mtd: devices: added the 16MiB winbond device
[linux-2.6.git] / fs / f2fs / segment.c
bloba86d125a9885e274b11a421d4b117480a2744994
1 /*
2 * fs/f2fs/segment.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
24 * This function balances dirty node and dentry pages.
25 * In addition, it controls garbage collection.
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
30 * We should do GC or end up with checkpoint, if there are so many dirty
31 * dir/node pages without enough free segments.
33 if (has_not_enough_free_secs(sbi, 0)) {
34 mutex_lock(&sbi->gc_mutex);
35 f2fs_gc(sbi);
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40 enum dirty_type dirty_type)
42 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
44 /* need not be added */
45 if (IS_CURSEG(sbi, segno))
46 return;
48 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49 dirty_i->nr_dirty[dirty_type]++;
51 if (dirty_type == DIRTY) {
52 struct seg_entry *sentry = get_seg_entry(sbi, segno);
53 enum dirty_type t = DIRTY_HOT_DATA;
55 dirty_type = sentry->type;
57 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58 dirty_i->nr_dirty[dirty_type]++;
60 /* Only one bitmap should be set */
61 for (; t <= DIRTY_COLD_NODE; t++) {
62 if (t == dirty_type)
63 continue;
64 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65 dirty_i->nr_dirty[t]--;
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71 enum dirty_type dirty_type)
73 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
75 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76 dirty_i->nr_dirty[dirty_type]--;
78 if (dirty_type == DIRTY) {
79 enum dirty_type t = DIRTY_HOT_DATA;
81 /* clear all the bitmaps */
82 for (; t <= DIRTY_COLD_NODE; t++)
83 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84 dirty_i->nr_dirty[t]--;
86 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87 clear_bit(GET_SECNO(sbi, segno),
88 dirty_i->victim_secmap);
93 * Should not occur error such as -ENOMEM.
94 * Adding dirty entry into seglist is not critical operation.
95 * If a given segment is one of current working segments, it won't be added.
97 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
99 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100 unsigned short valid_blocks;
102 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103 return;
105 mutex_lock(&dirty_i->seglist_lock);
107 valid_blocks = get_valid_blocks(sbi, segno, 0);
109 if (valid_blocks == 0) {
110 __locate_dirty_segment(sbi, segno, PRE);
111 __remove_dirty_segment(sbi, segno, DIRTY);
112 } else if (valid_blocks < sbi->blocks_per_seg) {
113 __locate_dirty_segment(sbi, segno, DIRTY);
114 } else {
115 /* Recovery routine with SSR needs this */
116 __remove_dirty_segment(sbi, segno, DIRTY);
119 mutex_unlock(&dirty_i->seglist_lock);
120 return;
124 * Should call clear_prefree_segments after checkpoint is done.
126 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
128 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
129 unsigned int segno = -1;
130 unsigned int total_segs = TOTAL_SEGS(sbi);
132 mutex_lock(&dirty_i->seglist_lock);
133 while (1) {
134 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
135 segno + 1);
136 if (segno >= total_segs)
137 break;
138 __set_test_and_free(sbi, segno);
140 mutex_unlock(&dirty_i->seglist_lock);
143 void clear_prefree_segments(struct f2fs_sb_info *sbi)
145 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
146 unsigned int segno = -1;
147 unsigned int total_segs = TOTAL_SEGS(sbi);
149 mutex_lock(&dirty_i->seglist_lock);
150 while (1) {
151 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
152 segno + 1);
153 if (segno >= total_segs)
154 break;
156 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
157 dirty_i->nr_dirty[PRE]--;
159 /* Let's use trim */
160 if (test_opt(sbi, DISCARD))
161 blkdev_issue_discard(sbi->sb->s_bdev,
162 START_BLOCK(sbi, segno) <<
163 sbi->log_sectors_per_block,
164 1 << (sbi->log_sectors_per_block +
165 sbi->log_blocks_per_seg),
166 GFP_NOFS, 0);
168 mutex_unlock(&dirty_i->seglist_lock);
171 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
173 struct sit_info *sit_i = SIT_I(sbi);
174 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
175 sit_i->dirty_sentries++;
178 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
179 unsigned int segno, int modified)
181 struct seg_entry *se = get_seg_entry(sbi, segno);
182 se->type = type;
183 if (modified)
184 __mark_sit_entry_dirty(sbi, segno);
187 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
189 struct seg_entry *se;
190 unsigned int segno, offset;
191 long int new_vblocks;
193 segno = GET_SEGNO(sbi, blkaddr);
195 se = get_seg_entry(sbi, segno);
196 new_vblocks = se->valid_blocks + del;
197 offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
199 BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
200 (new_vblocks > sbi->blocks_per_seg)));
202 se->valid_blocks = new_vblocks;
203 se->mtime = get_mtime(sbi);
204 SIT_I(sbi)->max_mtime = se->mtime;
206 /* Update valid block bitmap */
207 if (del > 0) {
208 if (f2fs_set_bit(offset, se->cur_valid_map))
209 BUG();
210 } else {
211 if (!f2fs_clear_bit(offset, se->cur_valid_map))
212 BUG();
214 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
215 se->ckpt_valid_blocks += del;
217 __mark_sit_entry_dirty(sbi, segno);
219 /* update total number of valid blocks to be written in ckpt area */
220 SIT_I(sbi)->written_valid_blocks += del;
222 if (sbi->segs_per_sec > 1)
223 get_sec_entry(sbi, segno)->valid_blocks += del;
226 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
227 block_t old_blkaddr, block_t new_blkaddr)
229 update_sit_entry(sbi, new_blkaddr, 1);
230 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
231 update_sit_entry(sbi, old_blkaddr, -1);
234 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
236 unsigned int segno = GET_SEGNO(sbi, addr);
237 struct sit_info *sit_i = SIT_I(sbi);
239 BUG_ON(addr == NULL_ADDR);
240 if (addr == NEW_ADDR)
241 return;
243 /* add it into sit main buffer */
244 mutex_lock(&sit_i->sentry_lock);
246 update_sit_entry(sbi, addr, -1);
248 /* add it into dirty seglist */
249 locate_dirty_segment(sbi, segno);
251 mutex_unlock(&sit_i->sentry_lock);
255 * This function should be resided under the curseg_mutex lock
257 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
258 struct f2fs_summary *sum)
260 struct curseg_info *curseg = CURSEG_I(sbi, type);
261 void *addr = curseg->sum_blk;
262 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
263 memcpy(addr, sum, sizeof(struct f2fs_summary));
264 return;
268 * Calculate the number of current summary pages for writing
270 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
272 int total_size_bytes = 0;
273 int valid_sum_count = 0;
274 int i, sum_space;
276 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277 if (sbi->ckpt->alloc_type[i] == SSR)
278 valid_sum_count += sbi->blocks_per_seg;
279 else
280 valid_sum_count += curseg_blkoff(sbi, i);
283 total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
284 + sizeof(struct nat_journal) + 2
285 + sizeof(struct sit_journal) + 2;
286 sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
287 if (total_size_bytes < sum_space)
288 return 1;
289 else if (total_size_bytes < 2 * sum_space)
290 return 2;
291 return 3;
295 * Caller should put this summary page
297 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
299 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
302 static void write_sum_page(struct f2fs_sb_info *sbi,
303 struct f2fs_summary_block *sum_blk, block_t blk_addr)
305 struct page *page = grab_meta_page(sbi, blk_addr);
306 void *kaddr = page_address(page);
307 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
308 set_page_dirty(page);
309 f2fs_put_page(page, 1);
312 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
314 struct curseg_info *curseg = CURSEG_I(sbi, type);
315 unsigned int segno = curseg->segno + 1;
316 struct free_segmap_info *free_i = FREE_I(sbi);
318 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
319 return !test_bit(segno, free_i->free_segmap);
320 return 0;
324 * Find a new segment from the free segments bitmap to right order
325 * This function should be returned with success, otherwise BUG
327 static void get_new_segment(struct f2fs_sb_info *sbi,
328 unsigned int *newseg, bool new_sec, int dir)
330 struct free_segmap_info *free_i = FREE_I(sbi);
331 unsigned int segno, secno, zoneno;
332 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
333 unsigned int hint = *newseg / sbi->segs_per_sec;
334 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
335 unsigned int left_start = hint;
336 bool init = true;
337 int go_left = 0;
338 int i;
340 write_lock(&free_i->segmap_lock);
342 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
343 segno = find_next_zero_bit(free_i->free_segmap,
344 TOTAL_SEGS(sbi), *newseg + 1);
345 if (segno - *newseg < sbi->segs_per_sec -
346 (*newseg % sbi->segs_per_sec))
347 goto got_it;
349 find_other_zone:
350 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
351 if (secno >= TOTAL_SECS(sbi)) {
352 if (dir == ALLOC_RIGHT) {
353 secno = find_next_zero_bit(free_i->free_secmap,
354 TOTAL_SECS(sbi), 0);
355 BUG_ON(secno >= TOTAL_SECS(sbi));
356 } else {
357 go_left = 1;
358 left_start = hint - 1;
361 if (go_left == 0)
362 goto skip_left;
364 while (test_bit(left_start, free_i->free_secmap)) {
365 if (left_start > 0) {
366 left_start--;
367 continue;
369 left_start = find_next_zero_bit(free_i->free_secmap,
370 TOTAL_SECS(sbi), 0);
371 BUG_ON(left_start >= TOTAL_SECS(sbi));
372 break;
374 secno = left_start;
375 skip_left:
376 hint = secno;
377 segno = secno * sbi->segs_per_sec;
378 zoneno = secno / sbi->secs_per_zone;
380 /* give up on finding another zone */
381 if (!init)
382 goto got_it;
383 if (sbi->secs_per_zone == 1)
384 goto got_it;
385 if (zoneno == old_zoneno)
386 goto got_it;
387 if (dir == ALLOC_LEFT) {
388 if (!go_left && zoneno + 1 >= total_zones)
389 goto got_it;
390 if (go_left && zoneno == 0)
391 goto got_it;
393 for (i = 0; i < NR_CURSEG_TYPE; i++)
394 if (CURSEG_I(sbi, i)->zone == zoneno)
395 break;
397 if (i < NR_CURSEG_TYPE) {
398 /* zone is in user, try another */
399 if (go_left)
400 hint = zoneno * sbi->secs_per_zone - 1;
401 else if (zoneno + 1 >= total_zones)
402 hint = 0;
403 else
404 hint = (zoneno + 1) * sbi->secs_per_zone;
405 init = false;
406 goto find_other_zone;
408 got_it:
409 /* set it as dirty segment in free segmap */
410 BUG_ON(test_bit(segno, free_i->free_segmap));
411 __set_inuse(sbi, segno);
412 *newseg = segno;
413 write_unlock(&free_i->segmap_lock);
416 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
418 struct curseg_info *curseg = CURSEG_I(sbi, type);
419 struct summary_footer *sum_footer;
421 curseg->segno = curseg->next_segno;
422 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
423 curseg->next_blkoff = 0;
424 curseg->next_segno = NULL_SEGNO;
426 sum_footer = &(curseg->sum_blk->footer);
427 memset(sum_footer, 0, sizeof(struct summary_footer));
428 if (IS_DATASEG(type))
429 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
430 if (IS_NODESEG(type))
431 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
432 __set_sit_entry_type(sbi, type, curseg->segno, modified);
436 * Allocate a current working segment.
437 * This function always allocates a free segment in LFS manner.
439 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
441 struct curseg_info *curseg = CURSEG_I(sbi, type);
442 unsigned int segno = curseg->segno;
443 int dir = ALLOC_LEFT;
445 write_sum_page(sbi, curseg->sum_blk,
446 GET_SUM_BLOCK(sbi, segno));
447 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
448 dir = ALLOC_RIGHT;
450 if (test_opt(sbi, NOHEAP))
451 dir = ALLOC_RIGHT;
453 get_new_segment(sbi, &segno, new_sec, dir);
454 curseg->next_segno = segno;
455 reset_curseg(sbi, type, 1);
456 curseg->alloc_type = LFS;
459 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
460 struct curseg_info *seg, block_t start)
462 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
463 block_t ofs;
464 for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
465 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
466 && !f2fs_test_bit(ofs, se->cur_valid_map))
467 break;
469 seg->next_blkoff = ofs;
473 * If a segment is written by LFS manner, next block offset is just obtained
474 * by increasing the current block offset. However, if a segment is written by
475 * SSR manner, next block offset obtained by calling __next_free_blkoff
477 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
478 struct curseg_info *seg)
480 if (seg->alloc_type == SSR)
481 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
482 else
483 seg->next_blkoff++;
487 * This function always allocates a used segment (from dirty seglist) by SSR
488 * manner, so it should recover the existing segment information of valid blocks
490 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
492 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
493 struct curseg_info *curseg = CURSEG_I(sbi, type);
494 unsigned int new_segno = curseg->next_segno;
495 struct f2fs_summary_block *sum_node;
496 struct page *sum_page;
498 write_sum_page(sbi, curseg->sum_blk,
499 GET_SUM_BLOCK(sbi, curseg->segno));
500 __set_test_and_inuse(sbi, new_segno);
502 mutex_lock(&dirty_i->seglist_lock);
503 __remove_dirty_segment(sbi, new_segno, PRE);
504 __remove_dirty_segment(sbi, new_segno, DIRTY);
505 mutex_unlock(&dirty_i->seglist_lock);
507 reset_curseg(sbi, type, 1);
508 curseg->alloc_type = SSR;
509 __next_free_blkoff(sbi, curseg, 0);
511 if (reuse) {
512 sum_page = get_sum_page(sbi, new_segno);
513 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
514 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
515 f2fs_put_page(sum_page, 1);
519 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
521 struct curseg_info *curseg = CURSEG_I(sbi, type);
522 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
524 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
525 return v_ops->get_victim(sbi,
526 &(curseg)->next_segno, BG_GC, type, SSR);
528 /* For data segments, let's do SSR more intensively */
529 for (; type >= CURSEG_HOT_DATA; type--)
530 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
531 BG_GC, type, SSR))
532 return 1;
533 return 0;
537 * flush out current segment and replace it with new segment
538 * This function should be returned with success, otherwise BUG
540 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
541 int type, bool force)
543 struct curseg_info *curseg = CURSEG_I(sbi, type);
545 if (force) {
546 new_curseg(sbi, type, true);
547 goto out;
550 if (type == CURSEG_WARM_NODE)
551 new_curseg(sbi, type, false);
552 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
553 new_curseg(sbi, type, false);
554 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
555 change_curseg(sbi, type, true);
556 else
557 new_curseg(sbi, type, false);
558 out:
559 #ifdef CONFIG_F2FS_STAT_FS
560 sbi->segment_count[curseg->alloc_type]++;
561 #endif
562 return;
565 void allocate_new_segments(struct f2fs_sb_info *sbi)
567 struct curseg_info *curseg;
568 unsigned int old_curseg;
569 int i;
571 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
572 curseg = CURSEG_I(sbi, i);
573 old_curseg = curseg->segno;
574 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
575 locate_dirty_segment(sbi, old_curseg);
579 static const struct segment_allocation default_salloc_ops = {
580 .allocate_segment = allocate_segment_by_default,
583 static void f2fs_end_io_write(struct bio *bio, int err)
585 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
586 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
587 struct bio_private *p = bio->bi_private;
589 do {
590 struct page *page = bvec->bv_page;
592 if (--bvec >= bio->bi_io_vec)
593 prefetchw(&bvec->bv_page->flags);
594 if (!uptodate) {
595 SetPageError(page);
596 if (page->mapping)
597 set_bit(AS_EIO, &page->mapping->flags);
598 set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
599 p->sbi->sb->s_flags |= MS_RDONLY;
601 end_page_writeback(page);
602 dec_page_count(p->sbi, F2FS_WRITEBACK);
603 } while (bvec >= bio->bi_io_vec);
605 if (p->is_sync)
606 complete(p->wait);
607 kfree(p);
608 bio_put(bio);
611 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
613 struct bio *bio;
614 struct bio_private *priv;
615 retry:
616 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
617 if (!priv) {
618 cond_resched();
619 goto retry;
622 /* No failure on bio allocation */
623 bio = bio_alloc(GFP_NOIO, npages);
624 bio->bi_bdev = bdev;
625 bio->bi_private = priv;
626 return bio;
629 static void do_submit_bio(struct f2fs_sb_info *sbi,
630 enum page_type type, bool sync)
632 int rw = sync ? WRITE_SYNC : WRITE;
633 enum page_type btype = type > META ? META : type;
635 if (type >= META_FLUSH)
636 rw = WRITE_FLUSH_FUA;
638 if (btype == META)
639 rw |= REQ_META;
641 if (sbi->bio[btype]) {
642 struct bio_private *p = sbi->bio[btype]->bi_private;
643 p->sbi = sbi;
644 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
646 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
648 if (type == META_FLUSH) {
649 DECLARE_COMPLETION_ONSTACK(wait);
650 p->is_sync = true;
651 p->wait = &wait;
652 submit_bio(rw, sbi->bio[btype]);
653 wait_for_completion(&wait);
654 } else {
655 p->is_sync = false;
656 submit_bio(rw, sbi->bio[btype]);
658 sbi->bio[btype] = NULL;
662 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
664 down_write(&sbi->bio_sem);
665 do_submit_bio(sbi, type, sync);
666 up_write(&sbi->bio_sem);
669 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
670 block_t blk_addr, enum page_type type)
672 struct block_device *bdev = sbi->sb->s_bdev;
674 verify_block_addr(sbi, blk_addr);
676 down_write(&sbi->bio_sem);
678 inc_page_count(sbi, F2FS_WRITEBACK);
680 if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
681 do_submit_bio(sbi, type, false);
682 alloc_new:
683 if (sbi->bio[type] == NULL) {
684 sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
685 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
687 * The end_io will be assigned at the sumbission phase.
688 * Until then, let bio_add_page() merge consecutive IOs as much
689 * as possible.
693 if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
694 PAGE_CACHE_SIZE) {
695 do_submit_bio(sbi, type, false);
696 goto alloc_new;
699 sbi->last_block_in_bio[type] = blk_addr;
701 up_write(&sbi->bio_sem);
702 trace_f2fs_submit_write_page(page, blk_addr, type);
705 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
707 struct curseg_info *curseg = CURSEG_I(sbi, type);
708 if (curseg->next_blkoff < sbi->blocks_per_seg)
709 return true;
710 return false;
713 static int __get_segment_type_2(struct page *page, enum page_type p_type)
715 if (p_type == DATA)
716 return CURSEG_HOT_DATA;
717 else
718 return CURSEG_HOT_NODE;
721 static int __get_segment_type_4(struct page *page, enum page_type p_type)
723 if (p_type == DATA) {
724 struct inode *inode = page->mapping->host;
726 if (S_ISDIR(inode->i_mode))
727 return CURSEG_HOT_DATA;
728 else
729 return CURSEG_COLD_DATA;
730 } else {
731 if (IS_DNODE(page) && !is_cold_node(page))
732 return CURSEG_HOT_NODE;
733 else
734 return CURSEG_COLD_NODE;
738 static int __get_segment_type_6(struct page *page, enum page_type p_type)
740 if (p_type == DATA) {
741 struct inode *inode = page->mapping->host;
743 if (S_ISDIR(inode->i_mode))
744 return CURSEG_HOT_DATA;
745 else if (is_cold_data(page) || file_is_cold(inode))
746 return CURSEG_COLD_DATA;
747 else
748 return CURSEG_WARM_DATA;
749 } else {
750 if (IS_DNODE(page))
751 return is_cold_node(page) ? CURSEG_WARM_NODE :
752 CURSEG_HOT_NODE;
753 else
754 return CURSEG_COLD_NODE;
758 static int __get_segment_type(struct page *page, enum page_type p_type)
760 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
761 switch (sbi->active_logs) {
762 case 2:
763 return __get_segment_type_2(page, p_type);
764 case 4:
765 return __get_segment_type_4(page, p_type);
767 /* NR_CURSEG_TYPE(6) logs by default */
768 BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
769 return __get_segment_type_6(page, p_type);
772 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
773 block_t old_blkaddr, block_t *new_blkaddr,
774 struct f2fs_summary *sum, enum page_type p_type)
776 struct sit_info *sit_i = SIT_I(sbi);
777 struct curseg_info *curseg;
778 unsigned int old_cursegno;
779 int type;
781 type = __get_segment_type(page, p_type);
782 curseg = CURSEG_I(sbi, type);
784 mutex_lock(&curseg->curseg_mutex);
786 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
787 old_cursegno = curseg->segno;
790 * __add_sum_entry should be resided under the curseg_mutex
791 * because, this function updates a summary entry in the
792 * current summary block.
794 __add_sum_entry(sbi, type, sum);
796 mutex_lock(&sit_i->sentry_lock);
797 __refresh_next_blkoff(sbi, curseg);
798 #ifdef CONFIG_F2FS_STAT_FS
799 sbi->block_count[curseg->alloc_type]++;
800 #endif
803 * SIT information should be updated before segment allocation,
804 * since SSR needs latest valid block information.
806 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
808 if (!__has_curseg_space(sbi, type))
809 sit_i->s_ops->allocate_segment(sbi, type, false);
811 locate_dirty_segment(sbi, old_cursegno);
812 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
813 mutex_unlock(&sit_i->sentry_lock);
815 if (p_type == NODE)
816 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
818 /* writeout dirty page into bdev */
819 submit_write_page(sbi, page, *new_blkaddr, p_type);
821 mutex_unlock(&curseg->curseg_mutex);
824 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
826 set_page_writeback(page);
827 submit_write_page(sbi, page, page->index, META);
830 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
831 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
833 struct f2fs_summary sum;
834 set_summary(&sum, nid, 0, 0);
835 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
838 void write_data_page(struct inode *inode, struct page *page,
839 struct dnode_of_data *dn, block_t old_blkaddr,
840 block_t *new_blkaddr)
842 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
843 struct f2fs_summary sum;
844 struct node_info ni;
846 BUG_ON(old_blkaddr == NULL_ADDR);
847 get_node_info(sbi, dn->nid, &ni);
848 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
850 do_write_page(sbi, page, old_blkaddr,
851 new_blkaddr, &sum, DATA);
854 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
855 block_t old_blk_addr)
857 submit_write_page(sbi, page, old_blk_addr, DATA);
860 void recover_data_page(struct f2fs_sb_info *sbi,
861 struct page *page, struct f2fs_summary *sum,
862 block_t old_blkaddr, block_t new_blkaddr)
864 struct sit_info *sit_i = SIT_I(sbi);
865 struct curseg_info *curseg;
866 unsigned int segno, old_cursegno;
867 struct seg_entry *se;
868 int type;
870 segno = GET_SEGNO(sbi, new_blkaddr);
871 se = get_seg_entry(sbi, segno);
872 type = se->type;
874 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
875 if (old_blkaddr == NULL_ADDR)
876 type = CURSEG_COLD_DATA;
877 else
878 type = CURSEG_WARM_DATA;
880 curseg = CURSEG_I(sbi, type);
882 mutex_lock(&curseg->curseg_mutex);
883 mutex_lock(&sit_i->sentry_lock);
885 old_cursegno = curseg->segno;
887 /* change the current segment */
888 if (segno != curseg->segno) {
889 curseg->next_segno = segno;
890 change_curseg(sbi, type, true);
893 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
894 (sbi->blocks_per_seg - 1);
895 __add_sum_entry(sbi, type, sum);
897 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
899 locate_dirty_segment(sbi, old_cursegno);
900 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
902 mutex_unlock(&sit_i->sentry_lock);
903 mutex_unlock(&curseg->curseg_mutex);
906 void rewrite_node_page(struct f2fs_sb_info *sbi,
907 struct page *page, struct f2fs_summary *sum,
908 block_t old_blkaddr, block_t new_blkaddr)
910 struct sit_info *sit_i = SIT_I(sbi);
911 int type = CURSEG_WARM_NODE;
912 struct curseg_info *curseg;
913 unsigned int segno, old_cursegno;
914 block_t next_blkaddr = next_blkaddr_of_node(page);
915 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
917 curseg = CURSEG_I(sbi, type);
919 mutex_lock(&curseg->curseg_mutex);
920 mutex_lock(&sit_i->sentry_lock);
922 segno = GET_SEGNO(sbi, new_blkaddr);
923 old_cursegno = curseg->segno;
925 /* change the current segment */
926 if (segno != curseg->segno) {
927 curseg->next_segno = segno;
928 change_curseg(sbi, type, true);
930 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
931 (sbi->blocks_per_seg - 1);
932 __add_sum_entry(sbi, type, sum);
934 /* change the current log to the next block addr in advance */
935 if (next_segno != segno) {
936 curseg->next_segno = next_segno;
937 change_curseg(sbi, type, true);
939 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
940 (sbi->blocks_per_seg - 1);
942 /* rewrite node page */
943 set_page_writeback(page);
944 submit_write_page(sbi, page, new_blkaddr, NODE);
945 f2fs_submit_bio(sbi, NODE, true);
946 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
948 locate_dirty_segment(sbi, old_cursegno);
949 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
951 mutex_unlock(&sit_i->sentry_lock);
952 mutex_unlock(&curseg->curseg_mutex);
955 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
957 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
958 struct curseg_info *seg_i;
959 unsigned char *kaddr;
960 struct page *page;
961 block_t start;
962 int i, j, offset;
964 start = start_sum_block(sbi);
966 page = get_meta_page(sbi, start++);
967 kaddr = (unsigned char *)page_address(page);
969 /* Step 1: restore nat cache */
970 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
971 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
973 /* Step 2: restore sit cache */
974 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
975 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
976 SUM_JOURNAL_SIZE);
977 offset = 2 * SUM_JOURNAL_SIZE;
979 /* Step 3: restore summary entries */
980 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
981 unsigned short blk_off;
982 unsigned int segno;
984 seg_i = CURSEG_I(sbi, i);
985 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
986 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
987 seg_i->next_segno = segno;
988 reset_curseg(sbi, i, 0);
989 seg_i->alloc_type = ckpt->alloc_type[i];
990 seg_i->next_blkoff = blk_off;
992 if (seg_i->alloc_type == SSR)
993 blk_off = sbi->blocks_per_seg;
995 for (j = 0; j < blk_off; j++) {
996 struct f2fs_summary *s;
997 s = (struct f2fs_summary *)(kaddr + offset);
998 seg_i->sum_blk->entries[j] = *s;
999 offset += SUMMARY_SIZE;
1000 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1001 SUM_FOOTER_SIZE)
1002 continue;
1004 f2fs_put_page(page, 1);
1005 page = NULL;
1007 page = get_meta_page(sbi, start++);
1008 kaddr = (unsigned char *)page_address(page);
1009 offset = 0;
1012 f2fs_put_page(page, 1);
1013 return 0;
1016 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1018 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1019 struct f2fs_summary_block *sum;
1020 struct curseg_info *curseg;
1021 struct page *new;
1022 unsigned short blk_off;
1023 unsigned int segno = 0;
1024 block_t blk_addr = 0;
1026 /* get segment number and block addr */
1027 if (IS_DATASEG(type)) {
1028 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1029 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1030 CURSEG_HOT_DATA]);
1031 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1032 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1033 else
1034 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1035 } else {
1036 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1037 CURSEG_HOT_NODE]);
1038 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1039 CURSEG_HOT_NODE]);
1040 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1041 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1042 type - CURSEG_HOT_NODE);
1043 else
1044 blk_addr = GET_SUM_BLOCK(sbi, segno);
1047 new = get_meta_page(sbi, blk_addr);
1048 sum = (struct f2fs_summary_block *)page_address(new);
1050 if (IS_NODESEG(type)) {
1051 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1052 struct f2fs_summary *ns = &sum->entries[0];
1053 int i;
1054 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1055 ns->version = 0;
1056 ns->ofs_in_node = 0;
1058 } else {
1059 if (restore_node_summary(sbi, segno, sum)) {
1060 f2fs_put_page(new, 1);
1061 return -EINVAL;
1066 /* set uncompleted segment to curseg */
1067 curseg = CURSEG_I(sbi, type);
1068 mutex_lock(&curseg->curseg_mutex);
1069 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1070 curseg->next_segno = segno;
1071 reset_curseg(sbi, type, 0);
1072 curseg->alloc_type = ckpt->alloc_type[type];
1073 curseg->next_blkoff = blk_off;
1074 mutex_unlock(&curseg->curseg_mutex);
1075 f2fs_put_page(new, 1);
1076 return 0;
1079 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1081 int type = CURSEG_HOT_DATA;
1083 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1084 /* restore for compacted data summary */
1085 if (read_compacted_summaries(sbi))
1086 return -EINVAL;
1087 type = CURSEG_HOT_NODE;
1090 for (; type <= CURSEG_COLD_NODE; type++)
1091 if (read_normal_summaries(sbi, type))
1092 return -EINVAL;
1093 return 0;
1096 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1098 struct page *page;
1099 unsigned char *kaddr;
1100 struct f2fs_summary *summary;
1101 struct curseg_info *seg_i;
1102 int written_size = 0;
1103 int i, j;
1105 page = grab_meta_page(sbi, blkaddr++);
1106 kaddr = (unsigned char *)page_address(page);
1108 /* Step 1: write nat cache */
1109 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1110 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1111 written_size += SUM_JOURNAL_SIZE;
1113 /* Step 2: write sit cache */
1114 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1115 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1116 SUM_JOURNAL_SIZE);
1117 written_size += SUM_JOURNAL_SIZE;
1119 set_page_dirty(page);
1121 /* Step 3: write summary entries */
1122 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1123 unsigned short blkoff;
1124 seg_i = CURSEG_I(sbi, i);
1125 if (sbi->ckpt->alloc_type[i] == SSR)
1126 blkoff = sbi->blocks_per_seg;
1127 else
1128 blkoff = curseg_blkoff(sbi, i);
1130 for (j = 0; j < blkoff; j++) {
1131 if (!page) {
1132 page = grab_meta_page(sbi, blkaddr++);
1133 kaddr = (unsigned char *)page_address(page);
1134 written_size = 0;
1136 summary = (struct f2fs_summary *)(kaddr + written_size);
1137 *summary = seg_i->sum_blk->entries[j];
1138 written_size += SUMMARY_SIZE;
1139 set_page_dirty(page);
1141 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1142 SUM_FOOTER_SIZE)
1143 continue;
1145 f2fs_put_page(page, 1);
1146 page = NULL;
1149 if (page)
1150 f2fs_put_page(page, 1);
1153 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1154 block_t blkaddr, int type)
1156 int i, end;
1157 if (IS_DATASEG(type))
1158 end = type + NR_CURSEG_DATA_TYPE;
1159 else
1160 end = type + NR_CURSEG_NODE_TYPE;
1162 for (i = type; i < end; i++) {
1163 struct curseg_info *sum = CURSEG_I(sbi, i);
1164 mutex_lock(&sum->curseg_mutex);
1165 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1166 mutex_unlock(&sum->curseg_mutex);
1170 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1172 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1173 write_compacted_summaries(sbi, start_blk);
1174 else
1175 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1178 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1180 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1181 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1182 return;
1185 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1186 unsigned int val, int alloc)
1188 int i;
1190 if (type == NAT_JOURNAL) {
1191 for (i = 0; i < nats_in_cursum(sum); i++) {
1192 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1193 return i;
1195 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1196 return update_nats_in_cursum(sum, 1);
1197 } else if (type == SIT_JOURNAL) {
1198 for (i = 0; i < sits_in_cursum(sum); i++)
1199 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1200 return i;
1201 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1202 return update_sits_in_cursum(sum, 1);
1204 return -1;
1207 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1208 unsigned int segno)
1210 struct sit_info *sit_i = SIT_I(sbi);
1211 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1212 block_t blk_addr = sit_i->sit_base_addr + offset;
1214 check_seg_range(sbi, segno);
1216 /* calculate sit block address */
1217 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1218 blk_addr += sit_i->sit_blocks;
1220 return get_meta_page(sbi, blk_addr);
1223 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1224 unsigned int start)
1226 struct sit_info *sit_i = SIT_I(sbi);
1227 struct page *src_page, *dst_page;
1228 pgoff_t src_off, dst_off;
1229 void *src_addr, *dst_addr;
1231 src_off = current_sit_addr(sbi, start);
1232 dst_off = next_sit_addr(sbi, src_off);
1234 /* get current sit block page without lock */
1235 src_page = get_meta_page(sbi, src_off);
1236 dst_page = grab_meta_page(sbi, dst_off);
1237 BUG_ON(PageDirty(src_page));
1239 src_addr = page_address(src_page);
1240 dst_addr = page_address(dst_page);
1241 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1243 set_page_dirty(dst_page);
1244 f2fs_put_page(src_page, 1);
1246 set_to_next_sit(sit_i, start);
1248 return dst_page;
1251 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1253 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1254 struct f2fs_summary_block *sum = curseg->sum_blk;
1255 int i;
1258 * If the journal area in the current summary is full of sit entries,
1259 * all the sit entries will be flushed. Otherwise the sit entries
1260 * are not able to replace with newly hot sit entries.
1262 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1263 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1264 unsigned int segno;
1265 segno = le32_to_cpu(segno_in_journal(sum, i));
1266 __mark_sit_entry_dirty(sbi, segno);
1268 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1269 return 1;
1271 return 0;
1275 * CP calls this function, which flushes SIT entries including sit_journal,
1276 * and moves prefree segs to free segs.
1278 void flush_sit_entries(struct f2fs_sb_info *sbi)
1280 struct sit_info *sit_i = SIT_I(sbi);
1281 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1282 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1283 struct f2fs_summary_block *sum = curseg->sum_blk;
1284 unsigned long nsegs = TOTAL_SEGS(sbi);
1285 struct page *page = NULL;
1286 struct f2fs_sit_block *raw_sit = NULL;
1287 unsigned int start = 0, end = 0;
1288 unsigned int segno = -1;
1289 bool flushed;
1291 mutex_lock(&curseg->curseg_mutex);
1292 mutex_lock(&sit_i->sentry_lock);
1295 * "flushed" indicates whether sit entries in journal are flushed
1296 * to the SIT area or not.
1298 flushed = flush_sits_in_journal(sbi);
1300 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1301 struct seg_entry *se = get_seg_entry(sbi, segno);
1302 int sit_offset, offset;
1304 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1306 if (flushed)
1307 goto to_sit_page;
1309 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1310 if (offset >= 0) {
1311 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1312 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1313 goto flush_done;
1315 to_sit_page:
1316 if (!page || (start > segno) || (segno > end)) {
1317 if (page) {
1318 f2fs_put_page(page, 1);
1319 page = NULL;
1322 start = START_SEGNO(sit_i, segno);
1323 end = start + SIT_ENTRY_PER_BLOCK - 1;
1325 /* read sit block that will be updated */
1326 page = get_next_sit_page(sbi, start);
1327 raw_sit = page_address(page);
1330 /* udpate entry in SIT block */
1331 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1332 flush_done:
1333 __clear_bit(segno, bitmap);
1334 sit_i->dirty_sentries--;
1336 mutex_unlock(&sit_i->sentry_lock);
1337 mutex_unlock(&curseg->curseg_mutex);
1339 /* writeout last modified SIT block */
1340 f2fs_put_page(page, 1);
1342 set_prefree_as_free_segments(sbi);
1345 static int build_sit_info(struct f2fs_sb_info *sbi)
1347 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1348 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1349 struct sit_info *sit_i;
1350 unsigned int sit_segs, start;
1351 char *src_bitmap, *dst_bitmap;
1352 unsigned int bitmap_size;
1354 /* allocate memory for SIT information */
1355 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1356 if (!sit_i)
1357 return -ENOMEM;
1359 SM_I(sbi)->sit_info = sit_i;
1361 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1362 if (!sit_i->sentries)
1363 return -ENOMEM;
1365 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1366 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1367 if (!sit_i->dirty_sentries_bitmap)
1368 return -ENOMEM;
1370 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1371 sit_i->sentries[start].cur_valid_map
1372 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1373 sit_i->sentries[start].ckpt_valid_map
1374 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1375 if (!sit_i->sentries[start].cur_valid_map
1376 || !sit_i->sentries[start].ckpt_valid_map)
1377 return -ENOMEM;
1380 if (sbi->segs_per_sec > 1) {
1381 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1382 sizeof(struct sec_entry));
1383 if (!sit_i->sec_entries)
1384 return -ENOMEM;
1387 /* get information related with SIT */
1388 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1390 /* setup SIT bitmap from ckeckpoint pack */
1391 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1392 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1394 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1395 if (!dst_bitmap)
1396 return -ENOMEM;
1398 /* init SIT information */
1399 sit_i->s_ops = &default_salloc_ops;
1401 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1402 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1403 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1404 sit_i->sit_bitmap = dst_bitmap;
1405 sit_i->bitmap_size = bitmap_size;
1406 sit_i->dirty_sentries = 0;
1407 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1408 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1409 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1410 mutex_init(&sit_i->sentry_lock);
1411 return 0;
1414 static int build_free_segmap(struct f2fs_sb_info *sbi)
1416 struct f2fs_sm_info *sm_info = SM_I(sbi);
1417 struct free_segmap_info *free_i;
1418 unsigned int bitmap_size, sec_bitmap_size;
1420 /* allocate memory for free segmap information */
1421 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1422 if (!free_i)
1423 return -ENOMEM;
1425 SM_I(sbi)->free_info = free_i;
1427 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1428 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1429 if (!free_i->free_segmap)
1430 return -ENOMEM;
1432 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1433 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1434 if (!free_i->free_secmap)
1435 return -ENOMEM;
1437 /* set all segments as dirty temporarily */
1438 memset(free_i->free_segmap, 0xff, bitmap_size);
1439 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1441 /* init free segmap information */
1442 free_i->start_segno =
1443 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1444 free_i->free_segments = 0;
1445 free_i->free_sections = 0;
1446 rwlock_init(&free_i->segmap_lock);
1447 return 0;
1450 static int build_curseg(struct f2fs_sb_info *sbi)
1452 struct curseg_info *array;
1453 int i;
1455 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1456 if (!array)
1457 return -ENOMEM;
1459 SM_I(sbi)->curseg_array = array;
1461 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1462 mutex_init(&array[i].curseg_mutex);
1463 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1464 if (!array[i].sum_blk)
1465 return -ENOMEM;
1466 array[i].segno = NULL_SEGNO;
1467 array[i].next_blkoff = 0;
1469 return restore_curseg_summaries(sbi);
1472 static void build_sit_entries(struct f2fs_sb_info *sbi)
1474 struct sit_info *sit_i = SIT_I(sbi);
1475 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1476 struct f2fs_summary_block *sum = curseg->sum_blk;
1477 unsigned int start;
1479 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1480 struct seg_entry *se = &sit_i->sentries[start];
1481 struct f2fs_sit_block *sit_blk;
1482 struct f2fs_sit_entry sit;
1483 struct page *page;
1484 int i;
1486 mutex_lock(&curseg->curseg_mutex);
1487 for (i = 0; i < sits_in_cursum(sum); i++) {
1488 if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1489 sit = sit_in_journal(sum, i);
1490 mutex_unlock(&curseg->curseg_mutex);
1491 goto got_it;
1494 mutex_unlock(&curseg->curseg_mutex);
1495 page = get_current_sit_page(sbi, start);
1496 sit_blk = (struct f2fs_sit_block *)page_address(page);
1497 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1498 f2fs_put_page(page, 1);
1499 got_it:
1500 check_block_count(sbi, start, &sit);
1501 seg_info_from_raw_sit(se, &sit);
1502 if (sbi->segs_per_sec > 1) {
1503 struct sec_entry *e = get_sec_entry(sbi, start);
1504 e->valid_blocks += se->valid_blocks;
1509 static void init_free_segmap(struct f2fs_sb_info *sbi)
1511 unsigned int start;
1512 int type;
1514 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1515 struct seg_entry *sentry = get_seg_entry(sbi, start);
1516 if (!sentry->valid_blocks)
1517 __set_free(sbi, start);
1520 /* set use the current segments */
1521 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1522 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1523 __set_test_and_inuse(sbi, curseg_t->segno);
1527 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1529 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1530 struct free_segmap_info *free_i = FREE_I(sbi);
1531 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1532 unsigned short valid_blocks;
1534 while (1) {
1535 /* find dirty segment based on free segmap */
1536 segno = find_next_inuse(free_i, total_segs, offset);
1537 if (segno >= total_segs)
1538 break;
1539 offset = segno + 1;
1540 valid_blocks = get_valid_blocks(sbi, segno, 0);
1541 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1542 continue;
1543 mutex_lock(&dirty_i->seglist_lock);
1544 __locate_dirty_segment(sbi, segno, DIRTY);
1545 mutex_unlock(&dirty_i->seglist_lock);
1549 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1551 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1552 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1554 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1555 if (!dirty_i->victim_secmap)
1556 return -ENOMEM;
1557 return 0;
1560 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1562 struct dirty_seglist_info *dirty_i;
1563 unsigned int bitmap_size, i;
1565 /* allocate memory for dirty segments list information */
1566 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1567 if (!dirty_i)
1568 return -ENOMEM;
1570 SM_I(sbi)->dirty_info = dirty_i;
1571 mutex_init(&dirty_i->seglist_lock);
1573 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1575 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1576 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1577 if (!dirty_i->dirty_segmap[i])
1578 return -ENOMEM;
1581 init_dirty_segmap(sbi);
1582 return init_victim_secmap(sbi);
1586 * Update min, max modified time for cost-benefit GC algorithm
1588 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1590 struct sit_info *sit_i = SIT_I(sbi);
1591 unsigned int segno;
1593 mutex_lock(&sit_i->sentry_lock);
1595 sit_i->min_mtime = LLONG_MAX;
1597 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1598 unsigned int i;
1599 unsigned long long mtime = 0;
1601 for (i = 0; i < sbi->segs_per_sec; i++)
1602 mtime += get_seg_entry(sbi, segno + i)->mtime;
1604 mtime = div_u64(mtime, sbi->segs_per_sec);
1606 if (sit_i->min_mtime > mtime)
1607 sit_i->min_mtime = mtime;
1609 sit_i->max_mtime = get_mtime(sbi);
1610 mutex_unlock(&sit_i->sentry_lock);
1613 int build_segment_manager(struct f2fs_sb_info *sbi)
1615 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1616 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1617 struct f2fs_sm_info *sm_info;
1618 int err;
1620 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1621 if (!sm_info)
1622 return -ENOMEM;
1624 /* init sm info */
1625 sbi->sm_info = sm_info;
1626 INIT_LIST_HEAD(&sm_info->wblist_head);
1627 spin_lock_init(&sm_info->wblist_lock);
1628 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1629 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1630 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1631 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1632 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1633 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1634 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1636 err = build_sit_info(sbi);
1637 if (err)
1638 return err;
1639 err = build_free_segmap(sbi);
1640 if (err)
1641 return err;
1642 err = build_curseg(sbi);
1643 if (err)
1644 return err;
1646 /* reinit free segmap based on SIT */
1647 build_sit_entries(sbi);
1649 init_free_segmap(sbi);
1650 err = build_dirty_segmap(sbi);
1651 if (err)
1652 return err;
1654 init_min_max_mtime(sbi);
1655 return 0;
1658 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1659 enum dirty_type dirty_type)
1661 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1663 mutex_lock(&dirty_i->seglist_lock);
1664 kfree(dirty_i->dirty_segmap[dirty_type]);
1665 dirty_i->nr_dirty[dirty_type] = 0;
1666 mutex_unlock(&dirty_i->seglist_lock);
1669 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1671 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1672 kfree(dirty_i->victim_secmap);
1675 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1677 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1678 int i;
1680 if (!dirty_i)
1681 return;
1683 /* discard pre-free/dirty segments list */
1684 for (i = 0; i < NR_DIRTY_TYPE; i++)
1685 discard_dirty_segmap(sbi, i);
1687 destroy_victim_secmap(sbi);
1688 SM_I(sbi)->dirty_info = NULL;
1689 kfree(dirty_i);
1692 static void destroy_curseg(struct f2fs_sb_info *sbi)
1694 struct curseg_info *array = SM_I(sbi)->curseg_array;
1695 int i;
1697 if (!array)
1698 return;
1699 SM_I(sbi)->curseg_array = NULL;
1700 for (i = 0; i < NR_CURSEG_TYPE; i++)
1701 kfree(array[i].sum_blk);
1702 kfree(array);
1705 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1707 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1708 if (!free_i)
1709 return;
1710 SM_I(sbi)->free_info = NULL;
1711 kfree(free_i->free_segmap);
1712 kfree(free_i->free_secmap);
1713 kfree(free_i);
1716 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1718 struct sit_info *sit_i = SIT_I(sbi);
1719 unsigned int start;
1721 if (!sit_i)
1722 return;
1724 if (sit_i->sentries) {
1725 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1726 kfree(sit_i->sentries[start].cur_valid_map);
1727 kfree(sit_i->sentries[start].ckpt_valid_map);
1730 vfree(sit_i->sentries);
1731 vfree(sit_i->sec_entries);
1732 kfree(sit_i->dirty_sentries_bitmap);
1734 SM_I(sbi)->sit_info = NULL;
1735 kfree(sit_i->sit_bitmap);
1736 kfree(sit_i);
1739 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1741 struct f2fs_sm_info *sm_info = SM_I(sbi);
1742 destroy_dirty_segmap(sbi);
1743 destroy_curseg(sbi);
1744 destroy_free_segmap(sbi);
1745 destroy_sit_info(sbi);
1746 sbi->sm_info = NULL;
1747 kfree(sm_info);