2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
51 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
53 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
55 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
64 short type
; /* 0 = integer
65 * 1 = binary / string (no translation)
68 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
69 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
70 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
71 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
72 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
73 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
74 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
75 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
76 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
77 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
78 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
79 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
80 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
81 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
82 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
83 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
84 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
85 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
86 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
87 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
88 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
89 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
90 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
91 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
92 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
93 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
94 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
95 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
96 { offsetof(xfs_sb_t
, sb_icount
), 0 },
97 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
98 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
99 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
100 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
101 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
102 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
103 { offsetof(xfs_sb_t
, sb_flags
), 0 },
104 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
105 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
106 { offsetof(xfs_sb_t
, sb_unit
), 0 },
107 { offsetof(xfs_sb_t
, sb_width
), 0 },
108 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
109 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
110 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
111 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
112 { offsetof(xfs_sb_t
, sb_features2
), 0 },
113 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
114 { offsetof(xfs_sb_t
, sb_features_compat
), 0 },
115 { offsetof(xfs_sb_t
, sb_features_ro_compat
), 0 },
116 { offsetof(xfs_sb_t
, sb_features_incompat
), 0 },
117 { offsetof(xfs_sb_t
, sb_features_log_incompat
), 0 },
118 { offsetof(xfs_sb_t
, sb_crc
), 0 },
119 { offsetof(xfs_sb_t
, sb_pad
), 0 },
120 { offsetof(xfs_sb_t
, sb_pquotino
), 0 },
121 { offsetof(xfs_sb_t
, sb_lsn
), 0 },
122 { sizeof(xfs_sb_t
), 0 }
125 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
126 static int xfs_uuid_table_size
;
127 static uuid_t
*xfs_uuid_table
;
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
135 struct xfs_mount
*mp
)
137 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
140 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
143 if (uuid_is_nil(uuid
)) {
144 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
145 return XFS_ERROR(EINVAL
);
148 mutex_lock(&xfs_uuid_table_mutex
);
149 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
150 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
154 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
159 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
160 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
161 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
163 hole
= xfs_uuid_table_size
++;
165 xfs_uuid_table
[hole
] = *uuid
;
166 mutex_unlock(&xfs_uuid_table_mutex
);
171 mutex_unlock(&xfs_uuid_table_mutex
);
172 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
173 return XFS_ERROR(EINVAL
);
178 struct xfs_mount
*mp
)
180 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
183 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
186 mutex_lock(&xfs_uuid_table_mutex
);
187 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
188 if (uuid_is_nil(&xfs_uuid_table
[i
]))
190 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
192 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
195 ASSERT(i
< xfs_uuid_table_size
);
196 mutex_unlock(&xfs_uuid_table_mutex
);
201 * Reference counting access wrappers to the perag structures.
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
206 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
208 struct xfs_perag
*pag
;
212 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
214 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
215 ref
= atomic_inc_return(&pag
->pag_ref
);
218 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
223 * search from @first to find the next perag with the given tag set.
227 struct xfs_mount
*mp
,
228 xfs_agnumber_t first
,
231 struct xfs_perag
*pag
;
236 found
= radix_tree_gang_lookup_tag(&mp
->m_perag_tree
,
237 (void **)&pag
, first
, 1, tag
);
242 ref
= atomic_inc_return(&pag
->pag_ref
);
244 trace_xfs_perag_get_tag(mp
, pag
->pag_agno
, ref
, _RET_IP_
);
249 xfs_perag_put(struct xfs_perag
*pag
)
253 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
254 ref
= atomic_dec_return(&pag
->pag_ref
);
255 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
260 struct rcu_head
*head
)
262 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
264 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
269 * Free up the per-ag resources associated with the mount structure.
276 struct xfs_perag
*pag
;
278 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
279 spin_lock(&mp
->m_perag_lock
);
280 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
281 spin_unlock(&mp
->m_perag_lock
);
283 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
284 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
289 * Check size of device based on the (data/realtime) block count.
290 * Note: this check is used by the growfs code as well as mount.
293 xfs_sb_validate_fsb_count(
297 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
298 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
300 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
301 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
303 #else /* Limited by UINT_MAX of sectors */
304 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
311 * Check the validity of the SB found.
314 xfs_mount_validate_sb(
317 bool check_inprogress
,
322 * If the log device and data device have the
323 * same device number, the log is internal.
324 * Consequently, the sb_logstart should be non-zero. If
325 * we have a zero sb_logstart in this case, we may be trying to mount
326 * a volume filesystem in a non-volume manner.
328 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
329 xfs_warn(mp
, "bad magic number");
330 return XFS_ERROR(EWRONGFS
);
334 if (!xfs_sb_good_version(sbp
)) {
335 xfs_warn(mp
, "bad version");
336 return XFS_ERROR(EWRONGFS
);
339 if ((sbp
->sb_qflags
& (XFS_OQUOTA_ENFD
| XFS_OQUOTA_CHKD
)) &&
340 (sbp
->sb_qflags
& (XFS_PQUOTA_ENFD
| XFS_GQUOTA_ENFD
|
341 XFS_PQUOTA_CHKD
| XFS_GQUOTA_CHKD
))) {
343 "Super block has XFS_OQUOTA bits along with XFS_PQUOTA and/or XFS_GQUOTA bits.\n");
344 return XFS_ERROR(EFSCORRUPTED
);
348 * Version 5 superblock feature mask validation. Reject combinations the
349 * kernel cannot support up front before checking anything else. For
350 * write validation, we don't need to check feature masks.
352 if (check_version
&& XFS_SB_VERSION_NUM(sbp
) == XFS_SB_VERSION_5
) {
354 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
355 "Use of these features in this kernel is at your own risk!");
357 if (xfs_sb_has_compat_feature(sbp
,
358 XFS_SB_FEAT_COMPAT_UNKNOWN
)) {
360 "Superblock has unknown compatible features (0x%x) enabled.\n"
361 "Using a more recent kernel is recommended.",
362 (sbp
->sb_features_compat
&
363 XFS_SB_FEAT_COMPAT_UNKNOWN
));
366 if (xfs_sb_has_ro_compat_feature(sbp
,
367 XFS_SB_FEAT_RO_COMPAT_UNKNOWN
)) {
369 "Superblock has unknown read-only compatible features (0x%x) enabled.",
370 (sbp
->sb_features_ro_compat
&
371 XFS_SB_FEAT_RO_COMPAT_UNKNOWN
));
372 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
374 "Attempted to mount read-only compatible filesystem read-write.\n"
375 "Filesystem can only be safely mounted read only.");
376 return XFS_ERROR(EINVAL
);
379 if (xfs_sb_has_incompat_feature(sbp
,
380 XFS_SB_FEAT_INCOMPAT_UNKNOWN
)) {
382 "Superblock has unknown incompatible features (0x%x) enabled.\n"
383 "Filesystem can not be safely mounted by this kernel.",
384 (sbp
->sb_features_incompat
&
385 XFS_SB_FEAT_INCOMPAT_UNKNOWN
));
386 return XFS_ERROR(EINVAL
);
391 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
393 "filesystem is marked as having an external log; "
394 "specify logdev on the mount command line.");
395 return XFS_ERROR(EINVAL
);
399 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
401 "filesystem is marked as having an internal log; "
402 "do not specify logdev on the mount command line.");
403 return XFS_ERROR(EINVAL
);
407 * More sanity checking. Most of these were stolen directly from
411 sbp
->sb_agcount
<= 0 ||
412 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
413 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
414 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
415 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
416 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
417 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
418 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
419 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
420 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
421 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
422 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
423 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
424 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
425 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
426 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
427 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
428 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
429 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
430 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */) ||
431 sbp
->sb_dblocks
== 0 ||
432 sbp
->sb_dblocks
> XFS_MAX_DBLOCKS(sbp
) ||
433 sbp
->sb_dblocks
< XFS_MIN_DBLOCKS(sbp
))) {
434 XFS_CORRUPTION_ERROR("SB sanity check failed",
435 XFS_ERRLEVEL_LOW
, mp
, sbp
);
436 return XFS_ERROR(EFSCORRUPTED
);
440 * Until this is fixed only page-sized or smaller data blocks work.
442 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
444 "File system with blocksize %d bytes. "
445 "Only pagesize (%ld) or less will currently work.",
446 sbp
->sb_blocksize
, PAGE_SIZE
);
447 return XFS_ERROR(ENOSYS
);
451 * Currently only very few inode sizes are supported.
453 switch (sbp
->sb_inodesize
) {
460 xfs_warn(mp
, "inode size of %d bytes not supported",
462 return XFS_ERROR(ENOSYS
);
465 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
466 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
468 "file system too large to be mounted on this system.");
469 return XFS_ERROR(EFBIG
);
472 if (check_inprogress
&& sbp
->sb_inprogress
) {
473 xfs_warn(mp
, "Offline file system operation in progress!");
474 return XFS_ERROR(EFSCORRUPTED
);
478 * Version 1 directory format has never worked on Linux.
480 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
481 xfs_warn(mp
, "file system using version 1 directory format");
482 return XFS_ERROR(ENOSYS
);
489 xfs_initialize_perag(
491 xfs_agnumber_t agcount
,
492 xfs_agnumber_t
*maxagi
)
494 xfs_agnumber_t index
;
495 xfs_agnumber_t first_initialised
= 0;
499 xfs_sb_t
*sbp
= &mp
->m_sb
;
503 * Walk the current per-ag tree so we don't try to initialise AGs
504 * that already exist (growfs case). Allocate and insert all the
505 * AGs we don't find ready for initialisation.
507 for (index
= 0; index
< agcount
; index
++) {
508 pag
= xfs_perag_get(mp
, index
);
513 if (!first_initialised
)
514 first_initialised
= index
;
516 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
519 pag
->pag_agno
= index
;
521 spin_lock_init(&pag
->pag_ici_lock
);
522 mutex_init(&pag
->pag_ici_reclaim_lock
);
523 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
524 spin_lock_init(&pag
->pag_buf_lock
);
525 pag
->pag_buf_tree
= RB_ROOT
;
527 if (radix_tree_preload(GFP_NOFS
))
530 spin_lock(&mp
->m_perag_lock
);
531 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
533 spin_unlock(&mp
->m_perag_lock
);
534 radix_tree_preload_end();
538 spin_unlock(&mp
->m_perag_lock
);
539 radix_tree_preload_end();
543 * If we mount with the inode64 option, or no inode overflows
544 * the legacy 32-bit address space clear the inode32 option.
546 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
547 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
549 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
550 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
552 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
554 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
555 index
= xfs_set_inode32(mp
);
557 index
= xfs_set_inode64(mp
);
565 for (; index
> first_initialised
; index
--) {
566 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
573 xfs_sb_quota_from_disk(struct xfs_sb
*sbp
)
575 if (sbp
->sb_qflags
& XFS_OQUOTA_ENFD
)
576 sbp
->sb_qflags
|= (sbp
->sb_qflags
& XFS_PQUOTA_ACCT
) ?
577 XFS_PQUOTA_ENFD
: XFS_GQUOTA_ENFD
;
578 if (sbp
->sb_qflags
& XFS_OQUOTA_CHKD
)
579 sbp
->sb_qflags
|= (sbp
->sb_qflags
& XFS_PQUOTA_ACCT
) ?
580 XFS_PQUOTA_CHKD
: XFS_GQUOTA_CHKD
;
581 sbp
->sb_qflags
&= ~(XFS_OQUOTA_ENFD
| XFS_OQUOTA_CHKD
);
589 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
590 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
591 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
592 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
593 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
594 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
595 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
596 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
597 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
598 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
599 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
600 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
601 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
602 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
603 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
604 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
605 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
606 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
607 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
608 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
609 to
->sb_blocklog
= from
->sb_blocklog
;
610 to
->sb_sectlog
= from
->sb_sectlog
;
611 to
->sb_inodelog
= from
->sb_inodelog
;
612 to
->sb_inopblog
= from
->sb_inopblog
;
613 to
->sb_agblklog
= from
->sb_agblklog
;
614 to
->sb_rextslog
= from
->sb_rextslog
;
615 to
->sb_inprogress
= from
->sb_inprogress
;
616 to
->sb_imax_pct
= from
->sb_imax_pct
;
617 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
618 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
619 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
620 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
621 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
622 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
623 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
624 to
->sb_flags
= from
->sb_flags
;
625 to
->sb_shared_vn
= from
->sb_shared_vn
;
626 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
627 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
628 to
->sb_width
= be32_to_cpu(from
->sb_width
);
629 to
->sb_dirblklog
= from
->sb_dirblklog
;
630 to
->sb_logsectlog
= from
->sb_logsectlog
;
631 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
632 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
633 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
634 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
635 to
->sb_features_compat
= be32_to_cpu(from
->sb_features_compat
);
636 to
->sb_features_ro_compat
= be32_to_cpu(from
->sb_features_ro_compat
);
637 to
->sb_features_incompat
= be32_to_cpu(from
->sb_features_incompat
);
638 to
->sb_features_log_incompat
=
639 be32_to_cpu(from
->sb_features_log_incompat
);
641 to
->sb_pquotino
= be64_to_cpu(from
->sb_pquotino
);
642 to
->sb_lsn
= be64_to_cpu(from
->sb_lsn
);
646 xfs_sb_quota_to_disk(
651 __uint16_t qflags
= from
->sb_qflags
;
653 if (*fields
& XFS_SB_QFLAGS
) {
655 * The in-core version of sb_qflags do not have
656 * XFS_OQUOTA_* flags, whereas the on-disk version
657 * does. So, convert incore XFS_{PG}QUOTA_* flags
658 * to on-disk XFS_OQUOTA_* flags.
660 qflags
&= ~(XFS_PQUOTA_ENFD
| XFS_PQUOTA_CHKD
|
661 XFS_GQUOTA_ENFD
| XFS_GQUOTA_CHKD
);
663 if (from
->sb_qflags
&
664 (XFS_PQUOTA_ENFD
| XFS_GQUOTA_ENFD
))
665 qflags
|= XFS_OQUOTA_ENFD
;
666 if (from
->sb_qflags
&
667 (XFS_PQUOTA_CHKD
| XFS_GQUOTA_CHKD
))
668 qflags
|= XFS_OQUOTA_CHKD
;
669 to
->sb_qflags
= cpu_to_be16(qflags
);
670 *fields
&= ~XFS_SB_QFLAGS
;
675 * Copy in core superblock to ondisk one.
677 * The fields argument is mask of superblock fields to copy.
685 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
686 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
695 xfs_sb_quota_to_disk(to
, from
, &fields
);
697 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
698 first
= xfs_sb_info
[f
].offset
;
699 size
= xfs_sb_info
[f
+ 1].offset
- first
;
701 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
703 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
704 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
708 *(__be16
*)(to_ptr
+ first
) =
709 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
712 *(__be32
*)(to_ptr
+ first
) =
713 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
716 *(__be64
*)(to_ptr
+ first
) =
717 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
724 fields
&= ~(1LL << f
);
733 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
736 xfs_sb_from_disk(&sb
, XFS_BUF_TO_SBP(bp
));
739 * Only check the in progress field for the primary superblock as
740 * mkfs.xfs doesn't clear it from secondary superblocks.
742 return xfs_mount_validate_sb(mp
, &sb
, bp
->b_bn
== XFS_SB_DADDR
,
747 * If the superblock has the CRC feature bit set or the CRC field is non-null,
748 * check that the CRC is valid. We check the CRC field is non-null because a
749 * single bit error could clear the feature bit and unused parts of the
750 * superblock are supposed to be zero. Hence a non-null crc field indicates that
751 * we've potentially lost a feature bit and we should check it anyway.
757 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
758 struct xfs_dsb
*dsb
= XFS_BUF_TO_SBP(bp
);
762 * open code the version check to avoid needing to convert the entire
763 * superblock from disk order just to check the version number
765 if (dsb
->sb_magicnum
== cpu_to_be32(XFS_SB_MAGIC
) &&
766 (((be16_to_cpu(dsb
->sb_versionnum
) & XFS_SB_VERSION_NUMBITS
) ==
770 if (!xfs_verify_cksum(bp
->b_addr
, be16_to_cpu(dsb
->sb_sectsize
),
771 offsetof(struct xfs_sb
, sb_crc
))) {
772 error
= EFSCORRUPTED
;
776 error
= xfs_sb_verify(bp
, true);
780 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
, bp
->b_addr
);
781 xfs_buf_ioerror(bp
, error
);
786 * We may be probed for a filesystem match, so we may not want to emit
787 * messages when the superblock buffer is not actually an XFS superblock.
788 * If we find an XFS superblock, the run a normal, noisy mount because we are
789 * really going to mount it and want to know about errors.
792 xfs_sb_quiet_read_verify(
795 struct xfs_dsb
*dsb
= XFS_BUF_TO_SBP(bp
);
798 if (dsb
->sb_magicnum
== cpu_to_be32(XFS_SB_MAGIC
)) {
799 /* XFS filesystem, verify noisily! */
800 xfs_sb_read_verify(bp
);
804 xfs_buf_ioerror(bp
, EWRONGFS
);
811 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
812 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
815 error
= xfs_sb_verify(bp
, false);
817 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
, bp
->b_addr
);
818 xfs_buf_ioerror(bp
, error
);
822 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
826 XFS_BUF_TO_SBP(bp
)->sb_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
828 xfs_update_cksum(bp
->b_addr
, BBTOB(bp
->b_length
),
829 offsetof(struct xfs_sb
, sb_crc
));
832 const struct xfs_buf_ops xfs_sb_buf_ops
= {
833 .verify_read
= xfs_sb_read_verify
,
834 .verify_write
= xfs_sb_write_verify
,
837 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops
= {
838 .verify_read
= xfs_sb_quiet_read_verify
,
839 .verify_write
= xfs_sb_write_verify
,
845 * Does the initial read of the superblock.
848 xfs_readsb(xfs_mount_t
*mp
, int flags
)
850 unsigned int sector_size
;
852 struct xfs_sb
*sbp
= &mp
->m_sb
;
854 int loud
= !(flags
& XFS_MFSI_QUIET
);
856 ASSERT(mp
->m_sb_bp
== NULL
);
857 ASSERT(mp
->m_ddev_targp
!= NULL
);
860 * Allocate a (locked) buffer to hold the superblock.
861 * This will be kept around at all times to optimize
862 * access to the superblock.
864 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
867 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
868 BTOBB(sector_size
), 0,
869 loud
? &xfs_sb_buf_ops
870 : &xfs_sb_quiet_buf_ops
);
873 xfs_warn(mp
, "SB buffer read failed");
879 xfs_warn(mp
, "SB validate failed with error %d.", error
);
884 * Initialize the mount structure from the superblock.
886 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
888 xfs_sb_quota_from_disk(&mp
->m_sb
);
890 * We must be able to do sector-sized and sector-aligned IO.
892 if (sector_size
> sbp
->sb_sectsize
) {
894 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
895 sector_size
, sbp
->sb_sectsize
);
901 * If device sector size is smaller than the superblock size,
902 * re-read the superblock so the buffer is correctly sized.
904 if (sector_size
< sbp
->sb_sectsize
) {
906 sector_size
= sbp
->sb_sectsize
;
910 /* Initialize per-cpu counters */
911 xfs_icsb_reinit_counters(mp
);
913 /* no need to be quiet anymore, so reset the buf ops */
914 bp
->b_ops
= &xfs_sb_buf_ops
;
929 * Mount initialization code establishing various mount
930 * fields from the superblock associated with the given
934 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
936 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
937 spin_lock_init(&mp
->m_agirotor_lock
);
938 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
939 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
940 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
941 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
942 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
943 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
944 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
945 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
946 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
948 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
949 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
950 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
951 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
953 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
954 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
955 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
956 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
958 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
959 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
960 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
961 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
963 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
964 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
966 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
970 * xfs_initialize_perag_data
972 * Read in each per-ag structure so we can count up the number of
973 * allocated inodes, free inodes and used filesystem blocks as this
974 * information is no longer persistent in the superblock. Once we have
975 * this information, write it into the in-core superblock structure.
978 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
980 xfs_agnumber_t index
;
982 xfs_sb_t
*sbp
= &mp
->m_sb
;
986 uint64_t bfreelst
= 0;
990 for (index
= 0; index
< agcount
; index
++) {
992 * read the agf, then the agi. This gets us
993 * all the information we need and populates the
994 * per-ag structures for us.
996 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
1000 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
1003 pag
= xfs_perag_get(mp
, index
);
1004 ifree
+= pag
->pagi_freecount
;
1005 ialloc
+= pag
->pagi_count
;
1006 bfree
+= pag
->pagf_freeblks
;
1007 bfreelst
+= pag
->pagf_flcount
;
1008 btree
+= pag
->pagf_btreeblks
;
1012 * Overwrite incore superblock counters with just-read data
1014 spin_lock(&mp
->m_sb_lock
);
1015 sbp
->sb_ifree
= ifree
;
1016 sbp
->sb_icount
= ialloc
;
1017 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
1018 spin_unlock(&mp
->m_sb_lock
);
1020 /* Fixup the per-cpu counters as well. */
1021 xfs_icsb_reinit_counters(mp
);
1027 * Update alignment values based on mount options and sb values
1030 xfs_update_alignment(xfs_mount_t
*mp
)
1032 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1036 * If stripe unit and stripe width are not multiples
1037 * of the fs blocksize turn off alignment.
1039 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
1040 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
1042 "alignment check failed: sunit/swidth vs. blocksize(%d)",
1044 return XFS_ERROR(EINVAL
);
1047 * Convert the stripe unit and width to FSBs.
1049 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
1050 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
1052 "alignment check failed: sunit/swidth vs. agsize(%d)",
1054 return XFS_ERROR(EINVAL
);
1055 } else if (mp
->m_dalign
) {
1056 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
1059 "alignment check failed: sunit(%d) less than bsize(%d)",
1060 mp
->m_dalign
, sbp
->sb_blocksize
);
1061 return XFS_ERROR(EINVAL
);
1066 * Update superblock with new values
1069 if (xfs_sb_version_hasdalign(sbp
)) {
1070 if (sbp
->sb_unit
!= mp
->m_dalign
) {
1071 sbp
->sb_unit
= mp
->m_dalign
;
1072 mp
->m_update_flags
|= XFS_SB_UNIT
;
1074 if (sbp
->sb_width
!= mp
->m_swidth
) {
1075 sbp
->sb_width
= mp
->m_swidth
;
1076 mp
->m_update_flags
|= XFS_SB_WIDTH
;
1080 "cannot change alignment: superblock does not support data alignment");
1081 return XFS_ERROR(EINVAL
);
1083 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
1084 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
1085 mp
->m_dalign
= sbp
->sb_unit
;
1086 mp
->m_swidth
= sbp
->sb_width
;
1093 * Set the maximum inode count for this filesystem
1096 xfs_set_maxicount(xfs_mount_t
*mp
)
1098 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1101 if (sbp
->sb_imax_pct
) {
1103 * Make sure the maximum inode count is a multiple
1104 * of the units we allocate inodes in.
1106 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
1107 do_div(icount
, 100);
1108 do_div(icount
, mp
->m_ialloc_blks
);
1109 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
1112 mp
->m_maxicount
= 0;
1117 * Set the default minimum read and write sizes unless
1118 * already specified in a mount option.
1119 * We use smaller I/O sizes when the file system
1120 * is being used for NFS service (wsync mount option).
1123 xfs_set_rw_sizes(xfs_mount_t
*mp
)
1125 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1126 int readio_log
, writeio_log
;
1128 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
1129 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
1130 readio_log
= XFS_WSYNC_READIO_LOG
;
1131 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
1133 readio_log
= XFS_READIO_LOG_LARGE
;
1134 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
1137 readio_log
= mp
->m_readio_log
;
1138 writeio_log
= mp
->m_writeio_log
;
1141 if (sbp
->sb_blocklog
> readio_log
) {
1142 mp
->m_readio_log
= sbp
->sb_blocklog
;
1144 mp
->m_readio_log
= readio_log
;
1146 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
1147 if (sbp
->sb_blocklog
> writeio_log
) {
1148 mp
->m_writeio_log
= sbp
->sb_blocklog
;
1150 mp
->m_writeio_log
= writeio_log
;
1152 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
1156 * precalculate the low space thresholds for dynamic speculative preallocation.
1159 xfs_set_low_space_thresholds(
1160 struct xfs_mount
*mp
)
1164 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
1165 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
1168 mp
->m_low_space
[i
] = space
* (i
+ 1);
1174 * Set whether we're using inode alignment.
1177 xfs_set_inoalignment(xfs_mount_t
*mp
)
1179 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
1180 mp
->m_sb
.sb_inoalignmt
>=
1181 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
1182 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
1184 mp
->m_inoalign_mask
= 0;
1186 * If we are using stripe alignment, check whether
1187 * the stripe unit is a multiple of the inode alignment
1189 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
1190 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
1191 mp
->m_sinoalign
= mp
->m_dalign
;
1193 mp
->m_sinoalign
= 0;
1197 * Check that the data (and log if separate) are an ok size.
1200 xfs_check_sizes(xfs_mount_t
*mp
)
1205 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
1206 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
1207 xfs_warn(mp
, "filesystem size mismatch detected");
1208 return XFS_ERROR(EFBIG
);
1210 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
1211 d
- XFS_FSS_TO_BB(mp
, 1),
1212 XFS_FSS_TO_BB(mp
, 1), 0, NULL
);
1214 xfs_warn(mp
, "last sector read failed");
1219 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1220 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1221 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1222 xfs_warn(mp
, "log size mismatch detected");
1223 return XFS_ERROR(EFBIG
);
1225 bp
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
1226 d
- XFS_FSB_TO_BB(mp
, 1),
1227 XFS_FSB_TO_BB(mp
, 1), 0, NULL
);
1229 xfs_warn(mp
, "log device read failed");
1238 * Clear the quotaflags in memory and in the superblock.
1241 xfs_mount_reset_sbqflags(
1242 struct xfs_mount
*mp
)
1245 struct xfs_trans
*tp
;
1250 * It is OK to look at sb_qflags here in mount path,
1251 * without m_sb_lock.
1253 if (mp
->m_sb
.sb_qflags
== 0)
1255 spin_lock(&mp
->m_sb_lock
);
1256 mp
->m_sb
.sb_qflags
= 0;
1257 spin_unlock(&mp
->m_sb_lock
);
1260 * If the fs is readonly, let the incore superblock run
1261 * with quotas off but don't flush the update out to disk
1263 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1266 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1267 error
= xfs_trans_reserve(tp
, 0, XFS_QM_SBCHANGE_LOG_RES(mp
),
1268 0, 0, XFS_DEFAULT_LOG_COUNT
);
1270 xfs_trans_cancel(tp
, 0);
1271 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
1275 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1276 return xfs_trans_commit(tp
, 0);
1280 xfs_default_resblks(xfs_mount_t
*mp
)
1285 * We default to 5% or 8192 fsbs of space reserved, whichever is
1286 * smaller. This is intended to cover concurrent allocation
1287 * transactions when we initially hit enospc. These each require a 4
1288 * block reservation. Hence by default we cover roughly 2000 concurrent
1289 * allocation reservations.
1291 resblks
= mp
->m_sb
.sb_dblocks
;
1292 do_div(resblks
, 20);
1293 resblks
= min_t(__uint64_t
, resblks
, 8192);
1298 * This function does the following on an initial mount of a file system:
1299 * - reads the superblock from disk and init the mount struct
1300 * - if we're a 32-bit kernel, do a size check on the superblock
1301 * so we don't mount terabyte filesystems
1302 * - init mount struct realtime fields
1303 * - allocate inode hash table for fs
1304 * - init directory manager
1305 * - perform recovery and init the log manager
1311 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1314 uint quotamount
= 0;
1315 uint quotaflags
= 0;
1318 xfs_mount_common(mp
, sbp
);
1321 * Check for a mismatched features2 values. Older kernels
1322 * read & wrote into the wrong sb offset for sb_features2
1323 * on some platforms due to xfs_sb_t not being 64bit size aligned
1324 * when sb_features2 was added, which made older superblock
1325 * reading/writing routines swap it as a 64-bit value.
1327 * For backwards compatibility, we make both slots equal.
1329 * If we detect a mismatched field, we OR the set bits into the
1330 * existing features2 field in case it has already been modified; we
1331 * don't want to lose any features. We then update the bad location
1332 * with the ORed value so that older kernels will see any features2
1333 * flags, and mark the two fields as needing updates once the
1334 * transaction subsystem is online.
1336 if (xfs_sb_has_mismatched_features2(sbp
)) {
1337 xfs_warn(mp
, "correcting sb_features alignment problem");
1338 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1339 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1340 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1343 * Re-check for ATTR2 in case it was found in bad_features2
1346 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1347 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1348 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1351 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1352 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1353 xfs_sb_version_removeattr2(&mp
->m_sb
);
1354 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1356 /* update sb_versionnum for the clearing of the morebits */
1357 if (!sbp
->sb_features2
)
1358 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1362 * Check if sb_agblocks is aligned at stripe boundary
1363 * If sb_agblocks is NOT aligned turn off m_dalign since
1364 * allocator alignment is within an ag, therefore ag has
1365 * to be aligned at stripe boundary.
1367 error
= xfs_update_alignment(mp
);
1371 xfs_alloc_compute_maxlevels(mp
);
1372 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1373 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1374 xfs_ialloc_compute_maxlevels(mp
);
1376 xfs_set_maxicount(mp
);
1378 error
= xfs_uuid_mount(mp
);
1383 * Set the minimum read and write sizes
1385 xfs_set_rw_sizes(mp
);
1387 /* set the low space thresholds for dynamic preallocation */
1388 xfs_set_low_space_thresholds(mp
);
1391 * Set the inode cluster size.
1392 * This may still be overridden by the file system
1393 * block size if it is larger than the chosen cluster size.
1395 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1398 * Set inode alignment fields
1400 xfs_set_inoalignment(mp
);
1403 * Check that the data (and log if separate) are an ok size.
1405 error
= xfs_check_sizes(mp
);
1407 goto out_remove_uuid
;
1410 * Initialize realtime fields in the mount structure
1412 error
= xfs_rtmount_init(mp
);
1414 xfs_warn(mp
, "RT mount failed");
1415 goto out_remove_uuid
;
1419 * Copies the low order bits of the timestamp and the randomly
1420 * set "sequence" number out of a UUID.
1422 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1424 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1429 * Initialize the attribute manager's entries.
1431 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1434 * Initialize the precomputed transaction reservations values.
1439 * Allocate and initialize the per-ag data.
1441 spin_lock_init(&mp
->m_perag_lock
);
1442 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1443 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1445 xfs_warn(mp
, "Failed per-ag init: %d", error
);
1446 goto out_remove_uuid
;
1449 if (!sbp
->sb_logblocks
) {
1450 xfs_warn(mp
, "no log defined");
1451 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1452 error
= XFS_ERROR(EFSCORRUPTED
);
1453 goto out_free_perag
;
1457 * log's mount-time initialization. Perform 1st part recovery if needed
1459 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1460 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1461 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1463 xfs_warn(mp
, "log mount failed");
1468 * Now the log is mounted, we know if it was an unclean shutdown or
1469 * not. If it was, with the first phase of recovery has completed, we
1470 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1471 * but they are recovered transactionally in the second recovery phase
1474 * Hence we can safely re-initialise incore superblock counters from
1475 * the per-ag data. These may not be correct if the filesystem was not
1476 * cleanly unmounted, so we need to wait for recovery to finish before
1479 * If the filesystem was cleanly unmounted, then we can trust the
1480 * values in the superblock to be correct and we don't need to do
1483 * If we are currently making the filesystem, the initialisation will
1484 * fail as the perag data is in an undefined state.
1486 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1487 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1488 !mp
->m_sb
.sb_inprogress
) {
1489 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1495 * Get and sanity-check the root inode.
1496 * Save the pointer to it in the mount structure.
1498 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
1500 xfs_warn(mp
, "failed to read root inode");
1501 goto out_log_dealloc
;
1504 ASSERT(rip
!= NULL
);
1506 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
1507 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
1508 (unsigned long long)rip
->i_ino
);
1509 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1510 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1512 error
= XFS_ERROR(EFSCORRUPTED
);
1515 mp
->m_rootip
= rip
; /* save it */
1517 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1520 * Initialize realtime inode pointers in the mount structure
1522 error
= xfs_rtmount_inodes(mp
);
1525 * Free up the root inode.
1527 xfs_warn(mp
, "failed to read RT inodes");
1532 * If this is a read-only mount defer the superblock updates until
1533 * the next remount into writeable mode. Otherwise we would never
1534 * perform the update e.g. for the root filesystem.
1536 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1537 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1539 xfs_warn(mp
, "failed to write sb changes");
1545 * Initialise the XFS quota management subsystem for this mount
1547 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1548 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1552 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1555 * If a file system had quotas running earlier, but decided to
1556 * mount without -o uquota/pquota/gquota options, revoke the
1557 * quotachecked license.
1559 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1560 xfs_notice(mp
, "resetting quota flags");
1561 error
= xfs_mount_reset_sbqflags(mp
);
1568 * Finish recovering the file system. This part needed to be
1569 * delayed until after the root and real-time bitmap inodes
1570 * were consistently read in.
1572 error
= xfs_log_mount_finish(mp
);
1574 xfs_warn(mp
, "log mount finish failed");
1579 * Complete the quota initialisation, post-log-replay component.
1582 ASSERT(mp
->m_qflags
== 0);
1583 mp
->m_qflags
= quotaflags
;
1585 xfs_qm_mount_quotas(mp
);
1589 * Now we are mounted, reserve a small amount of unused space for
1590 * privileged transactions. This is needed so that transaction
1591 * space required for critical operations can dip into this pool
1592 * when at ENOSPC. This is needed for operations like create with
1593 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1594 * are not allowed to use this reserved space.
1596 * This may drive us straight to ENOSPC on mount, but that implies
1597 * we were already there on the last unmount. Warn if this occurs.
1599 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1600 resblks
= xfs_default_resblks(mp
);
1601 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1604 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1610 xfs_rtunmount_inodes(mp
);
1614 xfs_log_unmount(mp
);
1616 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1617 xfs_wait_buftarg(mp
->m_logdev_targp
);
1618 xfs_wait_buftarg(mp
->m_ddev_targp
);
1622 xfs_uuid_unmount(mp
);
1628 * This flushes out the inodes,dquots and the superblock, unmounts the
1629 * log and makes sure that incore structures are freed.
1633 struct xfs_mount
*mp
)
1638 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1640 xfs_qm_unmount_quotas(mp
);
1641 xfs_rtunmount_inodes(mp
);
1642 IRELE(mp
->m_rootip
);
1645 * We can potentially deadlock here if we have an inode cluster
1646 * that has been freed has its buffer still pinned in memory because
1647 * the transaction is still sitting in a iclog. The stale inodes
1648 * on that buffer will have their flush locks held until the
1649 * transaction hits the disk and the callbacks run. the inode
1650 * flush takes the flush lock unconditionally and with nothing to
1651 * push out the iclog we will never get that unlocked. hence we
1652 * need to force the log first.
1654 xfs_log_force(mp
, XFS_LOG_SYNC
);
1657 * Flush all pending changes from the AIL.
1659 xfs_ail_push_all_sync(mp
->m_ail
);
1662 * And reclaim all inodes. At this point there should be no dirty
1663 * inodes and none should be pinned or locked, but use synchronous
1664 * reclaim just to be sure. We can stop background inode reclaim
1665 * here as well if it is still running.
1667 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1668 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1673 * Unreserve any blocks we have so that when we unmount we don't account
1674 * the reserved free space as used. This is really only necessary for
1675 * lazy superblock counting because it trusts the incore superblock
1676 * counters to be absolutely correct on clean unmount.
1678 * We don't bother correcting this elsewhere for lazy superblock
1679 * counting because on mount of an unclean filesystem we reconstruct the
1680 * correct counter value and this is irrelevant.
1682 * For non-lazy counter filesystems, this doesn't matter at all because
1683 * we only every apply deltas to the superblock and hence the incore
1684 * value does not matter....
1687 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1689 xfs_warn(mp
, "Unable to free reserved block pool. "
1690 "Freespace may not be correct on next mount.");
1692 error
= xfs_log_sbcount(mp
);
1694 xfs_warn(mp
, "Unable to update superblock counters. "
1695 "Freespace may not be correct on next mount.");
1697 xfs_log_unmount(mp
);
1698 xfs_uuid_unmount(mp
);
1701 xfs_errortag_clearall(mp
, 0);
1707 xfs_fs_writable(xfs_mount_t
*mp
)
1709 return !(mp
->m_super
->s_writers
.frozen
|| XFS_FORCED_SHUTDOWN(mp
) ||
1710 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1716 * Sync the superblock counters to disk.
1718 * Note this code can be called during the process of freezing, so
1719 * we may need to use the transaction allocator which does not
1720 * block when the transaction subsystem is in its frozen state.
1723 xfs_log_sbcount(xfs_mount_t
*mp
)
1728 if (!xfs_fs_writable(mp
))
1731 xfs_icsb_sync_counters(mp
, 0);
1734 * we don't need to do this if we are updating the superblock
1735 * counters on every modification.
1737 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1740 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1741 error
= xfs_trans_reserve(tp
, 0, XFS_SB_LOG_RES(mp
), 0, 0,
1742 XFS_DEFAULT_LOG_COUNT
);
1744 xfs_trans_cancel(tp
, 0);
1748 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1749 xfs_trans_set_sync(tp
);
1750 error
= xfs_trans_commit(tp
, 0);
1755 * xfs_mod_sb() can be used to copy arbitrary changes to the
1756 * in-core superblock into the superblock buffer to be logged.
1757 * It does not provide the higher level of locking that is
1758 * needed to protect the in-core superblock from concurrent
1762 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1774 bp
= xfs_trans_getsb(tp
, mp
, 0);
1775 first
= sizeof(xfs_sb_t
);
1778 /* translate/copy */
1780 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1782 /* find modified range */
1783 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1784 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1785 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1787 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1788 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1789 first
= xfs_sb_info
[f
].offset
;
1791 xfs_trans_buf_set_type(tp
, bp
, XFS_BLFT_SB_BUF
);
1792 xfs_trans_log_buf(tp
, bp
, first
, last
);
1797 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1798 * a delta to a specified field in the in-core superblock. Simply
1799 * switch on the field indicated and apply the delta to that field.
1800 * Fields are not allowed to dip below zero, so if the delta would
1801 * do this do not apply it and return EINVAL.
1803 * The m_sb_lock must be held when this routine is called.
1806 xfs_mod_incore_sb_unlocked(
1808 xfs_sb_field_t field
,
1812 int scounter
; /* short counter for 32 bit fields */
1813 long long lcounter
; /* long counter for 64 bit fields */
1814 long long res_used
, rem
;
1817 * With the in-core superblock spin lock held, switch
1818 * on the indicated field. Apply the delta to the
1819 * proper field. If the fields value would dip below
1820 * 0, then do not apply the delta and return EINVAL.
1823 case XFS_SBS_ICOUNT
:
1824 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1828 return XFS_ERROR(EINVAL
);
1830 mp
->m_sb
.sb_icount
= lcounter
;
1833 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1837 return XFS_ERROR(EINVAL
);
1839 mp
->m_sb
.sb_ifree
= lcounter
;
1841 case XFS_SBS_FDBLOCKS
:
1842 lcounter
= (long long)
1843 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1844 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1846 if (delta
> 0) { /* Putting blocks back */
1847 if (res_used
> delta
) {
1848 mp
->m_resblks_avail
+= delta
;
1850 rem
= delta
- res_used
;
1851 mp
->m_resblks_avail
= mp
->m_resblks
;
1854 } else { /* Taking blocks away */
1856 if (lcounter
>= 0) {
1857 mp
->m_sb
.sb_fdblocks
= lcounter
+
1858 XFS_ALLOC_SET_ASIDE(mp
);
1863 * We are out of blocks, use any available reserved
1864 * blocks if were allowed to.
1867 return XFS_ERROR(ENOSPC
);
1869 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1870 if (lcounter
>= 0) {
1871 mp
->m_resblks_avail
= lcounter
;
1874 printk_once(KERN_WARNING
1875 "Filesystem \"%s\": reserve blocks depleted! "
1876 "Consider increasing reserve pool size.",
1878 return XFS_ERROR(ENOSPC
);
1881 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1883 case XFS_SBS_FREXTENTS
:
1884 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1887 return XFS_ERROR(ENOSPC
);
1889 mp
->m_sb
.sb_frextents
= lcounter
;
1891 case XFS_SBS_DBLOCKS
:
1892 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1896 return XFS_ERROR(EINVAL
);
1898 mp
->m_sb
.sb_dblocks
= lcounter
;
1900 case XFS_SBS_AGCOUNT
:
1901 scounter
= mp
->m_sb
.sb_agcount
;
1905 return XFS_ERROR(EINVAL
);
1907 mp
->m_sb
.sb_agcount
= scounter
;
1909 case XFS_SBS_IMAX_PCT
:
1910 scounter
= mp
->m_sb
.sb_imax_pct
;
1914 return XFS_ERROR(EINVAL
);
1916 mp
->m_sb
.sb_imax_pct
= scounter
;
1918 case XFS_SBS_REXTSIZE
:
1919 scounter
= mp
->m_sb
.sb_rextsize
;
1923 return XFS_ERROR(EINVAL
);
1925 mp
->m_sb
.sb_rextsize
= scounter
;
1927 case XFS_SBS_RBMBLOCKS
:
1928 scounter
= mp
->m_sb
.sb_rbmblocks
;
1932 return XFS_ERROR(EINVAL
);
1934 mp
->m_sb
.sb_rbmblocks
= scounter
;
1936 case XFS_SBS_RBLOCKS
:
1937 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1941 return XFS_ERROR(EINVAL
);
1943 mp
->m_sb
.sb_rblocks
= lcounter
;
1945 case XFS_SBS_REXTENTS
:
1946 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1950 return XFS_ERROR(EINVAL
);
1952 mp
->m_sb
.sb_rextents
= lcounter
;
1954 case XFS_SBS_REXTSLOG
:
1955 scounter
= mp
->m_sb
.sb_rextslog
;
1959 return XFS_ERROR(EINVAL
);
1961 mp
->m_sb
.sb_rextslog
= scounter
;
1965 return XFS_ERROR(EINVAL
);
1970 * xfs_mod_incore_sb() is used to change a field in the in-core
1971 * superblock structure by the specified delta. This modification
1972 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1973 * routine to do the work.
1977 struct xfs_mount
*mp
,
1978 xfs_sb_field_t field
,
1984 #ifdef HAVE_PERCPU_SB
1985 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1987 spin_lock(&mp
->m_sb_lock
);
1988 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1989 spin_unlock(&mp
->m_sb_lock
);
1995 * Change more than one field in the in-core superblock structure at a time.
1997 * The fields and changes to those fields are specified in the array of
1998 * xfs_mod_sb structures passed in. Either all of the specified deltas
1999 * will be applied or none of them will. If any modified field dips below 0,
2000 * then all modifications will be backed out and EINVAL will be returned.
2002 * Note that this function may not be used for the superblock values that
2003 * are tracked with the in-memory per-cpu counters - a direct call to
2004 * xfs_icsb_modify_counters is required for these.
2007 xfs_mod_incore_sb_batch(
2008 struct xfs_mount
*mp
,
2017 * Loop through the array of mod structures and apply each individually.
2018 * If any fail, then back out all those which have already been applied.
2019 * Do all of this within the scope of the m_sb_lock so that all of the
2020 * changes will be atomic.
2022 spin_lock(&mp
->m_sb_lock
);
2023 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
2024 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
2025 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
2027 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
2028 msbp
->msb_delta
, rsvd
);
2032 spin_unlock(&mp
->m_sb_lock
);
2036 while (--msbp
>= msb
) {
2037 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
2038 -msbp
->msb_delta
, rsvd
);
2041 spin_unlock(&mp
->m_sb_lock
);
2046 * xfs_getsb() is called to obtain the buffer for the superblock.
2047 * The buffer is returned locked and read in from disk.
2048 * The buffer should be released with a call to xfs_brelse().
2050 * If the flags parameter is BUF_TRYLOCK, then we'll only return
2051 * the superblock buffer if it can be locked without sleeping.
2052 * If it can't then we'll return NULL.
2056 struct xfs_mount
*mp
,
2059 struct xfs_buf
*bp
= mp
->m_sb_bp
;
2061 if (!xfs_buf_trylock(bp
)) {
2062 if (flags
& XBF_TRYLOCK
)
2068 ASSERT(XFS_BUF_ISDONE(bp
));
2073 * Used to free the superblock along various error paths.
2077 struct xfs_mount
*mp
)
2079 struct xfs_buf
*bp
= mp
->m_sb_bp
;
2087 * Used to log changes to the superblock unit and width fields which could
2088 * be altered by the mount options, as well as any potential sb_features2
2089 * fixup. Only the first superblock is updated.
2099 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
2100 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
2101 XFS_SB_VERSIONNUM
));
2103 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
2104 error
= xfs_trans_reserve(tp
, 0, XFS_SB_LOG_RES(mp
), 0, 0,
2105 XFS_DEFAULT_LOG_COUNT
);
2107 xfs_trans_cancel(tp
, 0);
2110 xfs_mod_sb(tp
, fields
);
2111 error
= xfs_trans_commit(tp
, 0);
2116 * If the underlying (data/log/rt) device is readonly, there are some
2117 * operations that cannot proceed.
2120 xfs_dev_is_read_only(
2121 struct xfs_mount
*mp
,
2124 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
2125 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
2126 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
2127 xfs_notice(mp
, "%s required on read-only device.", message
);
2128 xfs_notice(mp
, "write access unavailable, cannot proceed.");
2134 #ifdef HAVE_PERCPU_SB
2136 * Per-cpu incore superblock counters
2138 * Simple concept, difficult implementation
2140 * Basically, replace the incore superblock counters with a distributed per cpu
2141 * counter for contended fields (e.g. free block count).
2143 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2144 * hence needs to be accurately read when we are running low on space. Hence
2145 * there is a method to enable and disable the per-cpu counters based on how
2146 * much "stuff" is available in them.
2148 * Basically, a counter is enabled if there is enough free resource to justify
2149 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2150 * ENOSPC), then we disable the counters to synchronise all callers and
2151 * re-distribute the available resources.
2153 * If, once we redistributed the available resources, we still get a failure,
2154 * we disable the per-cpu counter and go through the slow path.
2156 * The slow path is the current xfs_mod_incore_sb() function. This means that
2157 * when we disable a per-cpu counter, we need to drain its resources back to
2158 * the global superblock. We do this after disabling the counter to prevent
2159 * more threads from queueing up on the counter.
2161 * Essentially, this means that we still need a lock in the fast path to enable
2162 * synchronisation between the global counters and the per-cpu counters. This
2163 * is not a problem because the lock will be local to a CPU almost all the time
2164 * and have little contention except when we get to ENOSPC conditions.
2166 * Basically, this lock becomes a barrier that enables us to lock out the fast
2167 * path while we do things like enabling and disabling counters and
2168 * synchronising the counters.
2172 * 1. m_sb_lock before picking up per-cpu locks
2173 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2174 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2175 * 4. modifying per-cpu counters requires holding per-cpu lock
2176 * 5. modifying global counters requires holding m_sb_lock
2177 * 6. enabling or disabling a counter requires holding the m_sb_lock
2178 * and _none_ of the per-cpu locks.
2180 * Disabled counters are only ever re-enabled by a balance operation
2181 * that results in more free resources per CPU than a given threshold.
2182 * To ensure counters don't remain disabled, they are rebalanced when
2183 * the global resource goes above a higher threshold (i.e. some hysteresis
2184 * is present to prevent thrashing).
2187 #ifdef CONFIG_HOTPLUG_CPU
2189 * hot-plug CPU notifier support.
2191 * We need a notifier per filesystem as we need to be able to identify
2192 * the filesystem to balance the counters out. This is achieved by
2193 * having a notifier block embedded in the xfs_mount_t and doing pointer
2194 * magic to get the mount pointer from the notifier block address.
2197 xfs_icsb_cpu_notify(
2198 struct notifier_block
*nfb
,
2199 unsigned long action
,
2202 xfs_icsb_cnts_t
*cntp
;
2205 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2206 cntp
= (xfs_icsb_cnts_t
*)
2207 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2209 case CPU_UP_PREPARE
:
2210 case CPU_UP_PREPARE_FROZEN
:
2211 /* Easy Case - initialize the area and locks, and
2212 * then rebalance when online does everything else for us. */
2213 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2216 case CPU_ONLINE_FROZEN
:
2218 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2219 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2220 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2221 xfs_icsb_unlock(mp
);
2224 case CPU_DEAD_FROZEN
:
2225 /* Disable all the counters, then fold the dead cpu's
2226 * count into the total on the global superblock and
2227 * re-enable the counters. */
2229 spin_lock(&mp
->m_sb_lock
);
2230 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2231 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2232 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2234 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2235 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2236 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2238 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2240 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2241 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2242 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2243 spin_unlock(&mp
->m_sb_lock
);
2244 xfs_icsb_unlock(mp
);
2250 #endif /* CONFIG_HOTPLUG_CPU */
2253 xfs_icsb_init_counters(
2256 xfs_icsb_cnts_t
*cntp
;
2259 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2260 if (mp
->m_sb_cnts
== NULL
)
2263 #ifdef CONFIG_HOTPLUG_CPU
2264 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2265 mp
->m_icsb_notifier
.priority
= 0;
2266 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2267 #endif /* CONFIG_HOTPLUG_CPU */
2269 for_each_online_cpu(i
) {
2270 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2271 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2274 mutex_init(&mp
->m_icsb_mutex
);
2277 * start with all counters disabled so that the
2278 * initial balance kicks us off correctly
2280 mp
->m_icsb_counters
= -1;
2285 xfs_icsb_reinit_counters(
2290 * start with all counters disabled so that the
2291 * initial balance kicks us off correctly
2293 mp
->m_icsb_counters
= -1;
2294 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2295 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2296 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2297 xfs_icsb_unlock(mp
);
2301 xfs_icsb_destroy_counters(
2304 if (mp
->m_sb_cnts
) {
2305 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2306 free_percpu(mp
->m_sb_cnts
);
2308 mutex_destroy(&mp
->m_icsb_mutex
);
2313 xfs_icsb_cnts_t
*icsbp
)
2315 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2321 xfs_icsb_unlock_cntr(
2322 xfs_icsb_cnts_t
*icsbp
)
2324 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2329 xfs_icsb_lock_all_counters(
2332 xfs_icsb_cnts_t
*cntp
;
2335 for_each_online_cpu(i
) {
2336 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2337 xfs_icsb_lock_cntr(cntp
);
2342 xfs_icsb_unlock_all_counters(
2345 xfs_icsb_cnts_t
*cntp
;
2348 for_each_online_cpu(i
) {
2349 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2350 xfs_icsb_unlock_cntr(cntp
);
2357 xfs_icsb_cnts_t
*cnt
,
2360 xfs_icsb_cnts_t
*cntp
;
2363 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2365 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2366 xfs_icsb_lock_all_counters(mp
);
2368 for_each_online_cpu(i
) {
2369 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2370 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2371 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2372 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2375 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2376 xfs_icsb_unlock_all_counters(mp
);
2380 xfs_icsb_counter_disabled(
2382 xfs_sb_field_t field
)
2384 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2385 return test_bit(field
, &mp
->m_icsb_counters
);
2389 xfs_icsb_disable_counter(
2391 xfs_sb_field_t field
)
2393 xfs_icsb_cnts_t cnt
;
2395 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2398 * If we are already disabled, then there is nothing to do
2399 * here. We check before locking all the counters to avoid
2400 * the expensive lock operation when being called in the
2401 * slow path and the counter is already disabled. This is
2402 * safe because the only time we set or clear this state is under
2405 if (xfs_icsb_counter_disabled(mp
, field
))
2408 xfs_icsb_lock_all_counters(mp
);
2409 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2410 /* drain back to superblock */
2412 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2414 case XFS_SBS_ICOUNT
:
2415 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2418 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2420 case XFS_SBS_FDBLOCKS
:
2421 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2428 xfs_icsb_unlock_all_counters(mp
);
2432 xfs_icsb_enable_counter(
2434 xfs_sb_field_t field
,
2438 xfs_icsb_cnts_t
*cntp
;
2441 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2443 xfs_icsb_lock_all_counters(mp
);
2444 for_each_online_cpu(i
) {
2445 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2447 case XFS_SBS_ICOUNT
:
2448 cntp
->icsb_icount
= count
+ resid
;
2451 cntp
->icsb_ifree
= count
+ resid
;
2453 case XFS_SBS_FDBLOCKS
:
2454 cntp
->icsb_fdblocks
= count
+ resid
;
2462 clear_bit(field
, &mp
->m_icsb_counters
);
2463 xfs_icsb_unlock_all_counters(mp
);
2467 xfs_icsb_sync_counters_locked(
2471 xfs_icsb_cnts_t cnt
;
2473 xfs_icsb_count(mp
, &cnt
, flags
);
2475 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2476 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2477 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2478 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2479 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2480 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2484 * Accurate update of per-cpu counters to incore superblock
2487 xfs_icsb_sync_counters(
2491 spin_lock(&mp
->m_sb_lock
);
2492 xfs_icsb_sync_counters_locked(mp
, flags
);
2493 spin_unlock(&mp
->m_sb_lock
);
2497 * Balance and enable/disable counters as necessary.
2499 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2500 * chosen to be the same number as single on disk allocation chunk per CPU, and
2501 * free blocks is something far enough zero that we aren't going thrash when we
2502 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2503 * prevent looping endlessly when xfs_alloc_space asks for more than will
2504 * be distributed to a single CPU but each CPU has enough blocks to be
2507 * Note that we can be called when counters are already disabled.
2508 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2509 * prevent locking every per-cpu counter needlessly.
2512 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2513 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2514 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2516 xfs_icsb_balance_counter_locked(
2518 xfs_sb_field_t field
,
2521 uint64_t count
, resid
;
2522 int weight
= num_online_cpus();
2523 uint64_t min
= (uint64_t)min_per_cpu
;
2525 /* disable counter and sync counter */
2526 xfs_icsb_disable_counter(mp
, field
);
2528 /* update counters - first CPU gets residual*/
2530 case XFS_SBS_ICOUNT
:
2531 count
= mp
->m_sb
.sb_icount
;
2532 resid
= do_div(count
, weight
);
2533 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2537 count
= mp
->m_sb
.sb_ifree
;
2538 resid
= do_div(count
, weight
);
2539 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2542 case XFS_SBS_FDBLOCKS
:
2543 count
= mp
->m_sb
.sb_fdblocks
;
2544 resid
= do_div(count
, weight
);
2545 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2550 count
= resid
= 0; /* quiet, gcc */
2554 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2558 xfs_icsb_balance_counter(
2560 xfs_sb_field_t fields
,
2563 spin_lock(&mp
->m_sb_lock
);
2564 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2565 spin_unlock(&mp
->m_sb_lock
);
2569 xfs_icsb_modify_counters(
2571 xfs_sb_field_t field
,
2575 xfs_icsb_cnts_t
*icsbp
;
2576 long long lcounter
; /* long counter for 64 bit fields */
2582 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2585 * if the counter is disabled, go to slow path
2587 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2589 xfs_icsb_lock_cntr(icsbp
);
2590 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2591 xfs_icsb_unlock_cntr(icsbp
);
2596 case XFS_SBS_ICOUNT
:
2597 lcounter
= icsbp
->icsb_icount
;
2599 if (unlikely(lcounter
< 0))
2600 goto balance_counter
;
2601 icsbp
->icsb_icount
= lcounter
;
2605 lcounter
= icsbp
->icsb_ifree
;
2607 if (unlikely(lcounter
< 0))
2608 goto balance_counter
;
2609 icsbp
->icsb_ifree
= lcounter
;
2612 case XFS_SBS_FDBLOCKS
:
2613 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2615 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2617 if (unlikely(lcounter
< 0))
2618 goto balance_counter
;
2619 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2625 xfs_icsb_unlock_cntr(icsbp
);
2633 * serialise with a mutex so we don't burn lots of cpu on
2634 * the superblock lock. We still need to hold the superblock
2635 * lock, however, when we modify the global structures.
2640 * Now running atomically.
2642 * If the counter is enabled, someone has beaten us to rebalancing.
2643 * Drop the lock and try again in the fast path....
2645 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2646 xfs_icsb_unlock(mp
);
2651 * The counter is currently disabled. Because we are
2652 * running atomically here, we know a rebalance cannot
2653 * be in progress. Hence we can go straight to operating
2654 * on the global superblock. We do not call xfs_mod_incore_sb()
2655 * here even though we need to get the m_sb_lock. Doing so
2656 * will cause us to re-enter this function and deadlock.
2657 * Hence we get the m_sb_lock ourselves and then call
2658 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2659 * directly on the global counters.
2661 spin_lock(&mp
->m_sb_lock
);
2662 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2663 spin_unlock(&mp
->m_sb_lock
);
2666 * Now that we've modified the global superblock, we
2667 * may be able to re-enable the distributed counters
2668 * (e.g. lots of space just got freed). After that
2672 xfs_icsb_balance_counter(mp
, field
, 0);
2673 xfs_icsb_unlock(mp
);
2677 xfs_icsb_unlock_cntr(icsbp
);
2681 * We may have multiple threads here if multiple per-cpu
2682 * counters run dry at the same time. This will mean we can
2683 * do more balances than strictly necessary but it is not
2684 * the common slowpath case.
2689 * running atomically.
2691 * This will leave the counter in the correct state for future
2692 * accesses. After the rebalance, we simply try again and our retry
2693 * will either succeed through the fast path or slow path without
2694 * another balance operation being required.
2696 xfs_icsb_balance_counter(mp
, field
, delta
);
2697 xfs_icsb_unlock(mp
);