1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
11 #include "mds_client.h"
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
20 * A cluster of MDS (metadata server) daemons is responsible for
21 * managing the file system namespace (the directory hierarchy and
22 * inodes) and for coordinating shared access to storage. Metadata is
23 * partitioning hierarchically across a number of servers, and that
24 * partition varies over time as the cluster adjusts the distribution
25 * in order to balance load.
27 * The MDS client is primarily responsible to managing synchronous
28 * metadata requests for operations like open, unlink, and so forth.
29 * If there is a MDS failure, we find out about it when we (possibly
30 * request and) receive a new MDS map, and can resubmit affected
33 * For the most part, though, we take advantage of a lossless
34 * communications channel to the MDS, and do not need to worry about
35 * timing out or resubmitting requests.
37 * We maintain a stateful "session" with each MDS we interact with.
38 * Within each session, we sent periodic heartbeat messages to ensure
39 * any capabilities or leases we have been issues remain valid. If
40 * the session times out and goes stale, our leases and capabilities
41 * are no longer valid.
44 struct ceph_reconnect_state
{
45 struct ceph_pagelist
*pagelist
;
49 static void __wake_requests(struct ceph_mds_client
*mdsc
,
50 struct list_head
*head
);
52 static const struct ceph_connection_operations mds_con_ops
;
60 * parse individual inode info
62 static int parse_reply_info_in(void **p
, void *end
,
63 struct ceph_mds_reply_info_in
*info
,
69 *p
+= sizeof(struct ceph_mds_reply_inode
) +
70 sizeof(*info
->in
->fragtree
.splits
) *
71 le32_to_cpu(info
->in
->fragtree
.nsplits
);
73 ceph_decode_32_safe(p
, end
, info
->symlink_len
, bad
);
74 ceph_decode_need(p
, end
, info
->symlink_len
, bad
);
76 *p
+= info
->symlink_len
;
78 if (features
& CEPH_FEATURE_DIRLAYOUTHASH
)
79 ceph_decode_copy_safe(p
, end
, &info
->dir_layout
,
80 sizeof(info
->dir_layout
), bad
);
82 memset(&info
->dir_layout
, 0, sizeof(info
->dir_layout
));
84 ceph_decode_32_safe(p
, end
, info
->xattr_len
, bad
);
85 ceph_decode_need(p
, end
, info
->xattr_len
, bad
);
86 info
->xattr_data
= *p
;
87 *p
+= info
->xattr_len
;
94 * parse a normal reply, which may contain a (dir+)dentry and/or a
97 static int parse_reply_info_trace(void **p
, void *end
,
98 struct ceph_mds_reply_info_parsed
*info
,
103 if (info
->head
->is_dentry
) {
104 err
= parse_reply_info_in(p
, end
, &info
->diri
, features
);
108 if (unlikely(*p
+ sizeof(*info
->dirfrag
) > end
))
111 *p
+= sizeof(*info
->dirfrag
) +
112 sizeof(u32
)*le32_to_cpu(info
->dirfrag
->ndist
);
113 if (unlikely(*p
> end
))
116 ceph_decode_32_safe(p
, end
, info
->dname_len
, bad
);
117 ceph_decode_need(p
, end
, info
->dname_len
, bad
);
119 *p
+= info
->dname_len
;
121 *p
+= sizeof(*info
->dlease
);
124 if (info
->head
->is_target
) {
125 err
= parse_reply_info_in(p
, end
, &info
->targeti
, features
);
130 if (unlikely(*p
!= end
))
137 pr_err("problem parsing mds trace %d\n", err
);
142 * parse readdir results
144 static int parse_reply_info_dir(void **p
, void *end
,
145 struct ceph_mds_reply_info_parsed
*info
,
152 if (*p
+ sizeof(*info
->dir_dir
) > end
)
154 *p
+= sizeof(*info
->dir_dir
) +
155 sizeof(u32
)*le32_to_cpu(info
->dir_dir
->ndist
);
159 ceph_decode_need(p
, end
, sizeof(num
) + 2, bad
);
160 num
= ceph_decode_32(p
);
161 info
->dir_end
= ceph_decode_8(p
);
162 info
->dir_complete
= ceph_decode_8(p
);
166 /* alloc large array */
168 info
->dir_in
= kcalloc(num
, sizeof(*info
->dir_in
) +
169 sizeof(*info
->dir_dname
) +
170 sizeof(*info
->dir_dname_len
) +
171 sizeof(*info
->dir_dlease
),
173 if (info
->dir_in
== NULL
) {
177 info
->dir_dname
= (void *)(info
->dir_in
+ num
);
178 info
->dir_dname_len
= (void *)(info
->dir_dname
+ num
);
179 info
->dir_dlease
= (void *)(info
->dir_dname_len
+ num
);
183 ceph_decode_need(p
, end
, sizeof(u32
)*2, bad
);
184 info
->dir_dname_len
[i
] = ceph_decode_32(p
);
185 ceph_decode_need(p
, end
, info
->dir_dname_len
[i
], bad
);
186 info
->dir_dname
[i
] = *p
;
187 *p
+= info
->dir_dname_len
[i
];
188 dout("parsed dir dname '%.*s'\n", info
->dir_dname_len
[i
],
190 info
->dir_dlease
[i
] = *p
;
191 *p
+= sizeof(struct ceph_mds_reply_lease
);
194 err
= parse_reply_info_in(p
, end
, &info
->dir_in
[i
], features
);
209 pr_err("problem parsing dir contents %d\n", err
);
214 * parse fcntl F_GETLK results
216 static int parse_reply_info_filelock(void **p
, void *end
,
217 struct ceph_mds_reply_info_parsed
*info
,
220 if (*p
+ sizeof(*info
->filelock_reply
) > end
)
223 info
->filelock_reply
= *p
;
224 *p
+= sizeof(*info
->filelock_reply
);
226 if (unlikely(*p
!= end
))
235 * parse extra results
237 static int parse_reply_info_extra(void **p
, void *end
,
238 struct ceph_mds_reply_info_parsed
*info
,
241 if (info
->head
->op
== CEPH_MDS_OP_GETFILELOCK
)
242 return parse_reply_info_filelock(p
, end
, info
, features
);
244 return parse_reply_info_dir(p
, end
, info
, features
);
248 * parse entire mds reply
250 static int parse_reply_info(struct ceph_msg
*msg
,
251 struct ceph_mds_reply_info_parsed
*info
,
258 info
->head
= msg
->front
.iov_base
;
259 p
= msg
->front
.iov_base
+ sizeof(struct ceph_mds_reply_head
);
260 end
= p
+ msg
->front
.iov_len
- sizeof(struct ceph_mds_reply_head
);
263 ceph_decode_32_safe(&p
, end
, len
, bad
);
265 err
= parse_reply_info_trace(&p
, p
+len
, info
, features
);
271 ceph_decode_32_safe(&p
, end
, len
, bad
);
273 err
= parse_reply_info_extra(&p
, p
+len
, info
, features
);
279 ceph_decode_32_safe(&p
, end
, len
, bad
);
280 info
->snapblob_len
= len
;
291 pr_err("mds parse_reply err %d\n", err
);
295 static void destroy_reply_info(struct ceph_mds_reply_info_parsed
*info
)
304 static const char *session_state_name(int s
)
307 case CEPH_MDS_SESSION_NEW
: return "new";
308 case CEPH_MDS_SESSION_OPENING
: return "opening";
309 case CEPH_MDS_SESSION_OPEN
: return "open";
310 case CEPH_MDS_SESSION_HUNG
: return "hung";
311 case CEPH_MDS_SESSION_CLOSING
: return "closing";
312 case CEPH_MDS_SESSION_RESTARTING
: return "restarting";
313 case CEPH_MDS_SESSION_RECONNECTING
: return "reconnecting";
314 default: return "???";
318 static struct ceph_mds_session
*get_session(struct ceph_mds_session
*s
)
320 if (atomic_inc_not_zero(&s
->s_ref
)) {
321 dout("mdsc get_session %p %d -> %d\n", s
,
322 atomic_read(&s
->s_ref
)-1, atomic_read(&s
->s_ref
));
325 dout("mdsc get_session %p 0 -- FAIL", s
);
330 void ceph_put_mds_session(struct ceph_mds_session
*s
)
332 dout("mdsc put_session %p %d -> %d\n", s
,
333 atomic_read(&s
->s_ref
), atomic_read(&s
->s_ref
)-1);
334 if (atomic_dec_and_test(&s
->s_ref
)) {
336 s
->s_mdsc
->fsc
->client
->monc
.auth
->ops
->destroy_authorizer(
337 s
->s_mdsc
->fsc
->client
->monc
.auth
,
344 * called under mdsc->mutex
346 struct ceph_mds_session
*__ceph_lookup_mds_session(struct ceph_mds_client
*mdsc
,
349 struct ceph_mds_session
*session
;
351 if (mds
>= mdsc
->max_sessions
|| mdsc
->sessions
[mds
] == NULL
)
353 session
= mdsc
->sessions
[mds
];
354 dout("lookup_mds_session %p %d\n", session
,
355 atomic_read(&session
->s_ref
));
356 get_session(session
);
360 static bool __have_session(struct ceph_mds_client
*mdsc
, int mds
)
362 if (mds
>= mdsc
->max_sessions
)
364 return mdsc
->sessions
[mds
];
367 static int __verify_registered_session(struct ceph_mds_client
*mdsc
,
368 struct ceph_mds_session
*s
)
370 if (s
->s_mds
>= mdsc
->max_sessions
||
371 mdsc
->sessions
[s
->s_mds
] != s
)
377 * create+register a new session for given mds.
378 * called under mdsc->mutex.
380 static struct ceph_mds_session
*register_session(struct ceph_mds_client
*mdsc
,
383 struct ceph_mds_session
*s
;
385 s
= kzalloc(sizeof(*s
), GFP_NOFS
);
387 return ERR_PTR(-ENOMEM
);
390 s
->s_state
= CEPH_MDS_SESSION_NEW
;
393 mutex_init(&s
->s_mutex
);
395 ceph_con_init(mdsc
->fsc
->client
->msgr
, &s
->s_con
);
396 s
->s_con
.private = s
;
397 s
->s_con
.ops
= &mds_con_ops
;
398 s
->s_con
.peer_name
.type
= CEPH_ENTITY_TYPE_MDS
;
399 s
->s_con
.peer_name
.num
= cpu_to_le64(mds
);
401 spin_lock_init(&s
->s_cap_lock
);
404 s
->s_renew_requested
= 0;
406 INIT_LIST_HEAD(&s
->s_caps
);
409 atomic_set(&s
->s_ref
, 1);
410 INIT_LIST_HEAD(&s
->s_waiting
);
411 INIT_LIST_HEAD(&s
->s_unsafe
);
412 s
->s_num_cap_releases
= 0;
413 s
->s_cap_iterator
= NULL
;
414 INIT_LIST_HEAD(&s
->s_cap_releases
);
415 INIT_LIST_HEAD(&s
->s_cap_releases_done
);
416 INIT_LIST_HEAD(&s
->s_cap_flushing
);
417 INIT_LIST_HEAD(&s
->s_cap_snaps_flushing
);
419 dout("register_session mds%d\n", mds
);
420 if (mds
>= mdsc
->max_sessions
) {
421 int newmax
= 1 << get_count_order(mds
+1);
422 struct ceph_mds_session
**sa
;
424 dout("register_session realloc to %d\n", newmax
);
425 sa
= kcalloc(newmax
, sizeof(void *), GFP_NOFS
);
428 if (mdsc
->sessions
) {
429 memcpy(sa
, mdsc
->sessions
,
430 mdsc
->max_sessions
* sizeof(void *));
431 kfree(mdsc
->sessions
);
434 mdsc
->max_sessions
= newmax
;
436 mdsc
->sessions
[mds
] = s
;
437 atomic_inc(&s
->s_ref
); /* one ref to sessions[], one to caller */
439 ceph_con_open(&s
->s_con
, ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
445 return ERR_PTR(-ENOMEM
);
449 * called under mdsc->mutex
451 static void __unregister_session(struct ceph_mds_client
*mdsc
,
452 struct ceph_mds_session
*s
)
454 dout("__unregister_session mds%d %p\n", s
->s_mds
, s
);
455 BUG_ON(mdsc
->sessions
[s
->s_mds
] != s
);
456 mdsc
->sessions
[s
->s_mds
] = NULL
;
457 ceph_con_close(&s
->s_con
);
458 ceph_put_mds_session(s
);
462 * drop session refs in request.
464 * should be last request ref, or hold mdsc->mutex
466 static void put_request_session(struct ceph_mds_request
*req
)
468 if (req
->r_session
) {
469 ceph_put_mds_session(req
->r_session
);
470 req
->r_session
= NULL
;
474 void ceph_mdsc_release_request(struct kref
*kref
)
476 struct ceph_mds_request
*req
= container_of(kref
,
477 struct ceph_mds_request
,
480 ceph_msg_put(req
->r_request
);
482 ceph_msg_put(req
->r_reply
);
483 destroy_reply_info(&req
->r_reply_info
);
486 ceph_put_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
489 if (req
->r_locked_dir
)
490 ceph_put_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
491 if (req
->r_target_inode
)
492 iput(req
->r_target_inode
);
495 if (req
->r_old_dentry
) {
497 * track (and drop pins for) r_old_dentry_dir
498 * separately, since r_old_dentry's d_parent may have
499 * changed between the dir mutex being dropped and
500 * this request being freed.
502 ceph_put_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
504 dput(req
->r_old_dentry
);
505 iput(req
->r_old_dentry_dir
);
509 put_request_session(req
);
510 ceph_unreserve_caps(req
->r_mdsc
, &req
->r_caps_reservation
);
515 * lookup session, bump ref if found.
517 * called under mdsc->mutex.
519 static struct ceph_mds_request
*__lookup_request(struct ceph_mds_client
*mdsc
,
522 struct ceph_mds_request
*req
;
523 struct rb_node
*n
= mdsc
->request_tree
.rb_node
;
526 req
= rb_entry(n
, struct ceph_mds_request
, r_node
);
527 if (tid
< req
->r_tid
)
529 else if (tid
> req
->r_tid
)
532 ceph_mdsc_get_request(req
);
539 static void __insert_request(struct ceph_mds_client
*mdsc
,
540 struct ceph_mds_request
*new)
542 struct rb_node
**p
= &mdsc
->request_tree
.rb_node
;
543 struct rb_node
*parent
= NULL
;
544 struct ceph_mds_request
*req
= NULL
;
548 req
= rb_entry(parent
, struct ceph_mds_request
, r_node
);
549 if (new->r_tid
< req
->r_tid
)
551 else if (new->r_tid
> req
->r_tid
)
557 rb_link_node(&new->r_node
, parent
, p
);
558 rb_insert_color(&new->r_node
, &mdsc
->request_tree
);
562 * Register an in-flight request, and assign a tid. Link to directory
563 * are modifying (if any).
565 * Called under mdsc->mutex.
567 static void __register_request(struct ceph_mds_client
*mdsc
,
568 struct ceph_mds_request
*req
,
571 req
->r_tid
= ++mdsc
->last_tid
;
573 ceph_reserve_caps(mdsc
, &req
->r_caps_reservation
,
575 dout("__register_request %p tid %lld\n", req
, req
->r_tid
);
576 ceph_mdsc_get_request(req
);
577 __insert_request(mdsc
, req
);
579 req
->r_uid
= current_fsuid();
580 req
->r_gid
= current_fsgid();
583 struct ceph_inode_info
*ci
= ceph_inode(dir
);
586 spin_lock(&ci
->i_unsafe_lock
);
587 req
->r_unsafe_dir
= dir
;
588 list_add_tail(&req
->r_unsafe_dir_item
, &ci
->i_unsafe_dirops
);
589 spin_unlock(&ci
->i_unsafe_lock
);
593 static void __unregister_request(struct ceph_mds_client
*mdsc
,
594 struct ceph_mds_request
*req
)
596 dout("__unregister_request %p tid %lld\n", req
, req
->r_tid
);
597 rb_erase(&req
->r_node
, &mdsc
->request_tree
);
598 RB_CLEAR_NODE(&req
->r_node
);
600 if (req
->r_unsafe_dir
) {
601 struct ceph_inode_info
*ci
= ceph_inode(req
->r_unsafe_dir
);
603 spin_lock(&ci
->i_unsafe_lock
);
604 list_del_init(&req
->r_unsafe_dir_item
);
605 spin_unlock(&ci
->i_unsafe_lock
);
607 iput(req
->r_unsafe_dir
);
608 req
->r_unsafe_dir
= NULL
;
611 ceph_mdsc_put_request(req
);
615 * Choose mds to send request to next. If there is a hint set in the
616 * request (e.g., due to a prior forward hint from the mds), use that.
617 * Otherwise, consult frag tree and/or caps to identify the
618 * appropriate mds. If all else fails, choose randomly.
620 * Called under mdsc->mutex.
622 struct dentry
*get_nonsnap_parent(struct dentry
*dentry
)
625 * we don't need to worry about protecting the d_parent access
626 * here because we never renaming inside the snapped namespace
627 * except to resplice to another snapdir, and either the old or new
628 * result is a valid result.
630 while (!IS_ROOT(dentry
) && ceph_snap(dentry
->d_inode
) != CEPH_NOSNAP
)
631 dentry
= dentry
->d_parent
;
635 static int __choose_mds(struct ceph_mds_client
*mdsc
,
636 struct ceph_mds_request
*req
)
639 struct ceph_inode_info
*ci
;
640 struct ceph_cap
*cap
;
641 int mode
= req
->r_direct_mode
;
643 u32 hash
= req
->r_direct_hash
;
644 bool is_hash
= req
->r_direct_is_hash
;
647 * is there a specific mds we should try? ignore hint if we have
648 * no session and the mds is not up (active or recovering).
650 if (req
->r_resend_mds
>= 0 &&
651 (__have_session(mdsc
, req
->r_resend_mds
) ||
652 ceph_mdsmap_get_state(mdsc
->mdsmap
, req
->r_resend_mds
) > 0)) {
653 dout("choose_mds using resend_mds mds%d\n",
655 return req
->r_resend_mds
;
658 if (mode
== USE_RANDOM_MDS
)
663 inode
= req
->r_inode
;
664 } else if (req
->r_dentry
) {
665 /* ignore race with rename; old or new d_parent is okay */
666 struct dentry
*parent
= req
->r_dentry
->d_parent
;
667 struct inode
*dir
= parent
->d_inode
;
669 if (dir
->i_sb
!= mdsc
->fsc
->sb
) {
671 inode
= req
->r_dentry
->d_inode
;
672 } else if (ceph_snap(dir
) != CEPH_NOSNAP
) {
673 /* direct snapped/virtual snapdir requests
674 * based on parent dir inode */
675 struct dentry
*dn
= get_nonsnap_parent(parent
);
677 dout("__choose_mds using nonsnap parent %p\n", inode
);
678 } else if (req
->r_dentry
->d_inode
) {
680 inode
= req
->r_dentry
->d_inode
;
684 hash
= ceph_dentry_hash(dir
, req
->r_dentry
);
689 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode
, (int)is_hash
,
693 ci
= ceph_inode(inode
);
695 if (is_hash
&& S_ISDIR(inode
->i_mode
)) {
696 struct ceph_inode_frag frag
;
699 ceph_choose_frag(ci
, hash
, &frag
, &found
);
701 if (mode
== USE_ANY_MDS
&& frag
.ndist
> 0) {
704 /* choose a random replica */
705 get_random_bytes(&r
, 1);
708 dout("choose_mds %p %llx.%llx "
709 "frag %u mds%d (%d/%d)\n",
710 inode
, ceph_vinop(inode
),
713 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
714 CEPH_MDS_STATE_ACTIVE
)
718 /* since this file/dir wasn't known to be
719 * replicated, then we want to look for the
720 * authoritative mds. */
723 /* choose auth mds */
725 dout("choose_mds %p %llx.%llx "
726 "frag %u mds%d (auth)\n",
727 inode
, ceph_vinop(inode
), frag
.frag
, mds
);
728 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
729 CEPH_MDS_STATE_ACTIVE
)
735 spin_lock(&inode
->i_lock
);
737 if (mode
== USE_AUTH_MDS
)
738 cap
= ci
->i_auth_cap
;
739 if (!cap
&& !RB_EMPTY_ROOT(&ci
->i_caps
))
740 cap
= rb_entry(rb_first(&ci
->i_caps
), struct ceph_cap
, ci_node
);
742 spin_unlock(&inode
->i_lock
);
745 mds
= cap
->session
->s_mds
;
746 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
747 inode
, ceph_vinop(inode
), mds
,
748 cap
== ci
->i_auth_cap
? "auth " : "", cap
);
749 spin_unlock(&inode
->i_lock
);
753 mds
= ceph_mdsmap_get_random_mds(mdsc
->mdsmap
);
754 dout("choose_mds chose random mds%d\n", mds
);
762 static struct ceph_msg
*create_session_msg(u32 op
, u64 seq
)
764 struct ceph_msg
*msg
;
765 struct ceph_mds_session_head
*h
;
767 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
), GFP_NOFS
);
769 pr_err("create_session_msg ENOMEM creating msg\n");
772 h
= msg
->front
.iov_base
;
773 h
->op
= cpu_to_le32(op
);
774 h
->seq
= cpu_to_le64(seq
);
779 * send session open request.
781 * called under mdsc->mutex
783 static int __open_session(struct ceph_mds_client
*mdsc
,
784 struct ceph_mds_session
*session
)
786 struct ceph_msg
*msg
;
788 int mds
= session
->s_mds
;
790 /* wait for mds to go active? */
791 mstate
= ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
);
792 dout("open_session to mds%d (%s)\n", mds
,
793 ceph_mds_state_name(mstate
));
794 session
->s_state
= CEPH_MDS_SESSION_OPENING
;
795 session
->s_renew_requested
= jiffies
;
797 /* send connect message */
798 msg
= create_session_msg(CEPH_SESSION_REQUEST_OPEN
, session
->s_seq
);
801 ceph_con_send(&session
->s_con
, msg
);
806 * open sessions for any export targets for the given mds
808 * called under mdsc->mutex
810 static void __open_export_target_sessions(struct ceph_mds_client
*mdsc
,
811 struct ceph_mds_session
*session
)
813 struct ceph_mds_info
*mi
;
814 struct ceph_mds_session
*ts
;
815 int i
, mds
= session
->s_mds
;
818 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
820 mi
= &mdsc
->mdsmap
->m_info
[mds
];
821 dout("open_export_target_sessions for mds%d (%d targets)\n",
822 session
->s_mds
, mi
->num_export_targets
);
824 for (i
= 0; i
< mi
->num_export_targets
; i
++) {
825 target
= mi
->export_targets
[i
];
826 ts
= __ceph_lookup_mds_session(mdsc
, target
);
828 ts
= register_session(mdsc
, target
);
832 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
833 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
834 __open_session(mdsc
, session
);
836 dout(" mds%d target mds%d %p is %s\n", session
->s_mds
,
837 i
, ts
, session_state_name(ts
->s_state
));
838 ceph_put_mds_session(ts
);
842 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client
*mdsc
,
843 struct ceph_mds_session
*session
)
845 mutex_lock(&mdsc
->mutex
);
846 __open_export_target_sessions(mdsc
, session
);
847 mutex_unlock(&mdsc
->mutex
);
855 * Free preallocated cap messages assigned to this session
857 static void cleanup_cap_releases(struct ceph_mds_session
*session
)
859 struct ceph_msg
*msg
;
861 spin_lock(&session
->s_cap_lock
);
862 while (!list_empty(&session
->s_cap_releases
)) {
863 msg
= list_first_entry(&session
->s_cap_releases
,
864 struct ceph_msg
, list_head
);
865 list_del_init(&msg
->list_head
);
868 while (!list_empty(&session
->s_cap_releases_done
)) {
869 msg
= list_first_entry(&session
->s_cap_releases_done
,
870 struct ceph_msg
, list_head
);
871 list_del_init(&msg
->list_head
);
874 spin_unlock(&session
->s_cap_lock
);
878 * Helper to safely iterate over all caps associated with a session, with
879 * special care taken to handle a racing __ceph_remove_cap().
881 * Caller must hold session s_mutex.
883 static int iterate_session_caps(struct ceph_mds_session
*session
,
884 int (*cb
)(struct inode
*, struct ceph_cap
*,
888 struct ceph_cap
*cap
;
889 struct inode
*inode
, *last_inode
= NULL
;
890 struct ceph_cap
*old_cap
= NULL
;
893 dout("iterate_session_caps %p mds%d\n", session
, session
->s_mds
);
894 spin_lock(&session
->s_cap_lock
);
895 p
= session
->s_caps
.next
;
896 while (p
!= &session
->s_caps
) {
897 cap
= list_entry(p
, struct ceph_cap
, session_caps
);
898 inode
= igrab(&cap
->ci
->vfs_inode
);
903 session
->s_cap_iterator
= cap
;
904 spin_unlock(&session
->s_cap_lock
);
911 ceph_put_cap(session
->s_mdsc
, old_cap
);
915 ret
= cb(inode
, cap
, arg
);
918 spin_lock(&session
->s_cap_lock
);
920 if (cap
->ci
== NULL
) {
921 dout("iterate_session_caps finishing cap %p removal\n",
923 BUG_ON(cap
->session
!= session
);
924 list_del_init(&cap
->session_caps
);
925 session
->s_nr_caps
--;
927 old_cap
= cap
; /* put_cap it w/o locks held */
934 session
->s_cap_iterator
= NULL
;
935 spin_unlock(&session
->s_cap_lock
);
940 ceph_put_cap(session
->s_mdsc
, old_cap
);
945 static int remove_session_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
948 struct ceph_inode_info
*ci
= ceph_inode(inode
);
951 dout("removing cap %p, ci is %p, inode is %p\n",
952 cap
, ci
, &ci
->vfs_inode
);
953 spin_lock(&inode
->i_lock
);
954 __ceph_remove_cap(cap
);
955 if (!__ceph_is_any_real_caps(ci
)) {
956 struct ceph_mds_client
*mdsc
=
957 ceph_sb_to_client(inode
->i_sb
)->mdsc
;
959 spin_lock(&mdsc
->cap_dirty_lock
);
960 if (!list_empty(&ci
->i_dirty_item
)) {
961 pr_info(" dropping dirty %s state for %p %lld\n",
962 ceph_cap_string(ci
->i_dirty_caps
),
963 inode
, ceph_ino(inode
));
964 ci
->i_dirty_caps
= 0;
965 list_del_init(&ci
->i_dirty_item
);
968 if (!list_empty(&ci
->i_flushing_item
)) {
969 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
970 ceph_cap_string(ci
->i_flushing_caps
),
971 inode
, ceph_ino(inode
));
972 ci
->i_flushing_caps
= 0;
973 list_del_init(&ci
->i_flushing_item
);
974 mdsc
->num_cap_flushing
--;
977 if (drop
&& ci
->i_wrbuffer_ref
) {
978 pr_info(" dropping dirty data for %p %lld\n",
979 inode
, ceph_ino(inode
));
980 ci
->i_wrbuffer_ref
= 0;
981 ci
->i_wrbuffer_ref_head
= 0;
984 spin_unlock(&mdsc
->cap_dirty_lock
);
986 spin_unlock(&inode
->i_lock
);
993 * caller must hold session s_mutex
995 static void remove_session_caps(struct ceph_mds_session
*session
)
997 dout("remove_session_caps on %p\n", session
);
998 iterate_session_caps(session
, remove_session_caps_cb
, NULL
);
999 BUG_ON(session
->s_nr_caps
> 0);
1000 BUG_ON(!list_empty(&session
->s_cap_flushing
));
1001 cleanup_cap_releases(session
);
1005 * wake up any threads waiting on this session's caps. if the cap is
1006 * old (didn't get renewed on the client reconnect), remove it now.
1008 * caller must hold s_mutex.
1010 static int wake_up_session_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1013 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1015 wake_up_all(&ci
->i_cap_wq
);
1017 spin_lock(&inode
->i_lock
);
1018 ci
->i_wanted_max_size
= 0;
1019 ci
->i_requested_max_size
= 0;
1020 spin_unlock(&inode
->i_lock
);
1025 static void wake_up_session_caps(struct ceph_mds_session
*session
,
1028 dout("wake_up_session_caps %p mds%d\n", session
, session
->s_mds
);
1029 iterate_session_caps(session
, wake_up_session_cb
,
1030 (void *)(unsigned long)reconnect
);
1034 * Send periodic message to MDS renewing all currently held caps. The
1035 * ack will reset the expiration for all caps from this session.
1037 * caller holds s_mutex
1039 static int send_renew_caps(struct ceph_mds_client
*mdsc
,
1040 struct ceph_mds_session
*session
)
1042 struct ceph_msg
*msg
;
1045 if (time_after_eq(jiffies
, session
->s_cap_ttl
) &&
1046 time_after_eq(session
->s_cap_ttl
, session
->s_renew_requested
))
1047 pr_info("mds%d caps stale\n", session
->s_mds
);
1048 session
->s_renew_requested
= jiffies
;
1050 /* do not try to renew caps until a recovering mds has reconnected
1051 * with its clients. */
1052 state
= ceph_mdsmap_get_state(mdsc
->mdsmap
, session
->s_mds
);
1053 if (state
< CEPH_MDS_STATE_RECONNECT
) {
1054 dout("send_renew_caps ignoring mds%d (%s)\n",
1055 session
->s_mds
, ceph_mds_state_name(state
));
1059 dout("send_renew_caps to mds%d (%s)\n", session
->s_mds
,
1060 ceph_mds_state_name(state
));
1061 msg
= create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS
,
1062 ++session
->s_renew_seq
);
1065 ceph_con_send(&session
->s_con
, msg
);
1070 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1072 * Called under session->s_mutex
1074 static void renewed_caps(struct ceph_mds_client
*mdsc
,
1075 struct ceph_mds_session
*session
, int is_renew
)
1080 spin_lock(&session
->s_cap_lock
);
1081 was_stale
= is_renew
&& (session
->s_cap_ttl
== 0 ||
1082 time_after_eq(jiffies
, session
->s_cap_ttl
));
1084 session
->s_cap_ttl
= session
->s_renew_requested
+
1085 mdsc
->mdsmap
->m_session_timeout
*HZ
;
1088 if (time_before(jiffies
, session
->s_cap_ttl
)) {
1089 pr_info("mds%d caps renewed\n", session
->s_mds
);
1092 pr_info("mds%d caps still stale\n", session
->s_mds
);
1095 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1096 session
->s_mds
, session
->s_cap_ttl
, was_stale
? "stale" : "fresh",
1097 time_before(jiffies
, session
->s_cap_ttl
) ? "stale" : "fresh");
1098 spin_unlock(&session
->s_cap_lock
);
1101 wake_up_session_caps(session
, 0);
1105 * send a session close request
1107 static int request_close_session(struct ceph_mds_client
*mdsc
,
1108 struct ceph_mds_session
*session
)
1110 struct ceph_msg
*msg
;
1112 dout("request_close_session mds%d state %s seq %lld\n",
1113 session
->s_mds
, session_state_name(session
->s_state
),
1115 msg
= create_session_msg(CEPH_SESSION_REQUEST_CLOSE
, session
->s_seq
);
1118 ceph_con_send(&session
->s_con
, msg
);
1123 * Called with s_mutex held.
1125 static int __close_session(struct ceph_mds_client
*mdsc
,
1126 struct ceph_mds_session
*session
)
1128 if (session
->s_state
>= CEPH_MDS_SESSION_CLOSING
)
1130 session
->s_state
= CEPH_MDS_SESSION_CLOSING
;
1131 return request_close_session(mdsc
, session
);
1135 * Trim old(er) caps.
1137 * Because we can't cache an inode without one or more caps, we do
1138 * this indirectly: if a cap is unused, we prune its aliases, at which
1139 * point the inode will hopefully get dropped to.
1141 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1142 * memory pressure from the MDS, though, so it needn't be perfect.
1144 static int trim_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
, void *arg
)
1146 struct ceph_mds_session
*session
= arg
;
1147 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1148 int used
, oissued
, mine
;
1150 if (session
->s_trim_caps
<= 0)
1153 spin_lock(&inode
->i_lock
);
1154 mine
= cap
->issued
| cap
->implemented
;
1155 used
= __ceph_caps_used(ci
);
1156 oissued
= __ceph_caps_issued_other(ci
, cap
);
1158 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1159 inode
, cap
, ceph_cap_string(mine
), ceph_cap_string(oissued
),
1160 ceph_cap_string(used
));
1161 if (ci
->i_dirty_caps
)
1162 goto out
; /* dirty caps */
1163 if ((used
& ~oissued
) & mine
)
1164 goto out
; /* we need these caps */
1166 session
->s_trim_caps
--;
1168 /* we aren't the only cap.. just remove us */
1169 __ceph_remove_cap(cap
);
1171 /* try to drop referring dentries */
1172 spin_unlock(&inode
->i_lock
);
1173 d_prune_aliases(inode
);
1174 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1175 inode
, cap
, atomic_read(&inode
->i_count
));
1180 spin_unlock(&inode
->i_lock
);
1185 * Trim session cap count down to some max number.
1187 static int trim_caps(struct ceph_mds_client
*mdsc
,
1188 struct ceph_mds_session
*session
,
1191 int trim_caps
= session
->s_nr_caps
- max_caps
;
1193 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1194 session
->s_mds
, session
->s_nr_caps
, max_caps
, trim_caps
);
1195 if (trim_caps
> 0) {
1196 session
->s_trim_caps
= trim_caps
;
1197 iterate_session_caps(session
, trim_caps_cb
, session
);
1198 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1199 session
->s_mds
, session
->s_nr_caps
, max_caps
,
1200 trim_caps
- session
->s_trim_caps
);
1201 session
->s_trim_caps
= 0;
1207 * Allocate cap_release messages. If there is a partially full message
1208 * in the queue, try to allocate enough to cover it's remainder, so that
1209 * we can send it immediately.
1211 * Called under s_mutex.
1213 int ceph_add_cap_releases(struct ceph_mds_client
*mdsc
,
1214 struct ceph_mds_session
*session
)
1216 struct ceph_msg
*msg
, *partial
= NULL
;
1217 struct ceph_mds_cap_release
*head
;
1219 int extra
= mdsc
->fsc
->mount_options
->cap_release_safety
;
1222 dout("add_cap_releases %p mds%d extra %d\n", session
, session
->s_mds
,
1225 spin_lock(&session
->s_cap_lock
);
1227 if (!list_empty(&session
->s_cap_releases
)) {
1228 msg
= list_first_entry(&session
->s_cap_releases
,
1231 head
= msg
->front
.iov_base
;
1232 num
= le32_to_cpu(head
->num
);
1234 dout(" partial %p with (%d/%d)\n", msg
, num
,
1235 (int)CEPH_CAPS_PER_RELEASE
);
1236 extra
+= CEPH_CAPS_PER_RELEASE
- num
;
1240 while (session
->s_num_cap_releases
< session
->s_nr_caps
+ extra
) {
1241 spin_unlock(&session
->s_cap_lock
);
1242 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE
, PAGE_CACHE_SIZE
,
1246 dout("add_cap_releases %p msg %p now %d\n", session
, msg
,
1247 (int)msg
->front
.iov_len
);
1248 head
= msg
->front
.iov_base
;
1249 head
->num
= cpu_to_le32(0);
1250 msg
->front
.iov_len
= sizeof(*head
);
1251 spin_lock(&session
->s_cap_lock
);
1252 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1253 session
->s_num_cap_releases
+= CEPH_CAPS_PER_RELEASE
;
1257 head
= partial
->front
.iov_base
;
1258 num
= le32_to_cpu(head
->num
);
1259 dout(" queueing partial %p with %d/%d\n", partial
, num
,
1260 (int)CEPH_CAPS_PER_RELEASE
);
1261 list_move_tail(&partial
->list_head
,
1262 &session
->s_cap_releases_done
);
1263 session
->s_num_cap_releases
-= CEPH_CAPS_PER_RELEASE
- num
;
1266 spin_unlock(&session
->s_cap_lock
);
1272 * flush all dirty inode data to disk.
1274 * returns true if we've flushed through want_flush_seq
1276 static int check_cap_flush(struct ceph_mds_client
*mdsc
, u64 want_flush_seq
)
1280 dout("check_cap_flush want %lld\n", want_flush_seq
);
1281 mutex_lock(&mdsc
->mutex
);
1282 for (mds
= 0; ret
&& mds
< mdsc
->max_sessions
; mds
++) {
1283 struct ceph_mds_session
*session
= mdsc
->sessions
[mds
];
1287 get_session(session
);
1288 mutex_unlock(&mdsc
->mutex
);
1290 mutex_lock(&session
->s_mutex
);
1291 if (!list_empty(&session
->s_cap_flushing
)) {
1292 struct ceph_inode_info
*ci
=
1293 list_entry(session
->s_cap_flushing
.next
,
1294 struct ceph_inode_info
,
1296 struct inode
*inode
= &ci
->vfs_inode
;
1298 spin_lock(&inode
->i_lock
);
1299 if (ci
->i_cap_flush_seq
<= want_flush_seq
) {
1300 dout("check_cap_flush still flushing %p "
1301 "seq %lld <= %lld to mds%d\n", inode
,
1302 ci
->i_cap_flush_seq
, want_flush_seq
,
1306 spin_unlock(&inode
->i_lock
);
1308 mutex_unlock(&session
->s_mutex
);
1309 ceph_put_mds_session(session
);
1313 mutex_lock(&mdsc
->mutex
);
1316 mutex_unlock(&mdsc
->mutex
);
1317 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq
);
1322 * called under s_mutex
1324 void ceph_send_cap_releases(struct ceph_mds_client
*mdsc
,
1325 struct ceph_mds_session
*session
)
1327 struct ceph_msg
*msg
;
1329 dout("send_cap_releases mds%d\n", session
->s_mds
);
1330 spin_lock(&session
->s_cap_lock
);
1331 while (!list_empty(&session
->s_cap_releases_done
)) {
1332 msg
= list_first_entry(&session
->s_cap_releases_done
,
1333 struct ceph_msg
, list_head
);
1334 list_del_init(&msg
->list_head
);
1335 spin_unlock(&session
->s_cap_lock
);
1336 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1337 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1338 ceph_con_send(&session
->s_con
, msg
);
1339 spin_lock(&session
->s_cap_lock
);
1341 spin_unlock(&session
->s_cap_lock
);
1344 static void discard_cap_releases(struct ceph_mds_client
*mdsc
,
1345 struct ceph_mds_session
*session
)
1347 struct ceph_msg
*msg
;
1348 struct ceph_mds_cap_release
*head
;
1351 dout("discard_cap_releases mds%d\n", session
->s_mds
);
1352 spin_lock(&session
->s_cap_lock
);
1354 /* zero out the in-progress message */
1355 msg
= list_first_entry(&session
->s_cap_releases
,
1356 struct ceph_msg
, list_head
);
1357 head
= msg
->front
.iov_base
;
1358 num
= le32_to_cpu(head
->num
);
1359 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
, num
);
1360 head
->num
= cpu_to_le32(0);
1361 session
->s_num_cap_releases
+= num
;
1363 /* requeue completed messages */
1364 while (!list_empty(&session
->s_cap_releases_done
)) {
1365 msg
= list_first_entry(&session
->s_cap_releases_done
,
1366 struct ceph_msg
, list_head
);
1367 list_del_init(&msg
->list_head
);
1369 head
= msg
->front
.iov_base
;
1370 num
= le32_to_cpu(head
->num
);
1371 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
,
1373 session
->s_num_cap_releases
+= num
;
1374 head
->num
= cpu_to_le32(0);
1375 msg
->front
.iov_len
= sizeof(*head
);
1376 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1379 spin_unlock(&session
->s_cap_lock
);
1387 * Create an mds request.
1389 struct ceph_mds_request
*
1390 ceph_mdsc_create_request(struct ceph_mds_client
*mdsc
, int op
, int mode
)
1392 struct ceph_mds_request
*req
= kzalloc(sizeof(*req
), GFP_NOFS
);
1395 return ERR_PTR(-ENOMEM
);
1397 mutex_init(&req
->r_fill_mutex
);
1399 req
->r_started
= jiffies
;
1400 req
->r_resend_mds
= -1;
1401 INIT_LIST_HEAD(&req
->r_unsafe_dir_item
);
1403 kref_init(&req
->r_kref
);
1404 INIT_LIST_HEAD(&req
->r_wait
);
1405 init_completion(&req
->r_completion
);
1406 init_completion(&req
->r_safe_completion
);
1407 INIT_LIST_HEAD(&req
->r_unsafe_item
);
1410 req
->r_direct_mode
= mode
;
1415 * return oldest (lowest) request, tid in request tree, 0 if none.
1417 * called under mdsc->mutex.
1419 static struct ceph_mds_request
*__get_oldest_req(struct ceph_mds_client
*mdsc
)
1421 if (RB_EMPTY_ROOT(&mdsc
->request_tree
))
1423 return rb_entry(rb_first(&mdsc
->request_tree
),
1424 struct ceph_mds_request
, r_node
);
1427 static u64
__get_oldest_tid(struct ceph_mds_client
*mdsc
)
1429 struct ceph_mds_request
*req
= __get_oldest_req(mdsc
);
1437 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1438 * on build_path_from_dentry in fs/cifs/dir.c.
1440 * If @stop_on_nosnap, generate path relative to the first non-snapped
1443 * Encode hidden .snap dirs as a double /, i.e.
1444 * foo/.snap/bar -> foo//bar
1446 char *ceph_mdsc_build_path(struct dentry
*dentry
, int *plen
, u64
*base
,
1449 struct dentry
*temp
;
1455 return ERR_PTR(-EINVAL
);
1459 seq
= read_seqbegin(&rename_lock
);
1461 for (temp
= dentry
; !IS_ROOT(temp
);) {
1462 struct inode
*inode
= temp
->d_inode
;
1463 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
)
1464 len
++; /* slash only */
1465 else if (stop_on_nosnap
&& inode
&&
1466 ceph_snap(inode
) == CEPH_NOSNAP
)
1469 len
+= 1 + temp
->d_name
.len
;
1470 temp
= temp
->d_parent
;
1473 pr_err("build_path corrupt dentry %p\n", dentry
);
1474 return ERR_PTR(-EINVAL
);
1479 len
--; /* no leading '/' */
1481 path
= kmalloc(len
+1, GFP_NOFS
);
1483 return ERR_PTR(-ENOMEM
);
1485 path
[pos
] = 0; /* trailing null */
1487 for (temp
= dentry
; !IS_ROOT(temp
) && pos
!= 0; ) {
1488 struct inode
*inode
;
1490 spin_lock(&temp
->d_lock
);
1491 inode
= temp
->d_inode
;
1492 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
) {
1493 dout("build_path path+%d: %p SNAPDIR\n",
1495 } else if (stop_on_nosnap
&& inode
&&
1496 ceph_snap(inode
) == CEPH_NOSNAP
) {
1499 pos
-= temp
->d_name
.len
;
1501 spin_unlock(&temp
->d_lock
);
1504 strncpy(path
+ pos
, temp
->d_name
.name
,
1507 spin_unlock(&temp
->d_lock
);
1510 temp
= temp
->d_parent
;
1513 pr_err("build_path corrupt dentry\n");
1515 return ERR_PTR(-EINVAL
);
1519 if (pos
!= 0 || read_seqretry(&rename_lock
, seq
)) {
1520 pr_err("build_path did not end path lookup where "
1521 "expected, namelen is %d, pos is %d\n", len
, pos
);
1522 /* presumably this is only possible if racing with a
1523 rename of one of the parent directories (we can not
1524 lock the dentries above us to prevent this, but
1525 retrying should be harmless) */
1530 *base
= ceph_ino(temp
->d_inode
);
1532 dout("build_path on %p %d built %llx '%.*s'\n",
1533 dentry
, dentry
->d_count
, *base
, len
, path
);
1537 static int build_dentry_path(struct dentry
*dentry
,
1538 const char **ppath
, int *ppathlen
, u64
*pino
,
1543 if (ceph_snap(dentry
->d_parent
->d_inode
) == CEPH_NOSNAP
) {
1544 *pino
= ceph_ino(dentry
->d_parent
->d_inode
);
1545 *ppath
= dentry
->d_name
.name
;
1546 *ppathlen
= dentry
->d_name
.len
;
1549 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1551 return PTR_ERR(path
);
1557 static int build_inode_path(struct inode
*inode
,
1558 const char **ppath
, int *ppathlen
, u64
*pino
,
1561 struct dentry
*dentry
;
1564 if (ceph_snap(inode
) == CEPH_NOSNAP
) {
1565 *pino
= ceph_ino(inode
);
1569 dentry
= d_find_alias(inode
);
1570 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1573 return PTR_ERR(path
);
1580 * request arguments may be specified via an inode *, a dentry *, or
1581 * an explicit ino+path.
1583 static int set_request_path_attr(struct inode
*rinode
, struct dentry
*rdentry
,
1584 const char *rpath
, u64 rino
,
1585 const char **ppath
, int *pathlen
,
1586 u64
*ino
, int *freepath
)
1591 r
= build_inode_path(rinode
, ppath
, pathlen
, ino
, freepath
);
1592 dout(" inode %p %llx.%llx\n", rinode
, ceph_ino(rinode
),
1594 } else if (rdentry
) {
1595 r
= build_dentry_path(rdentry
, ppath
, pathlen
, ino
, freepath
);
1596 dout(" dentry %p %llx/%.*s\n", rdentry
, *ino
, *pathlen
,
1598 } else if (rpath
|| rino
) {
1601 *pathlen
= strlen(rpath
);
1602 dout(" path %.*s\n", *pathlen
, rpath
);
1609 * called under mdsc->mutex
1611 static struct ceph_msg
*create_request_message(struct ceph_mds_client
*mdsc
,
1612 struct ceph_mds_request
*req
,
1615 struct ceph_msg
*msg
;
1616 struct ceph_mds_request_head
*head
;
1617 const char *path1
= NULL
;
1618 const char *path2
= NULL
;
1619 u64 ino1
= 0, ino2
= 0;
1620 int pathlen1
= 0, pathlen2
= 0;
1621 int freepath1
= 0, freepath2
= 0;
1627 ret
= set_request_path_attr(req
->r_inode
, req
->r_dentry
,
1628 req
->r_path1
, req
->r_ino1
.ino
,
1629 &path1
, &pathlen1
, &ino1
, &freepath1
);
1635 ret
= set_request_path_attr(NULL
, req
->r_old_dentry
,
1636 req
->r_path2
, req
->r_ino2
.ino
,
1637 &path2
, &pathlen2
, &ino2
, &freepath2
);
1643 len
= sizeof(*head
) +
1644 pathlen1
+ pathlen2
+ 2*(1 + sizeof(u32
) + sizeof(u64
));
1646 /* calculate (max) length for cap releases */
1647 len
+= sizeof(struct ceph_mds_request_release
) *
1648 (!!req
->r_inode_drop
+ !!req
->r_dentry_drop
+
1649 !!req
->r_old_inode_drop
+ !!req
->r_old_dentry_drop
);
1650 if (req
->r_dentry_drop
)
1651 len
+= req
->r_dentry
->d_name
.len
;
1652 if (req
->r_old_dentry_drop
)
1653 len
+= req
->r_old_dentry
->d_name
.len
;
1655 msg
= ceph_msg_new(CEPH_MSG_CLIENT_REQUEST
, len
, GFP_NOFS
);
1657 msg
= ERR_PTR(-ENOMEM
);
1661 msg
->hdr
.tid
= cpu_to_le64(req
->r_tid
);
1663 head
= msg
->front
.iov_base
;
1664 p
= msg
->front
.iov_base
+ sizeof(*head
);
1665 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1667 head
->mdsmap_epoch
= cpu_to_le32(mdsc
->mdsmap
->m_epoch
);
1668 head
->op
= cpu_to_le32(req
->r_op
);
1669 head
->caller_uid
= cpu_to_le32(req
->r_uid
);
1670 head
->caller_gid
= cpu_to_le32(req
->r_gid
);
1671 head
->args
= req
->r_args
;
1673 ceph_encode_filepath(&p
, end
, ino1
, path1
);
1674 ceph_encode_filepath(&p
, end
, ino2
, path2
);
1676 /* make note of release offset, in case we need to replay */
1677 req
->r_request_release_offset
= p
- msg
->front
.iov_base
;
1681 if (req
->r_inode_drop
)
1682 releases
+= ceph_encode_inode_release(&p
,
1683 req
->r_inode
? req
->r_inode
: req
->r_dentry
->d_inode
,
1684 mds
, req
->r_inode_drop
, req
->r_inode_unless
, 0);
1685 if (req
->r_dentry_drop
)
1686 releases
+= ceph_encode_dentry_release(&p
, req
->r_dentry
,
1687 mds
, req
->r_dentry_drop
, req
->r_dentry_unless
);
1688 if (req
->r_old_dentry_drop
)
1689 releases
+= ceph_encode_dentry_release(&p
, req
->r_old_dentry
,
1690 mds
, req
->r_old_dentry_drop
, req
->r_old_dentry_unless
);
1691 if (req
->r_old_inode_drop
)
1692 releases
+= ceph_encode_inode_release(&p
,
1693 req
->r_old_dentry
->d_inode
,
1694 mds
, req
->r_old_inode_drop
, req
->r_old_inode_unless
, 0);
1695 head
->num_releases
= cpu_to_le16(releases
);
1698 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
1699 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1701 msg
->pages
= req
->r_pages
;
1702 msg
->nr_pages
= req
->r_num_pages
;
1703 msg
->hdr
.data_len
= cpu_to_le32(req
->r_data_len
);
1704 msg
->hdr
.data_off
= cpu_to_le16(0);
1708 kfree((char *)path2
);
1711 kfree((char *)path1
);
1717 * called under mdsc->mutex if error, under no mutex if
1720 static void complete_request(struct ceph_mds_client
*mdsc
,
1721 struct ceph_mds_request
*req
)
1723 if (req
->r_callback
)
1724 req
->r_callback(mdsc
, req
);
1726 complete_all(&req
->r_completion
);
1730 * called under mdsc->mutex
1732 static int __prepare_send_request(struct ceph_mds_client
*mdsc
,
1733 struct ceph_mds_request
*req
,
1736 struct ceph_mds_request_head
*rhead
;
1737 struct ceph_msg
*msg
;
1742 struct ceph_cap
*cap
=
1743 ceph_get_cap_for_mds(ceph_inode(req
->r_inode
), mds
);
1746 req
->r_sent_on_mseq
= cap
->mseq
;
1748 req
->r_sent_on_mseq
= -1;
1750 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req
,
1751 req
->r_tid
, ceph_mds_op_name(req
->r_op
), req
->r_attempts
);
1753 if (req
->r_got_unsafe
) {
1755 * Replay. Do not regenerate message (and rebuild
1756 * paths, etc.); just use the original message.
1757 * Rebuilding paths will break for renames because
1758 * d_move mangles the src name.
1760 msg
= req
->r_request
;
1761 rhead
= msg
->front
.iov_base
;
1763 flags
= le32_to_cpu(rhead
->flags
);
1764 flags
|= CEPH_MDS_FLAG_REPLAY
;
1765 rhead
->flags
= cpu_to_le32(flags
);
1767 if (req
->r_target_inode
)
1768 rhead
->ino
= cpu_to_le64(ceph_ino(req
->r_target_inode
));
1770 rhead
->num_retry
= req
->r_attempts
- 1;
1772 /* remove cap/dentry releases from message */
1773 rhead
->num_releases
= 0;
1774 msg
->hdr
.front_len
= cpu_to_le32(req
->r_request_release_offset
);
1775 msg
->front
.iov_len
= req
->r_request_release_offset
;
1779 if (req
->r_request
) {
1780 ceph_msg_put(req
->r_request
);
1781 req
->r_request
= NULL
;
1783 msg
= create_request_message(mdsc
, req
, mds
);
1785 req
->r_err
= PTR_ERR(msg
);
1786 complete_request(mdsc
, req
);
1787 return PTR_ERR(msg
);
1789 req
->r_request
= msg
;
1791 rhead
= msg
->front
.iov_base
;
1792 rhead
->oldest_client_tid
= cpu_to_le64(__get_oldest_tid(mdsc
));
1793 if (req
->r_got_unsafe
)
1794 flags
|= CEPH_MDS_FLAG_REPLAY
;
1795 if (req
->r_locked_dir
)
1796 flags
|= CEPH_MDS_FLAG_WANT_DENTRY
;
1797 rhead
->flags
= cpu_to_le32(flags
);
1798 rhead
->num_fwd
= req
->r_num_fwd
;
1799 rhead
->num_retry
= req
->r_attempts
- 1;
1802 dout(" r_locked_dir = %p\n", req
->r_locked_dir
);
1807 * send request, or put it on the appropriate wait list.
1809 static int __do_request(struct ceph_mds_client
*mdsc
,
1810 struct ceph_mds_request
*req
)
1812 struct ceph_mds_session
*session
= NULL
;
1816 if (req
->r_err
|| req
->r_got_result
)
1819 if (req
->r_timeout
&&
1820 time_after_eq(jiffies
, req
->r_started
+ req
->r_timeout
)) {
1821 dout("do_request timed out\n");
1826 put_request_session(req
);
1828 mds
= __choose_mds(mdsc
, req
);
1830 ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) < CEPH_MDS_STATE_ACTIVE
) {
1831 dout("do_request no mds or not active, waiting for map\n");
1832 list_add(&req
->r_wait
, &mdsc
->waiting_for_map
);
1836 /* get, open session */
1837 session
= __ceph_lookup_mds_session(mdsc
, mds
);
1839 session
= register_session(mdsc
, mds
);
1840 if (IS_ERR(session
)) {
1841 err
= PTR_ERR(session
);
1845 req
->r_session
= get_session(session
);
1847 dout("do_request mds%d session %p state %s\n", mds
, session
,
1848 session_state_name(session
->s_state
));
1849 if (session
->s_state
!= CEPH_MDS_SESSION_OPEN
&&
1850 session
->s_state
!= CEPH_MDS_SESSION_HUNG
) {
1851 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
1852 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
1853 __open_session(mdsc
, session
);
1854 list_add(&req
->r_wait
, &session
->s_waiting
);
1859 req
->r_resend_mds
= -1; /* forget any previous mds hint */
1861 if (req
->r_request_started
== 0) /* note request start time */
1862 req
->r_request_started
= jiffies
;
1864 err
= __prepare_send_request(mdsc
, req
, mds
);
1866 ceph_msg_get(req
->r_request
);
1867 ceph_con_send(&session
->s_con
, req
->r_request
);
1871 ceph_put_mds_session(session
);
1877 complete_request(mdsc
, req
);
1882 * called under mdsc->mutex
1884 static void __wake_requests(struct ceph_mds_client
*mdsc
,
1885 struct list_head
*head
)
1887 struct ceph_mds_request
*req
, *nreq
;
1889 list_for_each_entry_safe(req
, nreq
, head
, r_wait
) {
1890 list_del_init(&req
->r_wait
);
1891 __do_request(mdsc
, req
);
1896 * Wake up threads with requests pending for @mds, so that they can
1897 * resubmit their requests to a possibly different mds.
1899 static void kick_requests(struct ceph_mds_client
*mdsc
, int mds
)
1901 struct ceph_mds_request
*req
;
1904 dout("kick_requests mds%d\n", mds
);
1905 for (p
= rb_first(&mdsc
->request_tree
); p
; p
= rb_next(p
)) {
1906 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
1907 if (req
->r_got_unsafe
)
1909 if (req
->r_session
&&
1910 req
->r_session
->s_mds
== mds
) {
1911 dout(" kicking tid %llu\n", req
->r_tid
);
1912 __do_request(mdsc
, req
);
1917 void ceph_mdsc_submit_request(struct ceph_mds_client
*mdsc
,
1918 struct ceph_mds_request
*req
)
1920 dout("submit_request on %p\n", req
);
1921 mutex_lock(&mdsc
->mutex
);
1922 __register_request(mdsc
, req
, NULL
);
1923 __do_request(mdsc
, req
);
1924 mutex_unlock(&mdsc
->mutex
);
1928 * Synchrously perform an mds request. Take care of all of the
1929 * session setup, forwarding, retry details.
1931 int ceph_mdsc_do_request(struct ceph_mds_client
*mdsc
,
1933 struct ceph_mds_request
*req
)
1937 dout("do_request on %p\n", req
);
1939 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1941 ceph_get_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
1942 if (req
->r_locked_dir
)
1943 ceph_get_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
1944 if (req
->r_old_dentry
)
1945 ceph_get_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
1949 mutex_lock(&mdsc
->mutex
);
1950 __register_request(mdsc
, req
, dir
);
1951 __do_request(mdsc
, req
);
1955 __unregister_request(mdsc
, req
);
1956 dout("do_request early error %d\n", err
);
1961 mutex_unlock(&mdsc
->mutex
);
1962 dout("do_request waiting\n");
1963 if (req
->r_timeout
) {
1964 err
= (long)wait_for_completion_killable_timeout(
1965 &req
->r_completion
, req
->r_timeout
);
1969 err
= wait_for_completion_killable(&req
->r_completion
);
1971 dout("do_request waited, got %d\n", err
);
1972 mutex_lock(&mdsc
->mutex
);
1974 /* only abort if we didn't race with a real reply */
1975 if (req
->r_got_result
) {
1976 err
= le32_to_cpu(req
->r_reply_info
.head
->result
);
1977 } else if (err
< 0) {
1978 dout("aborted request %lld with %d\n", req
->r_tid
, err
);
1981 * ensure we aren't running concurrently with
1982 * ceph_fill_trace or ceph_readdir_prepopulate, which
1983 * rely on locks (dir mutex) held by our caller.
1985 mutex_lock(&req
->r_fill_mutex
);
1987 req
->r_aborted
= true;
1988 mutex_unlock(&req
->r_fill_mutex
);
1990 if (req
->r_locked_dir
&&
1991 (req
->r_op
& CEPH_MDS_OP_WRITE
))
1992 ceph_invalidate_dir_request(req
);
1998 mutex_unlock(&mdsc
->mutex
);
1999 dout("do_request %p done, result %d\n", req
, err
);
2004 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
2005 * namespace request.
2007 void ceph_invalidate_dir_request(struct ceph_mds_request
*req
)
2009 struct inode
*inode
= req
->r_locked_dir
;
2010 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2012 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode
);
2013 spin_lock(&inode
->i_lock
);
2014 ci
->i_ceph_flags
&= ~CEPH_I_COMPLETE
;
2015 ci
->i_release_count
++;
2016 spin_unlock(&inode
->i_lock
);
2019 ceph_invalidate_dentry_lease(req
->r_dentry
);
2020 if (req
->r_old_dentry
)
2021 ceph_invalidate_dentry_lease(req
->r_old_dentry
);
2027 * We take the session mutex and parse and process the reply immediately.
2028 * This preserves the logical ordering of replies, capabilities, etc., sent
2029 * by the MDS as they are applied to our local cache.
2031 static void handle_reply(struct ceph_mds_session
*session
, struct ceph_msg
*msg
)
2033 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2034 struct ceph_mds_request
*req
;
2035 struct ceph_mds_reply_head
*head
= msg
->front
.iov_base
;
2036 struct ceph_mds_reply_info_parsed
*rinfo
; /* parsed reply info */
2039 int mds
= session
->s_mds
;
2041 if (msg
->front
.iov_len
< sizeof(*head
)) {
2042 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2047 /* get request, session */
2048 tid
= le64_to_cpu(msg
->hdr
.tid
);
2049 mutex_lock(&mdsc
->mutex
);
2050 req
= __lookup_request(mdsc
, tid
);
2052 dout("handle_reply on unknown tid %llu\n", tid
);
2053 mutex_unlock(&mdsc
->mutex
);
2056 dout("handle_reply %p\n", req
);
2058 /* correct session? */
2059 if (req
->r_session
!= session
) {
2060 pr_err("mdsc_handle_reply got %llu on session mds%d"
2061 " not mds%d\n", tid
, session
->s_mds
,
2062 req
->r_session
? req
->r_session
->s_mds
: -1);
2063 mutex_unlock(&mdsc
->mutex
);
2068 if ((req
->r_got_unsafe
&& !head
->safe
) ||
2069 (req
->r_got_safe
&& head
->safe
)) {
2070 pr_warning("got a dup %s reply on %llu from mds%d\n",
2071 head
->safe
? "safe" : "unsafe", tid
, mds
);
2072 mutex_unlock(&mdsc
->mutex
);
2075 if (req
->r_got_safe
&& !head
->safe
) {
2076 pr_warning("got unsafe after safe on %llu from mds%d\n",
2078 mutex_unlock(&mdsc
->mutex
);
2082 result
= le32_to_cpu(head
->result
);
2086 * if we're not talking to the authority, send to them
2087 * if the authority has changed while we weren't looking,
2088 * send to new authority
2089 * Otherwise we just have to return an ESTALE
2091 if (result
== -ESTALE
) {
2092 dout("got ESTALE on request %llu", req
->r_tid
);
2093 if (!req
->r_inode
) {
2094 /* do nothing; not an authority problem */
2095 } else if (req
->r_direct_mode
!= USE_AUTH_MDS
) {
2096 dout("not using auth, setting for that now");
2097 req
->r_direct_mode
= USE_AUTH_MDS
;
2098 __do_request(mdsc
, req
);
2099 mutex_unlock(&mdsc
->mutex
);
2102 struct ceph_inode_info
*ci
= ceph_inode(req
->r_inode
);
2103 struct ceph_cap
*cap
= NULL
;
2106 cap
= ceph_get_cap_for_mds(ci
,
2107 req
->r_session
->s_mds
);
2109 dout("already using auth");
2110 if ((!cap
|| cap
!= ci
->i_auth_cap
) ||
2111 (cap
->mseq
!= req
->r_sent_on_mseq
)) {
2112 dout("but cap changed, so resending");
2113 __do_request(mdsc
, req
);
2114 mutex_unlock(&mdsc
->mutex
);
2118 dout("have to return ESTALE on request %llu", req
->r_tid
);
2123 req
->r_got_safe
= true;
2124 __unregister_request(mdsc
, req
);
2125 complete_all(&req
->r_safe_completion
);
2127 if (req
->r_got_unsafe
) {
2129 * We already handled the unsafe response, now do the
2130 * cleanup. No need to examine the response; the MDS
2131 * doesn't include any result info in the safe
2132 * response. And even if it did, there is nothing
2133 * useful we could do with a revised return value.
2135 dout("got safe reply %llu, mds%d\n", tid
, mds
);
2136 list_del_init(&req
->r_unsafe_item
);
2138 /* last unsafe request during umount? */
2139 if (mdsc
->stopping
&& !__get_oldest_req(mdsc
))
2140 complete_all(&mdsc
->safe_umount_waiters
);
2141 mutex_unlock(&mdsc
->mutex
);
2145 req
->r_got_unsafe
= true;
2146 list_add_tail(&req
->r_unsafe_item
, &req
->r_session
->s_unsafe
);
2149 dout("handle_reply tid %lld result %d\n", tid
, result
);
2150 rinfo
= &req
->r_reply_info
;
2151 err
= parse_reply_info(msg
, rinfo
, session
->s_con
.peer_features
);
2152 mutex_unlock(&mdsc
->mutex
);
2154 mutex_lock(&session
->s_mutex
);
2156 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds
, tid
);
2162 if (rinfo
->snapblob_len
) {
2163 down_write(&mdsc
->snap_rwsem
);
2164 ceph_update_snap_trace(mdsc
, rinfo
->snapblob
,
2165 rinfo
->snapblob
+ rinfo
->snapblob_len
,
2166 le32_to_cpu(head
->op
) == CEPH_MDS_OP_RMSNAP
);
2167 downgrade_write(&mdsc
->snap_rwsem
);
2169 down_read(&mdsc
->snap_rwsem
);
2172 /* insert trace into our cache */
2173 mutex_lock(&req
->r_fill_mutex
);
2174 err
= ceph_fill_trace(mdsc
->fsc
->sb
, req
, req
->r_session
);
2176 if (result
== 0 && req
->r_op
!= CEPH_MDS_OP_GETFILELOCK
&&
2178 ceph_readdir_prepopulate(req
, req
->r_session
);
2179 ceph_unreserve_caps(mdsc
, &req
->r_caps_reservation
);
2181 mutex_unlock(&req
->r_fill_mutex
);
2183 up_read(&mdsc
->snap_rwsem
);
2185 mutex_lock(&mdsc
->mutex
);
2186 if (!req
->r_aborted
) {
2192 req
->r_got_result
= true;
2195 dout("reply arrived after request %lld was aborted\n", tid
);
2197 mutex_unlock(&mdsc
->mutex
);
2199 ceph_add_cap_releases(mdsc
, req
->r_session
);
2200 mutex_unlock(&session
->s_mutex
);
2202 /* kick calling process */
2203 complete_request(mdsc
, req
);
2205 ceph_mdsc_put_request(req
);
2212 * handle mds notification that our request has been forwarded.
2214 static void handle_forward(struct ceph_mds_client
*mdsc
,
2215 struct ceph_mds_session
*session
,
2216 struct ceph_msg
*msg
)
2218 struct ceph_mds_request
*req
;
2219 u64 tid
= le64_to_cpu(msg
->hdr
.tid
);
2223 void *p
= msg
->front
.iov_base
;
2224 void *end
= p
+ msg
->front
.iov_len
;
2226 ceph_decode_need(&p
, end
, 2*sizeof(u32
), bad
);
2227 next_mds
= ceph_decode_32(&p
);
2228 fwd_seq
= ceph_decode_32(&p
);
2230 mutex_lock(&mdsc
->mutex
);
2231 req
= __lookup_request(mdsc
, tid
);
2233 dout("forward tid %llu to mds%d - req dne\n", tid
, next_mds
);
2234 goto out
; /* dup reply? */
2237 if (req
->r_aborted
) {
2238 dout("forward tid %llu aborted, unregistering\n", tid
);
2239 __unregister_request(mdsc
, req
);
2240 } else if (fwd_seq
<= req
->r_num_fwd
) {
2241 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2242 tid
, next_mds
, req
->r_num_fwd
, fwd_seq
);
2244 /* resend. forward race not possible; mds would drop */
2245 dout("forward tid %llu to mds%d (we resend)\n", tid
, next_mds
);
2247 BUG_ON(req
->r_got_result
);
2248 req
->r_num_fwd
= fwd_seq
;
2249 req
->r_resend_mds
= next_mds
;
2250 put_request_session(req
);
2251 __do_request(mdsc
, req
);
2253 ceph_mdsc_put_request(req
);
2255 mutex_unlock(&mdsc
->mutex
);
2259 pr_err("mdsc_handle_forward decode error err=%d\n", err
);
2263 * handle a mds session control message
2265 static void handle_session(struct ceph_mds_session
*session
,
2266 struct ceph_msg
*msg
)
2268 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2271 int mds
= session
->s_mds
;
2272 struct ceph_mds_session_head
*h
= msg
->front
.iov_base
;
2276 if (msg
->front
.iov_len
!= sizeof(*h
))
2278 op
= le32_to_cpu(h
->op
);
2279 seq
= le64_to_cpu(h
->seq
);
2281 mutex_lock(&mdsc
->mutex
);
2282 if (op
== CEPH_SESSION_CLOSE
)
2283 __unregister_session(mdsc
, session
);
2284 /* FIXME: this ttl calculation is generous */
2285 session
->s_ttl
= jiffies
+ HZ
*mdsc
->mdsmap
->m_session_autoclose
;
2286 mutex_unlock(&mdsc
->mutex
);
2288 mutex_lock(&session
->s_mutex
);
2290 dout("handle_session mds%d %s %p state %s seq %llu\n",
2291 mds
, ceph_session_op_name(op
), session
,
2292 session_state_name(session
->s_state
), seq
);
2294 if (session
->s_state
== CEPH_MDS_SESSION_HUNG
) {
2295 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2296 pr_info("mds%d came back\n", session
->s_mds
);
2300 case CEPH_SESSION_OPEN
:
2301 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2302 pr_info("mds%d reconnect success\n", session
->s_mds
);
2303 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2304 renewed_caps(mdsc
, session
, 0);
2307 __close_session(mdsc
, session
);
2310 case CEPH_SESSION_RENEWCAPS
:
2311 if (session
->s_renew_seq
== seq
)
2312 renewed_caps(mdsc
, session
, 1);
2315 case CEPH_SESSION_CLOSE
:
2316 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2317 pr_info("mds%d reconnect denied\n", session
->s_mds
);
2318 remove_session_caps(session
);
2319 wake
= 1; /* for good measure */
2320 wake_up_all(&mdsc
->session_close_wq
);
2321 kick_requests(mdsc
, mds
);
2324 case CEPH_SESSION_STALE
:
2325 pr_info("mds%d caps went stale, renewing\n",
2327 spin_lock(&session
->s_cap_lock
);
2328 session
->s_cap_gen
++;
2329 session
->s_cap_ttl
= 0;
2330 spin_unlock(&session
->s_cap_lock
);
2331 send_renew_caps(mdsc
, session
);
2334 case CEPH_SESSION_RECALL_STATE
:
2335 trim_caps(mdsc
, session
, le32_to_cpu(h
->max_caps
));
2339 pr_err("mdsc_handle_session bad op %d mds%d\n", op
, mds
);
2343 mutex_unlock(&session
->s_mutex
);
2345 mutex_lock(&mdsc
->mutex
);
2346 __wake_requests(mdsc
, &session
->s_waiting
);
2347 mutex_unlock(&mdsc
->mutex
);
2352 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds
,
2353 (int)msg
->front
.iov_len
);
2360 * called under session->mutex.
2362 static void replay_unsafe_requests(struct ceph_mds_client
*mdsc
,
2363 struct ceph_mds_session
*session
)
2365 struct ceph_mds_request
*req
, *nreq
;
2368 dout("replay_unsafe_requests mds%d\n", session
->s_mds
);
2370 mutex_lock(&mdsc
->mutex
);
2371 list_for_each_entry_safe(req
, nreq
, &session
->s_unsafe
, r_unsafe_item
) {
2372 err
= __prepare_send_request(mdsc
, req
, session
->s_mds
);
2374 ceph_msg_get(req
->r_request
);
2375 ceph_con_send(&session
->s_con
, req
->r_request
);
2378 mutex_unlock(&mdsc
->mutex
);
2382 * Encode information about a cap for a reconnect with the MDS.
2384 static int encode_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
2388 struct ceph_mds_cap_reconnect v2
;
2389 struct ceph_mds_cap_reconnect_v1 v1
;
2392 struct ceph_inode_info
*ci
;
2393 struct ceph_reconnect_state
*recon_state
= arg
;
2394 struct ceph_pagelist
*pagelist
= recon_state
->pagelist
;
2398 struct dentry
*dentry
;
2402 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2403 inode
, ceph_vinop(inode
), cap
, cap
->cap_id
,
2404 ceph_cap_string(cap
->issued
));
2405 err
= ceph_pagelist_encode_64(pagelist
, ceph_ino(inode
));
2409 dentry
= d_find_alias(inode
);
2411 path
= ceph_mdsc_build_path(dentry
, &pathlen
, &pathbase
, 0);
2413 err
= PTR_ERR(path
);
2420 err
= ceph_pagelist_encode_string(pagelist
, path
, pathlen
);
2424 spin_lock(&inode
->i_lock
);
2425 cap
->seq
= 0; /* reset cap seq */
2426 cap
->issue_seq
= 0; /* and issue_seq */
2428 if (recon_state
->flock
) {
2429 rec
.v2
.cap_id
= cpu_to_le64(cap
->cap_id
);
2430 rec
.v2
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2431 rec
.v2
.issued
= cpu_to_le32(cap
->issued
);
2432 rec
.v2
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2433 rec
.v2
.pathbase
= cpu_to_le64(pathbase
);
2434 rec
.v2
.flock_len
= 0;
2435 reclen
= sizeof(rec
.v2
);
2437 rec
.v1
.cap_id
= cpu_to_le64(cap
->cap_id
);
2438 rec
.v1
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2439 rec
.v1
.issued
= cpu_to_le32(cap
->issued
);
2440 rec
.v1
.size
= cpu_to_le64(inode
->i_size
);
2441 ceph_encode_timespec(&rec
.v1
.mtime
, &inode
->i_mtime
);
2442 ceph_encode_timespec(&rec
.v1
.atime
, &inode
->i_atime
);
2443 rec
.v1
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2444 rec
.v1
.pathbase
= cpu_to_le64(pathbase
);
2445 reclen
= sizeof(rec
.v1
);
2447 spin_unlock(&inode
->i_lock
);
2449 if (recon_state
->flock
) {
2450 int num_fcntl_locks
, num_flock_locks
;
2451 struct ceph_pagelist_cursor trunc_point
;
2453 ceph_pagelist_set_cursor(pagelist
, &trunc_point
);
2456 ceph_count_locks(inode
, &num_fcntl_locks
,
2458 rec
.v2
.flock_len
= (2*sizeof(u32
) +
2459 (num_fcntl_locks
+num_flock_locks
) *
2460 sizeof(struct ceph_filelock
));
2463 /* pre-alloc pagelist */
2464 ceph_pagelist_truncate(pagelist
, &trunc_point
);
2465 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2467 err
= ceph_pagelist_reserve(pagelist
,
2473 err
= ceph_encode_locks(inode
,
2479 } while (err
== -ENOSPC
);
2481 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2493 * If an MDS fails and recovers, clients need to reconnect in order to
2494 * reestablish shared state. This includes all caps issued through
2495 * this session _and_ the snap_realm hierarchy. Because it's not
2496 * clear which snap realms the mds cares about, we send everything we
2497 * know about.. that ensures we'll then get any new info the
2498 * recovering MDS might have.
2500 * This is a relatively heavyweight operation, but it's rare.
2502 * called with mdsc->mutex held.
2504 static void send_mds_reconnect(struct ceph_mds_client
*mdsc
,
2505 struct ceph_mds_session
*session
)
2507 struct ceph_msg
*reply
;
2509 int mds
= session
->s_mds
;
2511 struct ceph_pagelist
*pagelist
;
2512 struct ceph_reconnect_state recon_state
;
2514 pr_info("mds%d reconnect start\n", mds
);
2516 pagelist
= kmalloc(sizeof(*pagelist
), GFP_NOFS
);
2518 goto fail_nopagelist
;
2519 ceph_pagelist_init(pagelist
);
2521 reply
= ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT
, 0, GFP_NOFS
);
2525 mutex_lock(&session
->s_mutex
);
2526 session
->s_state
= CEPH_MDS_SESSION_RECONNECTING
;
2529 ceph_con_open(&session
->s_con
,
2530 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
2532 /* replay unsafe requests */
2533 replay_unsafe_requests(mdsc
, session
);
2535 down_read(&mdsc
->snap_rwsem
);
2537 dout("session %p state %s\n", session
,
2538 session_state_name(session
->s_state
));
2540 /* drop old cap expires; we're about to reestablish that state */
2541 discard_cap_releases(mdsc
, session
);
2543 /* traverse this session's caps */
2544 err
= ceph_pagelist_encode_32(pagelist
, session
->s_nr_caps
);
2548 recon_state
.pagelist
= pagelist
;
2549 recon_state
.flock
= session
->s_con
.peer_features
& CEPH_FEATURE_FLOCK
;
2550 err
= iterate_session_caps(session
, encode_caps_cb
, &recon_state
);
2555 * snaprealms. we provide mds with the ino, seq (version), and
2556 * parent for all of our realms. If the mds has any newer info,
2559 for (p
= rb_first(&mdsc
->snap_realms
); p
; p
= rb_next(p
)) {
2560 struct ceph_snap_realm
*realm
=
2561 rb_entry(p
, struct ceph_snap_realm
, node
);
2562 struct ceph_mds_snaprealm_reconnect sr_rec
;
2564 dout(" adding snap realm %llx seq %lld parent %llx\n",
2565 realm
->ino
, realm
->seq
, realm
->parent_ino
);
2566 sr_rec
.ino
= cpu_to_le64(realm
->ino
);
2567 sr_rec
.seq
= cpu_to_le64(realm
->seq
);
2568 sr_rec
.parent
= cpu_to_le64(realm
->parent_ino
);
2569 err
= ceph_pagelist_append(pagelist
, &sr_rec
, sizeof(sr_rec
));
2574 reply
->pagelist
= pagelist
;
2575 if (recon_state
.flock
)
2576 reply
->hdr
.version
= cpu_to_le16(2);
2577 reply
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2578 reply
->nr_pages
= calc_pages_for(0, pagelist
->length
);
2579 ceph_con_send(&session
->s_con
, reply
);
2581 mutex_unlock(&session
->s_mutex
);
2583 mutex_lock(&mdsc
->mutex
);
2584 __wake_requests(mdsc
, &session
->s_waiting
);
2585 mutex_unlock(&mdsc
->mutex
);
2587 up_read(&mdsc
->snap_rwsem
);
2591 ceph_msg_put(reply
);
2592 up_read(&mdsc
->snap_rwsem
);
2593 mutex_unlock(&session
->s_mutex
);
2595 ceph_pagelist_release(pagelist
);
2598 pr_err("error %d preparing reconnect for mds%d\n", err
, mds
);
2604 * compare old and new mdsmaps, kicking requests
2605 * and closing out old connections as necessary
2607 * called under mdsc->mutex.
2609 static void check_new_map(struct ceph_mds_client
*mdsc
,
2610 struct ceph_mdsmap
*newmap
,
2611 struct ceph_mdsmap
*oldmap
)
2614 int oldstate
, newstate
;
2615 struct ceph_mds_session
*s
;
2617 dout("check_new_map new %u old %u\n",
2618 newmap
->m_epoch
, oldmap
->m_epoch
);
2620 for (i
= 0; i
< oldmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2621 if (mdsc
->sessions
[i
] == NULL
)
2623 s
= mdsc
->sessions
[i
];
2624 oldstate
= ceph_mdsmap_get_state(oldmap
, i
);
2625 newstate
= ceph_mdsmap_get_state(newmap
, i
);
2627 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2628 i
, ceph_mds_state_name(oldstate
),
2629 ceph_mdsmap_is_laggy(oldmap
, i
) ? " (laggy)" : "",
2630 ceph_mds_state_name(newstate
),
2631 ceph_mdsmap_is_laggy(newmap
, i
) ? " (laggy)" : "",
2632 session_state_name(s
->s_state
));
2634 if (memcmp(ceph_mdsmap_get_addr(oldmap
, i
),
2635 ceph_mdsmap_get_addr(newmap
, i
),
2636 sizeof(struct ceph_entity_addr
))) {
2637 if (s
->s_state
== CEPH_MDS_SESSION_OPENING
) {
2638 /* the session never opened, just close it
2640 __wake_requests(mdsc
, &s
->s_waiting
);
2641 __unregister_session(mdsc
, s
);
2644 mutex_unlock(&mdsc
->mutex
);
2645 mutex_lock(&s
->s_mutex
);
2646 mutex_lock(&mdsc
->mutex
);
2647 ceph_con_close(&s
->s_con
);
2648 mutex_unlock(&s
->s_mutex
);
2649 s
->s_state
= CEPH_MDS_SESSION_RESTARTING
;
2652 /* kick any requests waiting on the recovering mds */
2653 kick_requests(mdsc
, i
);
2654 } else if (oldstate
== newstate
) {
2655 continue; /* nothing new with this mds */
2661 if (s
->s_state
== CEPH_MDS_SESSION_RESTARTING
&&
2662 newstate
>= CEPH_MDS_STATE_RECONNECT
) {
2663 mutex_unlock(&mdsc
->mutex
);
2664 send_mds_reconnect(mdsc
, s
);
2665 mutex_lock(&mdsc
->mutex
);
2669 * kick request on any mds that has gone active.
2671 if (oldstate
< CEPH_MDS_STATE_ACTIVE
&&
2672 newstate
>= CEPH_MDS_STATE_ACTIVE
) {
2673 if (oldstate
!= CEPH_MDS_STATE_CREATING
&&
2674 oldstate
!= CEPH_MDS_STATE_STARTING
)
2675 pr_info("mds%d recovery completed\n", s
->s_mds
);
2676 kick_requests(mdsc
, i
);
2677 ceph_kick_flushing_caps(mdsc
, s
);
2678 wake_up_session_caps(s
, 1);
2682 for (i
= 0; i
< newmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2683 s
= mdsc
->sessions
[i
];
2686 if (!ceph_mdsmap_is_laggy(newmap
, i
))
2688 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
2689 s
->s_state
== CEPH_MDS_SESSION_HUNG
||
2690 s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
2691 dout(" connecting to export targets of laggy mds%d\n",
2693 __open_export_target_sessions(mdsc
, s
);
2705 * caller must hold session s_mutex, dentry->d_lock
2707 void __ceph_mdsc_drop_dentry_lease(struct dentry
*dentry
)
2709 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
2711 ceph_put_mds_session(di
->lease_session
);
2712 di
->lease_session
= NULL
;
2715 static void handle_lease(struct ceph_mds_client
*mdsc
,
2716 struct ceph_mds_session
*session
,
2717 struct ceph_msg
*msg
)
2719 struct super_block
*sb
= mdsc
->fsc
->sb
;
2720 struct inode
*inode
;
2721 struct dentry
*parent
, *dentry
;
2722 struct ceph_dentry_info
*di
;
2723 int mds
= session
->s_mds
;
2724 struct ceph_mds_lease
*h
= msg
->front
.iov_base
;
2726 struct ceph_vino vino
;
2730 dout("handle_lease from mds%d\n", mds
);
2733 if (msg
->front
.iov_len
< sizeof(*h
) + sizeof(u32
))
2735 vino
.ino
= le64_to_cpu(h
->ino
);
2736 vino
.snap
= CEPH_NOSNAP
;
2737 seq
= le32_to_cpu(h
->seq
);
2738 dname
.name
= (void *)h
+ sizeof(*h
) + sizeof(u32
);
2739 dname
.len
= msg
->front
.iov_len
- sizeof(*h
) - sizeof(u32
);
2740 if (dname
.len
!= get_unaligned_le32(h
+1))
2743 mutex_lock(&session
->s_mutex
);
2747 inode
= ceph_find_inode(sb
, vino
);
2748 dout("handle_lease %s, ino %llx %p %.*s\n",
2749 ceph_lease_op_name(h
->action
), vino
.ino
, inode
,
2750 dname
.len
, dname
.name
);
2751 if (inode
== NULL
) {
2752 dout("handle_lease no inode %llx\n", vino
.ino
);
2757 parent
= d_find_alias(inode
);
2759 dout("no parent dentry on inode %p\n", inode
);
2761 goto release
; /* hrm... */
2763 dname
.hash
= full_name_hash(dname
.name
, dname
.len
);
2764 dentry
= d_lookup(parent
, &dname
);
2769 spin_lock(&dentry
->d_lock
);
2770 di
= ceph_dentry(dentry
);
2771 switch (h
->action
) {
2772 case CEPH_MDS_LEASE_REVOKE
:
2773 if (di
&& di
->lease_session
== session
) {
2774 if (ceph_seq_cmp(di
->lease_seq
, seq
) > 0)
2775 h
->seq
= cpu_to_le32(di
->lease_seq
);
2776 __ceph_mdsc_drop_dentry_lease(dentry
);
2781 case CEPH_MDS_LEASE_RENEW
:
2782 if (di
&& di
->lease_session
== session
&&
2783 di
->lease_gen
== session
->s_cap_gen
&&
2784 di
->lease_renew_from
&&
2785 di
->lease_renew_after
== 0) {
2786 unsigned long duration
=
2787 le32_to_cpu(h
->duration_ms
) * HZ
/ 1000;
2789 di
->lease_seq
= seq
;
2790 dentry
->d_time
= di
->lease_renew_from
+ duration
;
2791 di
->lease_renew_after
= di
->lease_renew_from
+
2793 di
->lease_renew_from
= 0;
2797 spin_unlock(&dentry
->d_lock
);
2804 /* let's just reuse the same message */
2805 h
->action
= CEPH_MDS_LEASE_REVOKE_ACK
;
2807 ceph_con_send(&session
->s_con
, msg
);
2811 mutex_unlock(&session
->s_mutex
);
2815 pr_err("corrupt lease message\n");
2819 void ceph_mdsc_lease_send_msg(struct ceph_mds_session
*session
,
2820 struct inode
*inode
,
2821 struct dentry
*dentry
, char action
,
2824 struct ceph_msg
*msg
;
2825 struct ceph_mds_lease
*lease
;
2826 int len
= sizeof(*lease
) + sizeof(u32
);
2829 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2830 inode
, dentry
, ceph_lease_op_name(action
), session
->s_mds
);
2831 dnamelen
= dentry
->d_name
.len
;
2834 msg
= ceph_msg_new(CEPH_MSG_CLIENT_LEASE
, len
, GFP_NOFS
);
2837 lease
= msg
->front
.iov_base
;
2838 lease
->action
= action
;
2839 lease
->ino
= cpu_to_le64(ceph_vino(inode
).ino
);
2840 lease
->first
= lease
->last
= cpu_to_le64(ceph_vino(inode
).snap
);
2841 lease
->seq
= cpu_to_le32(seq
);
2842 put_unaligned_le32(dnamelen
, lease
+ 1);
2843 memcpy((void *)(lease
+ 1) + 4, dentry
->d_name
.name
, dnamelen
);
2846 * if this is a preemptive lease RELEASE, no need to
2847 * flush request stream, since the actual request will
2850 msg
->more_to_follow
= (action
== CEPH_MDS_LEASE_RELEASE
);
2852 ceph_con_send(&session
->s_con
, msg
);
2856 * Preemptively release a lease we expect to invalidate anyway.
2857 * Pass @inode always, @dentry is optional.
2859 void ceph_mdsc_lease_release(struct ceph_mds_client
*mdsc
, struct inode
*inode
,
2860 struct dentry
*dentry
)
2862 struct ceph_dentry_info
*di
;
2863 struct ceph_mds_session
*session
;
2866 BUG_ON(inode
== NULL
);
2867 BUG_ON(dentry
== NULL
);
2869 /* is dentry lease valid? */
2870 spin_lock(&dentry
->d_lock
);
2871 di
= ceph_dentry(dentry
);
2872 if (!di
|| !di
->lease_session
||
2873 di
->lease_session
->s_mds
< 0 ||
2874 di
->lease_gen
!= di
->lease_session
->s_cap_gen
||
2875 !time_before(jiffies
, dentry
->d_time
)) {
2876 dout("lease_release inode %p dentry %p -- "
2879 spin_unlock(&dentry
->d_lock
);
2883 /* we do have a lease on this dentry; note mds and seq */
2884 session
= ceph_get_mds_session(di
->lease_session
);
2885 seq
= di
->lease_seq
;
2886 __ceph_mdsc_drop_dentry_lease(dentry
);
2887 spin_unlock(&dentry
->d_lock
);
2889 dout("lease_release inode %p dentry %p to mds%d\n",
2890 inode
, dentry
, session
->s_mds
);
2891 ceph_mdsc_lease_send_msg(session
, inode
, dentry
,
2892 CEPH_MDS_LEASE_RELEASE
, seq
);
2893 ceph_put_mds_session(session
);
2897 * drop all leases (and dentry refs) in preparation for umount
2899 static void drop_leases(struct ceph_mds_client
*mdsc
)
2903 dout("drop_leases\n");
2904 mutex_lock(&mdsc
->mutex
);
2905 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2906 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2909 mutex_unlock(&mdsc
->mutex
);
2910 mutex_lock(&s
->s_mutex
);
2911 mutex_unlock(&s
->s_mutex
);
2912 ceph_put_mds_session(s
);
2913 mutex_lock(&mdsc
->mutex
);
2915 mutex_unlock(&mdsc
->mutex
);
2921 * delayed work -- periodically trim expired leases, renew caps with mds
2923 static void schedule_delayed(struct ceph_mds_client
*mdsc
)
2926 unsigned hz
= round_jiffies_relative(HZ
* delay
);
2927 schedule_delayed_work(&mdsc
->delayed_work
, hz
);
2930 static void delayed_work(struct work_struct
*work
)
2933 struct ceph_mds_client
*mdsc
=
2934 container_of(work
, struct ceph_mds_client
, delayed_work
.work
);
2938 dout("mdsc delayed_work\n");
2939 ceph_check_delayed_caps(mdsc
);
2941 mutex_lock(&mdsc
->mutex
);
2942 renew_interval
= mdsc
->mdsmap
->m_session_timeout
>> 2;
2943 renew_caps
= time_after_eq(jiffies
, HZ
*renew_interval
+
2944 mdsc
->last_renew_caps
);
2946 mdsc
->last_renew_caps
= jiffies
;
2948 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2949 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2952 if (s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
2953 dout("resending session close request for mds%d\n",
2955 request_close_session(mdsc
, s
);
2956 ceph_put_mds_session(s
);
2959 if (s
->s_ttl
&& time_after(jiffies
, s
->s_ttl
)) {
2960 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
) {
2961 s
->s_state
= CEPH_MDS_SESSION_HUNG
;
2962 pr_info("mds%d hung\n", s
->s_mds
);
2965 if (s
->s_state
< CEPH_MDS_SESSION_OPEN
) {
2966 /* this mds is failed or recovering, just wait */
2967 ceph_put_mds_session(s
);
2970 mutex_unlock(&mdsc
->mutex
);
2972 mutex_lock(&s
->s_mutex
);
2974 send_renew_caps(mdsc
, s
);
2976 ceph_con_keepalive(&s
->s_con
);
2977 ceph_add_cap_releases(mdsc
, s
);
2978 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
2979 s
->s_state
== CEPH_MDS_SESSION_HUNG
)
2980 ceph_send_cap_releases(mdsc
, s
);
2981 mutex_unlock(&s
->s_mutex
);
2982 ceph_put_mds_session(s
);
2984 mutex_lock(&mdsc
->mutex
);
2986 mutex_unlock(&mdsc
->mutex
);
2988 schedule_delayed(mdsc
);
2991 int ceph_mdsc_init(struct ceph_fs_client
*fsc
)
2994 struct ceph_mds_client
*mdsc
;
2996 mdsc
= kzalloc(sizeof(struct ceph_mds_client
), GFP_NOFS
);
3001 mutex_init(&mdsc
->mutex
);
3002 mdsc
->mdsmap
= kzalloc(sizeof(*mdsc
->mdsmap
), GFP_NOFS
);
3003 if (mdsc
->mdsmap
== NULL
)
3006 init_completion(&mdsc
->safe_umount_waiters
);
3007 init_waitqueue_head(&mdsc
->session_close_wq
);
3008 INIT_LIST_HEAD(&mdsc
->waiting_for_map
);
3009 mdsc
->sessions
= NULL
;
3010 mdsc
->max_sessions
= 0;
3012 init_rwsem(&mdsc
->snap_rwsem
);
3013 mdsc
->snap_realms
= RB_ROOT
;
3014 INIT_LIST_HEAD(&mdsc
->snap_empty
);
3015 spin_lock_init(&mdsc
->snap_empty_lock
);
3017 mdsc
->request_tree
= RB_ROOT
;
3018 INIT_DELAYED_WORK(&mdsc
->delayed_work
, delayed_work
);
3019 mdsc
->last_renew_caps
= jiffies
;
3020 INIT_LIST_HEAD(&mdsc
->cap_delay_list
);
3021 spin_lock_init(&mdsc
->cap_delay_lock
);
3022 INIT_LIST_HEAD(&mdsc
->snap_flush_list
);
3023 spin_lock_init(&mdsc
->snap_flush_lock
);
3024 mdsc
->cap_flush_seq
= 0;
3025 INIT_LIST_HEAD(&mdsc
->cap_dirty
);
3026 INIT_LIST_HEAD(&mdsc
->cap_dirty_migrating
);
3027 mdsc
->num_cap_flushing
= 0;
3028 spin_lock_init(&mdsc
->cap_dirty_lock
);
3029 init_waitqueue_head(&mdsc
->cap_flushing_wq
);
3030 spin_lock_init(&mdsc
->dentry_lru_lock
);
3031 INIT_LIST_HEAD(&mdsc
->dentry_lru
);
3033 ceph_caps_init(mdsc
);
3034 ceph_adjust_min_caps(mdsc
, fsc
->min_caps
);
3040 * Wait for safe replies on open mds requests. If we time out, drop
3041 * all requests from the tree to avoid dangling dentry refs.
3043 static void wait_requests(struct ceph_mds_client
*mdsc
)
3045 struct ceph_mds_request
*req
;
3046 struct ceph_fs_client
*fsc
= mdsc
->fsc
;
3048 mutex_lock(&mdsc
->mutex
);
3049 if (__get_oldest_req(mdsc
)) {
3050 mutex_unlock(&mdsc
->mutex
);
3052 dout("wait_requests waiting for requests\n");
3053 wait_for_completion_timeout(&mdsc
->safe_umount_waiters
,
3054 fsc
->client
->options
->mount_timeout
* HZ
);
3056 /* tear down remaining requests */
3057 mutex_lock(&mdsc
->mutex
);
3058 while ((req
= __get_oldest_req(mdsc
))) {
3059 dout("wait_requests timed out on tid %llu\n",
3061 __unregister_request(mdsc
, req
);
3064 mutex_unlock(&mdsc
->mutex
);
3065 dout("wait_requests done\n");
3069 * called before mount is ro, and before dentries are torn down.
3070 * (hmm, does this still race with new lookups?)
3072 void ceph_mdsc_pre_umount(struct ceph_mds_client
*mdsc
)
3074 dout("pre_umount\n");
3078 ceph_flush_dirty_caps(mdsc
);
3079 wait_requests(mdsc
);
3082 * wait for reply handlers to drop their request refs and
3083 * their inode/dcache refs
3089 * wait for all write mds requests to flush.
3091 static void wait_unsafe_requests(struct ceph_mds_client
*mdsc
, u64 want_tid
)
3093 struct ceph_mds_request
*req
= NULL
, *nextreq
;
3096 mutex_lock(&mdsc
->mutex
);
3097 dout("wait_unsafe_requests want %lld\n", want_tid
);
3099 req
= __get_oldest_req(mdsc
);
3100 while (req
&& req
->r_tid
<= want_tid
) {
3101 /* find next request */
3102 n
= rb_next(&req
->r_node
);
3104 nextreq
= rb_entry(n
, struct ceph_mds_request
, r_node
);
3107 if ((req
->r_op
& CEPH_MDS_OP_WRITE
)) {
3109 ceph_mdsc_get_request(req
);
3111 ceph_mdsc_get_request(nextreq
);
3112 mutex_unlock(&mdsc
->mutex
);
3113 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3114 req
->r_tid
, want_tid
);
3115 wait_for_completion(&req
->r_safe_completion
);
3116 mutex_lock(&mdsc
->mutex
);
3117 ceph_mdsc_put_request(req
);
3119 break; /* next dne before, so we're done! */
3120 if (RB_EMPTY_NODE(&nextreq
->r_node
)) {
3121 /* next request was removed from tree */
3122 ceph_mdsc_put_request(nextreq
);
3125 ceph_mdsc_put_request(nextreq
); /* won't go away */
3129 mutex_unlock(&mdsc
->mutex
);
3130 dout("wait_unsafe_requests done\n");
3133 void ceph_mdsc_sync(struct ceph_mds_client
*mdsc
)
3135 u64 want_tid
, want_flush
;
3137 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3141 mutex_lock(&mdsc
->mutex
);
3142 want_tid
= mdsc
->last_tid
;
3143 want_flush
= mdsc
->cap_flush_seq
;
3144 mutex_unlock(&mdsc
->mutex
);
3145 dout("sync want tid %lld flush_seq %lld\n", want_tid
, want_flush
);
3147 ceph_flush_dirty_caps(mdsc
);
3149 wait_unsafe_requests(mdsc
, want_tid
);
3150 wait_event(mdsc
->cap_flushing_wq
, check_cap_flush(mdsc
, want_flush
));
3154 * true if all sessions are closed, or we force unmount
3156 bool done_closing_sessions(struct ceph_mds_client
*mdsc
)
3160 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3163 mutex_lock(&mdsc
->mutex
);
3164 for (i
= 0; i
< mdsc
->max_sessions
; i
++)
3165 if (mdsc
->sessions
[i
])
3167 mutex_unlock(&mdsc
->mutex
);
3172 * called after sb is ro.
3174 void ceph_mdsc_close_sessions(struct ceph_mds_client
*mdsc
)
3176 struct ceph_mds_session
*session
;
3178 struct ceph_fs_client
*fsc
= mdsc
->fsc
;
3179 unsigned long timeout
= fsc
->client
->options
->mount_timeout
* HZ
;
3181 dout("close_sessions\n");
3183 /* close sessions */
3184 mutex_lock(&mdsc
->mutex
);
3185 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3186 session
= __ceph_lookup_mds_session(mdsc
, i
);
3189 mutex_unlock(&mdsc
->mutex
);
3190 mutex_lock(&session
->s_mutex
);
3191 __close_session(mdsc
, session
);
3192 mutex_unlock(&session
->s_mutex
);
3193 ceph_put_mds_session(session
);
3194 mutex_lock(&mdsc
->mutex
);
3196 mutex_unlock(&mdsc
->mutex
);
3198 dout("waiting for sessions to close\n");
3199 wait_event_timeout(mdsc
->session_close_wq
, done_closing_sessions(mdsc
),
3202 /* tear down remaining sessions */
3203 mutex_lock(&mdsc
->mutex
);
3204 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3205 if (mdsc
->sessions
[i
]) {
3206 session
= get_session(mdsc
->sessions
[i
]);
3207 __unregister_session(mdsc
, session
);
3208 mutex_unlock(&mdsc
->mutex
);
3209 mutex_lock(&session
->s_mutex
);
3210 remove_session_caps(session
);
3211 mutex_unlock(&session
->s_mutex
);
3212 ceph_put_mds_session(session
);
3213 mutex_lock(&mdsc
->mutex
);
3216 WARN_ON(!list_empty(&mdsc
->cap_delay_list
));
3217 mutex_unlock(&mdsc
->mutex
);
3219 ceph_cleanup_empty_realms(mdsc
);
3221 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3226 static void ceph_mdsc_stop(struct ceph_mds_client
*mdsc
)
3229 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3231 ceph_mdsmap_destroy(mdsc
->mdsmap
);
3232 kfree(mdsc
->sessions
);
3233 ceph_caps_finalize(mdsc
);
3236 void ceph_mdsc_destroy(struct ceph_fs_client
*fsc
)
3238 struct ceph_mds_client
*mdsc
= fsc
->mdsc
;
3240 dout("mdsc_destroy %p\n", mdsc
);
3241 ceph_mdsc_stop(mdsc
);
3243 /* flush out any connection work with references to us */
3248 dout("mdsc_destroy %p done\n", mdsc
);
3253 * handle mds map update.
3255 void ceph_mdsc_handle_map(struct ceph_mds_client
*mdsc
, struct ceph_msg
*msg
)
3259 void *p
= msg
->front
.iov_base
;
3260 void *end
= p
+ msg
->front
.iov_len
;
3261 struct ceph_mdsmap
*newmap
, *oldmap
;
3262 struct ceph_fsid fsid
;
3265 ceph_decode_need(&p
, end
, sizeof(fsid
)+2*sizeof(u32
), bad
);
3266 ceph_decode_copy(&p
, &fsid
, sizeof(fsid
));
3267 if (ceph_check_fsid(mdsc
->fsc
->client
, &fsid
) < 0)
3269 epoch
= ceph_decode_32(&p
);
3270 maplen
= ceph_decode_32(&p
);
3271 dout("handle_map epoch %u len %d\n", epoch
, (int)maplen
);
3273 /* do we need it? */
3274 ceph_monc_got_mdsmap(&mdsc
->fsc
->client
->monc
, epoch
);
3275 mutex_lock(&mdsc
->mutex
);
3276 if (mdsc
->mdsmap
&& epoch
<= mdsc
->mdsmap
->m_epoch
) {
3277 dout("handle_map epoch %u <= our %u\n",
3278 epoch
, mdsc
->mdsmap
->m_epoch
);
3279 mutex_unlock(&mdsc
->mutex
);
3283 newmap
= ceph_mdsmap_decode(&p
, end
);
3284 if (IS_ERR(newmap
)) {
3285 err
= PTR_ERR(newmap
);
3289 /* swap into place */
3291 oldmap
= mdsc
->mdsmap
;
3292 mdsc
->mdsmap
= newmap
;
3293 check_new_map(mdsc
, newmap
, oldmap
);
3294 ceph_mdsmap_destroy(oldmap
);
3296 mdsc
->mdsmap
= newmap
; /* first mds map */
3298 mdsc
->fsc
->sb
->s_maxbytes
= mdsc
->mdsmap
->m_max_file_size
;
3300 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
3302 mutex_unlock(&mdsc
->mutex
);
3303 schedule_delayed(mdsc
);
3307 mutex_unlock(&mdsc
->mutex
);
3309 pr_err("error decoding mdsmap %d\n", err
);
3313 static struct ceph_connection
*con_get(struct ceph_connection
*con
)
3315 struct ceph_mds_session
*s
= con
->private;
3317 if (get_session(s
)) {
3318 dout("mdsc con_get %p ok (%d)\n", s
, atomic_read(&s
->s_ref
));
3321 dout("mdsc con_get %p FAIL\n", s
);
3325 static void con_put(struct ceph_connection
*con
)
3327 struct ceph_mds_session
*s
= con
->private;
3329 dout("mdsc con_put %p (%d)\n", s
, atomic_read(&s
->s_ref
) - 1);
3330 ceph_put_mds_session(s
);
3334 * if the client is unresponsive for long enough, the mds will kill
3335 * the session entirely.
3337 static void peer_reset(struct ceph_connection
*con
)
3339 struct ceph_mds_session
*s
= con
->private;
3340 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3342 pr_warning("mds%d closed our session\n", s
->s_mds
);
3343 send_mds_reconnect(mdsc
, s
);
3346 static void dispatch(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3348 struct ceph_mds_session
*s
= con
->private;
3349 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3350 int type
= le16_to_cpu(msg
->hdr
.type
);
3352 mutex_lock(&mdsc
->mutex
);
3353 if (__verify_registered_session(mdsc
, s
) < 0) {
3354 mutex_unlock(&mdsc
->mutex
);
3357 mutex_unlock(&mdsc
->mutex
);
3360 case CEPH_MSG_MDS_MAP
:
3361 ceph_mdsc_handle_map(mdsc
, msg
);
3363 case CEPH_MSG_CLIENT_SESSION
:
3364 handle_session(s
, msg
);
3366 case CEPH_MSG_CLIENT_REPLY
:
3367 handle_reply(s
, msg
);
3369 case CEPH_MSG_CLIENT_REQUEST_FORWARD
:
3370 handle_forward(mdsc
, s
, msg
);
3372 case CEPH_MSG_CLIENT_CAPS
:
3373 ceph_handle_caps(s
, msg
);
3375 case CEPH_MSG_CLIENT_SNAP
:
3376 ceph_handle_snap(mdsc
, s
, msg
);
3378 case CEPH_MSG_CLIENT_LEASE
:
3379 handle_lease(mdsc
, s
, msg
);
3383 pr_err("received unknown message type %d %s\n", type
,
3384 ceph_msg_type_name(type
));
3393 static int get_authorizer(struct ceph_connection
*con
,
3394 void **buf
, int *len
, int *proto
,
3395 void **reply_buf
, int *reply_len
, int force_new
)
3397 struct ceph_mds_session
*s
= con
->private;
3398 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3399 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3402 if (force_new
&& s
->s_authorizer
) {
3403 ac
->ops
->destroy_authorizer(ac
, s
->s_authorizer
);
3404 s
->s_authorizer
= NULL
;
3406 if (s
->s_authorizer
== NULL
) {
3407 if (ac
->ops
->create_authorizer
) {
3408 ret
= ac
->ops
->create_authorizer(
3409 ac
, CEPH_ENTITY_TYPE_MDS
,
3411 &s
->s_authorizer_buf
,
3412 &s
->s_authorizer_buf_len
,
3413 &s
->s_authorizer_reply_buf
,
3414 &s
->s_authorizer_reply_buf_len
);
3420 *proto
= ac
->protocol
;
3421 *buf
= s
->s_authorizer_buf
;
3422 *len
= s
->s_authorizer_buf_len
;
3423 *reply_buf
= s
->s_authorizer_reply_buf
;
3424 *reply_len
= s
->s_authorizer_reply_buf_len
;
3429 static int verify_authorizer_reply(struct ceph_connection
*con
, int len
)
3431 struct ceph_mds_session
*s
= con
->private;
3432 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3433 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3435 return ac
->ops
->verify_authorizer_reply(ac
, s
->s_authorizer
, len
);
3438 static int invalidate_authorizer(struct ceph_connection
*con
)
3440 struct ceph_mds_session
*s
= con
->private;
3441 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3442 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3444 if (ac
->ops
->invalidate_authorizer
)
3445 ac
->ops
->invalidate_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
);
3447 return ceph_monc_validate_auth(&mdsc
->fsc
->client
->monc
);
3450 static const struct ceph_connection_operations mds_con_ops
= {
3453 .dispatch
= dispatch
,
3454 .get_authorizer
= get_authorizer
,
3455 .verify_authorizer_reply
= verify_authorizer_reply
,
3456 .invalidate_authorizer
= invalidate_authorizer
,
3457 .peer_reset
= peer_reset
,