp_transport
*transport
,
1591 __u32 highest_new_tsn_in_sack
,
1592 int count_of_newacks
)
1594 struct sctp_chunk
*chunk
;
1596 char do_fast_retransmit
= 0;
1597 struct sctp_association
*asoc
= q
->asoc
;
1598 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1600 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1602 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1604 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1605 * 'Unacknowledged TSN's', if the TSN number of an
1606 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1607 * value, increment the 'TSN.Missing.Report' count on that
1608 * chunk if it has NOT been fast retransmitted or marked for
1609 * fast retransmit already.
1611 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1612 !chunk
->tsn_gap_acked
&&
1613 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1615 /* SFR-CACC may require us to skip marking
1616 * this chunk as missing.
1618 if (!transport
|| !sctp_cacc_skip(primary
,
1620 count_of_newacks
, tsn
)) {
1621 chunk
->tsn_missing_report
++;
1623 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1624 __func__
, tsn
, chunk
->tsn_missing_report
);
1628 * M4) If any DATA chunk is found to have a
1629 * 'TSN.Missing.Report'
1630 * value larger than or equal to 3, mark that chunk for
1631 * retransmission and start the fast retransmit procedure.
1634 if (chunk
->tsn_missing_report
>= 3) {
1635 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1636 do_fast_retransmit
= 1;
1641 if (do_fast_retransmit
)
1642 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1644 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1645 "flight_size:%d, pba:%d\n", __func__
, transport
,
1646 transport
->cwnd
, transport
->ssthresh
,
1647 transport
->flight_size
, transport
->partial_bytes_acked
);
1651 /* Is the given TSN acked by this packet? */
1652 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1655 sctp_sack_variable_t
*frags
;
1657 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1659 if (TSN_lte(tsn
, ctsn
))
1662 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1665 * These fields contain the Gap Ack Blocks. They are repeated
1666 * for each Gap Ack Block up to the number of Gap Ack Blocks
1667 * defined in the Number of Gap Ack Blocks field. All DATA
1668 * chunks with TSNs greater than or equal to (Cumulative TSN
1669 * Ack + Gap Ack Block Start) and less than or equal to
1670 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1671 * Block are assumed to have been received correctly.
1674 frags
= sack
->variable
;
1676 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); ++i
) {
1677 if (TSN_lte(ntohs(frags
[i
].gab
.start
), gap
) &&
1678 TSN_lte(gap
, ntohs(frags
[i
].gab
.end
)))
1687 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1688 int nskips
, __be16 stream
)
1692 for (i
= 0; i
< nskips
; i
++) {
1693 if (skiplist
[i
].stream
== stream
)
1699 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1700 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1702 struct sctp_association
*asoc
= q
->asoc
;
1703 struct sctp_chunk
*ftsn_chunk
= NULL
;
1704 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1708 struct sctp_chunk
*chunk
;
1709 struct list_head
*lchunk
, *temp
;
1711 if (!asoc
->peer
.prsctp_capable
)
1714 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1717 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1718 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1720 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1721 asoc
->adv_peer_ack_point
= ctsn
;
1723 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1724 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1725 * the chunk next in the out-queue space is marked as "abandoned" as
1726 * shown in the following example:
1728 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1729 * and the Advanced.Peer.Ack.Point is updated to this value:
1731 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1732 * normal SACK processing local advancement
1734 * Adv.Ack.Pt-> 102 acked 102 acked
1735 * 103 abandoned 103 abandoned
1736 * 104 abandoned Adv.Ack.P-> 104 abandoned
1738 * 106 acked 106 acked
1741 * In this example, the data sender successfully advanced the
1742 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1744 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1745 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1747 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1749 /* Remove any chunks in the abandoned queue that are acked by
1752 if (TSN_lte(tsn
, ctsn
)) {
1753 list_del_init(lchunk
);
1754 sctp_chunk_free(chunk
);
1756 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1757 asoc
->adv_peer_ack_point
= tsn
;
1758 if (chunk
->chunk_hdr
->flags
&
1759 SCTP_DATA_UNORDERED
)
1761 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1763 chunk
->subh
.data_hdr
->stream
);
1764 ftsn_skip_arr
[skip_pos
].stream
=
1765 chunk
->subh
.data_hdr
->stream
;
1766 ftsn_skip_arr
[skip_pos
].ssn
=
1767 chunk
->subh
.data_hdr
->ssn
;
1768 if (skip_pos
== nskips
)
1777 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1778 * is greater than the Cumulative TSN ACK carried in the received
1779 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1780 * chunk containing the latest value of the
1781 * "Advanced.Peer.Ack.Point".
1783 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1784 * list each stream and sequence number in the forwarded TSN. This
1785 * information will enable the receiver to easily find any
1786 * stranded TSN's waiting on stream reorder queues. Each stream
1787 * SHOULD only be reported once; this means that if multiple
1788 * abandoned messages occur in the same stream then only the
1789 * highest abandoned stream sequence number is reported. If the
1790 * total size of the FORWARD TSN does NOT fit in a single MTU then
1791 * the sender of the FORWARD TSN SHOULD lower the
1792 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1795 if (asoc
->adv_peer_ack_point
> ctsn
)
1796 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1797 nskips
, &ftsn_skip_arr
[0]);
1800 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1801 SCTP_INC_STATS(sock_net(asoc
->base
.sk
), SCTP_MIB_OUTCTRLCHUNKS
);