mtd: devices: added the 16MiB winbond device
[linux-2.6.git] / fs / xfs / xfs_mount.c
blob2b0ba358165619b87523315f1ca3940b4e2606c0
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
50 #ifdef HAVE_PERCPU_SB
51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
60 #endif
62 static const struct {
63 short offset;
64 short type; /* 0 = integer
65 * 1 = binary / string (no translation)
67 } xfs_sb_info[] = {
68 { offsetof(xfs_sb_t, sb_magicnum), 0 },
69 { offsetof(xfs_sb_t, sb_blocksize), 0 },
70 { offsetof(xfs_sb_t, sb_dblocks), 0 },
71 { offsetof(xfs_sb_t, sb_rblocks), 0 },
72 { offsetof(xfs_sb_t, sb_rextents), 0 },
73 { offsetof(xfs_sb_t, sb_uuid), 1 },
74 { offsetof(xfs_sb_t, sb_logstart), 0 },
75 { offsetof(xfs_sb_t, sb_rootino), 0 },
76 { offsetof(xfs_sb_t, sb_rbmino), 0 },
77 { offsetof(xfs_sb_t, sb_rsumino), 0 },
78 { offsetof(xfs_sb_t, sb_rextsize), 0 },
79 { offsetof(xfs_sb_t, sb_agblocks), 0 },
80 { offsetof(xfs_sb_t, sb_agcount), 0 },
81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
82 { offsetof(xfs_sb_t, sb_logblocks), 0 },
83 { offsetof(xfs_sb_t, sb_versionnum), 0 },
84 { offsetof(xfs_sb_t, sb_sectsize), 0 },
85 { offsetof(xfs_sb_t, sb_inodesize), 0 },
86 { offsetof(xfs_sb_t, sb_inopblock), 0 },
87 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
88 { offsetof(xfs_sb_t, sb_blocklog), 0 },
89 { offsetof(xfs_sb_t, sb_sectlog), 0 },
90 { offsetof(xfs_sb_t, sb_inodelog), 0 },
91 { offsetof(xfs_sb_t, sb_inopblog), 0 },
92 { offsetof(xfs_sb_t, sb_agblklog), 0 },
93 { offsetof(xfs_sb_t, sb_rextslog), 0 },
94 { offsetof(xfs_sb_t, sb_inprogress), 0 },
95 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
96 { offsetof(xfs_sb_t, sb_icount), 0 },
97 { offsetof(xfs_sb_t, sb_ifree), 0 },
98 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
99 { offsetof(xfs_sb_t, sb_frextents), 0 },
100 { offsetof(xfs_sb_t, sb_uquotino), 0 },
101 { offsetof(xfs_sb_t, sb_gquotino), 0 },
102 { offsetof(xfs_sb_t, sb_qflags), 0 },
103 { offsetof(xfs_sb_t, sb_flags), 0 },
104 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106 { offsetof(xfs_sb_t, sb_unit), 0 },
107 { offsetof(xfs_sb_t, sb_width), 0 },
108 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
109 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110 { offsetof(xfs_sb_t, sb_logsectsize),0 },
111 { offsetof(xfs_sb_t, sb_logsunit), 0 },
112 { offsetof(xfs_sb_t, sb_features2), 0 },
113 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114 { offsetof(xfs_sb_t, sb_features_compat), 0 },
115 { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
116 { offsetof(xfs_sb_t, sb_features_incompat), 0 },
117 { offsetof(xfs_sb_t, sb_features_log_incompat), 0 },
118 { offsetof(xfs_sb_t, sb_crc), 0 },
119 { offsetof(xfs_sb_t, sb_pad), 0 },
120 { offsetof(xfs_sb_t, sb_pquotino), 0 },
121 { offsetof(xfs_sb_t, sb_lsn), 0 },
122 { sizeof(xfs_sb_t), 0 }
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
133 STATIC int
134 xfs_uuid_mount(
135 struct xfs_mount *mp)
137 uuid_t *uuid = &mp->m_sb.sb_uuid;
138 int hole, i;
140 if (mp->m_flags & XFS_MOUNT_NOUUID)
141 return 0;
143 if (uuid_is_nil(uuid)) {
144 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
145 return XFS_ERROR(EINVAL);
148 mutex_lock(&xfs_uuid_table_mutex);
149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 if (uuid_is_nil(&xfs_uuid_table[i])) {
151 hole = i;
152 continue;
154 if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 goto out_duplicate;
158 if (hole < 0) {
159 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
162 KM_SLEEP);
163 hole = xfs_uuid_table_size++;
165 xfs_uuid_table[hole] = *uuid;
166 mutex_unlock(&xfs_uuid_table_mutex);
168 return 0;
170 out_duplicate:
171 mutex_unlock(&xfs_uuid_table_mutex);
172 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
173 return XFS_ERROR(EINVAL);
176 STATIC void
177 xfs_uuid_unmount(
178 struct xfs_mount *mp)
180 uuid_t *uuid = &mp->m_sb.sb_uuid;
181 int i;
183 if (mp->m_flags & XFS_MOUNT_NOUUID)
184 return;
186 mutex_lock(&xfs_uuid_table_mutex);
187 for (i = 0; i < xfs_uuid_table_size; i++) {
188 if (uuid_is_nil(&xfs_uuid_table[i]))
189 continue;
190 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 continue;
192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 break;
195 ASSERT(i < xfs_uuid_table_size);
196 mutex_unlock(&xfs_uuid_table_mutex);
201 * Reference counting access wrappers to the perag structures.
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
205 struct xfs_perag *
206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
208 struct xfs_perag *pag;
209 int ref = 0;
211 rcu_read_lock();
212 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 if (pag) {
214 ASSERT(atomic_read(&pag->pag_ref) >= 0);
215 ref = atomic_inc_return(&pag->pag_ref);
217 rcu_read_unlock();
218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 return pag;
223 * search from @first to find the next perag with the given tag set.
225 struct xfs_perag *
226 xfs_perag_get_tag(
227 struct xfs_mount *mp,
228 xfs_agnumber_t first,
229 int tag)
231 struct xfs_perag *pag;
232 int found;
233 int ref;
235 rcu_read_lock();
236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 (void **)&pag, first, 1, tag);
238 if (found <= 0) {
239 rcu_read_unlock();
240 return NULL;
242 ref = atomic_inc_return(&pag->pag_ref);
243 rcu_read_unlock();
244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 return pag;
248 void
249 xfs_perag_put(struct xfs_perag *pag)
251 int ref;
253 ASSERT(atomic_read(&pag->pag_ref) > 0);
254 ref = atomic_dec_return(&pag->pag_ref);
255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
258 STATIC void
259 __xfs_free_perag(
260 struct rcu_head *head)
262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
264 ASSERT(atomic_read(&pag->pag_ref) == 0);
265 kmem_free(pag);
269 * Free up the per-ag resources associated with the mount structure.
271 STATIC void
272 xfs_free_perag(
273 xfs_mount_t *mp)
275 xfs_agnumber_t agno;
276 struct xfs_perag *pag;
278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 spin_lock(&mp->m_perag_lock);
280 pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 spin_unlock(&mp->m_perag_lock);
282 ASSERT(pag);
283 ASSERT(atomic_read(&pag->pag_ref) == 0);
284 call_rcu(&pag->rcu_head, __xfs_free_perag);
289 * Check size of device based on the (data/realtime) block count.
290 * Note: this check is used by the growfs code as well as mount.
293 xfs_sb_validate_fsb_count(
294 xfs_sb_t *sbp,
295 __uint64_t nblocks)
297 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
298 ASSERT(sbp->sb_blocklog >= BBSHIFT);
300 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
301 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
302 return EFBIG;
303 #else /* Limited by UINT_MAX of sectors */
304 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
305 return EFBIG;
306 #endif
307 return 0;
311 * Check the validity of the SB found.
313 STATIC int
314 xfs_mount_validate_sb(
315 xfs_mount_t *mp,
316 xfs_sb_t *sbp,
317 bool check_inprogress,
318 bool check_version)
322 * If the log device and data device have the
323 * same device number, the log is internal.
324 * Consequently, the sb_logstart should be non-zero. If
325 * we have a zero sb_logstart in this case, we may be trying to mount
326 * a volume filesystem in a non-volume manner.
328 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
329 xfs_warn(mp, "bad magic number");
330 return XFS_ERROR(EWRONGFS);
334 if (!xfs_sb_good_version(sbp)) {
335 xfs_warn(mp, "bad version");
336 return XFS_ERROR(EWRONGFS);
339 if ((sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) &&
340 (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD |
341 XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD))) {
342 xfs_notice(mp,
343 "Super block has XFS_OQUOTA bits along with XFS_PQUOTA and/or XFS_GQUOTA bits.\n");
344 return XFS_ERROR(EFSCORRUPTED);
348 * Version 5 superblock feature mask validation. Reject combinations the
349 * kernel cannot support up front before checking anything else. For
350 * write validation, we don't need to check feature masks.
352 if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
353 xfs_alert(mp,
354 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
355 "Use of these features in this kernel is at your own risk!");
357 if (xfs_sb_has_compat_feature(sbp,
358 XFS_SB_FEAT_COMPAT_UNKNOWN)) {
359 xfs_warn(mp,
360 "Superblock has unknown compatible features (0x%x) enabled.\n"
361 "Using a more recent kernel is recommended.",
362 (sbp->sb_features_compat &
363 XFS_SB_FEAT_COMPAT_UNKNOWN));
366 if (xfs_sb_has_ro_compat_feature(sbp,
367 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
368 xfs_alert(mp,
369 "Superblock has unknown read-only compatible features (0x%x) enabled.",
370 (sbp->sb_features_ro_compat &
371 XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
372 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
373 xfs_warn(mp,
374 "Attempted to mount read-only compatible filesystem read-write.\n"
375 "Filesystem can only be safely mounted read only.");
376 return XFS_ERROR(EINVAL);
379 if (xfs_sb_has_incompat_feature(sbp,
380 XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
381 xfs_warn(mp,
382 "Superblock has unknown incompatible features (0x%x) enabled.\n"
383 "Filesystem can not be safely mounted by this kernel.",
384 (sbp->sb_features_incompat &
385 XFS_SB_FEAT_INCOMPAT_UNKNOWN));
386 return XFS_ERROR(EINVAL);
390 if (unlikely(
391 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
392 xfs_warn(mp,
393 "filesystem is marked as having an external log; "
394 "specify logdev on the mount command line.");
395 return XFS_ERROR(EINVAL);
398 if (unlikely(
399 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
400 xfs_warn(mp,
401 "filesystem is marked as having an internal log; "
402 "do not specify logdev on the mount command line.");
403 return XFS_ERROR(EINVAL);
407 * More sanity checking. Most of these were stolen directly from
408 * xfs_repair.
410 if (unlikely(
411 sbp->sb_agcount <= 0 ||
412 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
413 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
414 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
415 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
416 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
417 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
418 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
419 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
420 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
421 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
422 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
423 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
424 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
425 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
426 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
427 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
428 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
429 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
430 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
431 sbp->sb_dblocks == 0 ||
432 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
433 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
434 XFS_CORRUPTION_ERROR("SB sanity check failed",
435 XFS_ERRLEVEL_LOW, mp, sbp);
436 return XFS_ERROR(EFSCORRUPTED);
440 * Until this is fixed only page-sized or smaller data blocks work.
442 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
443 xfs_warn(mp,
444 "File system with blocksize %d bytes. "
445 "Only pagesize (%ld) or less will currently work.",
446 sbp->sb_blocksize, PAGE_SIZE);
447 return XFS_ERROR(ENOSYS);
451 * Currently only very few inode sizes are supported.
453 switch (sbp->sb_inodesize) {
454 case 256:
455 case 512:
456 case 1024:
457 case 2048:
458 break;
459 default:
460 xfs_warn(mp, "inode size of %d bytes not supported",
461 sbp->sb_inodesize);
462 return XFS_ERROR(ENOSYS);
465 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
466 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
467 xfs_warn(mp,
468 "file system too large to be mounted on this system.");
469 return XFS_ERROR(EFBIG);
472 if (check_inprogress && sbp->sb_inprogress) {
473 xfs_warn(mp, "Offline file system operation in progress!");
474 return XFS_ERROR(EFSCORRUPTED);
478 * Version 1 directory format has never worked on Linux.
480 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
481 xfs_warn(mp, "file system using version 1 directory format");
482 return XFS_ERROR(ENOSYS);
485 return 0;
489 xfs_initialize_perag(
490 xfs_mount_t *mp,
491 xfs_agnumber_t agcount,
492 xfs_agnumber_t *maxagi)
494 xfs_agnumber_t index;
495 xfs_agnumber_t first_initialised = 0;
496 xfs_perag_t *pag;
497 xfs_agino_t agino;
498 xfs_ino_t ino;
499 xfs_sb_t *sbp = &mp->m_sb;
500 int error = -ENOMEM;
503 * Walk the current per-ag tree so we don't try to initialise AGs
504 * that already exist (growfs case). Allocate and insert all the
505 * AGs we don't find ready for initialisation.
507 for (index = 0; index < agcount; index++) {
508 pag = xfs_perag_get(mp, index);
509 if (pag) {
510 xfs_perag_put(pag);
511 continue;
513 if (!first_initialised)
514 first_initialised = index;
516 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
517 if (!pag)
518 goto out_unwind;
519 pag->pag_agno = index;
520 pag->pag_mount = mp;
521 spin_lock_init(&pag->pag_ici_lock);
522 mutex_init(&pag->pag_ici_reclaim_lock);
523 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
524 spin_lock_init(&pag->pag_buf_lock);
525 pag->pag_buf_tree = RB_ROOT;
527 if (radix_tree_preload(GFP_NOFS))
528 goto out_unwind;
530 spin_lock(&mp->m_perag_lock);
531 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
532 BUG();
533 spin_unlock(&mp->m_perag_lock);
534 radix_tree_preload_end();
535 error = -EEXIST;
536 goto out_unwind;
538 spin_unlock(&mp->m_perag_lock);
539 radix_tree_preload_end();
543 * If we mount with the inode64 option, or no inode overflows
544 * the legacy 32-bit address space clear the inode32 option.
546 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
547 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
549 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
550 mp->m_flags |= XFS_MOUNT_32BITINODES;
551 else
552 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
554 if (mp->m_flags & XFS_MOUNT_32BITINODES)
555 index = xfs_set_inode32(mp);
556 else
557 index = xfs_set_inode64(mp);
559 if (maxagi)
560 *maxagi = index;
561 return 0;
563 out_unwind:
564 kmem_free(pag);
565 for (; index > first_initialised; index--) {
566 pag = radix_tree_delete(&mp->m_perag_tree, index);
567 kmem_free(pag);
569 return error;
572 static void
573 xfs_sb_quota_from_disk(struct xfs_sb *sbp)
575 if (sbp->sb_qflags & XFS_OQUOTA_ENFD)
576 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ?
577 XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD;
578 if (sbp->sb_qflags & XFS_OQUOTA_CHKD)
579 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ?
580 XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD;
581 sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD);
584 void
585 xfs_sb_from_disk(
586 struct xfs_sb *to,
587 xfs_dsb_t *from)
589 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
590 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
591 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
592 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
593 to->sb_rextents = be64_to_cpu(from->sb_rextents);
594 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
595 to->sb_logstart = be64_to_cpu(from->sb_logstart);
596 to->sb_rootino = be64_to_cpu(from->sb_rootino);
597 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
598 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
599 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
600 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
601 to->sb_agcount = be32_to_cpu(from->sb_agcount);
602 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
603 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
604 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
605 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
606 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
607 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
608 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
609 to->sb_blocklog = from->sb_blocklog;
610 to->sb_sectlog = from->sb_sectlog;
611 to->sb_inodelog = from->sb_inodelog;
612 to->sb_inopblog = from->sb_inopblog;
613 to->sb_agblklog = from->sb_agblklog;
614 to->sb_rextslog = from->sb_rextslog;
615 to->sb_inprogress = from->sb_inprogress;
616 to->sb_imax_pct = from->sb_imax_pct;
617 to->sb_icount = be64_to_cpu(from->sb_icount);
618 to->sb_ifree = be64_to_cpu(from->sb_ifree);
619 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
620 to->sb_frextents = be64_to_cpu(from->sb_frextents);
621 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
622 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
623 to->sb_qflags = be16_to_cpu(from->sb_qflags);
624 to->sb_flags = from->sb_flags;
625 to->sb_shared_vn = from->sb_shared_vn;
626 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
627 to->sb_unit = be32_to_cpu(from->sb_unit);
628 to->sb_width = be32_to_cpu(from->sb_width);
629 to->sb_dirblklog = from->sb_dirblklog;
630 to->sb_logsectlog = from->sb_logsectlog;
631 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
632 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
633 to->sb_features2 = be32_to_cpu(from->sb_features2);
634 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
635 to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
636 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
637 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
638 to->sb_features_log_incompat =
639 be32_to_cpu(from->sb_features_log_incompat);
640 to->sb_pad = 0;
641 to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
642 to->sb_lsn = be64_to_cpu(from->sb_lsn);
645 static inline void
646 xfs_sb_quota_to_disk(
647 xfs_dsb_t *to,
648 xfs_sb_t *from,
649 __int64_t *fields)
651 __uint16_t qflags = from->sb_qflags;
653 if (*fields & XFS_SB_QFLAGS) {
655 * The in-core version of sb_qflags do not have
656 * XFS_OQUOTA_* flags, whereas the on-disk version
657 * does. So, convert incore XFS_{PG}QUOTA_* flags
658 * to on-disk XFS_OQUOTA_* flags.
660 qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD |
661 XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD);
663 if (from->sb_qflags &
664 (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD))
665 qflags |= XFS_OQUOTA_ENFD;
666 if (from->sb_qflags &
667 (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD))
668 qflags |= XFS_OQUOTA_CHKD;
669 to->sb_qflags = cpu_to_be16(qflags);
670 *fields &= ~XFS_SB_QFLAGS;
675 * Copy in core superblock to ondisk one.
677 * The fields argument is mask of superblock fields to copy.
679 void
680 xfs_sb_to_disk(
681 xfs_dsb_t *to,
682 xfs_sb_t *from,
683 __int64_t fields)
685 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
686 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
687 xfs_sb_field_t f;
688 int first;
689 int size;
691 ASSERT(fields);
692 if (!fields)
693 return;
695 xfs_sb_quota_to_disk(to, from, &fields);
696 while (fields) {
697 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
698 first = xfs_sb_info[f].offset;
699 size = xfs_sb_info[f + 1].offset - first;
701 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
703 if (size == 1 || xfs_sb_info[f].type == 1) {
704 memcpy(to_ptr + first, from_ptr + first, size);
705 } else {
706 switch (size) {
707 case 2:
708 *(__be16 *)(to_ptr + first) =
709 cpu_to_be16(*(__u16 *)(from_ptr + first));
710 break;
711 case 4:
712 *(__be32 *)(to_ptr + first) =
713 cpu_to_be32(*(__u32 *)(from_ptr + first));
714 break;
715 case 8:
716 *(__be64 *)(to_ptr + first) =
717 cpu_to_be64(*(__u64 *)(from_ptr + first));
718 break;
719 default:
720 ASSERT(0);
724 fields &= ~(1LL << f);
728 static int
729 xfs_sb_verify(
730 struct xfs_buf *bp,
731 bool check_version)
733 struct xfs_mount *mp = bp->b_target->bt_mount;
734 struct xfs_sb sb;
736 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
739 * Only check the in progress field for the primary superblock as
740 * mkfs.xfs doesn't clear it from secondary superblocks.
742 return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR,
743 check_version);
747 * If the superblock has the CRC feature bit set or the CRC field is non-null,
748 * check that the CRC is valid. We check the CRC field is non-null because a
749 * single bit error could clear the feature bit and unused parts of the
750 * superblock are supposed to be zero. Hence a non-null crc field indicates that
751 * we've potentially lost a feature bit and we should check it anyway.
753 static void
754 xfs_sb_read_verify(
755 struct xfs_buf *bp)
757 struct xfs_mount *mp = bp->b_target->bt_mount;
758 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
759 int error;
762 * open code the version check to avoid needing to convert the entire
763 * superblock from disk order just to check the version number
765 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
766 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
767 XFS_SB_VERSION_5) ||
768 dsb->sb_crc != 0)) {
770 if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
771 offsetof(struct xfs_sb, sb_crc))) {
772 error = EFSCORRUPTED;
773 goto out_error;
776 error = xfs_sb_verify(bp, true);
778 out_error:
779 if (error) {
780 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
781 xfs_buf_ioerror(bp, error);
786 * We may be probed for a filesystem match, so we may not want to emit
787 * messages when the superblock buffer is not actually an XFS superblock.
788 * If we find an XFS superblock, the run a normal, noisy mount because we are
789 * really going to mount it and want to know about errors.
791 static void
792 xfs_sb_quiet_read_verify(
793 struct xfs_buf *bp)
795 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
798 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
799 /* XFS filesystem, verify noisily! */
800 xfs_sb_read_verify(bp);
801 return;
803 /* quietly fail */
804 xfs_buf_ioerror(bp, EWRONGFS);
807 static void
808 xfs_sb_write_verify(
809 struct xfs_buf *bp)
811 struct xfs_mount *mp = bp->b_target->bt_mount;
812 struct xfs_buf_log_item *bip = bp->b_fspriv;
813 int error;
815 error = xfs_sb_verify(bp, false);
816 if (error) {
817 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
818 xfs_buf_ioerror(bp, error);
819 return;
822 if (!xfs_sb_version_hascrc(&mp->m_sb))
823 return;
825 if (bip)
826 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
828 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
829 offsetof(struct xfs_sb, sb_crc));
832 const struct xfs_buf_ops xfs_sb_buf_ops = {
833 .verify_read = xfs_sb_read_verify,
834 .verify_write = xfs_sb_write_verify,
837 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
838 .verify_read = xfs_sb_quiet_read_verify,
839 .verify_write = xfs_sb_write_verify,
843 * xfs_readsb
845 * Does the initial read of the superblock.
848 xfs_readsb(xfs_mount_t *mp, int flags)
850 unsigned int sector_size;
851 struct xfs_buf *bp;
852 struct xfs_sb *sbp = &mp->m_sb;
853 int error;
854 int loud = !(flags & XFS_MFSI_QUIET);
856 ASSERT(mp->m_sb_bp == NULL);
857 ASSERT(mp->m_ddev_targp != NULL);
860 * Allocate a (locked) buffer to hold the superblock.
861 * This will be kept around at all times to optimize
862 * access to the superblock.
864 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
866 reread:
867 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
868 BTOBB(sector_size), 0,
869 loud ? &xfs_sb_buf_ops
870 : &xfs_sb_quiet_buf_ops);
871 if (!bp) {
872 if (loud)
873 xfs_warn(mp, "SB buffer read failed");
874 return EIO;
876 if (bp->b_error) {
877 error = bp->b_error;
878 if (loud)
879 xfs_warn(mp, "SB validate failed with error %d.", error);
880 goto release_buf;
884 * Initialize the mount structure from the superblock.
886 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
888 xfs_sb_quota_from_disk(&mp->m_sb);
890 * We must be able to do sector-sized and sector-aligned IO.
892 if (sector_size > sbp->sb_sectsize) {
893 if (loud)
894 xfs_warn(mp, "device supports %u byte sectors (not %u)",
895 sector_size, sbp->sb_sectsize);
896 error = ENOSYS;
897 goto release_buf;
901 * If device sector size is smaller than the superblock size,
902 * re-read the superblock so the buffer is correctly sized.
904 if (sector_size < sbp->sb_sectsize) {
905 xfs_buf_relse(bp);
906 sector_size = sbp->sb_sectsize;
907 goto reread;
910 /* Initialize per-cpu counters */
911 xfs_icsb_reinit_counters(mp);
913 /* no need to be quiet anymore, so reset the buf ops */
914 bp->b_ops = &xfs_sb_buf_ops;
916 mp->m_sb_bp = bp;
917 xfs_buf_unlock(bp);
918 return 0;
920 release_buf:
921 xfs_buf_relse(bp);
922 return error;
927 * xfs_mount_common
929 * Mount initialization code establishing various mount
930 * fields from the superblock associated with the given
931 * mount structure
933 STATIC void
934 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
936 mp->m_agfrotor = mp->m_agirotor = 0;
937 spin_lock_init(&mp->m_agirotor_lock);
938 mp->m_maxagi = mp->m_sb.sb_agcount;
939 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
940 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
941 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
942 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
943 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
944 mp->m_blockmask = sbp->sb_blocksize - 1;
945 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
946 mp->m_blockwmask = mp->m_blockwsize - 1;
948 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
949 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
950 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
951 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
953 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
954 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
955 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
956 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
958 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
959 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
960 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
961 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
963 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
964 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
965 sbp->sb_inopblock);
966 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
970 * xfs_initialize_perag_data
972 * Read in each per-ag structure so we can count up the number of
973 * allocated inodes, free inodes and used filesystem blocks as this
974 * information is no longer persistent in the superblock. Once we have
975 * this information, write it into the in-core superblock structure.
977 STATIC int
978 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
980 xfs_agnumber_t index;
981 xfs_perag_t *pag;
982 xfs_sb_t *sbp = &mp->m_sb;
983 uint64_t ifree = 0;
984 uint64_t ialloc = 0;
985 uint64_t bfree = 0;
986 uint64_t bfreelst = 0;
987 uint64_t btree = 0;
988 int error;
990 for (index = 0; index < agcount; index++) {
992 * read the agf, then the agi. This gets us
993 * all the information we need and populates the
994 * per-ag structures for us.
996 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
997 if (error)
998 return error;
1000 error = xfs_ialloc_pagi_init(mp, NULL, index);
1001 if (error)
1002 return error;
1003 pag = xfs_perag_get(mp, index);
1004 ifree += pag->pagi_freecount;
1005 ialloc += pag->pagi_count;
1006 bfree += pag->pagf_freeblks;
1007 bfreelst += pag->pagf_flcount;
1008 btree += pag->pagf_btreeblks;
1009 xfs_perag_put(pag);
1012 * Overwrite incore superblock counters with just-read data
1014 spin_lock(&mp->m_sb_lock);
1015 sbp->sb_ifree = ifree;
1016 sbp->sb_icount = ialloc;
1017 sbp->sb_fdblocks = bfree + bfreelst + btree;
1018 spin_unlock(&mp->m_sb_lock);
1020 /* Fixup the per-cpu counters as well. */
1021 xfs_icsb_reinit_counters(mp);
1023 return 0;
1027 * Update alignment values based on mount options and sb values
1029 STATIC int
1030 xfs_update_alignment(xfs_mount_t *mp)
1032 xfs_sb_t *sbp = &(mp->m_sb);
1034 if (mp->m_dalign) {
1036 * If stripe unit and stripe width are not multiples
1037 * of the fs blocksize turn off alignment.
1039 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
1040 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
1041 xfs_warn(mp,
1042 "alignment check failed: sunit/swidth vs. blocksize(%d)",
1043 sbp->sb_blocksize);
1044 return XFS_ERROR(EINVAL);
1045 } else {
1047 * Convert the stripe unit and width to FSBs.
1049 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
1050 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
1051 xfs_warn(mp,
1052 "alignment check failed: sunit/swidth vs. agsize(%d)",
1053 sbp->sb_agblocks);
1054 return XFS_ERROR(EINVAL);
1055 } else if (mp->m_dalign) {
1056 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
1057 } else {
1058 xfs_warn(mp,
1059 "alignment check failed: sunit(%d) less than bsize(%d)",
1060 mp->m_dalign, sbp->sb_blocksize);
1061 return XFS_ERROR(EINVAL);
1066 * Update superblock with new values
1067 * and log changes
1069 if (xfs_sb_version_hasdalign(sbp)) {
1070 if (sbp->sb_unit != mp->m_dalign) {
1071 sbp->sb_unit = mp->m_dalign;
1072 mp->m_update_flags |= XFS_SB_UNIT;
1074 if (sbp->sb_width != mp->m_swidth) {
1075 sbp->sb_width = mp->m_swidth;
1076 mp->m_update_flags |= XFS_SB_WIDTH;
1078 } else {
1079 xfs_warn(mp,
1080 "cannot change alignment: superblock does not support data alignment");
1081 return XFS_ERROR(EINVAL);
1083 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
1084 xfs_sb_version_hasdalign(&mp->m_sb)) {
1085 mp->m_dalign = sbp->sb_unit;
1086 mp->m_swidth = sbp->sb_width;
1089 return 0;
1093 * Set the maximum inode count for this filesystem
1095 STATIC void
1096 xfs_set_maxicount(xfs_mount_t *mp)
1098 xfs_sb_t *sbp = &(mp->m_sb);
1099 __uint64_t icount;
1101 if (sbp->sb_imax_pct) {
1103 * Make sure the maximum inode count is a multiple
1104 * of the units we allocate inodes in.
1106 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1107 do_div(icount, 100);
1108 do_div(icount, mp->m_ialloc_blks);
1109 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
1110 sbp->sb_inopblog;
1111 } else {
1112 mp->m_maxicount = 0;
1117 * Set the default minimum read and write sizes unless
1118 * already specified in a mount option.
1119 * We use smaller I/O sizes when the file system
1120 * is being used for NFS service (wsync mount option).
1122 STATIC void
1123 xfs_set_rw_sizes(xfs_mount_t *mp)
1125 xfs_sb_t *sbp = &(mp->m_sb);
1126 int readio_log, writeio_log;
1128 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1129 if (mp->m_flags & XFS_MOUNT_WSYNC) {
1130 readio_log = XFS_WSYNC_READIO_LOG;
1131 writeio_log = XFS_WSYNC_WRITEIO_LOG;
1132 } else {
1133 readio_log = XFS_READIO_LOG_LARGE;
1134 writeio_log = XFS_WRITEIO_LOG_LARGE;
1136 } else {
1137 readio_log = mp->m_readio_log;
1138 writeio_log = mp->m_writeio_log;
1141 if (sbp->sb_blocklog > readio_log) {
1142 mp->m_readio_log = sbp->sb_blocklog;
1143 } else {
1144 mp->m_readio_log = readio_log;
1146 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1147 if (sbp->sb_blocklog > writeio_log) {
1148 mp->m_writeio_log = sbp->sb_blocklog;
1149 } else {
1150 mp->m_writeio_log = writeio_log;
1152 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
1156 * precalculate the low space thresholds for dynamic speculative preallocation.
1158 void
1159 xfs_set_low_space_thresholds(
1160 struct xfs_mount *mp)
1162 int i;
1164 for (i = 0; i < XFS_LOWSP_MAX; i++) {
1165 __uint64_t space = mp->m_sb.sb_dblocks;
1167 do_div(space, 100);
1168 mp->m_low_space[i] = space * (i + 1);
1174 * Set whether we're using inode alignment.
1176 STATIC void
1177 xfs_set_inoalignment(xfs_mount_t *mp)
1179 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1180 mp->m_sb.sb_inoalignmt >=
1181 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1182 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1183 else
1184 mp->m_inoalign_mask = 0;
1186 * If we are using stripe alignment, check whether
1187 * the stripe unit is a multiple of the inode alignment
1189 if (mp->m_dalign && mp->m_inoalign_mask &&
1190 !(mp->m_dalign & mp->m_inoalign_mask))
1191 mp->m_sinoalign = mp->m_dalign;
1192 else
1193 mp->m_sinoalign = 0;
1197 * Check that the data (and log if separate) are an ok size.
1199 STATIC int
1200 xfs_check_sizes(xfs_mount_t *mp)
1202 xfs_buf_t *bp;
1203 xfs_daddr_t d;
1205 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1206 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1207 xfs_warn(mp, "filesystem size mismatch detected");
1208 return XFS_ERROR(EFBIG);
1210 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1211 d - XFS_FSS_TO_BB(mp, 1),
1212 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1213 if (!bp) {
1214 xfs_warn(mp, "last sector read failed");
1215 return EIO;
1217 xfs_buf_relse(bp);
1219 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1220 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1221 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1222 xfs_warn(mp, "log size mismatch detected");
1223 return XFS_ERROR(EFBIG);
1225 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1226 d - XFS_FSB_TO_BB(mp, 1),
1227 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1228 if (!bp) {
1229 xfs_warn(mp, "log device read failed");
1230 return EIO;
1232 xfs_buf_relse(bp);
1234 return 0;
1238 * Clear the quotaflags in memory and in the superblock.
1241 xfs_mount_reset_sbqflags(
1242 struct xfs_mount *mp)
1244 int error;
1245 struct xfs_trans *tp;
1247 mp->m_qflags = 0;
1250 * It is OK to look at sb_qflags here in mount path,
1251 * without m_sb_lock.
1253 if (mp->m_sb.sb_qflags == 0)
1254 return 0;
1255 spin_lock(&mp->m_sb_lock);
1256 mp->m_sb.sb_qflags = 0;
1257 spin_unlock(&mp->m_sb_lock);
1260 * If the fs is readonly, let the incore superblock run
1261 * with quotas off but don't flush the update out to disk
1263 if (mp->m_flags & XFS_MOUNT_RDONLY)
1264 return 0;
1266 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1267 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1268 0, 0, XFS_DEFAULT_LOG_COUNT);
1269 if (error) {
1270 xfs_trans_cancel(tp, 0);
1271 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1272 return error;
1275 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1276 return xfs_trans_commit(tp, 0);
1279 __uint64_t
1280 xfs_default_resblks(xfs_mount_t *mp)
1282 __uint64_t resblks;
1285 * We default to 5% or 8192 fsbs of space reserved, whichever is
1286 * smaller. This is intended to cover concurrent allocation
1287 * transactions when we initially hit enospc. These each require a 4
1288 * block reservation. Hence by default we cover roughly 2000 concurrent
1289 * allocation reservations.
1291 resblks = mp->m_sb.sb_dblocks;
1292 do_div(resblks, 20);
1293 resblks = min_t(__uint64_t, resblks, 8192);
1294 return resblks;
1298 * This function does the following on an initial mount of a file system:
1299 * - reads the superblock from disk and init the mount struct
1300 * - if we're a 32-bit kernel, do a size check on the superblock
1301 * so we don't mount terabyte filesystems
1302 * - init mount struct realtime fields
1303 * - allocate inode hash table for fs
1304 * - init directory manager
1305 * - perform recovery and init the log manager
1308 xfs_mountfs(
1309 xfs_mount_t *mp)
1311 xfs_sb_t *sbp = &(mp->m_sb);
1312 xfs_inode_t *rip;
1313 __uint64_t resblks;
1314 uint quotamount = 0;
1315 uint quotaflags = 0;
1316 int error = 0;
1318 xfs_mount_common(mp, sbp);
1321 * Check for a mismatched features2 values. Older kernels
1322 * read & wrote into the wrong sb offset for sb_features2
1323 * on some platforms due to xfs_sb_t not being 64bit size aligned
1324 * when sb_features2 was added, which made older superblock
1325 * reading/writing routines swap it as a 64-bit value.
1327 * For backwards compatibility, we make both slots equal.
1329 * If we detect a mismatched field, we OR the set bits into the
1330 * existing features2 field in case it has already been modified; we
1331 * don't want to lose any features. We then update the bad location
1332 * with the ORed value so that older kernels will see any features2
1333 * flags, and mark the two fields as needing updates once the
1334 * transaction subsystem is online.
1336 if (xfs_sb_has_mismatched_features2(sbp)) {
1337 xfs_warn(mp, "correcting sb_features alignment problem");
1338 sbp->sb_features2 |= sbp->sb_bad_features2;
1339 sbp->sb_bad_features2 = sbp->sb_features2;
1340 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1343 * Re-check for ATTR2 in case it was found in bad_features2
1344 * slot.
1346 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1347 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1348 mp->m_flags |= XFS_MOUNT_ATTR2;
1351 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1352 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1353 xfs_sb_version_removeattr2(&mp->m_sb);
1354 mp->m_update_flags |= XFS_SB_FEATURES2;
1356 /* update sb_versionnum for the clearing of the morebits */
1357 if (!sbp->sb_features2)
1358 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1362 * Check if sb_agblocks is aligned at stripe boundary
1363 * If sb_agblocks is NOT aligned turn off m_dalign since
1364 * allocator alignment is within an ag, therefore ag has
1365 * to be aligned at stripe boundary.
1367 error = xfs_update_alignment(mp);
1368 if (error)
1369 goto out;
1371 xfs_alloc_compute_maxlevels(mp);
1372 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1373 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1374 xfs_ialloc_compute_maxlevels(mp);
1376 xfs_set_maxicount(mp);
1378 error = xfs_uuid_mount(mp);
1379 if (error)
1380 goto out;
1383 * Set the minimum read and write sizes
1385 xfs_set_rw_sizes(mp);
1387 /* set the low space thresholds for dynamic preallocation */
1388 xfs_set_low_space_thresholds(mp);
1391 * Set the inode cluster size.
1392 * This may still be overridden by the file system
1393 * block size if it is larger than the chosen cluster size.
1395 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1398 * Set inode alignment fields
1400 xfs_set_inoalignment(mp);
1403 * Check that the data (and log if separate) are an ok size.
1405 error = xfs_check_sizes(mp);
1406 if (error)
1407 goto out_remove_uuid;
1410 * Initialize realtime fields in the mount structure
1412 error = xfs_rtmount_init(mp);
1413 if (error) {
1414 xfs_warn(mp, "RT mount failed");
1415 goto out_remove_uuid;
1419 * Copies the low order bits of the timestamp and the randomly
1420 * set "sequence" number out of a UUID.
1422 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1424 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1426 xfs_dir_mount(mp);
1429 * Initialize the attribute manager's entries.
1431 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1434 * Initialize the precomputed transaction reservations values.
1436 xfs_trans_init(mp);
1439 * Allocate and initialize the per-ag data.
1441 spin_lock_init(&mp->m_perag_lock);
1442 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1443 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1444 if (error) {
1445 xfs_warn(mp, "Failed per-ag init: %d", error);
1446 goto out_remove_uuid;
1449 if (!sbp->sb_logblocks) {
1450 xfs_warn(mp, "no log defined");
1451 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1452 error = XFS_ERROR(EFSCORRUPTED);
1453 goto out_free_perag;
1457 * log's mount-time initialization. Perform 1st part recovery if needed
1459 error = xfs_log_mount(mp, mp->m_logdev_targp,
1460 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1461 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1462 if (error) {
1463 xfs_warn(mp, "log mount failed");
1464 goto out_fail_wait;
1468 * Now the log is mounted, we know if it was an unclean shutdown or
1469 * not. If it was, with the first phase of recovery has completed, we
1470 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1471 * but they are recovered transactionally in the second recovery phase
1472 * later.
1474 * Hence we can safely re-initialise incore superblock counters from
1475 * the per-ag data. These may not be correct if the filesystem was not
1476 * cleanly unmounted, so we need to wait for recovery to finish before
1477 * doing this.
1479 * If the filesystem was cleanly unmounted, then we can trust the
1480 * values in the superblock to be correct and we don't need to do
1481 * anything here.
1483 * If we are currently making the filesystem, the initialisation will
1484 * fail as the perag data is in an undefined state.
1486 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1487 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1488 !mp->m_sb.sb_inprogress) {
1489 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1490 if (error)
1491 goto out_fail_wait;
1495 * Get and sanity-check the root inode.
1496 * Save the pointer to it in the mount structure.
1498 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1499 if (error) {
1500 xfs_warn(mp, "failed to read root inode");
1501 goto out_log_dealloc;
1504 ASSERT(rip != NULL);
1506 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1507 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1508 (unsigned long long)rip->i_ino);
1509 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1510 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1511 mp);
1512 error = XFS_ERROR(EFSCORRUPTED);
1513 goto out_rele_rip;
1515 mp->m_rootip = rip; /* save it */
1517 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1520 * Initialize realtime inode pointers in the mount structure
1522 error = xfs_rtmount_inodes(mp);
1523 if (error) {
1525 * Free up the root inode.
1527 xfs_warn(mp, "failed to read RT inodes");
1528 goto out_rele_rip;
1532 * If this is a read-only mount defer the superblock updates until
1533 * the next remount into writeable mode. Otherwise we would never
1534 * perform the update e.g. for the root filesystem.
1536 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1537 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1538 if (error) {
1539 xfs_warn(mp, "failed to write sb changes");
1540 goto out_rtunmount;
1545 * Initialise the XFS quota management subsystem for this mount
1547 if (XFS_IS_QUOTA_RUNNING(mp)) {
1548 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1549 if (error)
1550 goto out_rtunmount;
1551 } else {
1552 ASSERT(!XFS_IS_QUOTA_ON(mp));
1555 * If a file system had quotas running earlier, but decided to
1556 * mount without -o uquota/pquota/gquota options, revoke the
1557 * quotachecked license.
1559 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1560 xfs_notice(mp, "resetting quota flags");
1561 error = xfs_mount_reset_sbqflags(mp);
1562 if (error)
1563 return error;
1568 * Finish recovering the file system. This part needed to be
1569 * delayed until after the root and real-time bitmap inodes
1570 * were consistently read in.
1572 error = xfs_log_mount_finish(mp);
1573 if (error) {
1574 xfs_warn(mp, "log mount finish failed");
1575 goto out_rtunmount;
1579 * Complete the quota initialisation, post-log-replay component.
1581 if (quotamount) {
1582 ASSERT(mp->m_qflags == 0);
1583 mp->m_qflags = quotaflags;
1585 xfs_qm_mount_quotas(mp);
1589 * Now we are mounted, reserve a small amount of unused space for
1590 * privileged transactions. This is needed so that transaction
1591 * space required for critical operations can dip into this pool
1592 * when at ENOSPC. This is needed for operations like create with
1593 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1594 * are not allowed to use this reserved space.
1596 * This may drive us straight to ENOSPC on mount, but that implies
1597 * we were already there on the last unmount. Warn if this occurs.
1599 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1600 resblks = xfs_default_resblks(mp);
1601 error = xfs_reserve_blocks(mp, &resblks, NULL);
1602 if (error)
1603 xfs_warn(mp,
1604 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1607 return 0;
1609 out_rtunmount:
1610 xfs_rtunmount_inodes(mp);
1611 out_rele_rip:
1612 IRELE(rip);
1613 out_log_dealloc:
1614 xfs_log_unmount(mp);
1615 out_fail_wait:
1616 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1617 xfs_wait_buftarg(mp->m_logdev_targp);
1618 xfs_wait_buftarg(mp->m_ddev_targp);
1619 out_free_perag:
1620 xfs_free_perag(mp);
1621 out_remove_uuid:
1622 xfs_uuid_unmount(mp);
1623 out:
1624 return error;
1628 * This flushes out the inodes,dquots and the superblock, unmounts the
1629 * log and makes sure that incore structures are freed.
1631 void
1632 xfs_unmountfs(
1633 struct xfs_mount *mp)
1635 __uint64_t resblks;
1636 int error;
1638 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1640 xfs_qm_unmount_quotas(mp);
1641 xfs_rtunmount_inodes(mp);
1642 IRELE(mp->m_rootip);
1645 * We can potentially deadlock here if we have an inode cluster
1646 * that has been freed has its buffer still pinned in memory because
1647 * the transaction is still sitting in a iclog. The stale inodes
1648 * on that buffer will have their flush locks held until the
1649 * transaction hits the disk and the callbacks run. the inode
1650 * flush takes the flush lock unconditionally and with nothing to
1651 * push out the iclog we will never get that unlocked. hence we
1652 * need to force the log first.
1654 xfs_log_force(mp, XFS_LOG_SYNC);
1657 * Flush all pending changes from the AIL.
1659 xfs_ail_push_all_sync(mp->m_ail);
1662 * And reclaim all inodes. At this point there should be no dirty
1663 * inodes and none should be pinned or locked, but use synchronous
1664 * reclaim just to be sure. We can stop background inode reclaim
1665 * here as well if it is still running.
1667 cancel_delayed_work_sync(&mp->m_reclaim_work);
1668 xfs_reclaim_inodes(mp, SYNC_WAIT);
1670 xfs_qm_unmount(mp);
1673 * Unreserve any blocks we have so that when we unmount we don't account
1674 * the reserved free space as used. This is really only necessary for
1675 * lazy superblock counting because it trusts the incore superblock
1676 * counters to be absolutely correct on clean unmount.
1678 * We don't bother correcting this elsewhere for lazy superblock
1679 * counting because on mount of an unclean filesystem we reconstruct the
1680 * correct counter value and this is irrelevant.
1682 * For non-lazy counter filesystems, this doesn't matter at all because
1683 * we only every apply deltas to the superblock and hence the incore
1684 * value does not matter....
1686 resblks = 0;
1687 error = xfs_reserve_blocks(mp, &resblks, NULL);
1688 if (error)
1689 xfs_warn(mp, "Unable to free reserved block pool. "
1690 "Freespace may not be correct on next mount.");
1692 error = xfs_log_sbcount(mp);
1693 if (error)
1694 xfs_warn(mp, "Unable to update superblock counters. "
1695 "Freespace may not be correct on next mount.");
1697 xfs_log_unmount(mp);
1698 xfs_uuid_unmount(mp);
1700 #if defined(DEBUG)
1701 xfs_errortag_clearall(mp, 0);
1702 #endif
1703 xfs_free_perag(mp);
1707 xfs_fs_writable(xfs_mount_t *mp)
1709 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1710 (mp->m_flags & XFS_MOUNT_RDONLY));
1714 * xfs_log_sbcount
1716 * Sync the superblock counters to disk.
1718 * Note this code can be called during the process of freezing, so
1719 * we may need to use the transaction allocator which does not
1720 * block when the transaction subsystem is in its frozen state.
1723 xfs_log_sbcount(xfs_mount_t *mp)
1725 xfs_trans_t *tp;
1726 int error;
1728 if (!xfs_fs_writable(mp))
1729 return 0;
1731 xfs_icsb_sync_counters(mp, 0);
1734 * we don't need to do this if we are updating the superblock
1735 * counters on every modification.
1737 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1738 return 0;
1740 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1741 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1742 XFS_DEFAULT_LOG_COUNT);
1743 if (error) {
1744 xfs_trans_cancel(tp, 0);
1745 return error;
1748 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1749 xfs_trans_set_sync(tp);
1750 error = xfs_trans_commit(tp, 0);
1751 return error;
1755 * xfs_mod_sb() can be used to copy arbitrary changes to the
1756 * in-core superblock into the superblock buffer to be logged.
1757 * It does not provide the higher level of locking that is
1758 * needed to protect the in-core superblock from concurrent
1759 * access.
1761 void
1762 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1764 xfs_buf_t *bp;
1765 int first;
1766 int last;
1767 xfs_mount_t *mp;
1768 xfs_sb_field_t f;
1770 ASSERT(fields);
1771 if (!fields)
1772 return;
1773 mp = tp->t_mountp;
1774 bp = xfs_trans_getsb(tp, mp, 0);
1775 first = sizeof(xfs_sb_t);
1776 last = 0;
1778 /* translate/copy */
1780 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1782 /* find modified range */
1783 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1784 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1785 last = xfs_sb_info[f + 1].offset - 1;
1787 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1788 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1789 first = xfs_sb_info[f].offset;
1791 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1792 xfs_trans_log_buf(tp, bp, first, last);
1797 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1798 * a delta to a specified field in the in-core superblock. Simply
1799 * switch on the field indicated and apply the delta to that field.
1800 * Fields are not allowed to dip below zero, so if the delta would
1801 * do this do not apply it and return EINVAL.
1803 * The m_sb_lock must be held when this routine is called.
1805 STATIC int
1806 xfs_mod_incore_sb_unlocked(
1807 xfs_mount_t *mp,
1808 xfs_sb_field_t field,
1809 int64_t delta,
1810 int rsvd)
1812 int scounter; /* short counter for 32 bit fields */
1813 long long lcounter; /* long counter for 64 bit fields */
1814 long long res_used, rem;
1817 * With the in-core superblock spin lock held, switch
1818 * on the indicated field. Apply the delta to the
1819 * proper field. If the fields value would dip below
1820 * 0, then do not apply the delta and return EINVAL.
1822 switch (field) {
1823 case XFS_SBS_ICOUNT:
1824 lcounter = (long long)mp->m_sb.sb_icount;
1825 lcounter += delta;
1826 if (lcounter < 0) {
1827 ASSERT(0);
1828 return XFS_ERROR(EINVAL);
1830 mp->m_sb.sb_icount = lcounter;
1831 return 0;
1832 case XFS_SBS_IFREE:
1833 lcounter = (long long)mp->m_sb.sb_ifree;
1834 lcounter += delta;
1835 if (lcounter < 0) {
1836 ASSERT(0);
1837 return XFS_ERROR(EINVAL);
1839 mp->m_sb.sb_ifree = lcounter;
1840 return 0;
1841 case XFS_SBS_FDBLOCKS:
1842 lcounter = (long long)
1843 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1844 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1846 if (delta > 0) { /* Putting blocks back */
1847 if (res_used > delta) {
1848 mp->m_resblks_avail += delta;
1849 } else {
1850 rem = delta - res_used;
1851 mp->m_resblks_avail = mp->m_resblks;
1852 lcounter += rem;
1854 } else { /* Taking blocks away */
1855 lcounter += delta;
1856 if (lcounter >= 0) {
1857 mp->m_sb.sb_fdblocks = lcounter +
1858 XFS_ALLOC_SET_ASIDE(mp);
1859 return 0;
1863 * We are out of blocks, use any available reserved
1864 * blocks if were allowed to.
1866 if (!rsvd)
1867 return XFS_ERROR(ENOSPC);
1869 lcounter = (long long)mp->m_resblks_avail + delta;
1870 if (lcounter >= 0) {
1871 mp->m_resblks_avail = lcounter;
1872 return 0;
1874 printk_once(KERN_WARNING
1875 "Filesystem \"%s\": reserve blocks depleted! "
1876 "Consider increasing reserve pool size.",
1877 mp->m_fsname);
1878 return XFS_ERROR(ENOSPC);
1881 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1882 return 0;
1883 case XFS_SBS_FREXTENTS:
1884 lcounter = (long long)mp->m_sb.sb_frextents;
1885 lcounter += delta;
1886 if (lcounter < 0) {
1887 return XFS_ERROR(ENOSPC);
1889 mp->m_sb.sb_frextents = lcounter;
1890 return 0;
1891 case XFS_SBS_DBLOCKS:
1892 lcounter = (long long)mp->m_sb.sb_dblocks;
1893 lcounter += delta;
1894 if (lcounter < 0) {
1895 ASSERT(0);
1896 return XFS_ERROR(EINVAL);
1898 mp->m_sb.sb_dblocks = lcounter;
1899 return 0;
1900 case XFS_SBS_AGCOUNT:
1901 scounter = mp->m_sb.sb_agcount;
1902 scounter += delta;
1903 if (scounter < 0) {
1904 ASSERT(0);
1905 return XFS_ERROR(EINVAL);
1907 mp->m_sb.sb_agcount = scounter;
1908 return 0;
1909 case XFS_SBS_IMAX_PCT:
1910 scounter = mp->m_sb.sb_imax_pct;
1911 scounter += delta;
1912 if (scounter < 0) {
1913 ASSERT(0);
1914 return XFS_ERROR(EINVAL);
1916 mp->m_sb.sb_imax_pct = scounter;
1917 return 0;
1918 case XFS_SBS_REXTSIZE:
1919 scounter = mp->m_sb.sb_rextsize;
1920 scounter += delta;
1921 if (scounter < 0) {
1922 ASSERT(0);
1923 return XFS_ERROR(EINVAL);
1925 mp->m_sb.sb_rextsize = scounter;
1926 return 0;
1927 case XFS_SBS_RBMBLOCKS:
1928 scounter = mp->m_sb.sb_rbmblocks;
1929 scounter += delta;
1930 if (scounter < 0) {
1931 ASSERT(0);
1932 return XFS_ERROR(EINVAL);
1934 mp->m_sb.sb_rbmblocks = scounter;
1935 return 0;
1936 case XFS_SBS_RBLOCKS:
1937 lcounter = (long long)mp->m_sb.sb_rblocks;
1938 lcounter += delta;
1939 if (lcounter < 0) {
1940 ASSERT(0);
1941 return XFS_ERROR(EINVAL);
1943 mp->m_sb.sb_rblocks = lcounter;
1944 return 0;
1945 case XFS_SBS_REXTENTS:
1946 lcounter = (long long)mp->m_sb.sb_rextents;
1947 lcounter += delta;
1948 if (lcounter < 0) {
1949 ASSERT(0);
1950 return XFS_ERROR(EINVAL);
1952 mp->m_sb.sb_rextents = lcounter;
1953 return 0;
1954 case XFS_SBS_REXTSLOG:
1955 scounter = mp->m_sb.sb_rextslog;
1956 scounter += delta;
1957 if (scounter < 0) {
1958 ASSERT(0);
1959 return XFS_ERROR(EINVAL);
1961 mp->m_sb.sb_rextslog = scounter;
1962 return 0;
1963 default:
1964 ASSERT(0);
1965 return XFS_ERROR(EINVAL);
1970 * xfs_mod_incore_sb() is used to change a field in the in-core
1971 * superblock structure by the specified delta. This modification
1972 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1973 * routine to do the work.
1976 xfs_mod_incore_sb(
1977 struct xfs_mount *mp,
1978 xfs_sb_field_t field,
1979 int64_t delta,
1980 int rsvd)
1982 int status;
1984 #ifdef HAVE_PERCPU_SB
1985 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1986 #endif
1987 spin_lock(&mp->m_sb_lock);
1988 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1989 spin_unlock(&mp->m_sb_lock);
1991 return status;
1995 * Change more than one field in the in-core superblock structure at a time.
1997 * The fields and changes to those fields are specified in the array of
1998 * xfs_mod_sb structures passed in. Either all of the specified deltas
1999 * will be applied or none of them will. If any modified field dips below 0,
2000 * then all modifications will be backed out and EINVAL will be returned.
2002 * Note that this function may not be used for the superblock values that
2003 * are tracked with the in-memory per-cpu counters - a direct call to
2004 * xfs_icsb_modify_counters is required for these.
2007 xfs_mod_incore_sb_batch(
2008 struct xfs_mount *mp,
2009 xfs_mod_sb_t *msb,
2010 uint nmsb,
2011 int rsvd)
2013 xfs_mod_sb_t *msbp;
2014 int error = 0;
2017 * Loop through the array of mod structures and apply each individually.
2018 * If any fail, then back out all those which have already been applied.
2019 * Do all of this within the scope of the m_sb_lock so that all of the
2020 * changes will be atomic.
2022 spin_lock(&mp->m_sb_lock);
2023 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
2024 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
2025 msbp->msb_field > XFS_SBS_FDBLOCKS);
2027 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
2028 msbp->msb_delta, rsvd);
2029 if (error)
2030 goto unwind;
2032 spin_unlock(&mp->m_sb_lock);
2033 return 0;
2035 unwind:
2036 while (--msbp >= msb) {
2037 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
2038 -msbp->msb_delta, rsvd);
2039 ASSERT(error == 0);
2041 spin_unlock(&mp->m_sb_lock);
2042 return error;
2046 * xfs_getsb() is called to obtain the buffer for the superblock.
2047 * The buffer is returned locked and read in from disk.
2048 * The buffer should be released with a call to xfs_brelse().
2050 * If the flags parameter is BUF_TRYLOCK, then we'll only return
2051 * the superblock buffer if it can be locked without sleeping.
2052 * If it can't then we'll return NULL.
2054 struct xfs_buf *
2055 xfs_getsb(
2056 struct xfs_mount *mp,
2057 int flags)
2059 struct xfs_buf *bp = mp->m_sb_bp;
2061 if (!xfs_buf_trylock(bp)) {
2062 if (flags & XBF_TRYLOCK)
2063 return NULL;
2064 xfs_buf_lock(bp);
2067 xfs_buf_hold(bp);
2068 ASSERT(XFS_BUF_ISDONE(bp));
2069 return bp;
2073 * Used to free the superblock along various error paths.
2075 void
2076 xfs_freesb(
2077 struct xfs_mount *mp)
2079 struct xfs_buf *bp = mp->m_sb_bp;
2081 xfs_buf_lock(bp);
2082 mp->m_sb_bp = NULL;
2083 xfs_buf_relse(bp);
2087 * Used to log changes to the superblock unit and width fields which could
2088 * be altered by the mount options, as well as any potential sb_features2
2089 * fixup. Only the first superblock is updated.
2092 xfs_mount_log_sb(
2093 xfs_mount_t *mp,
2094 __int64_t fields)
2096 xfs_trans_t *tp;
2097 int error;
2099 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2100 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2101 XFS_SB_VERSIONNUM));
2103 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2104 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2105 XFS_DEFAULT_LOG_COUNT);
2106 if (error) {
2107 xfs_trans_cancel(tp, 0);
2108 return error;
2110 xfs_mod_sb(tp, fields);
2111 error = xfs_trans_commit(tp, 0);
2112 return error;
2116 * If the underlying (data/log/rt) device is readonly, there are some
2117 * operations that cannot proceed.
2120 xfs_dev_is_read_only(
2121 struct xfs_mount *mp,
2122 char *message)
2124 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2125 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2126 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2127 xfs_notice(mp, "%s required on read-only device.", message);
2128 xfs_notice(mp, "write access unavailable, cannot proceed.");
2129 return EROFS;
2131 return 0;
2134 #ifdef HAVE_PERCPU_SB
2136 * Per-cpu incore superblock counters
2138 * Simple concept, difficult implementation
2140 * Basically, replace the incore superblock counters with a distributed per cpu
2141 * counter for contended fields (e.g. free block count).
2143 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2144 * hence needs to be accurately read when we are running low on space. Hence
2145 * there is a method to enable and disable the per-cpu counters based on how
2146 * much "stuff" is available in them.
2148 * Basically, a counter is enabled if there is enough free resource to justify
2149 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2150 * ENOSPC), then we disable the counters to synchronise all callers and
2151 * re-distribute the available resources.
2153 * If, once we redistributed the available resources, we still get a failure,
2154 * we disable the per-cpu counter and go through the slow path.
2156 * The slow path is the current xfs_mod_incore_sb() function. This means that
2157 * when we disable a per-cpu counter, we need to drain its resources back to
2158 * the global superblock. We do this after disabling the counter to prevent
2159 * more threads from queueing up on the counter.
2161 * Essentially, this means that we still need a lock in the fast path to enable
2162 * synchronisation between the global counters and the per-cpu counters. This
2163 * is not a problem because the lock will be local to a CPU almost all the time
2164 * and have little contention except when we get to ENOSPC conditions.
2166 * Basically, this lock becomes a barrier that enables us to lock out the fast
2167 * path while we do things like enabling and disabling counters and
2168 * synchronising the counters.
2170 * Locking rules:
2172 * 1. m_sb_lock before picking up per-cpu locks
2173 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2174 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2175 * 4. modifying per-cpu counters requires holding per-cpu lock
2176 * 5. modifying global counters requires holding m_sb_lock
2177 * 6. enabling or disabling a counter requires holding the m_sb_lock
2178 * and _none_ of the per-cpu locks.
2180 * Disabled counters are only ever re-enabled by a balance operation
2181 * that results in more free resources per CPU than a given threshold.
2182 * To ensure counters don't remain disabled, they are rebalanced when
2183 * the global resource goes above a higher threshold (i.e. some hysteresis
2184 * is present to prevent thrashing).
2187 #ifdef CONFIG_HOTPLUG_CPU
2189 * hot-plug CPU notifier support.
2191 * We need a notifier per filesystem as we need to be able to identify
2192 * the filesystem to balance the counters out. This is achieved by
2193 * having a notifier block embedded in the xfs_mount_t and doing pointer
2194 * magic to get the mount pointer from the notifier block address.
2196 STATIC int
2197 xfs_icsb_cpu_notify(
2198 struct notifier_block *nfb,
2199 unsigned long action,
2200 void *hcpu)
2202 xfs_icsb_cnts_t *cntp;
2203 xfs_mount_t *mp;
2205 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2206 cntp = (xfs_icsb_cnts_t *)
2207 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2208 switch (action) {
2209 case CPU_UP_PREPARE:
2210 case CPU_UP_PREPARE_FROZEN:
2211 /* Easy Case - initialize the area and locks, and
2212 * then rebalance when online does everything else for us. */
2213 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2214 break;
2215 case CPU_ONLINE:
2216 case CPU_ONLINE_FROZEN:
2217 xfs_icsb_lock(mp);
2218 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2219 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2220 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2221 xfs_icsb_unlock(mp);
2222 break;
2223 case CPU_DEAD:
2224 case CPU_DEAD_FROZEN:
2225 /* Disable all the counters, then fold the dead cpu's
2226 * count into the total on the global superblock and
2227 * re-enable the counters. */
2228 xfs_icsb_lock(mp);
2229 spin_lock(&mp->m_sb_lock);
2230 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2231 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2232 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2234 mp->m_sb.sb_icount += cntp->icsb_icount;
2235 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2236 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2238 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2240 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2241 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2242 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2243 spin_unlock(&mp->m_sb_lock);
2244 xfs_icsb_unlock(mp);
2245 break;
2248 return NOTIFY_OK;
2250 #endif /* CONFIG_HOTPLUG_CPU */
2253 xfs_icsb_init_counters(
2254 xfs_mount_t *mp)
2256 xfs_icsb_cnts_t *cntp;
2257 int i;
2259 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2260 if (mp->m_sb_cnts == NULL)
2261 return -ENOMEM;
2263 #ifdef CONFIG_HOTPLUG_CPU
2264 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2265 mp->m_icsb_notifier.priority = 0;
2266 register_hotcpu_notifier(&mp->m_icsb_notifier);
2267 #endif /* CONFIG_HOTPLUG_CPU */
2269 for_each_online_cpu(i) {
2270 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2271 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2274 mutex_init(&mp->m_icsb_mutex);
2277 * start with all counters disabled so that the
2278 * initial balance kicks us off correctly
2280 mp->m_icsb_counters = -1;
2281 return 0;
2284 void
2285 xfs_icsb_reinit_counters(
2286 xfs_mount_t *mp)
2288 xfs_icsb_lock(mp);
2290 * start with all counters disabled so that the
2291 * initial balance kicks us off correctly
2293 mp->m_icsb_counters = -1;
2294 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2295 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2296 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2297 xfs_icsb_unlock(mp);
2300 void
2301 xfs_icsb_destroy_counters(
2302 xfs_mount_t *mp)
2304 if (mp->m_sb_cnts) {
2305 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2306 free_percpu(mp->m_sb_cnts);
2308 mutex_destroy(&mp->m_icsb_mutex);
2311 STATIC void
2312 xfs_icsb_lock_cntr(
2313 xfs_icsb_cnts_t *icsbp)
2315 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2316 ndelay(1000);
2320 STATIC void
2321 xfs_icsb_unlock_cntr(
2322 xfs_icsb_cnts_t *icsbp)
2324 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2328 STATIC void
2329 xfs_icsb_lock_all_counters(
2330 xfs_mount_t *mp)
2332 xfs_icsb_cnts_t *cntp;
2333 int i;
2335 for_each_online_cpu(i) {
2336 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2337 xfs_icsb_lock_cntr(cntp);
2341 STATIC void
2342 xfs_icsb_unlock_all_counters(
2343 xfs_mount_t *mp)
2345 xfs_icsb_cnts_t *cntp;
2346 int i;
2348 for_each_online_cpu(i) {
2349 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2350 xfs_icsb_unlock_cntr(cntp);
2354 STATIC void
2355 xfs_icsb_count(
2356 xfs_mount_t *mp,
2357 xfs_icsb_cnts_t *cnt,
2358 int flags)
2360 xfs_icsb_cnts_t *cntp;
2361 int i;
2363 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2365 if (!(flags & XFS_ICSB_LAZY_COUNT))
2366 xfs_icsb_lock_all_counters(mp);
2368 for_each_online_cpu(i) {
2369 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2370 cnt->icsb_icount += cntp->icsb_icount;
2371 cnt->icsb_ifree += cntp->icsb_ifree;
2372 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2375 if (!(flags & XFS_ICSB_LAZY_COUNT))
2376 xfs_icsb_unlock_all_counters(mp);
2379 STATIC int
2380 xfs_icsb_counter_disabled(
2381 xfs_mount_t *mp,
2382 xfs_sb_field_t field)
2384 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2385 return test_bit(field, &mp->m_icsb_counters);
2388 STATIC void
2389 xfs_icsb_disable_counter(
2390 xfs_mount_t *mp,
2391 xfs_sb_field_t field)
2393 xfs_icsb_cnts_t cnt;
2395 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2398 * If we are already disabled, then there is nothing to do
2399 * here. We check before locking all the counters to avoid
2400 * the expensive lock operation when being called in the
2401 * slow path and the counter is already disabled. This is
2402 * safe because the only time we set or clear this state is under
2403 * the m_icsb_mutex.
2405 if (xfs_icsb_counter_disabled(mp, field))
2406 return;
2408 xfs_icsb_lock_all_counters(mp);
2409 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2410 /* drain back to superblock */
2412 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2413 switch(field) {
2414 case XFS_SBS_ICOUNT:
2415 mp->m_sb.sb_icount = cnt.icsb_icount;
2416 break;
2417 case XFS_SBS_IFREE:
2418 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2419 break;
2420 case XFS_SBS_FDBLOCKS:
2421 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2422 break;
2423 default:
2424 BUG();
2428 xfs_icsb_unlock_all_counters(mp);
2431 STATIC void
2432 xfs_icsb_enable_counter(
2433 xfs_mount_t *mp,
2434 xfs_sb_field_t field,
2435 uint64_t count,
2436 uint64_t resid)
2438 xfs_icsb_cnts_t *cntp;
2439 int i;
2441 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2443 xfs_icsb_lock_all_counters(mp);
2444 for_each_online_cpu(i) {
2445 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2446 switch (field) {
2447 case XFS_SBS_ICOUNT:
2448 cntp->icsb_icount = count + resid;
2449 break;
2450 case XFS_SBS_IFREE:
2451 cntp->icsb_ifree = count + resid;
2452 break;
2453 case XFS_SBS_FDBLOCKS:
2454 cntp->icsb_fdblocks = count + resid;
2455 break;
2456 default:
2457 BUG();
2458 break;
2460 resid = 0;
2462 clear_bit(field, &mp->m_icsb_counters);
2463 xfs_icsb_unlock_all_counters(mp);
2466 void
2467 xfs_icsb_sync_counters_locked(
2468 xfs_mount_t *mp,
2469 int flags)
2471 xfs_icsb_cnts_t cnt;
2473 xfs_icsb_count(mp, &cnt, flags);
2475 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2476 mp->m_sb.sb_icount = cnt.icsb_icount;
2477 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2478 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2479 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2480 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2484 * Accurate update of per-cpu counters to incore superblock
2486 void
2487 xfs_icsb_sync_counters(
2488 xfs_mount_t *mp,
2489 int flags)
2491 spin_lock(&mp->m_sb_lock);
2492 xfs_icsb_sync_counters_locked(mp, flags);
2493 spin_unlock(&mp->m_sb_lock);
2497 * Balance and enable/disable counters as necessary.
2499 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2500 * chosen to be the same number as single on disk allocation chunk per CPU, and
2501 * free blocks is something far enough zero that we aren't going thrash when we
2502 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2503 * prevent looping endlessly when xfs_alloc_space asks for more than will
2504 * be distributed to a single CPU but each CPU has enough blocks to be
2505 * reenabled.
2507 * Note that we can be called when counters are already disabled.
2508 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2509 * prevent locking every per-cpu counter needlessly.
2512 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2513 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2514 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2515 STATIC void
2516 xfs_icsb_balance_counter_locked(
2517 xfs_mount_t *mp,
2518 xfs_sb_field_t field,
2519 int min_per_cpu)
2521 uint64_t count, resid;
2522 int weight = num_online_cpus();
2523 uint64_t min = (uint64_t)min_per_cpu;
2525 /* disable counter and sync counter */
2526 xfs_icsb_disable_counter(mp, field);
2528 /* update counters - first CPU gets residual*/
2529 switch (field) {
2530 case XFS_SBS_ICOUNT:
2531 count = mp->m_sb.sb_icount;
2532 resid = do_div(count, weight);
2533 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2534 return;
2535 break;
2536 case XFS_SBS_IFREE:
2537 count = mp->m_sb.sb_ifree;
2538 resid = do_div(count, weight);
2539 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2540 return;
2541 break;
2542 case XFS_SBS_FDBLOCKS:
2543 count = mp->m_sb.sb_fdblocks;
2544 resid = do_div(count, weight);
2545 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2546 return;
2547 break;
2548 default:
2549 BUG();
2550 count = resid = 0; /* quiet, gcc */
2551 break;
2554 xfs_icsb_enable_counter(mp, field, count, resid);
2557 STATIC void
2558 xfs_icsb_balance_counter(
2559 xfs_mount_t *mp,
2560 xfs_sb_field_t fields,
2561 int min_per_cpu)
2563 spin_lock(&mp->m_sb_lock);
2564 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2565 spin_unlock(&mp->m_sb_lock);
2569 xfs_icsb_modify_counters(
2570 xfs_mount_t *mp,
2571 xfs_sb_field_t field,
2572 int64_t delta,
2573 int rsvd)
2575 xfs_icsb_cnts_t *icsbp;
2576 long long lcounter; /* long counter for 64 bit fields */
2577 int ret = 0;
2579 might_sleep();
2580 again:
2581 preempt_disable();
2582 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2585 * if the counter is disabled, go to slow path
2587 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2588 goto slow_path;
2589 xfs_icsb_lock_cntr(icsbp);
2590 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2591 xfs_icsb_unlock_cntr(icsbp);
2592 goto slow_path;
2595 switch (field) {
2596 case XFS_SBS_ICOUNT:
2597 lcounter = icsbp->icsb_icount;
2598 lcounter += delta;
2599 if (unlikely(lcounter < 0))
2600 goto balance_counter;
2601 icsbp->icsb_icount = lcounter;
2602 break;
2604 case XFS_SBS_IFREE:
2605 lcounter = icsbp->icsb_ifree;
2606 lcounter += delta;
2607 if (unlikely(lcounter < 0))
2608 goto balance_counter;
2609 icsbp->icsb_ifree = lcounter;
2610 break;
2612 case XFS_SBS_FDBLOCKS:
2613 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2615 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2616 lcounter += delta;
2617 if (unlikely(lcounter < 0))
2618 goto balance_counter;
2619 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2620 break;
2621 default:
2622 BUG();
2623 break;
2625 xfs_icsb_unlock_cntr(icsbp);
2626 preempt_enable();
2627 return 0;
2629 slow_path:
2630 preempt_enable();
2633 * serialise with a mutex so we don't burn lots of cpu on
2634 * the superblock lock. We still need to hold the superblock
2635 * lock, however, when we modify the global structures.
2637 xfs_icsb_lock(mp);
2640 * Now running atomically.
2642 * If the counter is enabled, someone has beaten us to rebalancing.
2643 * Drop the lock and try again in the fast path....
2645 if (!(xfs_icsb_counter_disabled(mp, field))) {
2646 xfs_icsb_unlock(mp);
2647 goto again;
2651 * The counter is currently disabled. Because we are
2652 * running atomically here, we know a rebalance cannot
2653 * be in progress. Hence we can go straight to operating
2654 * on the global superblock. We do not call xfs_mod_incore_sb()
2655 * here even though we need to get the m_sb_lock. Doing so
2656 * will cause us to re-enter this function and deadlock.
2657 * Hence we get the m_sb_lock ourselves and then call
2658 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2659 * directly on the global counters.
2661 spin_lock(&mp->m_sb_lock);
2662 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2663 spin_unlock(&mp->m_sb_lock);
2666 * Now that we've modified the global superblock, we
2667 * may be able to re-enable the distributed counters
2668 * (e.g. lots of space just got freed). After that
2669 * we are done.
2671 if (ret != ENOSPC)
2672 xfs_icsb_balance_counter(mp, field, 0);
2673 xfs_icsb_unlock(mp);
2674 return ret;
2676 balance_counter:
2677 xfs_icsb_unlock_cntr(icsbp);
2678 preempt_enable();
2681 * We may have multiple threads here if multiple per-cpu
2682 * counters run dry at the same time. This will mean we can
2683 * do more balances than strictly necessary but it is not
2684 * the common slowpath case.
2686 xfs_icsb_lock(mp);
2689 * running atomically.
2691 * This will leave the counter in the correct state for future
2692 * accesses. After the rebalance, we simply try again and our retry
2693 * will either succeed through the fast path or slow path without
2694 * another balance operation being required.
2696 xfs_icsb_balance_counter(mp, field, delta);
2697 xfs_icsb_unlock(mp);
2698 goto again;
2701 #endif