2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
20 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
21 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
22 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
24 #define RTC_SW_BIT (1 << 0)
25 #define RTC_ALM_BIT (1 << 2)
26 #define RTC_1HZ_BIT (1 << 4)
27 #define RTC_2HZ_BIT (1 << 7)
28 #define RTC_SAM0_BIT (1 << 8)
29 #define RTC_SAM1_BIT (1 << 9)
30 #define RTC_SAM2_BIT (1 << 10)
31 #define RTC_SAM3_BIT (1 << 11)
32 #define RTC_SAM4_BIT (1 << 12)
33 #define RTC_SAM5_BIT (1 << 13)
34 #define RTC_SAM6_BIT (1 << 14)
35 #define RTC_SAM7_BIT (1 << 15)
36 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
37 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
38 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
40 #define RTC_ENABLE_BIT (1 << 7)
43 #define MAX_PIE_FREQ 512
44 static const u32 PIE_BIT_DEF
[MAX_PIE_NUM
][2] = {
51 { 128, RTC_SAM5_BIT
},
52 { 256, RTC_SAM6_BIT
},
53 { MAX_PIE_FREQ
, RTC_SAM7_BIT
},
56 #define MXC_RTC_TIME 0
57 #define MXC_RTC_ALARM 1
59 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
60 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
61 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
62 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
63 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
64 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
65 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
66 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
67 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
68 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
69 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
70 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
71 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
78 struct rtc_plat_data
{
79 struct rtc_device
*rtc
;
83 struct rtc_time g_rtc_alarm
;
84 enum imx_rtc_type devtype
;
87 static struct platform_device_id imx_rtc_devtype
[] = {
90 .driver_data
= IMX1_RTC
,
93 .driver_data
= IMX21_RTC
,
98 MODULE_DEVICE_TABLE(platform
, imx_rtc_devtype
);
100 static inline int is_imx1_rtc(struct rtc_plat_data
*data
)
102 return data
->devtype
== IMX1_RTC
;
106 * This function is used to obtain the RTC time or the alarm value in
109 static u32
get_alarm_or_time(struct device
*dev
, int time_alarm
)
111 struct platform_device
*pdev
= to_platform_device(dev
);
112 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
113 void __iomem
*ioaddr
= pdata
->ioaddr
;
114 u32 day
= 0, hr
= 0, min
= 0, sec
= 0, hr_min
= 0;
116 switch (time_alarm
) {
118 day
= readw(ioaddr
+ RTC_DAYR
);
119 hr_min
= readw(ioaddr
+ RTC_HOURMIN
);
120 sec
= readw(ioaddr
+ RTC_SECOND
);
123 day
= readw(ioaddr
+ RTC_DAYALARM
);
124 hr_min
= readw(ioaddr
+ RTC_ALRM_HM
) & 0xffff;
125 sec
= readw(ioaddr
+ RTC_ALRM_SEC
);
132 return (((day
* 24 + hr
) * 60) + min
) * 60 + sec
;
136 * This function sets the RTC alarm value or the time value.
138 static void set_alarm_or_time(struct device
*dev
, int time_alarm
, u32 time
)
140 u32 day
, hr
, min
, sec
, temp
;
141 struct platform_device
*pdev
= to_platform_device(dev
);
142 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
143 void __iomem
*ioaddr
= pdata
->ioaddr
;
148 /* time is within a day now */
152 /* time is within an hour now */
154 sec
= time
- min
* 60;
156 temp
= (hr
<< 8) + min
;
158 switch (time_alarm
) {
160 writew(day
, ioaddr
+ RTC_DAYR
);
161 writew(sec
, ioaddr
+ RTC_SECOND
);
162 writew(temp
, ioaddr
+ RTC_HOURMIN
);
165 writew(day
, ioaddr
+ RTC_DAYALARM
);
166 writew(sec
, ioaddr
+ RTC_ALRM_SEC
);
167 writew(temp
, ioaddr
+ RTC_ALRM_HM
);
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
176 static int rtc_update_alarm(struct device
*dev
, struct rtc_time
*alrm
)
178 struct rtc_time alarm_tm
, now_tm
;
179 unsigned long now
, time
;
180 struct platform_device
*pdev
= to_platform_device(dev
);
181 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
182 void __iomem
*ioaddr
= pdata
->ioaddr
;
184 now
= get_alarm_or_time(dev
, MXC_RTC_TIME
);
185 rtc_time_to_tm(now
, &now_tm
);
186 alarm_tm
.tm_year
= now_tm
.tm_year
;
187 alarm_tm
.tm_mon
= now_tm
.tm_mon
;
188 alarm_tm
.tm_mday
= now_tm
.tm_mday
;
189 alarm_tm
.tm_hour
= alrm
->tm_hour
;
190 alarm_tm
.tm_min
= alrm
->tm_min
;
191 alarm_tm
.tm_sec
= alrm
->tm_sec
;
192 rtc_tm_to_time(&alarm_tm
, &time
);
194 /* clear all the interrupt status bits */
195 writew(readw(ioaddr
+ RTC_RTCISR
), ioaddr
+ RTC_RTCISR
);
196 set_alarm_or_time(dev
, MXC_RTC_ALARM
, time
);
201 static void mxc_rtc_irq_enable(struct device
*dev
, unsigned int bit
,
202 unsigned int enabled
)
204 struct platform_device
*pdev
= to_platform_device(dev
);
205 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
206 void __iomem
*ioaddr
= pdata
->ioaddr
;
209 spin_lock_irq(&pdata
->rtc
->irq_lock
);
210 reg
= readw(ioaddr
+ RTC_RTCIENR
);
217 writew(reg
, ioaddr
+ RTC_RTCIENR
);
218 spin_unlock_irq(&pdata
->rtc
->irq_lock
);
221 /* This function is the RTC interrupt service routine. */
222 static irqreturn_t
mxc_rtc_interrupt(int irq
, void *dev_id
)
224 struct platform_device
*pdev
= dev_id
;
225 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
226 void __iomem
*ioaddr
= pdata
->ioaddr
;
231 spin_lock_irqsave(&pdata
->rtc
->irq_lock
, flags
);
232 status
= readw(ioaddr
+ RTC_RTCISR
) & readw(ioaddr
+ RTC_RTCIENR
);
233 /* clear interrupt sources */
234 writew(status
, ioaddr
+ RTC_RTCISR
);
236 /* update irq data & counter */
237 if (status
& RTC_ALM_BIT
) {
238 events
|= (RTC_AF
| RTC_IRQF
);
239 /* RTC alarm should be one-shot */
240 mxc_rtc_irq_enable(&pdev
->dev
, RTC_ALM_BIT
, 0);
243 if (status
& RTC_1HZ_BIT
)
244 events
|= (RTC_UF
| RTC_IRQF
);
246 if (status
& PIT_ALL_ON
)
247 events
|= (RTC_PF
| RTC_IRQF
);
249 rtc_update_irq(pdata
->rtc
, 1, events
);
250 spin_unlock_irqrestore(&pdata
->rtc
->irq_lock
, flags
);
256 * Clear all interrupts and release the IRQ
258 static void mxc_rtc_release(struct device
*dev
)
260 struct platform_device
*pdev
= to_platform_device(dev
);
261 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
262 void __iomem
*ioaddr
= pdata
->ioaddr
;
264 spin_lock_irq(&pdata
->rtc
->irq_lock
);
266 /* Disable all rtc interrupts */
267 writew(0, ioaddr
+ RTC_RTCIENR
);
269 /* Clear all interrupt status */
270 writew(0xffffffff, ioaddr
+ RTC_RTCISR
);
272 spin_unlock_irq(&pdata
->rtc
->irq_lock
);
275 static int mxc_rtc_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
277 mxc_rtc_irq_enable(dev
, RTC_ALM_BIT
, enabled
);
282 * This function reads the current RTC time into tm in Gregorian date.
284 static int mxc_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
288 /* Avoid roll-over from reading the different registers */
290 val
= get_alarm_or_time(dev
, MXC_RTC_TIME
);
291 } while (val
!= get_alarm_or_time(dev
, MXC_RTC_TIME
));
293 rtc_time_to_tm(val
, tm
);
299 * This function sets the internal RTC time based on tm in Gregorian date.
301 static int mxc_rtc_set_mmss(struct device
*dev
, unsigned long time
)
303 struct platform_device
*pdev
= to_platform_device(dev
);
304 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
307 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
309 if (is_imx1_rtc(pdata
)) {
312 rtc_time_to_tm(time
, &tm
);
314 rtc_tm_to_time(&tm
, &time
);
317 /* Avoid roll-over from reading the different registers */
319 set_alarm_or_time(dev
, MXC_RTC_TIME
, time
);
320 } while (time
!= get_alarm_or_time(dev
, MXC_RTC_TIME
));
326 * This function reads the current alarm value into the passed in 'alrm'
327 * argument. It updates the alrm's pending field value based on the whether
328 * an alarm interrupt occurs or not.
330 static int mxc_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
332 struct platform_device
*pdev
= to_platform_device(dev
);
333 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
334 void __iomem
*ioaddr
= pdata
->ioaddr
;
336 rtc_time_to_tm(get_alarm_or_time(dev
, MXC_RTC_ALARM
), &alrm
->time
);
337 alrm
->pending
= ((readw(ioaddr
+ RTC_RTCISR
) & RTC_ALM_BIT
)) ? 1 : 0;
343 * This function sets the RTC alarm based on passed in alrm.
345 static int mxc_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
347 struct platform_device
*pdev
= to_platform_device(dev
);
348 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
351 ret
= rtc_update_alarm(dev
, &alrm
->time
);
355 memcpy(&pdata
->g_rtc_alarm
, &alrm
->time
, sizeof(struct rtc_time
));
356 mxc_rtc_irq_enable(dev
, RTC_ALM_BIT
, alrm
->enabled
);
362 static struct rtc_class_ops mxc_rtc_ops
= {
363 .release
= mxc_rtc_release
,
364 .read_time
= mxc_rtc_read_time
,
365 .set_mmss
= mxc_rtc_set_mmss
,
366 .read_alarm
= mxc_rtc_read_alarm
,
367 .set_alarm
= mxc_rtc_set_alarm
,
368 .alarm_irq_enable
= mxc_rtc_alarm_irq_enable
,
371 static int mxc_rtc_probe(struct platform_device
*pdev
)
373 struct resource
*res
;
374 struct rtc_device
*rtc
;
375 struct rtc_plat_data
*pdata
= NULL
;
380 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
384 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
388 pdata
->devtype
= pdev
->id_entry
->driver_data
;
390 if (!devm_request_mem_region(&pdev
->dev
, res
->start
,
391 resource_size(res
), pdev
->name
))
394 pdata
->ioaddr
= devm_ioremap(&pdev
->dev
, res
->start
,
397 pdata
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
398 if (IS_ERR(pdata
->clk
)) {
399 dev_err(&pdev
->dev
, "unable to get clock!\n");
400 ret
= PTR_ERR(pdata
->clk
);
401 goto exit_free_pdata
;
404 clk_prepare_enable(pdata
->clk
);
405 rate
= clk_get_rate(pdata
->clk
);
408 reg
= RTC_INPUT_CLK_32768HZ
;
409 else if (rate
== 32000)
410 reg
= RTC_INPUT_CLK_32000HZ
;
411 else if (rate
== 38400)
412 reg
= RTC_INPUT_CLK_38400HZ
;
414 dev_err(&pdev
->dev
, "rtc clock is not valid (%lu)\n", rate
);
419 reg
|= RTC_ENABLE_BIT
;
420 writew(reg
, (pdata
->ioaddr
+ RTC_RTCCTL
));
421 if (((readw(pdata
->ioaddr
+ RTC_RTCCTL
)) & RTC_ENABLE_BIT
) == 0) {
422 dev_err(&pdev
->dev
, "hardware module can't be enabled!\n");
427 platform_set_drvdata(pdev
, pdata
);
429 /* Configure and enable the RTC */
430 pdata
->irq
= platform_get_irq(pdev
, 0);
432 if (pdata
->irq
>= 0 &&
433 devm_request_irq(&pdev
->dev
, pdata
->irq
, mxc_rtc_interrupt
,
434 IRQF_SHARED
, pdev
->name
, pdev
) < 0) {
435 dev_warn(&pdev
->dev
, "interrupt not available.\n");
440 device_init_wakeup(&pdev
->dev
, 1);
442 rtc
= devm_rtc_device_register(&pdev
->dev
, pdev
->name
, &mxc_rtc_ops
,
446 goto exit_clr_drvdata
;
454 platform_set_drvdata(pdev
, NULL
);
456 clk_disable_unprepare(pdata
->clk
);
463 static int mxc_rtc_remove(struct platform_device
*pdev
)
465 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
467 clk_disable_unprepare(pdata
->clk
);
468 platform_set_drvdata(pdev
, NULL
);
473 #ifdef CONFIG_PM_SLEEP
474 static int mxc_rtc_suspend(struct device
*dev
)
476 struct rtc_plat_data
*pdata
= dev_get_drvdata(dev
);
478 if (device_may_wakeup(dev
))
479 enable_irq_wake(pdata
->irq
);
484 static int mxc_rtc_resume(struct device
*dev
)
486 struct rtc_plat_data
*pdata
= dev_get_drvdata(dev
);
488 if (device_may_wakeup(dev
))
489 disable_irq_wake(pdata
->irq
);
495 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops
, mxc_rtc_suspend
, mxc_rtc_resume
);
497 static struct platform_driver mxc_rtc_driver
= {
500 .pm
= &mxc_rtc_pm_ops
,
501 .owner
= THIS_MODULE
,
503 .id_table
= imx_rtc_devtype
,
504 .probe
= mxc_rtc_probe
,
505 .remove
= mxc_rtc_remove
,
508 module_platform_driver(mxc_rtc_driver
)
510 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
511 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
512 MODULE_LICENSE("GPL");