Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6.git] / net / socket.c
blob4ca1526db7562ff7a1ae189a5b51bd6487c045ed
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
277 static void init_once(void *foo)
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
281 inode_init_once(&ei->vfs_inode);
284 static int init_inodecache(void)
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
305 * sockfs_dname() is called from d_path().
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
324 static struct vfsmount *sock_mnt __read_mostly;
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
333 * Obtains the first available file descriptor and sets it up for use.
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
355 if (dname) {
356 name.name = dname;
357 name.len = strlen(name.name);
358 } else if (sock->sk) {
359 name.name = sock->sk->sk_prot_creator->name;
360 name.len = strlen(name.name);
362 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 if (unlikely(!path.dentry))
364 return ERR_PTR(-ENOMEM);
365 path.mnt = mntget(sock_mnt);
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(IS_ERR(file))) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 return file;
379 sock->file = file;
380 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 file->private_data = sock;
382 return file;
384 EXPORT_SYMBOL(sock_alloc_file);
386 static int sock_map_fd(struct socket *sock, int flags)
388 struct file *newfile;
389 int fd = get_unused_fd_flags(flags);
390 if (unlikely(fd < 0))
391 return fd;
393 newfile = sock_alloc_file(sock, flags, NULL);
394 if (likely(!IS_ERR(newfile))) {
395 fd_install(fd, newfile);
396 return fd;
399 put_unused_fd(fd);
400 return PTR_ERR(newfile);
403 struct socket *sock_from_file(struct file *file, int *err)
405 if (file->f_op == &socket_file_ops)
406 return file->private_data; /* set in sock_map_fd */
408 *err = -ENOTSOCK;
409 return NULL;
411 EXPORT_SYMBOL(sock_from_file);
414 * sockfd_lookup - Go from a file number to its socket slot
415 * @fd: file handle
416 * @err: pointer to an error code return
418 * The file handle passed in is locked and the socket it is bound
419 * too is returned. If an error occurs the err pointer is overwritten
420 * with a negative errno code and NULL is returned. The function checks
421 * for both invalid handles and passing a handle which is not a socket.
423 * On a success the socket object pointer is returned.
426 struct socket *sockfd_lookup(int fd, int *err)
428 struct file *file;
429 struct socket *sock;
431 file = fget(fd);
432 if (!file) {
433 *err = -EBADF;
434 return NULL;
437 sock = sock_from_file(file, err);
438 if (!sock)
439 fput(file);
440 return sock;
442 EXPORT_SYMBOL(sockfd_lookup);
444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
446 struct file *file;
447 struct socket *sock;
449 *err = -EBADF;
450 file = fget_light(fd, fput_needed);
451 if (file) {
452 sock = sock_from_file(file, err);
453 if (sock)
454 return sock;
455 fput_light(file, *fput_needed);
457 return NULL;
460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
463 static ssize_t sockfs_getxattr(struct dentry *dentry,
464 const char *name, void *value, size_t size)
466 const char *proto_name;
467 size_t proto_size;
468 int error;
470 error = -ENODATA;
471 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472 proto_name = dentry->d_name.name;
473 proto_size = strlen(proto_name);
475 if (value) {
476 error = -ERANGE;
477 if (proto_size + 1 > size)
478 goto out;
480 strncpy(value, proto_name, proto_size + 1);
482 error = proto_size + 1;
485 out:
486 return error;
489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490 size_t size)
492 ssize_t len;
493 ssize_t used = 0;
495 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496 if (len < 0)
497 return len;
498 used += len;
499 if (buffer) {
500 if (size < used)
501 return -ERANGE;
502 buffer += len;
505 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511 buffer += len;
514 return used;
517 static const struct inode_operations sockfs_inode_ops = {
518 .getxattr = sockfs_getxattr,
519 .listxattr = sockfs_listxattr,
523 * sock_alloc - allocate a socket
525 * Allocate a new inode and socket object. The two are bound together
526 * and initialised. The socket is then returned. If we are out of inodes
527 * NULL is returned.
530 static struct socket *sock_alloc(void)
532 struct inode *inode;
533 struct socket *sock;
535 inode = new_inode_pseudo(sock_mnt->mnt_sb);
536 if (!inode)
537 return NULL;
539 sock = SOCKET_I(inode);
541 kmemcheck_annotate_bitfield(sock, type);
542 inode->i_ino = get_next_ino();
543 inode->i_mode = S_IFSOCK | S_IRWXUGO;
544 inode->i_uid = current_fsuid();
545 inode->i_gid = current_fsgid();
546 inode->i_op = &sockfs_inode_ops;
548 this_cpu_add(sockets_in_use, 1);
549 return sock;
553 * In theory you can't get an open on this inode, but /proc provides
554 * a back door. Remember to keep it shut otherwise you'll let the
555 * creepy crawlies in.
558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
560 return -ENXIO;
563 const struct file_operations bad_sock_fops = {
564 .owner = THIS_MODULE,
565 .open = sock_no_open,
566 .llseek = noop_llseek,
570 * sock_release - close a socket
571 * @sock: socket to close
573 * The socket is released from the protocol stack if it has a release
574 * callback, and the inode is then released if the socket is bound to
575 * an inode not a file.
578 void sock_release(struct socket *sock)
580 if (sock->ops) {
581 struct module *owner = sock->ops->owner;
583 sock->ops->release(sock);
584 sock->ops = NULL;
585 module_put(owner);
588 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
589 printk(KERN_ERR "sock_release: fasync list not empty!\n");
591 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
592 return;
594 this_cpu_sub(sockets_in_use, 1);
595 if (!sock->file) {
596 iput(SOCK_INODE(sock));
597 return;
599 sock->file = NULL;
601 EXPORT_SYMBOL(sock_release);
603 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
605 *tx_flags = 0;
606 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
607 *tx_flags |= SKBTX_HW_TSTAMP;
608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
609 *tx_flags |= SKBTX_SW_TSTAMP;
610 if (sock_flag(sk, SOCK_WIFI_STATUS))
611 *tx_flags |= SKBTX_WIFI_STATUS;
613 EXPORT_SYMBOL(sock_tx_timestamp);
615 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
616 struct msghdr *msg, size_t size)
618 struct sock_iocb *si = kiocb_to_siocb(iocb);
620 si->sock = sock;
621 si->scm = NULL;
622 si->msg = msg;
623 si->size = size;
625 return sock->ops->sendmsg(iocb, sock, msg, size);
628 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
629 struct msghdr *msg, size_t size)
631 int err = security_socket_sendmsg(sock, msg, size);
633 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
636 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
638 struct kiocb iocb;
639 struct sock_iocb siocb;
640 int ret;
642 init_sync_kiocb(&iocb, NULL);
643 iocb.private = &siocb;
644 ret = __sock_sendmsg(&iocb, sock, msg, size);
645 if (-EIOCBQUEUED == ret)
646 ret = wait_on_sync_kiocb(&iocb);
647 return ret;
649 EXPORT_SYMBOL(sock_sendmsg);
651 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
653 struct kiocb iocb;
654 struct sock_iocb siocb;
655 int ret;
657 init_sync_kiocb(&iocb, NULL);
658 iocb.private = &siocb;
659 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
660 if (-EIOCBQUEUED == ret)
661 ret = wait_on_sync_kiocb(&iocb);
662 return ret;
665 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
666 struct kvec *vec, size_t num, size_t size)
668 mm_segment_t oldfs = get_fs();
669 int result;
671 set_fs(KERNEL_DS);
673 * the following is safe, since for compiler definitions of kvec and
674 * iovec are identical, yielding the same in-core layout and alignment
676 msg->msg_iov = (struct iovec *)vec;
677 msg->msg_iovlen = num;
678 result = sock_sendmsg(sock, msg, size);
679 set_fs(oldfs);
680 return result;
682 EXPORT_SYMBOL(kernel_sendmsg);
685 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
687 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
688 struct sk_buff *skb)
690 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
691 struct timespec ts[3];
692 int empty = 1;
693 struct skb_shared_hwtstamps *shhwtstamps =
694 skb_hwtstamps(skb);
696 /* Race occurred between timestamp enabling and packet
697 receiving. Fill in the current time for now. */
698 if (need_software_tstamp && skb->tstamp.tv64 == 0)
699 __net_timestamp(skb);
701 if (need_software_tstamp) {
702 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
703 struct timeval tv;
704 skb_get_timestamp(skb, &tv);
705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
706 sizeof(tv), &tv);
707 } else {
708 skb_get_timestampns(skb, &ts[0]);
709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
710 sizeof(ts[0]), &ts[0]);
715 memset(ts, 0, sizeof(ts));
716 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
717 ktime_to_timespec_cond(skb->tstamp, ts + 0))
718 empty = 0;
719 if (shhwtstamps) {
720 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
721 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
722 empty = 0;
723 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
724 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
725 empty = 0;
727 if (!empty)
728 put_cmsg(msg, SOL_SOCKET,
729 SCM_TIMESTAMPING, sizeof(ts), &ts);
731 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
733 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
734 struct sk_buff *skb)
736 int ack;
738 if (!sock_flag(sk, SOCK_WIFI_STATUS))
739 return;
740 if (!skb->wifi_acked_valid)
741 return;
743 ack = skb->wifi_acked;
745 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
747 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
749 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
750 struct sk_buff *skb)
752 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
753 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
754 sizeof(__u32), &skb->dropcount);
757 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
758 struct sk_buff *skb)
760 sock_recv_timestamp(msg, sk, skb);
761 sock_recv_drops(msg, sk, skb);
763 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
765 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
766 struct msghdr *msg, size_t size, int flags)
768 struct sock_iocb *si = kiocb_to_siocb(iocb);
770 si->sock = sock;
771 si->scm = NULL;
772 si->msg = msg;
773 si->size = size;
774 si->flags = flags;
776 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
779 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
780 struct msghdr *msg, size_t size, int flags)
782 int err = security_socket_recvmsg(sock, msg, size, flags);
784 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
787 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
788 size_t size, int flags)
790 struct kiocb iocb;
791 struct sock_iocb siocb;
792 int ret;
794 init_sync_kiocb(&iocb, NULL);
795 iocb.private = &siocb;
796 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
797 if (-EIOCBQUEUED == ret)
798 ret = wait_on_sync_kiocb(&iocb);
799 return ret;
801 EXPORT_SYMBOL(sock_recvmsg);
803 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
804 size_t size, int flags)
806 struct kiocb iocb;
807 struct sock_iocb siocb;
808 int ret;
810 init_sync_kiocb(&iocb, NULL);
811 iocb.private = &siocb;
812 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
813 if (-EIOCBQUEUED == ret)
814 ret = wait_on_sync_kiocb(&iocb);
815 return ret;
819 * kernel_recvmsg - Receive a message from a socket (kernel space)
820 * @sock: The socket to receive the message from
821 * @msg: Received message
822 * @vec: Input s/g array for message data
823 * @num: Size of input s/g array
824 * @size: Number of bytes to read
825 * @flags: Message flags (MSG_DONTWAIT, etc...)
827 * On return the msg structure contains the scatter/gather array passed in the
828 * vec argument. The array is modified so that it consists of the unfilled
829 * portion of the original array.
831 * The returned value is the total number of bytes received, or an error.
833 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
834 struct kvec *vec, size_t num, size_t size, int flags)
836 mm_segment_t oldfs = get_fs();
837 int result;
839 set_fs(KERNEL_DS);
841 * the following is safe, since for compiler definitions of kvec and
842 * iovec are identical, yielding the same in-core layout and alignment
844 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
845 result = sock_recvmsg(sock, msg, size, flags);
846 set_fs(oldfs);
847 return result;
849 EXPORT_SYMBOL(kernel_recvmsg);
851 static void sock_aio_dtor(struct kiocb *iocb)
853 kfree(iocb->private);
856 static ssize_t sock_sendpage(struct file *file, struct page *page,
857 int offset, size_t size, loff_t *ppos, int more)
859 struct socket *sock;
860 int flags;
862 sock = file->private_data;
864 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
865 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
866 flags |= more;
868 return kernel_sendpage(sock, page, offset, size, flags);
871 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
872 struct pipe_inode_info *pipe, size_t len,
873 unsigned int flags)
875 struct socket *sock = file->private_data;
877 if (unlikely(!sock->ops->splice_read))
878 return -EINVAL;
880 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
883 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
884 struct sock_iocb *siocb)
886 if (!is_sync_kiocb(iocb)) {
887 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
888 if (!siocb)
889 return NULL;
890 iocb->ki_dtor = sock_aio_dtor;
893 siocb->kiocb = iocb;
894 iocb->private = siocb;
895 return siocb;
898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899 struct file *file, const struct iovec *iov,
900 unsigned long nr_segs)
902 struct socket *sock = file->private_data;
903 size_t size = 0;
904 int i;
906 for (i = 0; i < nr_segs; i++)
907 size += iov[i].iov_len;
909 msg->msg_name = NULL;
910 msg->msg_namelen = 0;
911 msg->msg_control = NULL;
912 msg->msg_controllen = 0;
913 msg->msg_iov = (struct iovec *)iov;
914 msg->msg_iovlen = nr_segs;
915 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
917 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921 unsigned long nr_segs, loff_t pos)
923 struct sock_iocb siocb, *x;
925 if (pos != 0)
926 return -ESPIPE;
928 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
929 return 0;
932 x = alloc_sock_iocb(iocb, &siocb);
933 if (!x)
934 return -ENOMEM;
935 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939 struct file *file, const struct iovec *iov,
940 unsigned long nr_segs)
942 struct socket *sock = file->private_data;
943 size_t size = 0;
944 int i;
946 for (i = 0; i < nr_segs; i++)
947 size += iov[i].iov_len;
949 msg->msg_name = NULL;
950 msg->msg_namelen = 0;
951 msg->msg_control = NULL;
952 msg->msg_controllen = 0;
953 msg->msg_iov = (struct iovec *)iov;
954 msg->msg_iovlen = nr_segs;
955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 if (sock->type == SOCK_SEQPACKET)
957 msg->msg_flags |= MSG_EOR;
959 return __sock_sendmsg(iocb, sock, msg, size);
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 unsigned long nr_segs, loff_t pos)
965 struct sock_iocb siocb, *x;
967 if (pos != 0)
968 return -ESPIPE;
970 x = alloc_sock_iocb(iocb, &siocb);
971 if (!x)
972 return -ENOMEM;
974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
987 mutex_lock(&br_ioctl_mutex);
988 br_ioctl_hook = hook;
989 mutex_unlock(&br_ioctl_mutex);
991 EXPORT_SYMBOL(brioctl_set);
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
998 mutex_lock(&vlan_ioctl_mutex);
999 vlan_ioctl_hook = hook;
1000 mutex_unlock(&vlan_ioctl_mutex);
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1009 mutex_lock(&dlci_ioctl_mutex);
1010 dlci_ioctl_hook = hook;
1011 mutex_unlock(&dlci_ioctl_mutex);
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 unsigned int cmd, unsigned long arg)
1018 int err;
1019 void __user *argp = (void __user *)arg;
1021 err = sock->ops->ioctl(sock, cmd, arg);
1024 * If this ioctl is unknown try to hand it down
1025 * to the NIC driver.
1027 if (err == -ENOIOCTLCMD)
1028 err = dev_ioctl(net, cmd, argp);
1030 return err;
1034 * With an ioctl, arg may well be a user mode pointer, but we don't know
1035 * what to do with it - that's up to the protocol still.
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1040 struct socket *sock;
1041 struct sock *sk;
1042 void __user *argp = (void __user *)arg;
1043 int pid, err;
1044 struct net *net;
1046 sock = file->private_data;
1047 sk = sock->sk;
1048 net = sock_net(sk);
1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 err = dev_ioctl(net, cmd, argp);
1051 } else
1052 #ifdef CONFIG_WEXT_CORE
1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 err = dev_ioctl(net, cmd, argp);
1055 } else
1056 #endif
1057 switch (cmd) {
1058 case FIOSETOWN:
1059 case SIOCSPGRP:
1060 err = -EFAULT;
1061 if (get_user(pid, (int __user *)argp))
1062 break;
1063 err = f_setown(sock->file, pid, 1);
1064 break;
1065 case FIOGETOWN:
1066 case SIOCGPGRP:
1067 err = put_user(f_getown(sock->file),
1068 (int __user *)argp);
1069 break;
1070 case SIOCGIFBR:
1071 case SIOCSIFBR:
1072 case SIOCBRADDBR:
1073 case SIOCBRDELBR:
1074 err = -ENOPKG;
1075 if (!br_ioctl_hook)
1076 request_module("bridge");
1078 mutex_lock(&br_ioctl_mutex);
1079 if (br_ioctl_hook)
1080 err = br_ioctl_hook(net, cmd, argp);
1081 mutex_unlock(&br_ioctl_mutex);
1082 break;
1083 case SIOCGIFVLAN:
1084 case SIOCSIFVLAN:
1085 err = -ENOPKG;
1086 if (!vlan_ioctl_hook)
1087 request_module("8021q");
1089 mutex_lock(&vlan_ioctl_mutex);
1090 if (vlan_ioctl_hook)
1091 err = vlan_ioctl_hook(net, argp);
1092 mutex_unlock(&vlan_ioctl_mutex);
1093 break;
1094 case SIOCADDDLCI:
1095 case SIOCDELDLCI:
1096 err = -ENOPKG;
1097 if (!dlci_ioctl_hook)
1098 request_module("dlci");
1100 mutex_lock(&dlci_ioctl_mutex);
1101 if (dlci_ioctl_hook)
1102 err = dlci_ioctl_hook(cmd, argp);
1103 mutex_unlock(&dlci_ioctl_mutex);
1104 break;
1105 default:
1106 err = sock_do_ioctl(net, sock, cmd, arg);
1107 break;
1109 return err;
1112 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1114 int err;
1115 struct socket *sock = NULL;
1117 err = security_socket_create(family, type, protocol, 1);
1118 if (err)
1119 goto out;
1121 sock = sock_alloc();
1122 if (!sock) {
1123 err = -ENOMEM;
1124 goto out;
1127 sock->type = type;
1128 err = security_socket_post_create(sock, family, type, protocol, 1);
1129 if (err)
1130 goto out_release;
1132 out:
1133 *res = sock;
1134 return err;
1135 out_release:
1136 sock_release(sock);
1137 sock = NULL;
1138 goto out;
1140 EXPORT_SYMBOL(sock_create_lite);
1142 /* No kernel lock held - perfect */
1143 static unsigned int sock_poll(struct file *file, poll_table *wait)
1145 struct socket *sock;
1148 * We can't return errors to poll, so it's either yes or no.
1150 sock = file->private_data;
1151 return sock->ops->poll(file, sock, wait);
1154 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1156 struct socket *sock = file->private_data;
1158 return sock->ops->mmap(file, sock, vma);
1161 static int sock_close(struct inode *inode, struct file *filp)
1163 sock_release(SOCKET_I(inode));
1164 return 0;
1168 * Update the socket async list
1170 * Fasync_list locking strategy.
1172 * 1. fasync_list is modified only under process context socket lock
1173 * i.e. under semaphore.
1174 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1175 * or under socket lock
1178 static int sock_fasync(int fd, struct file *filp, int on)
1180 struct socket *sock = filp->private_data;
1181 struct sock *sk = sock->sk;
1182 struct socket_wq *wq;
1184 if (sk == NULL)
1185 return -EINVAL;
1187 lock_sock(sk);
1188 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1189 fasync_helper(fd, filp, on, &wq->fasync_list);
1191 if (!wq->fasync_list)
1192 sock_reset_flag(sk, SOCK_FASYNC);
1193 else
1194 sock_set_flag(sk, SOCK_FASYNC);
1196 release_sock(sk);
1197 return 0;
1200 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1202 int sock_wake_async(struct socket *sock, int how, int band)
1204 struct socket_wq *wq;
1206 if (!sock)
1207 return -1;
1208 rcu_read_lock();
1209 wq = rcu_dereference(sock->wq);
1210 if (!wq || !wq->fasync_list) {
1211 rcu_read_unlock();
1212 return -1;
1214 switch (how) {
1215 case SOCK_WAKE_WAITD:
1216 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1217 break;
1218 goto call_kill;
1219 case SOCK_WAKE_SPACE:
1220 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1221 break;
1222 /* fall through */
1223 case SOCK_WAKE_IO:
1224 call_kill:
1225 kill_fasync(&wq->fasync_list, SIGIO, band);
1226 break;
1227 case SOCK_WAKE_URG:
1228 kill_fasync(&wq->fasync_list, SIGURG, band);
1230 rcu_read_unlock();
1231 return 0;
1233 EXPORT_SYMBOL(sock_wake_async);
1235 int __sock_create(struct net *net, int family, int type, int protocol,
1236 struct socket **res, int kern)
1238 int err;
1239 struct socket *sock;
1240 const struct net_proto_family *pf;
1243 * Check protocol is in range
1245 if (family < 0 || family >= NPROTO)
1246 return -EAFNOSUPPORT;
1247 if (type < 0 || type >= SOCK_MAX)
1248 return -EINVAL;
1250 /* Compatibility.
1252 This uglymoron is moved from INET layer to here to avoid
1253 deadlock in module load.
1255 if (family == PF_INET && type == SOCK_PACKET) {
1256 static int warned;
1257 if (!warned) {
1258 warned = 1;
1259 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1260 current->comm);
1262 family = PF_PACKET;
1265 err = security_socket_create(family, type, protocol, kern);
1266 if (err)
1267 return err;
1270 * Allocate the socket and allow the family to set things up. if
1271 * the protocol is 0, the family is instructed to select an appropriate
1272 * default.
1274 sock = sock_alloc();
1275 if (!sock) {
1276 net_warn_ratelimited("socket: no more sockets\n");
1277 return -ENFILE; /* Not exactly a match, but its the
1278 closest posix thing */
1281 sock->type = type;
1283 #ifdef CONFIG_MODULES
1284 /* Attempt to load a protocol module if the find failed.
1286 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1287 * requested real, full-featured networking support upon configuration.
1288 * Otherwise module support will break!
1290 if (rcu_access_pointer(net_families[family]) == NULL)
1291 request_module("net-pf-%d", family);
1292 #endif
1294 rcu_read_lock();
1295 pf = rcu_dereference(net_families[family]);
1296 err = -EAFNOSUPPORT;
1297 if (!pf)
1298 goto out_release;
1301 * We will call the ->create function, that possibly is in a loadable
1302 * module, so we have to bump that loadable module refcnt first.
1304 if (!try_module_get(pf->owner))
1305 goto out_release;
1307 /* Now protected by module ref count */
1308 rcu_read_unlock();
1310 err = pf->create(net, sock, protocol, kern);
1311 if (err < 0)
1312 goto out_module_put;
1315 * Now to bump the refcnt of the [loadable] module that owns this
1316 * socket at sock_release time we decrement its refcnt.
1318 if (!try_module_get(sock->ops->owner))
1319 goto out_module_busy;
1322 * Now that we're done with the ->create function, the [loadable]
1323 * module can have its refcnt decremented
1325 module_put(pf->owner);
1326 err = security_socket_post_create(sock, family, type, protocol, kern);
1327 if (err)
1328 goto out_sock_release;
1329 *res = sock;
1331 return 0;
1333 out_module_busy:
1334 err = -EAFNOSUPPORT;
1335 out_module_put:
1336 sock->ops = NULL;
1337 module_put(pf->owner);
1338 out_sock_release:
1339 sock_release(sock);
1340 return err;
1342 out_release:
1343 rcu_read_unlock();
1344 goto out_sock_release;
1346 EXPORT_SYMBOL(__sock_create);
1348 int sock_create(int family, int type, int protocol, struct socket **res)
1350 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1352 EXPORT_SYMBOL(sock_create);
1354 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1356 return __sock_create(&init_net, family, type, protocol, res, 1);
1358 EXPORT_SYMBOL(sock_create_kern);
1360 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1362 int retval;
1363 struct socket *sock;
1364 int flags;
1366 /* Check the SOCK_* constants for consistency. */
1367 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1368 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1369 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1370 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1372 flags = type & ~SOCK_TYPE_MASK;
1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 return -EINVAL;
1375 type &= SOCK_TYPE_MASK;
1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380 retval = sock_create(family, type, protocol, &sock);
1381 if (retval < 0)
1382 goto out;
1384 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1385 if (retval < 0)
1386 goto out_release;
1388 out:
1389 /* It may be already another descriptor 8) Not kernel problem. */
1390 return retval;
1392 out_release:
1393 sock_release(sock);
1394 return retval;
1398 * Create a pair of connected sockets.
1401 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1402 int __user *, usockvec)
1404 struct socket *sock1, *sock2;
1405 int fd1, fd2, err;
1406 struct file *newfile1, *newfile2;
1407 int flags;
1409 flags = type & ~SOCK_TYPE_MASK;
1410 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1411 return -EINVAL;
1412 type &= SOCK_TYPE_MASK;
1414 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1415 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1418 * Obtain the first socket and check if the underlying protocol
1419 * supports the socketpair call.
1422 err = sock_create(family, type, protocol, &sock1);
1423 if (err < 0)
1424 goto out;
1426 err = sock_create(family, type, protocol, &sock2);
1427 if (err < 0)
1428 goto out_release_1;
1430 err = sock1->ops->socketpair(sock1, sock2);
1431 if (err < 0)
1432 goto out_release_both;
1434 fd1 = get_unused_fd_flags(flags);
1435 if (unlikely(fd1 < 0)) {
1436 err = fd1;
1437 goto out_release_both;
1439 fd2 = get_unused_fd_flags(flags);
1440 if (unlikely(fd2 < 0)) {
1441 err = fd2;
1442 put_unused_fd(fd1);
1443 goto out_release_both;
1446 newfile1 = sock_alloc_file(sock1, flags, NULL);
1447 if (unlikely(IS_ERR(newfile1))) {
1448 err = PTR_ERR(newfile1);
1449 put_unused_fd(fd1);
1450 put_unused_fd(fd2);
1451 goto out_release_both;
1454 newfile2 = sock_alloc_file(sock2, flags, NULL);
1455 if (IS_ERR(newfile2)) {
1456 err = PTR_ERR(newfile2);
1457 fput(newfile1);
1458 put_unused_fd(fd1);
1459 put_unused_fd(fd2);
1460 sock_release(sock2);
1461 goto out;
1464 audit_fd_pair(fd1, fd2);
1465 fd_install(fd1, newfile1);
1466 fd_install(fd2, newfile2);
1467 /* fd1 and fd2 may be already another descriptors.
1468 * Not kernel problem.
1471 err = put_user(fd1, &usockvec[0]);
1472 if (!err)
1473 err = put_user(fd2, &usockvec[1]);
1474 if (!err)
1475 return 0;
1477 sys_close(fd2);
1478 sys_close(fd1);
1479 return err;
1481 out_release_both:
1482 sock_release(sock2);
1483 out_release_1:
1484 sock_release(sock1);
1485 out:
1486 return err;
1490 * Bind a name to a socket. Nothing much to do here since it's
1491 * the protocol's responsibility to handle the local address.
1493 * We move the socket address to kernel space before we call
1494 * the protocol layer (having also checked the address is ok).
1497 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1499 struct socket *sock;
1500 struct sockaddr_storage address;
1501 int err, fput_needed;
1503 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1504 if (sock) {
1505 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1506 if (err >= 0) {
1507 err = security_socket_bind(sock,
1508 (struct sockaddr *)&address,
1509 addrlen);
1510 if (!err)
1511 err = sock->ops->bind(sock,
1512 (struct sockaddr *)
1513 &address, addrlen);
1515 fput_light(sock->file, fput_needed);
1517 return err;
1521 * Perform a listen. Basically, we allow the protocol to do anything
1522 * necessary for a listen, and if that works, we mark the socket as
1523 * ready for listening.
1526 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1528 struct socket *sock;
1529 int err, fput_needed;
1530 int somaxconn;
1532 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533 if (sock) {
1534 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1535 if ((unsigned int)backlog > somaxconn)
1536 backlog = somaxconn;
1538 err = security_socket_listen(sock, backlog);
1539 if (!err)
1540 err = sock->ops->listen(sock, backlog);
1542 fput_light(sock->file, fput_needed);
1544 return err;
1548 * For accept, we attempt to create a new socket, set up the link
1549 * with the client, wake up the client, then return the new
1550 * connected fd. We collect the address of the connector in kernel
1551 * space and move it to user at the very end. This is unclean because
1552 * we open the socket then return an error.
1554 * 1003.1g adds the ability to recvmsg() to query connection pending
1555 * status to recvmsg. We need to add that support in a way thats
1556 * clean when we restucture accept also.
1559 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1560 int __user *, upeer_addrlen, int, flags)
1562 struct socket *sock, *newsock;
1563 struct file *newfile;
1564 int err, len, newfd, fput_needed;
1565 struct sockaddr_storage address;
1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1568 return -EINVAL;
1570 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1571 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1573 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1574 if (!sock)
1575 goto out;
1577 err = -ENFILE;
1578 newsock = sock_alloc();
1579 if (!newsock)
1580 goto out_put;
1582 newsock->type = sock->type;
1583 newsock->ops = sock->ops;
1586 * We don't need try_module_get here, as the listening socket (sock)
1587 * has the protocol module (sock->ops->owner) held.
1589 __module_get(newsock->ops->owner);
1591 newfd = get_unused_fd_flags(flags);
1592 if (unlikely(newfd < 0)) {
1593 err = newfd;
1594 sock_release(newsock);
1595 goto out_put;
1597 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1598 if (unlikely(IS_ERR(newfile))) {
1599 err = PTR_ERR(newfile);
1600 put_unused_fd(newfd);
1601 sock_release(newsock);
1602 goto out_put;
1605 err = security_socket_accept(sock, newsock);
1606 if (err)
1607 goto out_fd;
1609 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1610 if (err < 0)
1611 goto out_fd;
1613 if (upeer_sockaddr) {
1614 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1615 &len, 2) < 0) {
1616 err = -ECONNABORTED;
1617 goto out_fd;
1619 err = move_addr_to_user(&address,
1620 len, upeer_sockaddr, upeer_addrlen);
1621 if (err < 0)
1622 goto out_fd;
1625 /* File flags are not inherited via accept() unlike another OSes. */
1627 fd_install(newfd, newfile);
1628 err = newfd;
1630 out_put:
1631 fput_light(sock->file, fput_needed);
1632 out:
1633 return err;
1634 out_fd:
1635 fput(newfile);
1636 put_unused_fd(newfd);
1637 goto out_put;
1640 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1641 int __user *, upeer_addrlen)
1643 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1647 * Attempt to connect to a socket with the server address. The address
1648 * is in user space so we verify it is OK and move it to kernel space.
1650 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1651 * break bindings
1653 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1654 * other SEQPACKET protocols that take time to connect() as it doesn't
1655 * include the -EINPROGRESS status for such sockets.
1658 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1659 int, addrlen)
1661 struct socket *sock;
1662 struct sockaddr_storage address;
1663 int err, fput_needed;
1665 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1666 if (!sock)
1667 goto out;
1668 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1669 if (err < 0)
1670 goto out_put;
1672 err =
1673 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1674 if (err)
1675 goto out_put;
1677 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1678 sock->file->f_flags);
1679 out_put:
1680 fput_light(sock->file, fput_needed);
1681 out:
1682 return err;
1686 * Get the local address ('name') of a socket object. Move the obtained
1687 * name to user space.
1690 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1691 int __user *, usockaddr_len)
1693 struct socket *sock;
1694 struct sockaddr_storage address;
1695 int len, err, fput_needed;
1697 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698 if (!sock)
1699 goto out;
1701 err = security_socket_getsockname(sock);
1702 if (err)
1703 goto out_put;
1705 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1706 if (err)
1707 goto out_put;
1708 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1710 out_put:
1711 fput_light(sock->file, fput_needed);
1712 out:
1713 return err;
1717 * Get the remote address ('name') of a socket object. Move the obtained
1718 * name to user space.
1721 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1722 int __user *, usockaddr_len)
1724 struct socket *sock;
1725 struct sockaddr_storage address;
1726 int len, err, fput_needed;
1728 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 if (sock != NULL) {
1730 err = security_socket_getpeername(sock);
1731 if (err) {
1732 fput_light(sock->file, fput_needed);
1733 return err;
1736 err =
1737 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1739 if (!err)
1740 err = move_addr_to_user(&address, len, usockaddr,
1741 usockaddr_len);
1742 fput_light(sock->file, fput_needed);
1744 return err;
1748 * Send a datagram to a given address. We move the address into kernel
1749 * space and check the user space data area is readable before invoking
1750 * the protocol.
1753 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1754 unsigned int, flags, struct sockaddr __user *, addr,
1755 int, addr_len)
1757 struct socket *sock;
1758 struct sockaddr_storage address;
1759 int err;
1760 struct msghdr msg;
1761 struct iovec iov;
1762 int fput_needed;
1764 if (len > INT_MAX)
1765 len = INT_MAX;
1766 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 if (!sock)
1768 goto out;
1770 iov.iov_base = buff;
1771 iov.iov_len = len;
1772 msg.msg_name = NULL;
1773 msg.msg_iov = &iov;
1774 msg.msg_iovlen = 1;
1775 msg.msg_control = NULL;
1776 msg.msg_controllen = 0;
1777 msg.msg_namelen = 0;
1778 if (addr) {
1779 err = move_addr_to_kernel(addr, addr_len, &address);
1780 if (err < 0)
1781 goto out_put;
1782 msg.msg_name = (struct sockaddr *)&address;
1783 msg.msg_namelen = addr_len;
1785 if (sock->file->f_flags & O_NONBLOCK)
1786 flags |= MSG_DONTWAIT;
1787 msg.msg_flags = flags;
1788 err = sock_sendmsg(sock, &msg, len);
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1792 out:
1793 return err;
1797 * Send a datagram down a socket.
1800 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1801 unsigned int, flags)
1803 return sys_sendto(fd, buff, len, flags, NULL, 0);
1807 * Receive a frame from the socket and optionally record the address of the
1808 * sender. We verify the buffers are writable and if needed move the
1809 * sender address from kernel to user space.
1812 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1813 unsigned int, flags, struct sockaddr __user *, addr,
1814 int __user *, addr_len)
1816 struct socket *sock;
1817 struct iovec iov;
1818 struct msghdr msg;
1819 struct sockaddr_storage address;
1820 int err, err2;
1821 int fput_needed;
1823 if (size > INT_MAX)
1824 size = INT_MAX;
1825 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1826 if (!sock)
1827 goto out;
1829 msg.msg_control = NULL;
1830 msg.msg_controllen = 0;
1831 msg.msg_iovlen = 1;
1832 msg.msg_iov = &iov;
1833 iov.iov_len = size;
1834 iov.iov_base = ubuf;
1835 msg.msg_name = (struct sockaddr *)&address;
1836 msg.msg_namelen = sizeof(address);
1837 if (sock->file->f_flags & O_NONBLOCK)
1838 flags |= MSG_DONTWAIT;
1839 err = sock_recvmsg(sock, &msg, size, flags);
1841 if (err >= 0 && addr != NULL) {
1842 err2 = move_addr_to_user(&address,
1843 msg.msg_namelen, addr, addr_len);
1844 if (err2 < 0)
1845 err = err2;
1848 fput_light(sock->file, fput_needed);
1849 out:
1850 return err;
1854 * Receive a datagram from a socket.
1857 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1858 unsigned int flags)
1860 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1864 * Set a socket option. Because we don't know the option lengths we have
1865 * to pass the user mode parameter for the protocols to sort out.
1868 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1869 char __user *, optval, int, optlen)
1871 int err, fput_needed;
1872 struct socket *sock;
1874 if (optlen < 0)
1875 return -EINVAL;
1877 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 if (sock != NULL) {
1879 err = security_socket_setsockopt(sock, level, optname);
1880 if (err)
1881 goto out_put;
1883 if (level == SOL_SOCKET)
1884 err =
1885 sock_setsockopt(sock, level, optname, optval,
1886 optlen);
1887 else
1888 err =
1889 sock->ops->setsockopt(sock, level, optname, optval,
1890 optlen);
1891 out_put:
1892 fput_light(sock->file, fput_needed);
1894 return err;
1898 * Get a socket option. Because we don't know the option lengths we have
1899 * to pass a user mode parameter for the protocols to sort out.
1902 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1903 char __user *, optval, int __user *, optlen)
1905 int err, fput_needed;
1906 struct socket *sock;
1908 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1909 if (sock != NULL) {
1910 err = security_socket_getsockopt(sock, level, optname);
1911 if (err)
1912 goto out_put;
1914 if (level == SOL_SOCKET)
1915 err =
1916 sock_getsockopt(sock, level, optname, optval,
1917 optlen);
1918 else
1919 err =
1920 sock->ops->getsockopt(sock, level, optname, optval,
1921 optlen);
1922 out_put:
1923 fput_light(sock->file, fput_needed);
1925 return err;
1929 * Shutdown a socket.
1932 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1934 int err, fput_needed;
1935 struct socket *sock;
1937 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 if (sock != NULL) {
1939 err = security_socket_shutdown(sock, how);
1940 if (!err)
1941 err = sock->ops->shutdown(sock, how);
1942 fput_light(sock->file, fput_needed);
1944 return err;
1947 /* A couple of helpful macros for getting the address of the 32/64 bit
1948 * fields which are the same type (int / unsigned) on our platforms.
1950 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1951 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1952 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1954 struct used_address {
1955 struct sockaddr_storage name;
1956 unsigned int name_len;
1959 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1960 struct msghdr *msg_sys, unsigned int flags,
1961 struct used_address *used_address)
1963 struct compat_msghdr __user *msg_compat =
1964 (struct compat_msghdr __user *)msg;
1965 struct sockaddr_storage address;
1966 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1967 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1968 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1969 /* 20 is size of ipv6_pktinfo */
1970 unsigned char *ctl_buf = ctl;
1971 int err, ctl_len, total_len;
1973 err = -EFAULT;
1974 if (MSG_CMSG_COMPAT & flags) {
1975 if (get_compat_msghdr(msg_sys, msg_compat))
1976 return -EFAULT;
1977 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1978 return -EFAULT;
1980 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1981 err = -EMSGSIZE;
1982 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1983 goto out;
1984 err = -ENOMEM;
1985 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1986 GFP_KERNEL);
1987 if (!iov)
1988 goto out;
1991 /* This will also move the address data into kernel space */
1992 if (MSG_CMSG_COMPAT & flags) {
1993 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1994 } else
1995 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1996 if (err < 0)
1997 goto out_freeiov;
1998 total_len = err;
2000 err = -ENOBUFS;
2002 if (msg_sys->msg_controllen > INT_MAX)
2003 goto out_freeiov;
2004 ctl_len = msg_sys->msg_controllen;
2005 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2006 err =
2007 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2008 sizeof(ctl));
2009 if (err)
2010 goto out_freeiov;
2011 ctl_buf = msg_sys->msg_control;
2012 ctl_len = msg_sys->msg_controllen;
2013 } else if (ctl_len) {
2014 if (ctl_len > sizeof(ctl)) {
2015 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2016 if (ctl_buf == NULL)
2017 goto out_freeiov;
2019 err = -EFAULT;
2021 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2022 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2023 * checking falls down on this.
2025 if (copy_from_user(ctl_buf,
2026 (void __user __force *)msg_sys->msg_control,
2027 ctl_len))
2028 goto out_freectl;
2029 msg_sys->msg_control = ctl_buf;
2031 msg_sys->msg_flags = flags;
2033 if (sock->file->f_flags & O_NONBLOCK)
2034 msg_sys->msg_flags |= MSG_DONTWAIT;
2036 * If this is sendmmsg() and current destination address is same as
2037 * previously succeeded address, omit asking LSM's decision.
2038 * used_address->name_len is initialized to UINT_MAX so that the first
2039 * destination address never matches.
2041 if (used_address && msg_sys->msg_name &&
2042 used_address->name_len == msg_sys->msg_namelen &&
2043 !memcmp(&used_address->name, msg_sys->msg_name,
2044 used_address->name_len)) {
2045 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2046 goto out_freectl;
2048 err = sock_sendmsg(sock, msg_sys, total_len);
2050 * If this is sendmmsg() and sending to current destination address was
2051 * successful, remember it.
2053 if (used_address && err >= 0) {
2054 used_address->name_len = msg_sys->msg_namelen;
2055 if (msg_sys->msg_name)
2056 memcpy(&used_address->name, msg_sys->msg_name,
2057 used_address->name_len);
2060 out_freectl:
2061 if (ctl_buf != ctl)
2062 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2063 out_freeiov:
2064 if (iov != iovstack)
2065 kfree(iov);
2066 out:
2067 return err;
2071 * BSD sendmsg interface
2074 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2076 int fput_needed, err;
2077 struct msghdr msg_sys;
2078 struct socket *sock;
2080 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2081 if (!sock)
2082 goto out;
2084 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2086 fput_light(sock->file, fput_needed);
2087 out:
2088 return err;
2091 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2093 if (flags & MSG_CMSG_COMPAT)
2094 return -EINVAL;
2095 return __sys_sendmsg(fd, msg, flags);
2099 * Linux sendmmsg interface
2102 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2103 unsigned int flags)
2105 int fput_needed, err, datagrams;
2106 struct socket *sock;
2107 struct mmsghdr __user *entry;
2108 struct compat_mmsghdr __user *compat_entry;
2109 struct msghdr msg_sys;
2110 struct used_address used_address;
2112 if (vlen > UIO_MAXIOV)
2113 vlen = UIO_MAXIOV;
2115 datagrams = 0;
2117 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2118 if (!sock)
2119 return err;
2121 used_address.name_len = UINT_MAX;
2122 entry = mmsg;
2123 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2124 err = 0;
2126 while (datagrams < vlen) {
2127 if (MSG_CMSG_COMPAT & flags) {
2128 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2129 &msg_sys, flags, &used_address);
2130 if (err < 0)
2131 break;
2132 err = __put_user(err, &compat_entry->msg_len);
2133 ++compat_entry;
2134 } else {
2135 err = ___sys_sendmsg(sock,
2136 (struct msghdr __user *)entry,
2137 &msg_sys, flags, &used_address);
2138 if (err < 0)
2139 break;
2140 err = put_user(err, &entry->msg_len);
2141 ++entry;
2144 if (err)
2145 break;
2146 ++datagrams;
2149 fput_light(sock->file, fput_needed);
2151 /* We only return an error if no datagrams were able to be sent */
2152 if (datagrams != 0)
2153 return datagrams;
2155 return err;
2158 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2159 unsigned int, vlen, unsigned int, flags)
2161 if (flags & MSG_CMSG_COMPAT)
2162 return -EINVAL;
2163 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2166 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2167 struct msghdr *msg_sys, unsigned int flags, int nosec)
2169 struct compat_msghdr __user *msg_compat =
2170 (struct compat_msghdr __user *)msg;
2171 struct iovec iovstack[UIO_FASTIOV];
2172 struct iovec *iov = iovstack;
2173 unsigned long cmsg_ptr;
2174 int err, total_len, len;
2176 /* kernel mode address */
2177 struct sockaddr_storage addr;
2179 /* user mode address pointers */
2180 struct sockaddr __user *uaddr;
2181 int __user *uaddr_len;
2183 if (MSG_CMSG_COMPAT & flags) {
2184 if (get_compat_msghdr(msg_sys, msg_compat))
2185 return -EFAULT;
2186 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2187 return -EFAULT;
2189 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2190 err = -EMSGSIZE;
2191 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2192 goto out;
2193 err = -ENOMEM;
2194 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2195 GFP_KERNEL);
2196 if (!iov)
2197 goto out;
2201 * Save the user-mode address (verify_iovec will change the
2202 * kernel msghdr to use the kernel address space)
2205 uaddr = (__force void __user *)msg_sys->msg_name;
2206 uaddr_len = COMPAT_NAMELEN(msg);
2207 if (MSG_CMSG_COMPAT & flags) {
2208 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2209 } else
2210 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2211 if (err < 0)
2212 goto out_freeiov;
2213 total_len = err;
2215 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2216 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2218 if (sock->file->f_flags & O_NONBLOCK)
2219 flags |= MSG_DONTWAIT;
2220 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2221 total_len, flags);
2222 if (err < 0)
2223 goto out_freeiov;
2224 len = err;
2226 if (uaddr != NULL) {
2227 err = move_addr_to_user(&addr,
2228 msg_sys->msg_namelen, uaddr,
2229 uaddr_len);
2230 if (err < 0)
2231 goto out_freeiov;
2233 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2234 COMPAT_FLAGS(msg));
2235 if (err)
2236 goto out_freeiov;
2237 if (MSG_CMSG_COMPAT & flags)
2238 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2239 &msg_compat->msg_controllen);
2240 else
2241 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2242 &msg->msg_controllen);
2243 if (err)
2244 goto out_freeiov;
2245 err = len;
2247 out_freeiov:
2248 if (iov != iovstack)
2249 kfree(iov);
2250 out:
2251 return err;
2255 * BSD recvmsg interface
2258 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2260 int fput_needed, err;
2261 struct msghdr msg_sys;
2262 struct socket *sock;
2264 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2265 if (!sock)
2266 goto out;
2268 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2270 fput_light(sock->file, fput_needed);
2271 out:
2272 return err;
2275 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2276 unsigned int, flags)
2278 if (flags & MSG_CMSG_COMPAT)
2279 return -EINVAL;
2280 return __sys_recvmsg(fd, msg, flags);
2284 * Linux recvmmsg interface
2287 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2288 unsigned int flags, struct timespec *timeout)
2290 int fput_needed, err, datagrams;
2291 struct socket *sock;
2292 struct mmsghdr __user *entry;
2293 struct compat_mmsghdr __user *compat_entry;
2294 struct msghdr msg_sys;
2295 struct timespec end_time;
2297 if (timeout &&
2298 poll_select_set_timeout(&end_time, timeout->tv_sec,
2299 timeout->tv_nsec))
2300 return -EINVAL;
2302 datagrams = 0;
2304 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2305 if (!sock)
2306 return err;
2308 err = sock_error(sock->sk);
2309 if (err)
2310 goto out_put;
2312 entry = mmsg;
2313 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2315 while (datagrams < vlen) {
2317 * No need to ask LSM for more than the first datagram.
2319 if (MSG_CMSG_COMPAT & flags) {
2320 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2321 &msg_sys, flags & ~MSG_WAITFORONE,
2322 datagrams);
2323 if (err < 0)
2324 break;
2325 err = __put_user(err, &compat_entry->msg_len);
2326 ++compat_entry;
2327 } else {
2328 err = ___sys_recvmsg(sock,
2329 (struct msghdr __user *)entry,
2330 &msg_sys, flags & ~MSG_WAITFORONE,
2331 datagrams);
2332 if (err < 0)
2333 break;
2334 err = put_user(err, &entry->msg_len);
2335 ++entry;
2338 if (err)
2339 break;
2340 ++datagrams;
2342 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2343 if (flags & MSG_WAITFORONE)
2344 flags |= MSG_DONTWAIT;
2346 if (timeout) {
2347 ktime_get_ts(timeout);
2348 *timeout = timespec_sub(end_time, *timeout);
2349 if (timeout->tv_sec < 0) {
2350 timeout->tv_sec = timeout->tv_nsec = 0;
2351 break;
2354 /* Timeout, return less than vlen datagrams */
2355 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2356 break;
2359 /* Out of band data, return right away */
2360 if (msg_sys.msg_flags & MSG_OOB)
2361 break;
2364 out_put:
2365 fput_light(sock->file, fput_needed);
2367 if (err == 0)
2368 return datagrams;
2370 if (datagrams != 0) {
2372 * We may return less entries than requested (vlen) if the
2373 * sock is non block and there aren't enough datagrams...
2375 if (err != -EAGAIN) {
2377 * ... or if recvmsg returns an error after we
2378 * received some datagrams, where we record the
2379 * error to return on the next call or if the
2380 * app asks about it using getsockopt(SO_ERROR).
2382 sock->sk->sk_err = -err;
2385 return datagrams;
2388 return err;
2391 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2392 unsigned int, vlen, unsigned int, flags,
2393 struct timespec __user *, timeout)
2395 int datagrams;
2396 struct timespec timeout_sys;
2398 if (flags & MSG_CMSG_COMPAT)
2399 return -EINVAL;
2401 if (!timeout)
2402 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2404 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2405 return -EFAULT;
2407 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2409 if (datagrams > 0 &&
2410 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2411 datagrams = -EFAULT;
2413 return datagrams;
2416 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2417 /* Argument list sizes for sys_socketcall */
2418 #define AL(x) ((x) * sizeof(unsigned long))
2419 static const unsigned char nargs[21] = {
2420 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2421 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2422 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2423 AL(4), AL(5), AL(4)
2426 #undef AL
2429 * System call vectors.
2431 * Argument checking cleaned up. Saved 20% in size.
2432 * This function doesn't need to set the kernel lock because
2433 * it is set by the callees.
2436 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2438 unsigned long a[AUDITSC_ARGS];
2439 unsigned long a0, a1;
2440 int err;
2441 unsigned int len;
2443 if (call < 1 || call > SYS_SENDMMSG)
2444 return -EINVAL;
2446 len = nargs[call];
2447 if (len > sizeof(a))
2448 return -EINVAL;
2450 /* copy_from_user should be SMP safe. */
2451 if (copy_from_user(a, args, len))
2452 return -EFAULT;
2454 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2455 if (err)
2456 return err;
2458 a0 = a[0];
2459 a1 = a[1];
2461 switch (call) {
2462 case SYS_SOCKET:
2463 err = sys_socket(a0, a1, a[2]);
2464 break;
2465 case SYS_BIND:
2466 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2467 break;
2468 case SYS_CONNECT:
2469 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2470 break;
2471 case SYS_LISTEN:
2472 err = sys_listen(a0, a1);
2473 break;
2474 case SYS_ACCEPT:
2475 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2476 (int __user *)a[2], 0);
2477 break;
2478 case SYS_GETSOCKNAME:
2479 err =
2480 sys_getsockname(a0, (struct sockaddr __user *)a1,
2481 (int __user *)a[2]);
2482 break;
2483 case SYS_GETPEERNAME:
2484 err =
2485 sys_getpeername(a0, (struct sockaddr __user *)a1,
2486 (int __user *)a[2]);
2487 break;
2488 case SYS_SOCKETPAIR:
2489 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2490 break;
2491 case SYS_SEND:
2492 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2493 break;
2494 case SYS_SENDTO:
2495 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2496 (struct sockaddr __user *)a[4], a[5]);
2497 break;
2498 case SYS_RECV:
2499 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2500 break;
2501 case SYS_RECVFROM:
2502 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2503 (struct sockaddr __user *)a[4],
2504 (int __user *)a[5]);
2505 break;
2506 case SYS_SHUTDOWN:
2507 err = sys_shutdown(a0, a1);
2508 break;
2509 case SYS_SETSOCKOPT:
2510 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2511 break;
2512 case SYS_GETSOCKOPT:
2513 err =
2514 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2515 (int __user *)a[4]);
2516 break;
2517 case SYS_SENDMSG:
2518 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2519 break;
2520 case SYS_SENDMMSG:
2521 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2522 break;
2523 case SYS_RECVMSG:
2524 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2525 break;
2526 case SYS_RECVMMSG:
2527 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2528 (struct timespec __user *)a[4]);
2529 break;
2530 case SYS_ACCEPT4:
2531 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2532 (int __user *)a[2], a[3]);
2533 break;
2534 default:
2535 err = -EINVAL;
2536 break;
2538 return err;
2541 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2544 * sock_register - add a socket protocol handler
2545 * @ops: description of protocol
2547 * This function is called by a protocol handler that wants to
2548 * advertise its address family, and have it linked into the
2549 * socket interface. The value ops->family coresponds to the
2550 * socket system call protocol family.
2552 int sock_register(const struct net_proto_family *ops)
2554 int err;
2556 if (ops->family >= NPROTO) {
2557 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2558 NPROTO);
2559 return -ENOBUFS;
2562 spin_lock(&net_family_lock);
2563 if (rcu_dereference_protected(net_families[ops->family],
2564 lockdep_is_held(&net_family_lock)))
2565 err = -EEXIST;
2566 else {
2567 rcu_assign_pointer(net_families[ops->family], ops);
2568 err = 0;
2570 spin_unlock(&net_family_lock);
2572 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2573 return err;
2575 EXPORT_SYMBOL(sock_register);
2578 * sock_unregister - remove a protocol handler
2579 * @family: protocol family to remove
2581 * This function is called by a protocol handler that wants to
2582 * remove its address family, and have it unlinked from the
2583 * new socket creation.
2585 * If protocol handler is a module, then it can use module reference
2586 * counts to protect against new references. If protocol handler is not
2587 * a module then it needs to provide its own protection in
2588 * the ops->create routine.
2590 void sock_unregister(int family)
2592 BUG_ON(family < 0 || family >= NPROTO);
2594 spin_lock(&net_family_lock);
2595 RCU_INIT_POINTER(net_families[family], NULL);
2596 spin_unlock(&net_family_lock);
2598 synchronize_rcu();
2600 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2602 EXPORT_SYMBOL(sock_unregister);
2604 static int __init sock_init(void)
2606 int err;
2608 * Initialize the network sysctl infrastructure.
2610 err = net_sysctl_init();
2611 if (err)
2612 goto out;
2615 * Initialize skbuff SLAB cache
2617 skb_init();
2620 * Initialize the protocols module.
2623 init_inodecache();
2625 err = register_filesystem(&sock_fs_type);
2626 if (err)
2627 goto out_fs;
2628 sock_mnt = kern_mount(&sock_fs_type);
2629 if (IS_ERR(sock_mnt)) {
2630 err = PTR_ERR(sock_mnt);
2631 goto out_mount;
2634 /* The real protocol initialization is performed in later initcalls.
2637 #ifdef CONFIG_NETFILTER
2638 netfilter_init();
2639 #endif
2641 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2642 skb_timestamping_init();
2643 #endif
2645 out:
2646 return err;
2648 out_mount:
2649 unregister_filesystem(&sock_fs_type);
2650 out_fs:
2651 goto out;
2654 core_initcall(sock_init); /* early initcall */
2656 #ifdef CONFIG_PROC_FS
2657 void socket_seq_show(struct seq_file *seq)
2659 int cpu;
2660 int counter = 0;
2662 for_each_possible_cpu(cpu)
2663 counter += per_cpu(sockets_in_use, cpu);
2665 /* It can be negative, by the way. 8) */
2666 if (counter < 0)
2667 counter = 0;
2669 seq_printf(seq, "sockets: used %d\n", counter);
2671 #endif /* CONFIG_PROC_FS */
2673 #ifdef CONFIG_COMPAT
2674 static int do_siocgstamp(struct net *net, struct socket *sock,
2675 unsigned int cmd, void __user *up)
2677 mm_segment_t old_fs = get_fs();
2678 struct timeval ktv;
2679 int err;
2681 set_fs(KERNEL_DS);
2682 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2683 set_fs(old_fs);
2684 if (!err)
2685 err = compat_put_timeval(&ktv, up);
2687 return err;
2690 static int do_siocgstampns(struct net *net, struct socket *sock,
2691 unsigned int cmd, void __user *up)
2693 mm_segment_t old_fs = get_fs();
2694 struct timespec kts;
2695 int err;
2697 set_fs(KERNEL_DS);
2698 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2699 set_fs(old_fs);
2700 if (!err)
2701 err = compat_put_timespec(&kts, up);
2703 return err;
2706 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2708 struct ifreq __user *uifr;
2709 int err;
2711 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2712 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2713 return -EFAULT;
2715 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2716 if (err)
2717 return err;
2719 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2720 return -EFAULT;
2722 return 0;
2725 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2727 struct compat_ifconf ifc32;
2728 struct ifconf ifc;
2729 struct ifconf __user *uifc;
2730 struct compat_ifreq __user *ifr32;
2731 struct ifreq __user *ifr;
2732 unsigned int i, j;
2733 int err;
2735 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2736 return -EFAULT;
2738 memset(&ifc, 0, sizeof(ifc));
2739 if (ifc32.ifcbuf == 0) {
2740 ifc32.ifc_len = 0;
2741 ifc.ifc_len = 0;
2742 ifc.ifc_req = NULL;
2743 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2744 } else {
2745 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2746 sizeof(struct ifreq);
2747 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2748 ifc.ifc_len = len;
2749 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2750 ifr32 = compat_ptr(ifc32.ifcbuf);
2751 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2752 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2753 return -EFAULT;
2754 ifr++;
2755 ifr32++;
2758 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2759 return -EFAULT;
2761 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2762 if (err)
2763 return err;
2765 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2766 return -EFAULT;
2768 ifr = ifc.ifc_req;
2769 ifr32 = compat_ptr(ifc32.ifcbuf);
2770 for (i = 0, j = 0;
2771 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2772 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2773 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2774 return -EFAULT;
2775 ifr32++;
2776 ifr++;
2779 if (ifc32.ifcbuf == 0) {
2780 /* Translate from 64-bit structure multiple to
2781 * a 32-bit one.
2783 i = ifc.ifc_len;
2784 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2785 ifc32.ifc_len = i;
2786 } else {
2787 ifc32.ifc_len = i;
2789 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2790 return -EFAULT;
2792 return 0;
2795 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2797 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2798 bool convert_in = false, convert_out = false;
2799 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2800 struct ethtool_rxnfc __user *rxnfc;
2801 struct ifreq __user *ifr;
2802 u32 rule_cnt = 0, actual_rule_cnt;
2803 u32 ethcmd;
2804 u32 data;
2805 int ret;
2807 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2808 return -EFAULT;
2810 compat_rxnfc = compat_ptr(data);
2812 if (get_user(ethcmd, &compat_rxnfc->cmd))
2813 return -EFAULT;
2815 /* Most ethtool structures are defined without padding.
2816 * Unfortunately struct ethtool_rxnfc is an exception.
2818 switch (ethcmd) {
2819 default:
2820 break;
2821 case ETHTOOL_GRXCLSRLALL:
2822 /* Buffer size is variable */
2823 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2824 return -EFAULT;
2825 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2826 return -ENOMEM;
2827 buf_size += rule_cnt * sizeof(u32);
2828 /* fall through */
2829 case ETHTOOL_GRXRINGS:
2830 case ETHTOOL_GRXCLSRLCNT:
2831 case ETHTOOL_GRXCLSRULE:
2832 case ETHTOOL_SRXCLSRLINS:
2833 convert_out = true;
2834 /* fall through */
2835 case ETHTOOL_SRXCLSRLDEL:
2836 buf_size += sizeof(struct ethtool_rxnfc);
2837 convert_in = true;
2838 break;
2841 ifr = compat_alloc_user_space(buf_size);
2842 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2844 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2845 return -EFAULT;
2847 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2848 &ifr->ifr_ifru.ifru_data))
2849 return -EFAULT;
2851 if (convert_in) {
2852 /* We expect there to be holes between fs.m_ext and
2853 * fs.ring_cookie and at the end of fs, but nowhere else.
2855 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2856 sizeof(compat_rxnfc->fs.m_ext) !=
2857 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2858 sizeof(rxnfc->fs.m_ext));
2859 BUILD_BUG_ON(
2860 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2861 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2862 offsetof(struct ethtool_rxnfc, fs.location) -
2863 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2865 if (copy_in_user(rxnfc, compat_rxnfc,
2866 (void __user *)(&rxnfc->fs.m_ext + 1) -
2867 (void __user *)rxnfc) ||
2868 copy_in_user(&rxnfc->fs.ring_cookie,
2869 &compat_rxnfc->fs.ring_cookie,
2870 (void __user *)(&rxnfc->fs.location + 1) -
2871 (void __user *)&rxnfc->fs.ring_cookie) ||
2872 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2873 sizeof(rxnfc->rule_cnt)))
2874 return -EFAULT;
2877 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2878 if (ret)
2879 return ret;
2881 if (convert_out) {
2882 if (copy_in_user(compat_rxnfc, rxnfc,
2883 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2884 (const void __user *)rxnfc) ||
2885 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2886 &rxnfc->fs.ring_cookie,
2887 (const void __user *)(&rxnfc->fs.location + 1) -
2888 (const void __user *)&rxnfc->fs.ring_cookie) ||
2889 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2890 sizeof(rxnfc->rule_cnt)))
2891 return -EFAULT;
2893 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2894 /* As an optimisation, we only copy the actual
2895 * number of rules that the underlying
2896 * function returned. Since Mallory might
2897 * change the rule count in user memory, we
2898 * check that it is less than the rule count
2899 * originally given (as the user buffer size),
2900 * which has been range-checked.
2902 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2903 return -EFAULT;
2904 if (actual_rule_cnt < rule_cnt)
2905 rule_cnt = actual_rule_cnt;
2906 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2907 &rxnfc->rule_locs[0],
2908 rule_cnt * sizeof(u32)))
2909 return -EFAULT;
2913 return 0;
2916 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2918 void __user *uptr;
2919 compat_uptr_t uptr32;
2920 struct ifreq __user *uifr;
2922 uifr = compat_alloc_user_space(sizeof(*uifr));
2923 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2924 return -EFAULT;
2926 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2927 return -EFAULT;
2929 uptr = compat_ptr(uptr32);
2931 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2932 return -EFAULT;
2934 return dev_ioctl(net, SIOCWANDEV, uifr);
2937 static int bond_ioctl(struct net *net, unsigned int cmd,
2938 struct compat_ifreq __user *ifr32)
2940 struct ifreq kifr;
2941 struct ifreq __user *uifr;
2942 mm_segment_t old_fs;
2943 int err;
2944 u32 data;
2945 void __user *datap;
2947 switch (cmd) {
2948 case SIOCBONDENSLAVE:
2949 case SIOCBONDRELEASE:
2950 case SIOCBONDSETHWADDR:
2951 case SIOCBONDCHANGEACTIVE:
2952 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2953 return -EFAULT;
2955 old_fs = get_fs();
2956 set_fs(KERNEL_DS);
2957 err = dev_ioctl(net, cmd,
2958 (struct ifreq __user __force *) &kifr);
2959 set_fs(old_fs);
2961 return err;
2962 case SIOCBONDSLAVEINFOQUERY:
2963 case SIOCBONDINFOQUERY:
2964 uifr = compat_alloc_user_space(sizeof(*uifr));
2965 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2966 return -EFAULT;
2968 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2969 return -EFAULT;
2971 datap = compat_ptr(data);
2972 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2973 return -EFAULT;
2975 return dev_ioctl(net, cmd, uifr);
2976 default:
2977 return -ENOIOCTLCMD;
2981 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2982 struct compat_ifreq __user *u_ifreq32)
2984 struct ifreq __user *u_ifreq64;
2985 char tmp_buf[IFNAMSIZ];
2986 void __user *data64;
2987 u32 data32;
2989 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2990 IFNAMSIZ))
2991 return -EFAULT;
2992 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2993 return -EFAULT;
2994 data64 = compat_ptr(data32);
2996 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2998 /* Don't check these user accesses, just let that get trapped
2999 * in the ioctl handler instead.
3001 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3002 IFNAMSIZ))
3003 return -EFAULT;
3004 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3005 return -EFAULT;
3007 return dev_ioctl(net, cmd, u_ifreq64);
3010 static int dev_ifsioc(struct net *net, struct socket *sock,
3011 unsigned int cmd, struct compat_ifreq __user *uifr32)
3013 struct ifreq __user *uifr;
3014 int err;
3016 uifr = compat_alloc_user_space(sizeof(*uifr));
3017 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3018 return -EFAULT;
3020 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3022 if (!err) {
3023 switch (cmd) {
3024 case SIOCGIFFLAGS:
3025 case SIOCGIFMETRIC:
3026 case SIOCGIFMTU:
3027 case SIOCGIFMEM:
3028 case SIOCGIFHWADDR:
3029 case SIOCGIFINDEX:
3030 case SIOCGIFADDR:
3031 case SIOCGIFBRDADDR:
3032 case SIOCGIFDSTADDR:
3033 case SIOCGIFNETMASK:
3034 case SIOCGIFPFLAGS:
3035 case SIOCGIFTXQLEN:
3036 case SIOCGMIIPHY:
3037 case SIOCGMIIREG:
3038 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3039 err = -EFAULT;
3040 break;
3043 return err;
3046 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3047 struct compat_ifreq __user *uifr32)
3049 struct ifreq ifr;
3050 struct compat_ifmap __user *uifmap32;
3051 mm_segment_t old_fs;
3052 int err;
3054 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3055 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3056 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3057 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3058 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3059 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3060 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3061 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3062 if (err)
3063 return -EFAULT;
3065 old_fs = get_fs();
3066 set_fs(KERNEL_DS);
3067 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3068 set_fs(old_fs);
3070 if (cmd == SIOCGIFMAP && !err) {
3071 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3072 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3073 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3074 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3075 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3076 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3077 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3078 if (err)
3079 err = -EFAULT;
3081 return err;
3084 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3086 void __user *uptr;
3087 compat_uptr_t uptr32;
3088 struct ifreq __user *uifr;
3090 uifr = compat_alloc_user_space(sizeof(*uifr));
3091 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3092 return -EFAULT;
3094 if (get_user(uptr32, &uifr32->ifr_data))
3095 return -EFAULT;
3097 uptr = compat_ptr(uptr32);
3099 if (put_user(uptr, &uifr->ifr_data))
3100 return -EFAULT;
3102 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3105 struct rtentry32 {
3106 u32 rt_pad1;
3107 struct sockaddr rt_dst; /* target address */
3108 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3109 struct sockaddr rt_genmask; /* target network mask (IP) */
3110 unsigned short rt_flags;
3111 short rt_pad2;
3112 u32 rt_pad3;
3113 unsigned char rt_tos;
3114 unsigned char rt_class;
3115 short rt_pad4;
3116 short rt_metric; /* +1 for binary compatibility! */
3117 /* char * */ u32 rt_dev; /* forcing the device at add */
3118 u32 rt_mtu; /* per route MTU/Window */
3119 u32 rt_window; /* Window clamping */
3120 unsigned short rt_irtt; /* Initial RTT */
3123 struct in6_rtmsg32 {
3124 struct in6_addr rtmsg_dst;
3125 struct in6_addr rtmsg_src;
3126 struct in6_addr rtmsg_gateway;
3127 u32 rtmsg_type;
3128 u16 rtmsg_dst_len;
3129 u16 rtmsg_src_len;
3130 u32 rtmsg_metric;
3131 u32 rtmsg_info;
3132 u32 rtmsg_flags;
3133 s32 rtmsg_ifindex;
3136 static int routing_ioctl(struct net *net, struct socket *sock,
3137 unsigned int cmd, void __user *argp)
3139 int ret;
3140 void *r = NULL;
3141 struct in6_rtmsg r6;
3142 struct rtentry r4;
3143 char devname[16];
3144 u32 rtdev;
3145 mm_segment_t old_fs = get_fs();
3147 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3148 struct in6_rtmsg32 __user *ur6 = argp;
3149 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3150 3 * sizeof(struct in6_addr));
3151 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3152 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3153 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3154 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3155 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3156 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3157 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3159 r = (void *) &r6;
3160 } else { /* ipv4 */
3161 struct rtentry32 __user *ur4 = argp;
3162 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3163 3 * sizeof(struct sockaddr));
3164 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3165 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3166 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3167 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3168 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3169 ret |= __get_user(rtdev, &(ur4->rt_dev));
3170 if (rtdev) {
3171 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3172 r4.rt_dev = (char __user __force *)devname;
3173 devname[15] = 0;
3174 } else
3175 r4.rt_dev = NULL;
3177 r = (void *) &r4;
3180 if (ret) {
3181 ret = -EFAULT;
3182 goto out;
3185 set_fs(KERNEL_DS);
3186 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3187 set_fs(old_fs);
3189 out:
3190 return ret;
3193 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3194 * for some operations; this forces use of the newer bridge-utils that
3195 * use compatible ioctls
3197 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3199 compat_ulong_t tmp;
3201 if (get_user(tmp, argp))
3202 return -EFAULT;
3203 if (tmp == BRCTL_GET_VERSION)
3204 return BRCTL_VERSION + 1;
3205 return -EINVAL;
3208 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3209 unsigned int cmd, unsigned long arg)
3211 void __user *argp = compat_ptr(arg);
3212 struct sock *sk = sock->sk;
3213 struct net *net = sock_net(sk);
3215 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3216 return siocdevprivate_ioctl(net, cmd, argp);
3218 switch (cmd) {
3219 case SIOCSIFBR:
3220 case SIOCGIFBR:
3221 return old_bridge_ioctl(argp);
3222 case SIOCGIFNAME:
3223 return dev_ifname32(net, argp);
3224 case SIOCGIFCONF:
3225 return dev_ifconf(net, argp);
3226 case SIOCETHTOOL:
3227 return ethtool_ioctl(net, argp);
3228 case SIOCWANDEV:
3229 return compat_siocwandev(net, argp);
3230 case SIOCGIFMAP:
3231 case SIOCSIFMAP:
3232 return compat_sioc_ifmap(net, cmd, argp);
3233 case SIOCBONDENSLAVE:
3234 case SIOCBONDRELEASE:
3235 case SIOCBONDSETHWADDR:
3236 case SIOCBONDSLAVEINFOQUERY:
3237 case SIOCBONDINFOQUERY:
3238 case SIOCBONDCHANGEACTIVE:
3239 return bond_ioctl(net, cmd, argp);
3240 case SIOCADDRT:
3241 case SIOCDELRT:
3242 return routing_ioctl(net, sock, cmd, argp);
3243 case SIOCGSTAMP:
3244 return do_siocgstamp(net, sock, cmd, argp);
3245 case SIOCGSTAMPNS:
3246 return do_siocgstampns(net, sock, cmd, argp);
3247 case SIOCSHWTSTAMP:
3248 return compat_siocshwtstamp(net, argp);
3250 case FIOSETOWN:
3251 case SIOCSPGRP:
3252 case FIOGETOWN:
3253 case SIOCGPGRP:
3254 case SIOCBRADDBR:
3255 case SIOCBRDELBR:
3256 case SIOCGIFVLAN:
3257 case SIOCSIFVLAN:
3258 case SIOCADDDLCI:
3259 case SIOCDELDLCI:
3260 return sock_ioctl(file, cmd, arg);
3262 case SIOCGIFFLAGS:
3263 case SIOCSIFFLAGS:
3264 case SIOCGIFMETRIC:
3265 case SIOCSIFMETRIC:
3266 case SIOCGIFMTU:
3267 case SIOCSIFMTU:
3268 case SIOCGIFMEM:
3269 case SIOCSIFMEM:
3270 case SIOCGIFHWADDR:
3271 case SIOCSIFHWADDR:
3272 case SIOCADDMULTI:
3273 case SIOCDELMULTI:
3274 case SIOCGIFINDEX:
3275 case SIOCGIFADDR:
3276 case SIOCSIFADDR:
3277 case SIOCSIFHWBROADCAST:
3278 case SIOCDIFADDR:
3279 case SIOCGIFBRDADDR:
3280 case SIOCSIFBRDADDR:
3281 case SIOCGIFDSTADDR:
3282 case SIOCSIFDSTADDR:
3283 case SIOCGIFNETMASK:
3284 case SIOCSIFNETMASK:
3285 case SIOCSIFPFLAGS:
3286 case SIOCGIFPFLAGS:
3287 case SIOCGIFTXQLEN:
3288 case SIOCSIFTXQLEN:
3289 case SIOCBRADDIF:
3290 case SIOCBRDELIF:
3291 case SIOCSIFNAME:
3292 case SIOCGMIIPHY:
3293 case SIOCGMIIREG:
3294 case SIOCSMIIREG:
3295 return dev_ifsioc(net, sock, cmd, argp);
3297 case SIOCSARP:
3298 case SIOCGARP:
3299 case SIOCDARP:
3300 case SIOCATMARK:
3301 return sock_do_ioctl(net, sock, cmd, arg);
3304 return -ENOIOCTLCMD;
3307 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3308 unsigned long arg)
3310 struct socket *sock = file->private_data;
3311 int ret = -ENOIOCTLCMD;
3312 struct sock *sk;
3313 struct net *net;
3315 sk = sock->sk;
3316 net = sock_net(sk);
3318 if (sock->ops->compat_ioctl)
3319 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3321 if (ret == -ENOIOCTLCMD &&
3322 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3323 ret = compat_wext_handle_ioctl(net, cmd, arg);
3325 if (ret == -ENOIOCTLCMD)
3326 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3328 return ret;
3330 #endif
3332 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3334 return sock->ops->bind(sock, addr, addrlen);
3336 EXPORT_SYMBOL(kernel_bind);
3338 int kernel_listen(struct socket *sock, int backlog)
3340 return sock->ops->listen(sock, backlog);
3342 EXPORT_SYMBOL(kernel_listen);
3344 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3346 struct sock *sk = sock->sk;
3347 int err;
3349 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3350 newsock);
3351 if (err < 0)
3352 goto done;
3354 err = sock->ops->accept(sock, *newsock, flags);
3355 if (err < 0) {
3356 sock_release(*newsock);
3357 *newsock = NULL;
3358 goto done;
3361 (*newsock)->ops = sock->ops;
3362 __module_get((*newsock)->ops->owner);
3364 done:
3365 return err;
3367 EXPORT_SYMBOL(kernel_accept);
3369 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3370 int flags)
3372 return sock->ops->connect(sock, addr, addrlen, flags);
3374 EXPORT_SYMBOL(kernel_connect);
3376 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3377 int *addrlen)
3379 return sock->ops->getname(sock, addr, addrlen, 0);
3381 EXPORT_SYMBOL(kernel_getsockname);
3383 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3384 int *addrlen)
3386 return sock->ops->getname(sock, addr, addrlen, 1);
3388 EXPORT_SYMBOL(kernel_getpeername);
3390 int kernel_getsockopt(struct socket *sock, int level, int optname,
3391 char *optval, int *optlen)
3393 mm_segment_t oldfs = get_fs();
3394 char __user *uoptval;
3395 int __user *uoptlen;
3396 int err;
3398 uoptval = (char __user __force *) optval;
3399 uoptlen = (int __user __force *) optlen;
3401 set_fs(KERNEL_DS);
3402 if (level == SOL_SOCKET)
3403 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3404 else
3405 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3406 uoptlen);
3407 set_fs(oldfs);
3408 return err;
3410 EXPORT_SYMBOL(kernel_getsockopt);
3412 int kernel_setsockopt(struct socket *sock, int level, int optname,
3413 char *optval, unsigned int optlen)
3415 mm_segment_t oldfs = get_fs();
3416 char __user *uoptval;
3417 int err;
3419 uoptval = (char __user __force *) optval;
3421 set_fs(KERNEL_DS);
3422 if (level == SOL_SOCKET)
3423 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3424 else
3425 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3426 optlen);
3427 set_fs(oldfs);
3428 return err;
3430 EXPORT_SYMBOL(kernel_setsockopt);
3432 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3433 size_t size, int flags)
3435 if (sock->ops->sendpage)
3436 return sock->ops->sendpage(sock, page, offset, size, flags);
3438 return sock_no_sendpage(sock, page, offset, size, flags);
3440 EXPORT_SYMBOL(kernel_sendpage);
3442 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3444 mm_segment_t oldfs = get_fs();
3445 int err;
3447 set_fs(KERNEL_DS);
3448 err = sock->ops->ioctl(sock, cmd, arg);
3449 set_fs(oldfs);
3451 return err;
3453 EXPORT_SYMBOL(kernel_sock_ioctl);
3455 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3457 return sock->ops->shutdown(sock, how);
3459 EXPORT_SYMBOL(kernel_sock_shutdown);