KVM: Allow passing 64-bit values to the emulated read/write API
[linux-2.6.git] / drivers / kvm / kvm_main.c
blob67554034d0010da0266d6d37e60e8848afdfd4e3
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <asm/msr.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
33 #include <asm/io.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
37 #include <asm/desc.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
41 #include <linux/fs.h>
42 #include <linux/mount.h>
44 #include "x86_emulate.h"
45 #include "segment_descriptor.h"
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 struct kvm_arch_ops *kvm_arch_ops;
55 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
57 static struct kvm_stats_debugfs_item {
58 const char *name;
59 int offset;
60 struct dentry *dentry;
61 } debugfs_entries[] = {
62 { "pf_fixed", STAT_OFFSET(pf_fixed) },
63 { "pf_guest", STAT_OFFSET(pf_guest) },
64 { "tlb_flush", STAT_OFFSET(tlb_flush) },
65 { "invlpg", STAT_OFFSET(invlpg) },
66 { "exits", STAT_OFFSET(exits) },
67 { "io_exits", STAT_OFFSET(io_exits) },
68 { "mmio_exits", STAT_OFFSET(mmio_exits) },
69 { "signal_exits", STAT_OFFSET(signal_exits) },
70 { "irq_window", STAT_OFFSET(irq_window_exits) },
71 { "halt_exits", STAT_OFFSET(halt_exits) },
72 { "request_irq", STAT_OFFSET(request_irq_exits) },
73 { "irq_exits", STAT_OFFSET(irq_exits) },
74 { NULL }
77 static struct dentry *debugfs_dir;
79 struct vfsmount *kvmfs_mnt;
81 #define MAX_IO_MSRS 256
83 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
84 #define LMSW_GUEST_MASK 0x0eULL
85 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
86 #define CR8_RESEVED_BITS (~0x0fULL)
87 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
89 #ifdef CONFIG_X86_64
90 // LDT or TSS descriptor in the GDT. 16 bytes.
91 struct segment_descriptor_64 {
92 struct segment_descriptor s;
93 u32 base_higher;
94 u32 pad_zero;
97 #endif
99 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
100 unsigned long arg);
102 static struct inode *kvmfs_inode(struct file_operations *fops)
104 int error = -ENOMEM;
105 struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
107 if (!inode)
108 goto eexit_1;
110 inode->i_fop = fops;
113 * Mark the inode dirty from the very beginning,
114 * that way it will never be moved to the dirty
115 * list because mark_inode_dirty() will think
116 * that it already _is_ on the dirty list.
118 inode->i_state = I_DIRTY;
119 inode->i_mode = S_IRUSR | S_IWUSR;
120 inode->i_uid = current->fsuid;
121 inode->i_gid = current->fsgid;
122 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
123 return inode;
125 eexit_1:
126 return ERR_PTR(error);
129 static struct file *kvmfs_file(struct inode *inode, void *private_data)
131 struct file *file = get_empty_filp();
133 if (!file)
134 return ERR_PTR(-ENFILE);
136 file->f_path.mnt = mntget(kvmfs_mnt);
137 file->f_path.dentry = d_alloc_anon(inode);
138 if (!file->f_path.dentry)
139 return ERR_PTR(-ENOMEM);
140 file->f_mapping = inode->i_mapping;
142 file->f_pos = 0;
143 file->f_flags = O_RDWR;
144 file->f_op = inode->i_fop;
145 file->f_mode = FMODE_READ | FMODE_WRITE;
146 file->f_version = 0;
147 file->private_data = private_data;
148 return file;
151 unsigned long segment_base(u16 selector)
153 struct descriptor_table gdt;
154 struct segment_descriptor *d;
155 unsigned long table_base;
156 typedef unsigned long ul;
157 unsigned long v;
159 if (selector == 0)
160 return 0;
162 asm ("sgdt %0" : "=m"(gdt));
163 table_base = gdt.base;
165 if (selector & 4) { /* from ldt */
166 u16 ldt_selector;
168 asm ("sldt %0" : "=g"(ldt_selector));
169 table_base = segment_base(ldt_selector);
171 d = (struct segment_descriptor *)(table_base + (selector & ~7));
172 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
173 #ifdef CONFIG_X86_64
174 if (d->system == 0
175 && (d->type == 2 || d->type == 9 || d->type == 11))
176 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
177 #endif
178 return v;
180 EXPORT_SYMBOL_GPL(segment_base);
182 static inline int valid_vcpu(int n)
184 return likely(n >= 0 && n < KVM_MAX_VCPUS);
187 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
188 void *dest)
190 unsigned char *host_buf = dest;
191 unsigned long req_size = size;
193 while (size) {
194 hpa_t paddr;
195 unsigned now;
196 unsigned offset;
197 hva_t guest_buf;
199 paddr = gva_to_hpa(vcpu, addr);
201 if (is_error_hpa(paddr))
202 break;
204 guest_buf = (hva_t)kmap_atomic(
205 pfn_to_page(paddr >> PAGE_SHIFT),
206 KM_USER0);
207 offset = addr & ~PAGE_MASK;
208 guest_buf |= offset;
209 now = min(size, PAGE_SIZE - offset);
210 memcpy(host_buf, (void*)guest_buf, now);
211 host_buf += now;
212 addr += now;
213 size -= now;
214 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
216 return req_size - size;
218 EXPORT_SYMBOL_GPL(kvm_read_guest);
220 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
221 void *data)
223 unsigned char *host_buf = data;
224 unsigned long req_size = size;
226 while (size) {
227 hpa_t paddr;
228 unsigned now;
229 unsigned offset;
230 hva_t guest_buf;
231 gfn_t gfn;
233 paddr = gva_to_hpa(vcpu, addr);
235 if (is_error_hpa(paddr))
236 break;
238 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
239 mark_page_dirty(vcpu->kvm, gfn);
240 guest_buf = (hva_t)kmap_atomic(
241 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
242 offset = addr & ~PAGE_MASK;
243 guest_buf |= offset;
244 now = min(size, PAGE_SIZE - offset);
245 memcpy((void*)guest_buf, host_buf, now);
246 host_buf += now;
247 addr += now;
248 size -= now;
249 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
251 return req_size - size;
253 EXPORT_SYMBOL_GPL(kvm_write_guest);
256 * Switches to specified vcpu, until a matching vcpu_put()
258 static void vcpu_load(struct kvm_vcpu *vcpu)
260 mutex_lock(&vcpu->mutex);
261 kvm_arch_ops->vcpu_load(vcpu);
265 * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
266 * if the slot is not populated.
268 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
270 struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
272 mutex_lock(&vcpu->mutex);
273 if (!vcpu->vmcs) {
274 mutex_unlock(&vcpu->mutex);
275 return NULL;
277 kvm_arch_ops->vcpu_load(vcpu);
278 return vcpu;
281 static void vcpu_put(struct kvm_vcpu *vcpu)
283 kvm_arch_ops->vcpu_put(vcpu);
284 mutex_unlock(&vcpu->mutex);
287 static struct kvm *kvm_create_vm(void)
289 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290 int i;
292 if (!kvm)
293 return ERR_PTR(-ENOMEM);
295 spin_lock_init(&kvm->lock);
296 INIT_LIST_HEAD(&kvm->active_mmu_pages);
297 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
298 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
300 mutex_init(&vcpu->mutex);
301 vcpu->cpu = -1;
302 vcpu->kvm = kvm;
303 vcpu->mmu.root_hpa = INVALID_PAGE;
304 INIT_LIST_HEAD(&vcpu->free_pages);
305 spin_lock(&kvm_lock);
306 list_add(&kvm->vm_list, &vm_list);
307 spin_unlock(&kvm_lock);
309 return kvm;
312 static int kvm_dev_open(struct inode *inode, struct file *filp)
314 return 0;
318 * Free any memory in @free but not in @dont.
320 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
321 struct kvm_memory_slot *dont)
323 int i;
325 if (!dont || free->phys_mem != dont->phys_mem)
326 if (free->phys_mem) {
327 for (i = 0; i < free->npages; ++i)
328 if (free->phys_mem[i])
329 __free_page(free->phys_mem[i]);
330 vfree(free->phys_mem);
333 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
334 vfree(free->dirty_bitmap);
336 free->phys_mem = NULL;
337 free->npages = 0;
338 free->dirty_bitmap = NULL;
341 static void kvm_free_physmem(struct kvm *kvm)
343 int i;
345 for (i = 0; i < kvm->nmemslots; ++i)
346 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
349 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
351 int i;
353 for (i = 0; i < 2; ++i)
354 if (vcpu->pio.guest_pages[i]) {
355 __free_page(vcpu->pio.guest_pages[i]);
356 vcpu->pio.guest_pages[i] = NULL;
360 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
362 if (!vcpu->vmcs)
363 return;
365 vcpu_load(vcpu);
366 kvm_mmu_destroy(vcpu);
367 vcpu_put(vcpu);
368 kvm_arch_ops->vcpu_free(vcpu);
369 free_page((unsigned long)vcpu->run);
370 vcpu->run = NULL;
371 free_page((unsigned long)vcpu->pio_data);
372 vcpu->pio_data = NULL;
373 free_pio_guest_pages(vcpu);
376 static void kvm_free_vcpus(struct kvm *kvm)
378 unsigned int i;
380 for (i = 0; i < KVM_MAX_VCPUS; ++i)
381 kvm_free_vcpu(&kvm->vcpus[i]);
384 static int kvm_dev_release(struct inode *inode, struct file *filp)
386 return 0;
389 static void kvm_destroy_vm(struct kvm *kvm)
391 spin_lock(&kvm_lock);
392 list_del(&kvm->vm_list);
393 spin_unlock(&kvm_lock);
394 kvm_free_vcpus(kvm);
395 kvm_free_physmem(kvm);
396 kfree(kvm);
399 static int kvm_vm_release(struct inode *inode, struct file *filp)
401 struct kvm *kvm = filp->private_data;
403 kvm_destroy_vm(kvm);
404 return 0;
407 static void inject_gp(struct kvm_vcpu *vcpu)
409 kvm_arch_ops->inject_gp(vcpu, 0);
413 * Load the pae pdptrs. Return true is they are all valid.
415 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
417 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
418 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
419 int i;
420 u64 pdpte;
421 u64 *pdpt;
422 int ret;
423 struct page *page;
425 spin_lock(&vcpu->kvm->lock);
426 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
427 /* FIXME: !page - emulate? 0xff? */
428 pdpt = kmap_atomic(page, KM_USER0);
430 ret = 1;
431 for (i = 0; i < 4; ++i) {
432 pdpte = pdpt[offset + i];
433 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
434 ret = 0;
435 goto out;
439 for (i = 0; i < 4; ++i)
440 vcpu->pdptrs[i] = pdpt[offset + i];
442 out:
443 kunmap_atomic(pdpt, KM_USER0);
444 spin_unlock(&vcpu->kvm->lock);
446 return ret;
449 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
451 if (cr0 & CR0_RESEVED_BITS) {
452 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
453 cr0, vcpu->cr0);
454 inject_gp(vcpu);
455 return;
458 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
459 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
460 inject_gp(vcpu);
461 return;
464 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
465 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
466 "and a clear PE flag\n");
467 inject_gp(vcpu);
468 return;
471 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
472 #ifdef CONFIG_X86_64
473 if ((vcpu->shadow_efer & EFER_LME)) {
474 int cs_db, cs_l;
476 if (!is_pae(vcpu)) {
477 printk(KERN_DEBUG "set_cr0: #GP, start paging "
478 "in long mode while PAE is disabled\n");
479 inject_gp(vcpu);
480 return;
482 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
483 if (cs_l) {
484 printk(KERN_DEBUG "set_cr0: #GP, start paging "
485 "in long mode while CS.L == 1\n");
486 inject_gp(vcpu);
487 return;
490 } else
491 #endif
492 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
493 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
494 "reserved bits\n");
495 inject_gp(vcpu);
496 return;
501 kvm_arch_ops->set_cr0(vcpu, cr0);
502 vcpu->cr0 = cr0;
504 spin_lock(&vcpu->kvm->lock);
505 kvm_mmu_reset_context(vcpu);
506 spin_unlock(&vcpu->kvm->lock);
507 return;
509 EXPORT_SYMBOL_GPL(set_cr0);
511 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
513 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
514 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
516 EXPORT_SYMBOL_GPL(lmsw);
518 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
520 if (cr4 & CR4_RESEVED_BITS) {
521 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
522 inject_gp(vcpu);
523 return;
526 if (is_long_mode(vcpu)) {
527 if (!(cr4 & CR4_PAE_MASK)) {
528 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
529 "in long mode\n");
530 inject_gp(vcpu);
531 return;
533 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
534 && !load_pdptrs(vcpu, vcpu->cr3)) {
535 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
536 inject_gp(vcpu);
539 if (cr4 & CR4_VMXE_MASK) {
540 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
541 inject_gp(vcpu);
542 return;
544 kvm_arch_ops->set_cr4(vcpu, cr4);
545 spin_lock(&vcpu->kvm->lock);
546 kvm_mmu_reset_context(vcpu);
547 spin_unlock(&vcpu->kvm->lock);
549 EXPORT_SYMBOL_GPL(set_cr4);
551 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
553 if (is_long_mode(vcpu)) {
554 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
555 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
556 inject_gp(vcpu);
557 return;
559 } else {
560 if (cr3 & CR3_RESEVED_BITS) {
561 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
562 inject_gp(vcpu);
563 return;
565 if (is_paging(vcpu) && is_pae(vcpu) &&
566 !load_pdptrs(vcpu, cr3)) {
567 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
568 "reserved bits\n");
569 inject_gp(vcpu);
570 return;
574 vcpu->cr3 = cr3;
575 spin_lock(&vcpu->kvm->lock);
577 * Does the new cr3 value map to physical memory? (Note, we
578 * catch an invalid cr3 even in real-mode, because it would
579 * cause trouble later on when we turn on paging anyway.)
581 * A real CPU would silently accept an invalid cr3 and would
582 * attempt to use it - with largely undefined (and often hard
583 * to debug) behavior on the guest side.
585 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
586 inject_gp(vcpu);
587 else
588 vcpu->mmu.new_cr3(vcpu);
589 spin_unlock(&vcpu->kvm->lock);
591 EXPORT_SYMBOL_GPL(set_cr3);
593 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
595 if ( cr8 & CR8_RESEVED_BITS) {
596 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
597 inject_gp(vcpu);
598 return;
600 vcpu->cr8 = cr8;
602 EXPORT_SYMBOL_GPL(set_cr8);
604 void fx_init(struct kvm_vcpu *vcpu)
606 struct __attribute__ ((__packed__)) fx_image_s {
607 u16 control; //fcw
608 u16 status; //fsw
609 u16 tag; // ftw
610 u16 opcode; //fop
611 u64 ip; // fpu ip
612 u64 operand;// fpu dp
613 u32 mxcsr;
614 u32 mxcsr_mask;
616 } *fx_image;
618 fx_save(vcpu->host_fx_image);
619 fpu_init();
620 fx_save(vcpu->guest_fx_image);
621 fx_restore(vcpu->host_fx_image);
623 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
624 fx_image->mxcsr = 0x1f80;
625 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
626 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
628 EXPORT_SYMBOL_GPL(fx_init);
630 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
632 spin_lock(&vcpu->kvm->lock);
633 kvm_mmu_slot_remove_write_access(vcpu, slot);
634 spin_unlock(&vcpu->kvm->lock);
638 * Allocate some memory and give it an address in the guest physical address
639 * space.
641 * Discontiguous memory is allowed, mostly for framebuffers.
643 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
644 struct kvm_memory_region *mem)
646 int r;
647 gfn_t base_gfn;
648 unsigned long npages;
649 unsigned long i;
650 struct kvm_memory_slot *memslot;
651 struct kvm_memory_slot old, new;
652 int memory_config_version;
654 r = -EINVAL;
655 /* General sanity checks */
656 if (mem->memory_size & (PAGE_SIZE - 1))
657 goto out;
658 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
659 goto out;
660 if (mem->slot >= KVM_MEMORY_SLOTS)
661 goto out;
662 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
663 goto out;
665 memslot = &kvm->memslots[mem->slot];
666 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
667 npages = mem->memory_size >> PAGE_SHIFT;
669 if (!npages)
670 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
672 raced:
673 spin_lock(&kvm->lock);
675 memory_config_version = kvm->memory_config_version;
676 new = old = *memslot;
678 new.base_gfn = base_gfn;
679 new.npages = npages;
680 new.flags = mem->flags;
682 /* Disallow changing a memory slot's size. */
683 r = -EINVAL;
684 if (npages && old.npages && npages != old.npages)
685 goto out_unlock;
687 /* Check for overlaps */
688 r = -EEXIST;
689 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
690 struct kvm_memory_slot *s = &kvm->memslots[i];
692 if (s == memslot)
693 continue;
694 if (!((base_gfn + npages <= s->base_gfn) ||
695 (base_gfn >= s->base_gfn + s->npages)))
696 goto out_unlock;
699 * Do memory allocations outside lock. memory_config_version will
700 * detect any races.
702 spin_unlock(&kvm->lock);
704 /* Deallocate if slot is being removed */
705 if (!npages)
706 new.phys_mem = NULL;
708 /* Free page dirty bitmap if unneeded */
709 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
710 new.dirty_bitmap = NULL;
712 r = -ENOMEM;
714 /* Allocate if a slot is being created */
715 if (npages && !new.phys_mem) {
716 new.phys_mem = vmalloc(npages * sizeof(struct page *));
718 if (!new.phys_mem)
719 goto out_free;
721 memset(new.phys_mem, 0, npages * sizeof(struct page *));
722 for (i = 0; i < npages; ++i) {
723 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
724 | __GFP_ZERO);
725 if (!new.phys_mem[i])
726 goto out_free;
727 set_page_private(new.phys_mem[i],0);
731 /* Allocate page dirty bitmap if needed */
732 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
733 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
735 new.dirty_bitmap = vmalloc(dirty_bytes);
736 if (!new.dirty_bitmap)
737 goto out_free;
738 memset(new.dirty_bitmap, 0, dirty_bytes);
741 spin_lock(&kvm->lock);
743 if (memory_config_version != kvm->memory_config_version) {
744 spin_unlock(&kvm->lock);
745 kvm_free_physmem_slot(&new, &old);
746 goto raced;
749 r = -EAGAIN;
750 if (kvm->busy)
751 goto out_unlock;
753 if (mem->slot >= kvm->nmemslots)
754 kvm->nmemslots = mem->slot + 1;
756 *memslot = new;
757 ++kvm->memory_config_version;
759 spin_unlock(&kvm->lock);
761 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
762 struct kvm_vcpu *vcpu;
764 vcpu = vcpu_load_slot(kvm, i);
765 if (!vcpu)
766 continue;
767 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
768 do_remove_write_access(vcpu, mem->slot);
769 kvm_mmu_reset_context(vcpu);
770 vcpu_put(vcpu);
773 kvm_free_physmem_slot(&old, &new);
774 return 0;
776 out_unlock:
777 spin_unlock(&kvm->lock);
778 out_free:
779 kvm_free_physmem_slot(&new, &old);
780 out:
781 return r;
785 * Get (and clear) the dirty memory log for a memory slot.
787 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
788 struct kvm_dirty_log *log)
790 struct kvm_memory_slot *memslot;
791 int r, i;
792 int n;
793 int cleared;
794 unsigned long any = 0;
796 spin_lock(&kvm->lock);
799 * Prevent changes to guest memory configuration even while the lock
800 * is not taken.
802 ++kvm->busy;
803 spin_unlock(&kvm->lock);
804 r = -EINVAL;
805 if (log->slot >= KVM_MEMORY_SLOTS)
806 goto out;
808 memslot = &kvm->memslots[log->slot];
809 r = -ENOENT;
810 if (!memslot->dirty_bitmap)
811 goto out;
813 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
815 for (i = 0; !any && i < n/sizeof(long); ++i)
816 any = memslot->dirty_bitmap[i];
818 r = -EFAULT;
819 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
820 goto out;
822 if (any) {
823 cleared = 0;
824 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
825 struct kvm_vcpu *vcpu;
827 vcpu = vcpu_load_slot(kvm, i);
828 if (!vcpu)
829 continue;
830 if (!cleared) {
831 do_remove_write_access(vcpu, log->slot);
832 memset(memslot->dirty_bitmap, 0, n);
833 cleared = 1;
835 kvm_arch_ops->tlb_flush(vcpu);
836 vcpu_put(vcpu);
840 r = 0;
842 out:
843 spin_lock(&kvm->lock);
844 --kvm->busy;
845 spin_unlock(&kvm->lock);
846 return r;
850 * Set a new alias region. Aliases map a portion of physical memory into
851 * another portion. This is useful for memory windows, for example the PC
852 * VGA region.
854 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
855 struct kvm_memory_alias *alias)
857 int r, n;
858 struct kvm_mem_alias *p;
860 r = -EINVAL;
861 /* General sanity checks */
862 if (alias->memory_size & (PAGE_SIZE - 1))
863 goto out;
864 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
865 goto out;
866 if (alias->slot >= KVM_ALIAS_SLOTS)
867 goto out;
868 if (alias->guest_phys_addr + alias->memory_size
869 < alias->guest_phys_addr)
870 goto out;
871 if (alias->target_phys_addr + alias->memory_size
872 < alias->target_phys_addr)
873 goto out;
875 spin_lock(&kvm->lock);
877 p = &kvm->aliases[alias->slot];
878 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
879 p->npages = alias->memory_size >> PAGE_SHIFT;
880 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
882 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
883 if (kvm->aliases[n - 1].npages)
884 break;
885 kvm->naliases = n;
887 spin_unlock(&kvm->lock);
889 vcpu_load(&kvm->vcpus[0]);
890 spin_lock(&kvm->lock);
891 kvm_mmu_zap_all(&kvm->vcpus[0]);
892 spin_unlock(&kvm->lock);
893 vcpu_put(&kvm->vcpus[0]);
895 return 0;
897 out:
898 return r;
901 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
903 int i;
904 struct kvm_mem_alias *alias;
906 for (i = 0; i < kvm->naliases; ++i) {
907 alias = &kvm->aliases[i];
908 if (gfn >= alias->base_gfn
909 && gfn < alias->base_gfn + alias->npages)
910 return alias->target_gfn + gfn - alias->base_gfn;
912 return gfn;
915 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
917 int i;
919 for (i = 0; i < kvm->nmemslots; ++i) {
920 struct kvm_memory_slot *memslot = &kvm->memslots[i];
922 if (gfn >= memslot->base_gfn
923 && gfn < memslot->base_gfn + memslot->npages)
924 return memslot;
926 return NULL;
929 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
931 gfn = unalias_gfn(kvm, gfn);
932 return __gfn_to_memslot(kvm, gfn);
935 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
937 struct kvm_memory_slot *slot;
939 gfn = unalias_gfn(kvm, gfn);
940 slot = __gfn_to_memslot(kvm, gfn);
941 if (!slot)
942 return NULL;
943 return slot->phys_mem[gfn - slot->base_gfn];
945 EXPORT_SYMBOL_GPL(gfn_to_page);
947 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
949 int i;
950 struct kvm_memory_slot *memslot = NULL;
951 unsigned long rel_gfn;
953 for (i = 0; i < kvm->nmemslots; ++i) {
954 memslot = &kvm->memslots[i];
956 if (gfn >= memslot->base_gfn
957 && gfn < memslot->base_gfn + memslot->npages) {
959 if (!memslot || !memslot->dirty_bitmap)
960 return;
962 rel_gfn = gfn - memslot->base_gfn;
964 /* avoid RMW */
965 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
966 set_bit(rel_gfn, memslot->dirty_bitmap);
967 return;
972 static int emulator_read_std(unsigned long addr,
973 void *val,
974 unsigned int bytes,
975 struct x86_emulate_ctxt *ctxt)
977 struct kvm_vcpu *vcpu = ctxt->vcpu;
978 void *data = val;
980 while (bytes) {
981 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
982 unsigned offset = addr & (PAGE_SIZE-1);
983 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
984 unsigned long pfn;
985 struct page *page;
986 void *page_virt;
988 if (gpa == UNMAPPED_GVA)
989 return X86EMUL_PROPAGATE_FAULT;
990 pfn = gpa >> PAGE_SHIFT;
991 page = gfn_to_page(vcpu->kvm, pfn);
992 if (!page)
993 return X86EMUL_UNHANDLEABLE;
994 page_virt = kmap_atomic(page, KM_USER0);
996 memcpy(data, page_virt + offset, tocopy);
998 kunmap_atomic(page_virt, KM_USER0);
1000 bytes -= tocopy;
1001 data += tocopy;
1002 addr += tocopy;
1005 return X86EMUL_CONTINUE;
1008 static int emulator_write_std(unsigned long addr,
1009 const void *val,
1010 unsigned int bytes,
1011 struct x86_emulate_ctxt *ctxt)
1013 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1014 addr, bytes);
1015 return X86EMUL_UNHANDLEABLE;
1018 static int emulator_read_emulated(unsigned long addr,
1019 void *val,
1020 unsigned int bytes,
1021 struct x86_emulate_ctxt *ctxt)
1023 struct kvm_vcpu *vcpu = ctxt->vcpu;
1025 if (vcpu->mmio_read_completed) {
1026 memcpy(val, vcpu->mmio_data, bytes);
1027 vcpu->mmio_read_completed = 0;
1028 return X86EMUL_CONTINUE;
1029 } else if (emulator_read_std(addr, val, bytes, ctxt)
1030 == X86EMUL_CONTINUE)
1031 return X86EMUL_CONTINUE;
1032 else {
1033 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1035 if (gpa == UNMAPPED_GVA)
1036 return X86EMUL_PROPAGATE_FAULT;
1037 vcpu->mmio_needed = 1;
1038 vcpu->mmio_phys_addr = gpa;
1039 vcpu->mmio_size = bytes;
1040 vcpu->mmio_is_write = 0;
1042 return X86EMUL_UNHANDLEABLE;
1046 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1047 const void *val, int bytes)
1049 struct page *page;
1050 void *virt;
1052 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1053 return 0;
1054 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1055 if (!page)
1056 return 0;
1057 kvm_mmu_pre_write(vcpu, gpa, bytes);
1058 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1059 virt = kmap_atomic(page, KM_USER0);
1060 memcpy(virt + offset_in_page(gpa), val, bytes);
1061 kunmap_atomic(virt, KM_USER0);
1062 kvm_mmu_post_write(vcpu, gpa, bytes);
1063 return 1;
1066 static int emulator_write_emulated(unsigned long addr,
1067 const void *val,
1068 unsigned int bytes,
1069 struct x86_emulate_ctxt *ctxt)
1071 struct kvm_vcpu *vcpu = ctxt->vcpu;
1072 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1074 if (gpa == UNMAPPED_GVA) {
1075 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1076 return X86EMUL_PROPAGATE_FAULT;
1079 if (emulator_write_phys(vcpu, gpa, val, bytes))
1080 return X86EMUL_CONTINUE;
1082 vcpu->mmio_needed = 1;
1083 vcpu->mmio_phys_addr = gpa;
1084 vcpu->mmio_size = bytes;
1085 vcpu->mmio_is_write = 1;
1086 memcpy(vcpu->mmio_data, val, bytes);
1088 return X86EMUL_CONTINUE;
1091 static int emulator_cmpxchg_emulated(unsigned long addr,
1092 const void *old,
1093 const void *new,
1094 unsigned int bytes,
1095 struct x86_emulate_ctxt *ctxt)
1097 static int reported;
1099 if (!reported) {
1100 reported = 1;
1101 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1103 return emulator_write_emulated(addr, new, bytes, ctxt);
1106 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1108 return kvm_arch_ops->get_segment_base(vcpu, seg);
1111 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1113 return X86EMUL_CONTINUE;
1116 int emulate_clts(struct kvm_vcpu *vcpu)
1118 unsigned long cr0;
1120 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1121 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1122 kvm_arch_ops->set_cr0(vcpu, cr0);
1123 return X86EMUL_CONTINUE;
1126 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1128 struct kvm_vcpu *vcpu = ctxt->vcpu;
1130 switch (dr) {
1131 case 0 ... 3:
1132 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1133 return X86EMUL_CONTINUE;
1134 default:
1135 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1136 __FUNCTION__, dr);
1137 return X86EMUL_UNHANDLEABLE;
1141 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1143 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1144 int exception;
1146 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1147 if (exception) {
1148 /* FIXME: better handling */
1149 return X86EMUL_UNHANDLEABLE;
1151 return X86EMUL_CONTINUE;
1154 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1156 static int reported;
1157 u8 opcodes[4];
1158 unsigned long rip = ctxt->vcpu->rip;
1159 unsigned long rip_linear;
1161 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1163 if (reported)
1164 return;
1166 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1168 printk(KERN_ERR "emulation failed but !mmio_needed?"
1169 " rip %lx %02x %02x %02x %02x\n",
1170 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1171 reported = 1;
1174 struct x86_emulate_ops emulate_ops = {
1175 .read_std = emulator_read_std,
1176 .write_std = emulator_write_std,
1177 .read_emulated = emulator_read_emulated,
1178 .write_emulated = emulator_write_emulated,
1179 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1182 int emulate_instruction(struct kvm_vcpu *vcpu,
1183 struct kvm_run *run,
1184 unsigned long cr2,
1185 u16 error_code)
1187 struct x86_emulate_ctxt emulate_ctxt;
1188 int r;
1189 int cs_db, cs_l;
1191 kvm_arch_ops->cache_regs(vcpu);
1193 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1195 emulate_ctxt.vcpu = vcpu;
1196 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1197 emulate_ctxt.cr2 = cr2;
1198 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1199 ? X86EMUL_MODE_REAL : cs_l
1200 ? X86EMUL_MODE_PROT64 : cs_db
1201 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1203 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1204 emulate_ctxt.cs_base = 0;
1205 emulate_ctxt.ds_base = 0;
1206 emulate_ctxt.es_base = 0;
1207 emulate_ctxt.ss_base = 0;
1208 } else {
1209 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1210 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1211 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1212 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1215 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1216 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1218 vcpu->mmio_is_write = 0;
1219 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1221 if ((r || vcpu->mmio_is_write) && run) {
1222 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1223 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1224 run->mmio.len = vcpu->mmio_size;
1225 run->mmio.is_write = vcpu->mmio_is_write;
1228 if (r) {
1229 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1230 return EMULATE_DONE;
1231 if (!vcpu->mmio_needed) {
1232 report_emulation_failure(&emulate_ctxt);
1233 return EMULATE_FAIL;
1235 return EMULATE_DO_MMIO;
1238 kvm_arch_ops->decache_regs(vcpu);
1239 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1241 if (vcpu->mmio_is_write)
1242 return EMULATE_DO_MMIO;
1244 return EMULATE_DONE;
1246 EXPORT_SYMBOL_GPL(emulate_instruction);
1248 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1250 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1252 kvm_arch_ops->cache_regs(vcpu);
1253 ret = -KVM_EINVAL;
1254 #ifdef CONFIG_X86_64
1255 if (is_long_mode(vcpu)) {
1256 nr = vcpu->regs[VCPU_REGS_RAX];
1257 a0 = vcpu->regs[VCPU_REGS_RDI];
1258 a1 = vcpu->regs[VCPU_REGS_RSI];
1259 a2 = vcpu->regs[VCPU_REGS_RDX];
1260 a3 = vcpu->regs[VCPU_REGS_RCX];
1261 a4 = vcpu->regs[VCPU_REGS_R8];
1262 a5 = vcpu->regs[VCPU_REGS_R9];
1263 } else
1264 #endif
1266 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1267 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1268 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1269 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1270 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1271 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1272 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1274 switch (nr) {
1275 default:
1276 run->hypercall.args[0] = a0;
1277 run->hypercall.args[1] = a1;
1278 run->hypercall.args[2] = a2;
1279 run->hypercall.args[3] = a3;
1280 run->hypercall.args[4] = a4;
1281 run->hypercall.args[5] = a5;
1282 run->hypercall.ret = ret;
1283 run->hypercall.longmode = is_long_mode(vcpu);
1284 kvm_arch_ops->decache_regs(vcpu);
1285 return 0;
1287 vcpu->regs[VCPU_REGS_RAX] = ret;
1288 kvm_arch_ops->decache_regs(vcpu);
1289 return 1;
1291 EXPORT_SYMBOL_GPL(kvm_hypercall);
1293 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1295 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1298 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1300 struct descriptor_table dt = { limit, base };
1302 kvm_arch_ops->set_gdt(vcpu, &dt);
1305 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1307 struct descriptor_table dt = { limit, base };
1309 kvm_arch_ops->set_idt(vcpu, &dt);
1312 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1313 unsigned long *rflags)
1315 lmsw(vcpu, msw);
1316 *rflags = kvm_arch_ops->get_rflags(vcpu);
1319 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1321 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1322 switch (cr) {
1323 case 0:
1324 return vcpu->cr0;
1325 case 2:
1326 return vcpu->cr2;
1327 case 3:
1328 return vcpu->cr3;
1329 case 4:
1330 return vcpu->cr4;
1331 default:
1332 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1333 return 0;
1337 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1338 unsigned long *rflags)
1340 switch (cr) {
1341 case 0:
1342 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1343 *rflags = kvm_arch_ops->get_rflags(vcpu);
1344 break;
1345 case 2:
1346 vcpu->cr2 = val;
1347 break;
1348 case 3:
1349 set_cr3(vcpu, val);
1350 break;
1351 case 4:
1352 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1353 break;
1354 default:
1355 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1360 * Register the para guest with the host:
1362 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1364 struct kvm_vcpu_para_state *para_state;
1365 hpa_t para_state_hpa, hypercall_hpa;
1366 struct page *para_state_page;
1367 unsigned char *hypercall;
1368 gpa_t hypercall_gpa;
1370 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1371 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1374 * Needs to be page aligned:
1376 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1377 goto err_gp;
1379 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1380 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1381 if (is_error_hpa(para_state_hpa))
1382 goto err_gp;
1384 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1385 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1386 para_state = kmap_atomic(para_state_page, KM_USER0);
1388 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1389 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1391 para_state->host_version = KVM_PARA_API_VERSION;
1393 * We cannot support guests that try to register themselves
1394 * with a newer API version than the host supports:
1396 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1397 para_state->ret = -KVM_EINVAL;
1398 goto err_kunmap_skip;
1401 hypercall_gpa = para_state->hypercall_gpa;
1402 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1403 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1404 if (is_error_hpa(hypercall_hpa)) {
1405 para_state->ret = -KVM_EINVAL;
1406 goto err_kunmap_skip;
1409 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1410 vcpu->para_state_page = para_state_page;
1411 vcpu->para_state_gpa = para_state_gpa;
1412 vcpu->hypercall_gpa = hypercall_gpa;
1414 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1415 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1416 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1417 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1418 kunmap_atomic(hypercall, KM_USER1);
1420 para_state->ret = 0;
1421 err_kunmap_skip:
1422 kunmap_atomic(para_state, KM_USER0);
1423 return 0;
1424 err_gp:
1425 return 1;
1428 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1430 u64 data;
1432 switch (msr) {
1433 case 0xc0010010: /* SYSCFG */
1434 case 0xc0010015: /* HWCR */
1435 case MSR_IA32_PLATFORM_ID:
1436 case MSR_IA32_P5_MC_ADDR:
1437 case MSR_IA32_P5_MC_TYPE:
1438 case MSR_IA32_MC0_CTL:
1439 case MSR_IA32_MCG_STATUS:
1440 case MSR_IA32_MCG_CAP:
1441 case MSR_IA32_MC0_MISC:
1442 case MSR_IA32_MC0_MISC+4:
1443 case MSR_IA32_MC0_MISC+8:
1444 case MSR_IA32_MC0_MISC+12:
1445 case MSR_IA32_MC0_MISC+16:
1446 case MSR_IA32_UCODE_REV:
1447 case MSR_IA32_PERF_STATUS:
1448 /* MTRR registers */
1449 case 0xfe:
1450 case 0x200 ... 0x2ff:
1451 data = 0;
1452 break;
1453 case 0xcd: /* fsb frequency */
1454 data = 3;
1455 break;
1456 case MSR_IA32_APICBASE:
1457 data = vcpu->apic_base;
1458 break;
1459 case MSR_IA32_MISC_ENABLE:
1460 data = vcpu->ia32_misc_enable_msr;
1461 break;
1462 #ifdef CONFIG_X86_64
1463 case MSR_EFER:
1464 data = vcpu->shadow_efer;
1465 break;
1466 #endif
1467 default:
1468 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1469 return 1;
1471 *pdata = data;
1472 return 0;
1474 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1477 * Reads an msr value (of 'msr_index') into 'pdata'.
1478 * Returns 0 on success, non-0 otherwise.
1479 * Assumes vcpu_load() was already called.
1481 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1483 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1486 #ifdef CONFIG_X86_64
1488 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1490 if (efer & EFER_RESERVED_BITS) {
1491 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1492 efer);
1493 inject_gp(vcpu);
1494 return;
1497 if (is_paging(vcpu)
1498 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1499 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1500 inject_gp(vcpu);
1501 return;
1504 kvm_arch_ops->set_efer(vcpu, efer);
1506 efer &= ~EFER_LMA;
1507 efer |= vcpu->shadow_efer & EFER_LMA;
1509 vcpu->shadow_efer = efer;
1512 #endif
1514 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1516 switch (msr) {
1517 #ifdef CONFIG_X86_64
1518 case MSR_EFER:
1519 set_efer(vcpu, data);
1520 break;
1521 #endif
1522 case MSR_IA32_MC0_STATUS:
1523 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1524 __FUNCTION__, data);
1525 break;
1526 case MSR_IA32_MCG_STATUS:
1527 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1528 __FUNCTION__, data);
1529 break;
1530 case MSR_IA32_UCODE_REV:
1531 case MSR_IA32_UCODE_WRITE:
1532 case 0x200 ... 0x2ff: /* MTRRs */
1533 break;
1534 case MSR_IA32_APICBASE:
1535 vcpu->apic_base = data;
1536 break;
1537 case MSR_IA32_MISC_ENABLE:
1538 vcpu->ia32_misc_enable_msr = data;
1539 break;
1541 * This is the 'probe whether the host is KVM' logic:
1543 case MSR_KVM_API_MAGIC:
1544 return vcpu_register_para(vcpu, data);
1546 default:
1547 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1548 return 1;
1550 return 0;
1552 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1555 * Writes msr value into into the appropriate "register".
1556 * Returns 0 on success, non-0 otherwise.
1557 * Assumes vcpu_load() was already called.
1559 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1561 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1564 void kvm_resched(struct kvm_vcpu *vcpu)
1566 if (!need_resched())
1567 return;
1568 vcpu_put(vcpu);
1569 cond_resched();
1570 vcpu_load(vcpu);
1572 EXPORT_SYMBOL_GPL(kvm_resched);
1574 void load_msrs(struct vmx_msr_entry *e, int n)
1576 int i;
1578 for (i = 0; i < n; ++i)
1579 wrmsrl(e[i].index, e[i].data);
1581 EXPORT_SYMBOL_GPL(load_msrs);
1583 void save_msrs(struct vmx_msr_entry *e, int n)
1585 int i;
1587 for (i = 0; i < n; ++i)
1588 rdmsrl(e[i].index, e[i].data);
1590 EXPORT_SYMBOL_GPL(save_msrs);
1592 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1594 int i;
1595 u32 function;
1596 struct kvm_cpuid_entry *e, *best;
1598 kvm_arch_ops->cache_regs(vcpu);
1599 function = vcpu->regs[VCPU_REGS_RAX];
1600 vcpu->regs[VCPU_REGS_RAX] = 0;
1601 vcpu->regs[VCPU_REGS_RBX] = 0;
1602 vcpu->regs[VCPU_REGS_RCX] = 0;
1603 vcpu->regs[VCPU_REGS_RDX] = 0;
1604 best = NULL;
1605 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1606 e = &vcpu->cpuid_entries[i];
1607 if (e->function == function) {
1608 best = e;
1609 break;
1612 * Both basic or both extended?
1614 if (((e->function ^ function) & 0x80000000) == 0)
1615 if (!best || e->function > best->function)
1616 best = e;
1618 if (best) {
1619 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1620 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1621 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1622 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1624 kvm_arch_ops->decache_regs(vcpu);
1625 kvm_arch_ops->skip_emulated_instruction(vcpu);
1627 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1629 static int pio_copy_data(struct kvm_vcpu *vcpu)
1631 void *p = vcpu->pio_data;
1632 void *q;
1633 unsigned bytes;
1634 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1636 kvm_arch_ops->vcpu_put(vcpu);
1637 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1638 PAGE_KERNEL);
1639 if (!q) {
1640 kvm_arch_ops->vcpu_load(vcpu);
1641 free_pio_guest_pages(vcpu);
1642 return -ENOMEM;
1644 q += vcpu->pio.guest_page_offset;
1645 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1646 if (vcpu->pio.in)
1647 memcpy(q, p, bytes);
1648 else
1649 memcpy(p, q, bytes);
1650 q -= vcpu->pio.guest_page_offset;
1651 vunmap(q);
1652 kvm_arch_ops->vcpu_load(vcpu);
1653 free_pio_guest_pages(vcpu);
1654 return 0;
1657 static int complete_pio(struct kvm_vcpu *vcpu)
1659 struct kvm_pio_request *io = &vcpu->pio;
1660 long delta;
1661 int r;
1663 kvm_arch_ops->cache_regs(vcpu);
1665 if (!io->string) {
1666 if (io->in)
1667 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1668 io->size);
1669 } else {
1670 if (io->in) {
1671 r = pio_copy_data(vcpu);
1672 if (r) {
1673 kvm_arch_ops->cache_regs(vcpu);
1674 return r;
1678 delta = 1;
1679 if (io->rep) {
1680 delta *= io->cur_count;
1682 * The size of the register should really depend on
1683 * current address size.
1685 vcpu->regs[VCPU_REGS_RCX] -= delta;
1687 if (io->down)
1688 delta = -delta;
1689 delta *= io->size;
1690 if (io->in)
1691 vcpu->regs[VCPU_REGS_RDI] += delta;
1692 else
1693 vcpu->regs[VCPU_REGS_RSI] += delta;
1696 vcpu->run->io_completed = 0;
1698 kvm_arch_ops->decache_regs(vcpu);
1700 io->count -= io->cur_count;
1701 io->cur_count = 0;
1703 if (!io->count)
1704 kvm_arch_ops->skip_emulated_instruction(vcpu);
1705 return 0;
1708 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1709 int size, unsigned long count, int string, int down,
1710 gva_t address, int rep, unsigned port)
1712 unsigned now, in_page;
1713 int i;
1714 int nr_pages = 1;
1715 struct page *page;
1717 vcpu->run->exit_reason = KVM_EXIT_IO;
1718 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1719 vcpu->run->io.size = size;
1720 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1721 vcpu->run->io.count = count;
1722 vcpu->run->io.port = port;
1723 vcpu->pio.count = count;
1724 vcpu->pio.cur_count = count;
1725 vcpu->pio.size = size;
1726 vcpu->pio.in = in;
1727 vcpu->pio.string = string;
1728 vcpu->pio.down = down;
1729 vcpu->pio.guest_page_offset = offset_in_page(address);
1730 vcpu->pio.rep = rep;
1732 if (!string) {
1733 kvm_arch_ops->cache_regs(vcpu);
1734 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1735 kvm_arch_ops->decache_regs(vcpu);
1736 return 0;
1739 if (!count) {
1740 kvm_arch_ops->skip_emulated_instruction(vcpu);
1741 return 1;
1744 now = min(count, PAGE_SIZE / size);
1746 if (!down)
1747 in_page = PAGE_SIZE - offset_in_page(address);
1748 else
1749 in_page = offset_in_page(address) + size;
1750 now = min(count, (unsigned long)in_page / size);
1751 if (!now) {
1753 * String I/O straddles page boundary. Pin two guest pages
1754 * so that we satisfy atomicity constraints. Do just one
1755 * transaction to avoid complexity.
1757 nr_pages = 2;
1758 now = 1;
1760 if (down) {
1762 * String I/O in reverse. Yuck. Kill the guest, fix later.
1764 printk(KERN_ERR "kvm: guest string pio down\n");
1765 inject_gp(vcpu);
1766 return 1;
1768 vcpu->run->io.count = now;
1769 vcpu->pio.cur_count = now;
1771 for (i = 0; i < nr_pages; ++i) {
1772 spin_lock(&vcpu->kvm->lock);
1773 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1774 if (page)
1775 get_page(page);
1776 vcpu->pio.guest_pages[i] = page;
1777 spin_unlock(&vcpu->kvm->lock);
1778 if (!page) {
1779 inject_gp(vcpu);
1780 free_pio_guest_pages(vcpu);
1781 return 1;
1785 if (!vcpu->pio.in)
1786 return pio_copy_data(vcpu);
1787 return 0;
1789 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1791 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1793 int r;
1794 sigset_t sigsaved;
1796 vcpu_load(vcpu);
1798 if (vcpu->sigset_active)
1799 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1801 /* re-sync apic's tpr */
1802 vcpu->cr8 = kvm_run->cr8;
1804 if (kvm_run->io_completed) {
1805 if (vcpu->pio.cur_count) {
1806 r = complete_pio(vcpu);
1807 if (r)
1808 goto out;
1809 } else {
1810 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1811 vcpu->mmio_read_completed = 1;
1815 vcpu->mmio_needed = 0;
1817 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1818 kvm_arch_ops->cache_regs(vcpu);
1819 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1820 kvm_arch_ops->decache_regs(vcpu);
1823 r = kvm_arch_ops->run(vcpu, kvm_run);
1825 out:
1826 if (vcpu->sigset_active)
1827 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1829 vcpu_put(vcpu);
1830 return r;
1833 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1834 struct kvm_regs *regs)
1836 vcpu_load(vcpu);
1838 kvm_arch_ops->cache_regs(vcpu);
1840 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1841 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1842 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1843 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1844 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1845 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1846 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1847 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1848 #ifdef CONFIG_X86_64
1849 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1850 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1851 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1852 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1853 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1854 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1855 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1856 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1857 #endif
1859 regs->rip = vcpu->rip;
1860 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1863 * Don't leak debug flags in case they were set for guest debugging
1865 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1866 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1868 vcpu_put(vcpu);
1870 return 0;
1873 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1874 struct kvm_regs *regs)
1876 vcpu_load(vcpu);
1878 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1879 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1880 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1881 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1882 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1883 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1884 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1885 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1886 #ifdef CONFIG_X86_64
1887 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1888 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1889 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1890 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1891 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1892 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1893 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1894 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1895 #endif
1897 vcpu->rip = regs->rip;
1898 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1900 kvm_arch_ops->decache_regs(vcpu);
1902 vcpu_put(vcpu);
1904 return 0;
1907 static void get_segment(struct kvm_vcpu *vcpu,
1908 struct kvm_segment *var, int seg)
1910 return kvm_arch_ops->get_segment(vcpu, var, seg);
1913 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1914 struct kvm_sregs *sregs)
1916 struct descriptor_table dt;
1918 vcpu_load(vcpu);
1920 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1921 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1922 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1923 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1924 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1925 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1927 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1928 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1930 kvm_arch_ops->get_idt(vcpu, &dt);
1931 sregs->idt.limit = dt.limit;
1932 sregs->idt.base = dt.base;
1933 kvm_arch_ops->get_gdt(vcpu, &dt);
1934 sregs->gdt.limit = dt.limit;
1935 sregs->gdt.base = dt.base;
1937 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1938 sregs->cr0 = vcpu->cr0;
1939 sregs->cr2 = vcpu->cr2;
1940 sregs->cr3 = vcpu->cr3;
1941 sregs->cr4 = vcpu->cr4;
1942 sregs->cr8 = vcpu->cr8;
1943 sregs->efer = vcpu->shadow_efer;
1944 sregs->apic_base = vcpu->apic_base;
1946 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1947 sizeof sregs->interrupt_bitmap);
1949 vcpu_put(vcpu);
1951 return 0;
1954 static void set_segment(struct kvm_vcpu *vcpu,
1955 struct kvm_segment *var, int seg)
1957 return kvm_arch_ops->set_segment(vcpu, var, seg);
1960 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1961 struct kvm_sregs *sregs)
1963 int mmu_reset_needed = 0;
1964 int i;
1965 struct descriptor_table dt;
1967 vcpu_load(vcpu);
1969 dt.limit = sregs->idt.limit;
1970 dt.base = sregs->idt.base;
1971 kvm_arch_ops->set_idt(vcpu, &dt);
1972 dt.limit = sregs->gdt.limit;
1973 dt.base = sregs->gdt.base;
1974 kvm_arch_ops->set_gdt(vcpu, &dt);
1976 vcpu->cr2 = sregs->cr2;
1977 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1978 vcpu->cr3 = sregs->cr3;
1980 vcpu->cr8 = sregs->cr8;
1982 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1983 #ifdef CONFIG_X86_64
1984 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1985 #endif
1986 vcpu->apic_base = sregs->apic_base;
1988 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1990 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1991 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
1993 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1994 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1995 if (!is_long_mode(vcpu) && is_pae(vcpu))
1996 load_pdptrs(vcpu, vcpu->cr3);
1998 if (mmu_reset_needed)
1999 kvm_mmu_reset_context(vcpu);
2001 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2002 sizeof vcpu->irq_pending);
2003 vcpu->irq_summary = 0;
2004 for (i = 0; i < NR_IRQ_WORDS; ++i)
2005 if (vcpu->irq_pending[i])
2006 __set_bit(i, &vcpu->irq_summary);
2008 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2009 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2010 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2011 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2012 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2013 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2015 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2016 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2018 vcpu_put(vcpu);
2020 return 0;
2024 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2025 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2027 * This list is modified at module load time to reflect the
2028 * capabilities of the host cpu.
2030 static u32 msrs_to_save[] = {
2031 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2032 MSR_K6_STAR,
2033 #ifdef CONFIG_X86_64
2034 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2035 #endif
2036 MSR_IA32_TIME_STAMP_COUNTER,
2039 static unsigned num_msrs_to_save;
2041 static u32 emulated_msrs[] = {
2042 MSR_IA32_MISC_ENABLE,
2045 static __init void kvm_init_msr_list(void)
2047 u32 dummy[2];
2048 unsigned i, j;
2050 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2051 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2052 continue;
2053 if (j < i)
2054 msrs_to_save[j] = msrs_to_save[i];
2055 j++;
2057 num_msrs_to_save = j;
2061 * Adapt set_msr() to msr_io()'s calling convention
2063 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2065 return set_msr(vcpu, index, *data);
2069 * Read or write a bunch of msrs. All parameters are kernel addresses.
2071 * @return number of msrs set successfully.
2073 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2074 struct kvm_msr_entry *entries,
2075 int (*do_msr)(struct kvm_vcpu *vcpu,
2076 unsigned index, u64 *data))
2078 int i;
2080 vcpu_load(vcpu);
2082 for (i = 0; i < msrs->nmsrs; ++i)
2083 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2084 break;
2086 vcpu_put(vcpu);
2088 return i;
2092 * Read or write a bunch of msrs. Parameters are user addresses.
2094 * @return number of msrs set successfully.
2096 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2097 int (*do_msr)(struct kvm_vcpu *vcpu,
2098 unsigned index, u64 *data),
2099 int writeback)
2101 struct kvm_msrs msrs;
2102 struct kvm_msr_entry *entries;
2103 int r, n;
2104 unsigned size;
2106 r = -EFAULT;
2107 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2108 goto out;
2110 r = -E2BIG;
2111 if (msrs.nmsrs >= MAX_IO_MSRS)
2112 goto out;
2114 r = -ENOMEM;
2115 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2116 entries = vmalloc(size);
2117 if (!entries)
2118 goto out;
2120 r = -EFAULT;
2121 if (copy_from_user(entries, user_msrs->entries, size))
2122 goto out_free;
2124 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2125 if (r < 0)
2126 goto out_free;
2128 r = -EFAULT;
2129 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2130 goto out_free;
2132 r = n;
2134 out_free:
2135 vfree(entries);
2136 out:
2137 return r;
2141 * Translate a guest virtual address to a guest physical address.
2143 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2144 struct kvm_translation *tr)
2146 unsigned long vaddr = tr->linear_address;
2147 gpa_t gpa;
2149 vcpu_load(vcpu);
2150 spin_lock(&vcpu->kvm->lock);
2151 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2152 tr->physical_address = gpa;
2153 tr->valid = gpa != UNMAPPED_GVA;
2154 tr->writeable = 1;
2155 tr->usermode = 0;
2156 spin_unlock(&vcpu->kvm->lock);
2157 vcpu_put(vcpu);
2159 return 0;
2162 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2163 struct kvm_interrupt *irq)
2165 if (irq->irq < 0 || irq->irq >= 256)
2166 return -EINVAL;
2167 vcpu_load(vcpu);
2169 set_bit(irq->irq, vcpu->irq_pending);
2170 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2172 vcpu_put(vcpu);
2174 return 0;
2177 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2178 struct kvm_debug_guest *dbg)
2180 int r;
2182 vcpu_load(vcpu);
2184 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2186 vcpu_put(vcpu);
2188 return r;
2191 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2192 unsigned long address,
2193 int *type)
2195 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2196 unsigned long pgoff;
2197 struct page *page;
2199 *type = VM_FAULT_MINOR;
2200 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2201 if (pgoff == 0)
2202 page = virt_to_page(vcpu->run);
2203 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2204 page = virt_to_page(vcpu->pio_data);
2205 else
2206 return NOPAGE_SIGBUS;
2207 get_page(page);
2208 return page;
2211 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2212 .nopage = kvm_vcpu_nopage,
2215 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2217 vma->vm_ops = &kvm_vcpu_vm_ops;
2218 return 0;
2221 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2223 struct kvm_vcpu *vcpu = filp->private_data;
2225 fput(vcpu->kvm->filp);
2226 return 0;
2229 static struct file_operations kvm_vcpu_fops = {
2230 .release = kvm_vcpu_release,
2231 .unlocked_ioctl = kvm_vcpu_ioctl,
2232 .compat_ioctl = kvm_vcpu_ioctl,
2233 .mmap = kvm_vcpu_mmap,
2237 * Allocates an inode for the vcpu.
2239 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2241 int fd, r;
2242 struct inode *inode;
2243 struct file *file;
2245 atomic_inc(&vcpu->kvm->filp->f_count);
2246 inode = kvmfs_inode(&kvm_vcpu_fops);
2247 if (IS_ERR(inode)) {
2248 r = PTR_ERR(inode);
2249 goto out1;
2252 file = kvmfs_file(inode, vcpu);
2253 if (IS_ERR(file)) {
2254 r = PTR_ERR(file);
2255 goto out2;
2258 r = get_unused_fd();
2259 if (r < 0)
2260 goto out3;
2261 fd = r;
2262 fd_install(fd, file);
2264 return fd;
2266 out3:
2267 fput(file);
2268 out2:
2269 iput(inode);
2270 out1:
2271 fput(vcpu->kvm->filp);
2272 return r;
2276 * Creates some virtual cpus. Good luck creating more than one.
2278 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2280 int r;
2281 struct kvm_vcpu *vcpu;
2282 struct page *page;
2284 r = -EINVAL;
2285 if (!valid_vcpu(n))
2286 goto out;
2288 vcpu = &kvm->vcpus[n];
2290 mutex_lock(&vcpu->mutex);
2292 if (vcpu->vmcs) {
2293 mutex_unlock(&vcpu->mutex);
2294 return -EEXIST;
2297 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2298 r = -ENOMEM;
2299 if (!page)
2300 goto out_unlock;
2301 vcpu->run = page_address(page);
2303 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2304 r = -ENOMEM;
2305 if (!page)
2306 goto out_free_run;
2307 vcpu->pio_data = page_address(page);
2309 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2310 FX_IMAGE_ALIGN);
2311 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2312 vcpu->cr0 = 0x10;
2314 r = kvm_arch_ops->vcpu_create(vcpu);
2315 if (r < 0)
2316 goto out_free_vcpus;
2318 r = kvm_mmu_create(vcpu);
2319 if (r < 0)
2320 goto out_free_vcpus;
2322 kvm_arch_ops->vcpu_load(vcpu);
2323 r = kvm_mmu_setup(vcpu);
2324 if (r >= 0)
2325 r = kvm_arch_ops->vcpu_setup(vcpu);
2326 vcpu_put(vcpu);
2328 if (r < 0)
2329 goto out_free_vcpus;
2331 r = create_vcpu_fd(vcpu);
2332 if (r < 0)
2333 goto out_free_vcpus;
2335 return r;
2337 out_free_vcpus:
2338 kvm_free_vcpu(vcpu);
2339 out_free_run:
2340 free_page((unsigned long)vcpu->run);
2341 vcpu->run = NULL;
2342 out_unlock:
2343 mutex_unlock(&vcpu->mutex);
2344 out:
2345 return r;
2348 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2349 struct kvm_cpuid *cpuid,
2350 struct kvm_cpuid_entry __user *entries)
2352 int r;
2354 r = -E2BIG;
2355 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2356 goto out;
2357 r = -EFAULT;
2358 if (copy_from_user(&vcpu->cpuid_entries, entries,
2359 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2360 goto out;
2361 vcpu->cpuid_nent = cpuid->nent;
2362 return 0;
2364 out:
2365 return r;
2368 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2370 if (sigset) {
2371 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2372 vcpu->sigset_active = 1;
2373 vcpu->sigset = *sigset;
2374 } else
2375 vcpu->sigset_active = 0;
2376 return 0;
2380 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2381 * we have asm/x86/processor.h
2383 struct fxsave {
2384 u16 cwd;
2385 u16 swd;
2386 u16 twd;
2387 u16 fop;
2388 u64 rip;
2389 u64 rdp;
2390 u32 mxcsr;
2391 u32 mxcsr_mask;
2392 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2393 #ifdef CONFIG_X86_64
2394 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2395 #else
2396 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2397 #endif
2400 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2402 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2404 vcpu_load(vcpu);
2406 memcpy(fpu->fpr, fxsave->st_space, 128);
2407 fpu->fcw = fxsave->cwd;
2408 fpu->fsw = fxsave->swd;
2409 fpu->ftwx = fxsave->twd;
2410 fpu->last_opcode = fxsave->fop;
2411 fpu->last_ip = fxsave->rip;
2412 fpu->last_dp = fxsave->rdp;
2413 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2415 vcpu_put(vcpu);
2417 return 0;
2420 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2422 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2424 vcpu_load(vcpu);
2426 memcpy(fxsave->st_space, fpu->fpr, 128);
2427 fxsave->cwd = fpu->fcw;
2428 fxsave->swd = fpu->fsw;
2429 fxsave->twd = fpu->ftwx;
2430 fxsave->fop = fpu->last_opcode;
2431 fxsave->rip = fpu->last_ip;
2432 fxsave->rdp = fpu->last_dp;
2433 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2435 vcpu_put(vcpu);
2437 return 0;
2440 static long kvm_vcpu_ioctl(struct file *filp,
2441 unsigned int ioctl, unsigned long arg)
2443 struct kvm_vcpu *vcpu = filp->private_data;
2444 void __user *argp = (void __user *)arg;
2445 int r = -EINVAL;
2447 switch (ioctl) {
2448 case KVM_RUN:
2449 r = -EINVAL;
2450 if (arg)
2451 goto out;
2452 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2453 break;
2454 case KVM_GET_REGS: {
2455 struct kvm_regs kvm_regs;
2457 memset(&kvm_regs, 0, sizeof kvm_regs);
2458 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2459 if (r)
2460 goto out;
2461 r = -EFAULT;
2462 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2463 goto out;
2464 r = 0;
2465 break;
2467 case KVM_SET_REGS: {
2468 struct kvm_regs kvm_regs;
2470 r = -EFAULT;
2471 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2472 goto out;
2473 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2474 if (r)
2475 goto out;
2476 r = 0;
2477 break;
2479 case KVM_GET_SREGS: {
2480 struct kvm_sregs kvm_sregs;
2482 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2483 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2484 if (r)
2485 goto out;
2486 r = -EFAULT;
2487 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2488 goto out;
2489 r = 0;
2490 break;
2492 case KVM_SET_SREGS: {
2493 struct kvm_sregs kvm_sregs;
2495 r = -EFAULT;
2496 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2497 goto out;
2498 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2499 if (r)
2500 goto out;
2501 r = 0;
2502 break;
2504 case KVM_TRANSLATE: {
2505 struct kvm_translation tr;
2507 r = -EFAULT;
2508 if (copy_from_user(&tr, argp, sizeof tr))
2509 goto out;
2510 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2511 if (r)
2512 goto out;
2513 r = -EFAULT;
2514 if (copy_to_user(argp, &tr, sizeof tr))
2515 goto out;
2516 r = 0;
2517 break;
2519 case KVM_INTERRUPT: {
2520 struct kvm_interrupt irq;
2522 r = -EFAULT;
2523 if (copy_from_user(&irq, argp, sizeof irq))
2524 goto out;
2525 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2526 if (r)
2527 goto out;
2528 r = 0;
2529 break;
2531 case KVM_DEBUG_GUEST: {
2532 struct kvm_debug_guest dbg;
2534 r = -EFAULT;
2535 if (copy_from_user(&dbg, argp, sizeof dbg))
2536 goto out;
2537 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2538 if (r)
2539 goto out;
2540 r = 0;
2541 break;
2543 case KVM_GET_MSRS:
2544 r = msr_io(vcpu, argp, get_msr, 1);
2545 break;
2546 case KVM_SET_MSRS:
2547 r = msr_io(vcpu, argp, do_set_msr, 0);
2548 break;
2549 case KVM_SET_CPUID: {
2550 struct kvm_cpuid __user *cpuid_arg = argp;
2551 struct kvm_cpuid cpuid;
2553 r = -EFAULT;
2554 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2555 goto out;
2556 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2557 if (r)
2558 goto out;
2559 break;
2561 case KVM_SET_SIGNAL_MASK: {
2562 struct kvm_signal_mask __user *sigmask_arg = argp;
2563 struct kvm_signal_mask kvm_sigmask;
2564 sigset_t sigset, *p;
2566 p = NULL;
2567 if (argp) {
2568 r = -EFAULT;
2569 if (copy_from_user(&kvm_sigmask, argp,
2570 sizeof kvm_sigmask))
2571 goto out;
2572 r = -EINVAL;
2573 if (kvm_sigmask.len != sizeof sigset)
2574 goto out;
2575 r = -EFAULT;
2576 if (copy_from_user(&sigset, sigmask_arg->sigset,
2577 sizeof sigset))
2578 goto out;
2579 p = &sigset;
2581 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2582 break;
2584 case KVM_GET_FPU: {
2585 struct kvm_fpu fpu;
2587 memset(&fpu, 0, sizeof fpu);
2588 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2589 if (r)
2590 goto out;
2591 r = -EFAULT;
2592 if (copy_to_user(argp, &fpu, sizeof fpu))
2593 goto out;
2594 r = 0;
2595 break;
2597 case KVM_SET_FPU: {
2598 struct kvm_fpu fpu;
2600 r = -EFAULT;
2601 if (copy_from_user(&fpu, argp, sizeof fpu))
2602 goto out;
2603 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2604 if (r)
2605 goto out;
2606 r = 0;
2607 break;
2609 default:
2612 out:
2613 return r;
2616 static long kvm_vm_ioctl(struct file *filp,
2617 unsigned int ioctl, unsigned long arg)
2619 struct kvm *kvm = filp->private_data;
2620 void __user *argp = (void __user *)arg;
2621 int r = -EINVAL;
2623 switch (ioctl) {
2624 case KVM_CREATE_VCPU:
2625 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2626 if (r < 0)
2627 goto out;
2628 break;
2629 case KVM_SET_MEMORY_REGION: {
2630 struct kvm_memory_region kvm_mem;
2632 r = -EFAULT;
2633 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2634 goto out;
2635 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2636 if (r)
2637 goto out;
2638 break;
2640 case KVM_GET_DIRTY_LOG: {
2641 struct kvm_dirty_log log;
2643 r = -EFAULT;
2644 if (copy_from_user(&log, argp, sizeof log))
2645 goto out;
2646 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2647 if (r)
2648 goto out;
2649 break;
2651 case KVM_SET_MEMORY_ALIAS: {
2652 struct kvm_memory_alias alias;
2654 r = -EFAULT;
2655 if (copy_from_user(&alias, argp, sizeof alias))
2656 goto out;
2657 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2658 if (r)
2659 goto out;
2660 break;
2662 default:
2665 out:
2666 return r;
2669 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2670 unsigned long address,
2671 int *type)
2673 struct kvm *kvm = vma->vm_file->private_data;
2674 unsigned long pgoff;
2675 struct page *page;
2677 *type = VM_FAULT_MINOR;
2678 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2679 page = gfn_to_page(kvm, pgoff);
2680 if (!page)
2681 return NOPAGE_SIGBUS;
2682 get_page(page);
2683 return page;
2686 static struct vm_operations_struct kvm_vm_vm_ops = {
2687 .nopage = kvm_vm_nopage,
2690 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2692 vma->vm_ops = &kvm_vm_vm_ops;
2693 return 0;
2696 static struct file_operations kvm_vm_fops = {
2697 .release = kvm_vm_release,
2698 .unlocked_ioctl = kvm_vm_ioctl,
2699 .compat_ioctl = kvm_vm_ioctl,
2700 .mmap = kvm_vm_mmap,
2703 static int kvm_dev_ioctl_create_vm(void)
2705 int fd, r;
2706 struct inode *inode;
2707 struct file *file;
2708 struct kvm *kvm;
2710 inode = kvmfs_inode(&kvm_vm_fops);
2711 if (IS_ERR(inode)) {
2712 r = PTR_ERR(inode);
2713 goto out1;
2716 kvm = kvm_create_vm();
2717 if (IS_ERR(kvm)) {
2718 r = PTR_ERR(kvm);
2719 goto out2;
2722 file = kvmfs_file(inode, kvm);
2723 if (IS_ERR(file)) {
2724 r = PTR_ERR(file);
2725 goto out3;
2727 kvm->filp = file;
2729 r = get_unused_fd();
2730 if (r < 0)
2731 goto out4;
2732 fd = r;
2733 fd_install(fd, file);
2735 return fd;
2737 out4:
2738 fput(file);
2739 out3:
2740 kvm_destroy_vm(kvm);
2741 out2:
2742 iput(inode);
2743 out1:
2744 return r;
2747 static long kvm_dev_ioctl(struct file *filp,
2748 unsigned int ioctl, unsigned long arg)
2750 void __user *argp = (void __user *)arg;
2751 long r = -EINVAL;
2753 switch (ioctl) {
2754 case KVM_GET_API_VERSION:
2755 r = -EINVAL;
2756 if (arg)
2757 goto out;
2758 r = KVM_API_VERSION;
2759 break;
2760 case KVM_CREATE_VM:
2761 r = -EINVAL;
2762 if (arg)
2763 goto out;
2764 r = kvm_dev_ioctl_create_vm();
2765 break;
2766 case KVM_GET_MSR_INDEX_LIST: {
2767 struct kvm_msr_list __user *user_msr_list = argp;
2768 struct kvm_msr_list msr_list;
2769 unsigned n;
2771 r = -EFAULT;
2772 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2773 goto out;
2774 n = msr_list.nmsrs;
2775 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2776 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2777 goto out;
2778 r = -E2BIG;
2779 if (n < num_msrs_to_save)
2780 goto out;
2781 r = -EFAULT;
2782 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2783 num_msrs_to_save * sizeof(u32)))
2784 goto out;
2785 if (copy_to_user(user_msr_list->indices
2786 + num_msrs_to_save * sizeof(u32),
2787 &emulated_msrs,
2788 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2789 goto out;
2790 r = 0;
2791 break;
2793 case KVM_CHECK_EXTENSION:
2795 * No extensions defined at present.
2797 r = 0;
2798 break;
2799 case KVM_GET_VCPU_MMAP_SIZE:
2800 r = -EINVAL;
2801 if (arg)
2802 goto out;
2803 r = 2 * PAGE_SIZE;
2804 break;
2805 default:
2808 out:
2809 return r;
2812 static struct file_operations kvm_chardev_ops = {
2813 .open = kvm_dev_open,
2814 .release = kvm_dev_release,
2815 .unlocked_ioctl = kvm_dev_ioctl,
2816 .compat_ioctl = kvm_dev_ioctl,
2819 static struct miscdevice kvm_dev = {
2820 KVM_MINOR,
2821 "kvm",
2822 &kvm_chardev_ops,
2825 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2826 void *v)
2828 if (val == SYS_RESTART) {
2830 * Some (well, at least mine) BIOSes hang on reboot if
2831 * in vmx root mode.
2833 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2834 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2836 return NOTIFY_OK;
2839 static struct notifier_block kvm_reboot_notifier = {
2840 .notifier_call = kvm_reboot,
2841 .priority = 0,
2845 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2846 * cached on it.
2848 static void decache_vcpus_on_cpu(int cpu)
2850 struct kvm *vm;
2851 struct kvm_vcpu *vcpu;
2852 int i;
2854 spin_lock(&kvm_lock);
2855 list_for_each_entry(vm, &vm_list, vm_list)
2856 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2857 vcpu = &vm->vcpus[i];
2859 * If the vcpu is locked, then it is running on some
2860 * other cpu and therefore it is not cached on the
2861 * cpu in question.
2863 * If it's not locked, check the last cpu it executed
2864 * on.
2866 if (mutex_trylock(&vcpu->mutex)) {
2867 if (vcpu->cpu == cpu) {
2868 kvm_arch_ops->vcpu_decache(vcpu);
2869 vcpu->cpu = -1;
2871 mutex_unlock(&vcpu->mutex);
2874 spin_unlock(&kvm_lock);
2877 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2878 void *v)
2880 int cpu = (long)v;
2882 switch (val) {
2883 case CPU_DOWN_PREPARE:
2884 case CPU_UP_CANCELED:
2885 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2886 cpu);
2887 decache_vcpus_on_cpu(cpu);
2888 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2889 NULL, 0, 1);
2890 break;
2891 case CPU_ONLINE:
2892 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2893 cpu);
2894 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2895 NULL, 0, 1);
2896 break;
2898 return NOTIFY_OK;
2901 static struct notifier_block kvm_cpu_notifier = {
2902 .notifier_call = kvm_cpu_hotplug,
2903 .priority = 20, /* must be > scheduler priority */
2906 static u64 stat_get(void *_offset)
2908 unsigned offset = (long)_offset;
2909 u64 total = 0;
2910 struct kvm *kvm;
2911 struct kvm_vcpu *vcpu;
2912 int i;
2914 spin_lock(&kvm_lock);
2915 list_for_each_entry(kvm, &vm_list, vm_list)
2916 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2917 vcpu = &kvm->vcpus[i];
2918 total += *(u32 *)((void *)vcpu + offset);
2920 spin_unlock(&kvm_lock);
2921 return total;
2924 static void stat_set(void *offset, u64 val)
2928 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
2930 static __init void kvm_init_debug(void)
2932 struct kvm_stats_debugfs_item *p;
2934 debugfs_dir = debugfs_create_dir("kvm", NULL);
2935 for (p = debugfs_entries; p->name; ++p)
2936 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
2937 (void *)(long)p->offset,
2938 &stat_fops);
2941 static void kvm_exit_debug(void)
2943 struct kvm_stats_debugfs_item *p;
2945 for (p = debugfs_entries; p->name; ++p)
2946 debugfs_remove(p->dentry);
2947 debugfs_remove(debugfs_dir);
2950 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2952 decache_vcpus_on_cpu(raw_smp_processor_id());
2953 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2954 return 0;
2957 static int kvm_resume(struct sys_device *dev)
2959 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2960 return 0;
2963 static struct sysdev_class kvm_sysdev_class = {
2964 set_kset_name("kvm"),
2965 .suspend = kvm_suspend,
2966 .resume = kvm_resume,
2969 static struct sys_device kvm_sysdev = {
2970 .id = 0,
2971 .cls = &kvm_sysdev_class,
2974 hpa_t bad_page_address;
2976 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
2977 const char *dev_name, void *data, struct vfsmount *mnt)
2979 return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
2982 static struct file_system_type kvm_fs_type = {
2983 .name = "kvmfs",
2984 .get_sb = kvmfs_get_sb,
2985 .kill_sb = kill_anon_super,
2988 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2990 int r;
2992 if (kvm_arch_ops) {
2993 printk(KERN_ERR "kvm: already loaded the other module\n");
2994 return -EEXIST;
2997 if (!ops->cpu_has_kvm_support()) {
2998 printk(KERN_ERR "kvm: no hardware support\n");
2999 return -EOPNOTSUPP;
3001 if (ops->disabled_by_bios()) {
3002 printk(KERN_ERR "kvm: disabled by bios\n");
3003 return -EOPNOTSUPP;
3006 kvm_arch_ops = ops;
3008 r = kvm_arch_ops->hardware_setup();
3009 if (r < 0)
3010 goto out;
3012 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
3013 r = register_cpu_notifier(&kvm_cpu_notifier);
3014 if (r)
3015 goto out_free_1;
3016 register_reboot_notifier(&kvm_reboot_notifier);
3018 r = sysdev_class_register(&kvm_sysdev_class);
3019 if (r)
3020 goto out_free_2;
3022 r = sysdev_register(&kvm_sysdev);
3023 if (r)
3024 goto out_free_3;
3026 kvm_chardev_ops.owner = module;
3028 r = misc_register(&kvm_dev);
3029 if (r) {
3030 printk (KERN_ERR "kvm: misc device register failed\n");
3031 goto out_free;
3034 return r;
3036 out_free:
3037 sysdev_unregister(&kvm_sysdev);
3038 out_free_3:
3039 sysdev_class_unregister(&kvm_sysdev_class);
3040 out_free_2:
3041 unregister_reboot_notifier(&kvm_reboot_notifier);
3042 unregister_cpu_notifier(&kvm_cpu_notifier);
3043 out_free_1:
3044 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3045 kvm_arch_ops->hardware_unsetup();
3046 out:
3047 kvm_arch_ops = NULL;
3048 return r;
3051 void kvm_exit_arch(void)
3053 misc_deregister(&kvm_dev);
3054 sysdev_unregister(&kvm_sysdev);
3055 sysdev_class_unregister(&kvm_sysdev_class);
3056 unregister_reboot_notifier(&kvm_reboot_notifier);
3057 unregister_cpu_notifier(&kvm_cpu_notifier);
3058 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3059 kvm_arch_ops->hardware_unsetup();
3060 kvm_arch_ops = NULL;
3063 static __init int kvm_init(void)
3065 static struct page *bad_page;
3066 int r;
3068 r = kvm_mmu_module_init();
3069 if (r)
3070 goto out4;
3072 r = register_filesystem(&kvm_fs_type);
3073 if (r)
3074 goto out3;
3076 kvmfs_mnt = kern_mount(&kvm_fs_type);
3077 r = PTR_ERR(kvmfs_mnt);
3078 if (IS_ERR(kvmfs_mnt))
3079 goto out2;
3080 kvm_init_debug();
3082 kvm_init_msr_list();
3084 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3085 r = -ENOMEM;
3086 goto out;
3089 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3090 memset(__va(bad_page_address), 0, PAGE_SIZE);
3092 return 0;
3094 out:
3095 kvm_exit_debug();
3096 mntput(kvmfs_mnt);
3097 out2:
3098 unregister_filesystem(&kvm_fs_type);
3099 out3:
3100 kvm_mmu_module_exit();
3101 out4:
3102 return r;
3105 static __exit void kvm_exit(void)
3107 kvm_exit_debug();
3108 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3109 mntput(kvmfs_mnt);
3110 unregister_filesystem(&kvm_fs_type);
3111 kvm_mmu_module_exit();
3114 module_init(kvm_init)
3115 module_exit(kvm_exit)
3117 EXPORT_SYMBOL_GPL(kvm_init_arch);
3118 EXPORT_SYMBOL_GPL(kvm_exit_arch);