[PATCH] rt2x00: Remove duplicate code in MAC & BSSID handling
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
blob63a7b3cdf0cd1bee3481cf6ddfab47503d0c5256
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
28 * Set enviroment defines for rt2x00.h
30 #define DRV_NAME "rt2500pci"
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt2500pci.h"
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
57 static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
59 u32 reg;
60 unsigned int i;
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
69 return reg;
72 static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
75 u32 reg;
78 * Wait until the BBP becomes ready.
80 reg = rt2500pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
87 * Write the data into the BBP.
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
98 static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
101 u32 reg;
104 * Wait until the BBP becomes ready.
106 reg = rt2500pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
113 * Write the request into the BBP.
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
123 * Wait until the BBP becomes ready.
125 reg = rt2500pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
135 static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
138 u32 reg;
139 unsigned int i;
141 if (!word)
142 return;
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
154 rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
165 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
180 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
198 static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
204 static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
210 static const struct rt2x00debug rt2500pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2500pci_read_csr,
214 .write = rt2500pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
224 .bbp = {
225 .read = rt2500pci_bbp_read,
226 .write = rt2500pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2500pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239 #ifdef CONFIG_RT2500PCI_RFKILL
240 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 u32 reg;
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
247 #endif /* CONFIG_RT2500PCI_RFKILL */
250 * Configuration handlers.
252 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
253 __le32 *mac)
255 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
256 (2 * sizeof(__le32)));
259 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
260 __le32 *bssid)
262 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
263 (2 * sizeof(__le32)));
266 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type)
268 struct interface *intf = &rt2x00dev->interface;
269 u32 reg;
271 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274 * Enable beacon config
276 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
277 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
278 PREAMBLE + get_duration(IEEE80211_HEADER, 2));
279 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
280 rt2x00lib_get_ring(rt2x00dev,
281 IEEE80211_TX_QUEUE_BEACON)
282 ->tx_params.cw_min);
283 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
286 * Enable synchronisation.
288 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
289 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
290 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
291 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
292 if (is_interface_type(intf, IEEE80211_IF_TYPE_IBSS) ||
293 is_interface_type(intf, IEEE80211_IF_TYPE_AP))
294 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
295 else if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
296 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
297 else
298 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
299 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
302 static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
304 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
305 u32 reg;
306 u32 preamble;
307 u16 value;
309 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
310 preamble = SHORT_PREAMBLE;
311 else
312 preamble = PREAMBLE;
314 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
315 rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
317 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
318 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
319 SHORT_DIFS : DIFS) +
320 PLCP + preamble + get_duration(ACK_SIZE, 10);
321 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
322 value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
323 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
324 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
326 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
328 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
329 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
330 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
331 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
332 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
334 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
335 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
336 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
337 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
338 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
340 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
341 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
342 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
343 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
344 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
346 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
347 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
348 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
349 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
350 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
353 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
354 const int phymode)
356 struct ieee80211_hw_mode *mode;
357 struct ieee80211_rate *rate;
359 if (phymode == MODE_IEEE80211A)
360 rt2x00dev->curr_hwmode = HWMODE_A;
361 else if (phymode == MODE_IEEE80211B)
362 rt2x00dev->curr_hwmode = HWMODE_B;
363 else
364 rt2x00dev->curr_hwmode = HWMODE_G;
366 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
367 rate = &mode->rates[mode->num_rates - 1];
369 rt2500pci_config_rate(rt2x00dev, rate->val2);
372 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
373 const int index, const int channel,
374 const int txpower)
376 struct rf_channel reg;
377 u8 r70;
380 * Fill rf_reg structure.
382 memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
385 * Set TXpower.
387 rt2x00_set_field32(&reg.rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
390 * Switch on tuning bits.
391 * For RT2523 devices we do not need to update the R1 register.
393 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
394 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
395 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
398 * For RT2525 we should first set the channel to half band higher.
400 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
401 static const u32 vals[] = {
402 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
403 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
404 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
405 0x00080d2e, 0x00080d3a
408 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
409 rt2500pci_rf_write(rt2x00dev, 2, vals[channel - 1]);
410 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
411 if (reg.rf4)
412 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
415 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
416 rt2500pci_rf_write(rt2x00dev, 2, reg.rf2);
417 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
418 if (reg.rf4)
419 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
422 * Channel 14 requires the Japan filter bit to be set.
424 r70 = 0x46;
425 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, channel == 14);
426 rt2500pci_bbp_write(rt2x00dev, 70, r70);
428 msleep(1);
431 * Switch off tuning bits.
432 * For RT2523 devices we do not need to update the R1 register.
434 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
435 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
436 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
439 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
440 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
443 * Clear false CRC during channel switch.
445 rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
448 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
449 const int txpower)
451 u32 rf3;
453 rt2x00_rf_read(rt2x00dev, 3, &rf3);
454 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
455 rt2500pci_rf_write(rt2x00dev, 3, rf3);
458 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
459 const int antenna_tx, const int antenna_rx)
461 u32 reg;
462 u8 r14;
463 u8 r2;
465 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
466 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
467 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
470 * Configure the TX antenna.
472 switch (antenna_tx) {
473 case ANTENNA_SW_DIVERSITY:
474 case ANTENNA_HW_DIVERSITY:
475 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
476 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
477 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
478 break;
479 case ANTENNA_A:
480 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
481 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
482 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
483 break;
484 case ANTENNA_B:
485 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
486 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
487 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
488 break;
492 * Configure the RX antenna.
494 switch (antenna_rx) {
495 case ANTENNA_SW_DIVERSITY:
496 case ANTENNA_HW_DIVERSITY:
497 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
498 break;
499 case ANTENNA_A:
500 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
501 break;
502 case ANTENNA_B:
503 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
504 break;
508 * RT2525E and RT5222 need to flip TX I/Q
510 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
511 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
512 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
513 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
514 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
517 * RT2525E does not need RX I/Q Flip.
519 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
520 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
521 } else {
522 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
523 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
526 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
527 rt2500pci_bbp_write(rt2x00dev, 14, r14);
528 rt2500pci_bbp_write(rt2x00dev, 2, r2);
531 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
532 const int short_slot_time,
533 const int beacon_int)
535 u32 reg;
537 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
538 rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
539 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
540 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
542 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
543 rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
544 rt2x00_set_field32(&reg, CSR18_PIFS,
545 short_slot_time ? SHORT_PIFS : PIFS);
546 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
548 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
549 rt2x00_set_field32(&reg, CSR19_DIFS,
550 short_slot_time ? SHORT_DIFS : DIFS);
551 rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
552 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
554 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
555 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
556 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
557 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
559 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
560 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
561 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
562 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
565 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
566 const unsigned int flags,
567 struct ieee80211_conf *conf)
569 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
571 if (flags & CONFIG_UPDATE_PHYMODE)
572 rt2500pci_config_phymode(rt2x00dev, conf->phymode);
573 if (flags & CONFIG_UPDATE_CHANNEL)
574 rt2500pci_config_channel(rt2x00dev, conf->channel_val,
575 conf->channel, conf->power_level);
576 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
577 rt2500pci_config_txpower(rt2x00dev, conf->power_level);
578 if (flags & CONFIG_UPDATE_ANTENNA)
579 rt2500pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
580 conf->antenna_sel_rx);
581 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
582 rt2500pci_config_duration(rt2x00dev, short_slot_time,
583 conf->beacon_int);
587 * LED functions.
589 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
591 u32 reg;
593 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
595 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
596 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
598 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
599 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
600 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
601 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
602 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
603 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
604 } else {
605 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
606 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
609 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
612 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
614 u32 reg;
616 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
617 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
618 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
619 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
623 * Link tuning
625 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev)
627 u32 reg;
630 * Update FCS error count from register.
632 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
633 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
636 * Update False CCA count from register.
638 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
639 rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
642 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
644 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
645 rt2x00dev->link.vgc_level = 0x48;
648 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
650 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
651 u8 r17;
654 * To prevent collisions with MAC ASIC on chipsets
655 * up to version C the link tuning should halt after 20
656 * seconds.
658 if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
659 rt2x00dev->link.count > 20)
660 return;
662 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
665 * Chipset versions C and lower should directly continue
666 * to the dynamic CCA tuning.
668 if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
669 goto dynamic_cca_tune;
672 * A too low RSSI will cause too much false CCA which will
673 * then corrupt the R17 tuning. To remidy this the tuning should
674 * be stopped (While making sure the R17 value will not exceed limits)
676 if (rssi < -80 && rt2x00dev->link.count > 20) {
677 if (r17 >= 0x41) {
678 r17 = rt2x00dev->link.vgc_level;
679 rt2500pci_bbp_write(rt2x00dev, 17, r17);
681 return;
685 * Special big-R17 for short distance
687 if (rssi >= -58) {
688 if (r17 != 0x50)
689 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
690 return;
694 * Special mid-R17 for middle distance
696 if (rssi >= -74) {
697 if (r17 != 0x41)
698 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
699 return;
703 * Leave short or middle distance condition, restore r17
704 * to the dynamic tuning range.
706 if (r17 >= 0x41) {
707 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
708 return;
711 dynamic_cca_tune:
714 * R17 is inside the dynamic tuning range,
715 * start tuning the link based on the false cca counter.
717 if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
718 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
719 rt2x00dev->link.vgc_level = r17;
720 } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
721 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
722 rt2x00dev->link.vgc_level = r17;
727 * Initialization functions.
729 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
731 struct data_ring *ring = rt2x00dev->rx;
732 struct data_desc *rxd;
733 unsigned int i;
734 u32 word;
736 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
738 for (i = 0; i < ring->stats.limit; i++) {
739 rxd = ring->entry[i].priv;
741 rt2x00_desc_read(rxd, 1, &word);
742 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
743 ring->entry[i].data_dma);
744 rt2x00_desc_write(rxd, 1, word);
746 rt2x00_desc_read(rxd, 0, &word);
747 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
748 rt2x00_desc_write(rxd, 0, word);
751 rt2x00_ring_index_clear(rt2x00dev->rx);
754 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
756 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
757 struct data_desc *txd;
758 unsigned int i;
759 u32 word;
761 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
763 for (i = 0; i < ring->stats.limit; i++) {
764 txd = ring->entry[i].priv;
766 rt2x00_desc_read(txd, 1, &word);
767 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
768 ring->entry[i].data_dma);
769 rt2x00_desc_write(txd, 1, word);
771 rt2x00_desc_read(txd, 0, &word);
772 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
773 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
774 rt2x00_desc_write(txd, 0, word);
777 rt2x00_ring_index_clear(ring);
780 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
782 u32 reg;
785 * Initialize rings.
787 rt2500pci_init_rxring(rt2x00dev);
788 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
789 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
790 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
791 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
794 * Initialize registers.
796 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
797 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
798 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
799 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
800 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
801 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
802 rt2x00dev->bcn[1].stats.limit);
803 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
804 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
805 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
807 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
808 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
809 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
810 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
812 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
813 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
814 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
815 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
817 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
818 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
819 rt2x00dev->bcn[1].data_dma);
820 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
822 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
823 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
824 rt2x00dev->bcn[0].data_dma);
825 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
827 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
828 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
829 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
830 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
832 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
833 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
834 rt2x00dev->rx->data_dma);
835 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
837 return 0;
840 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
842 u32 reg;
844 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
845 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
846 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
847 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
849 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
850 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
851 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
852 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
853 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
855 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
856 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
857 rt2x00dev->rx->data_size / 128);
858 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
861 * Always use CWmin and CWmax set in descriptor.
863 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
864 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
865 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
867 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
869 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
870 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
871 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
872 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
873 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
874 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
875 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
876 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
877 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
878 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
880 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
881 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
882 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
883 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
884 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
885 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
887 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
888 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
889 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
890 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
891 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
892 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
894 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
895 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
896 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
897 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
898 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
899 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
901 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
902 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
903 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
904 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
905 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
906 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
907 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
908 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
909 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
910 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
912 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
913 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
914 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
915 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
916 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
917 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
918 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
919 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
920 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
922 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
924 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
925 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
927 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
928 return -EBUSY;
930 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
931 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
933 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
934 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
935 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
937 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
938 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
939 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
940 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
941 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
942 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
943 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
944 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
946 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
948 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
950 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
951 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
952 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
953 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
954 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
956 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
957 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
958 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
959 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
962 * We must clear the FCS and FIFO error count.
963 * These registers are cleared on read,
964 * so we may pass a useless variable to store the value.
966 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
967 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
969 return 0;
972 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
974 unsigned int i;
975 u16 eeprom;
976 u8 reg_id;
977 u8 value;
979 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
980 rt2500pci_bbp_read(rt2x00dev, 0, &value);
981 if ((value != 0xff) && (value != 0x00))
982 goto continue_csr_init;
983 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
984 udelay(REGISTER_BUSY_DELAY);
987 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
988 return -EACCES;
990 continue_csr_init:
991 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
992 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
993 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
994 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
995 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
996 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
997 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
998 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
999 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1000 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1001 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1002 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1003 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1004 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1005 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1006 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1007 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1008 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1009 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1010 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1011 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1012 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1013 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1014 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1015 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1016 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1017 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1018 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1019 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1020 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1022 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1023 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1024 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1026 if (eeprom != 0xffff && eeprom != 0x0000) {
1027 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1028 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1029 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1030 reg_id, value);
1031 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1034 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1036 return 0;
1040 * Device state switch handlers.
1042 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1043 enum dev_state state)
1045 u32 reg;
1047 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1048 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1049 state == STATE_RADIO_RX_OFF);
1050 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1053 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1054 enum dev_state state)
1056 int mask = (state == STATE_RADIO_IRQ_OFF);
1057 u32 reg;
1060 * When interrupts are being enabled, the interrupt registers
1061 * should clear the register to assure a clean state.
1063 if (state == STATE_RADIO_IRQ_ON) {
1064 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1065 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1069 * Only toggle the interrupts bits we are going to use.
1070 * Non-checked interrupt bits are disabled by default.
1072 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1073 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1074 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1075 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1076 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1077 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1078 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1081 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1084 * Initialize all registers.
1086 if (rt2500pci_init_rings(rt2x00dev) ||
1087 rt2500pci_init_registers(rt2x00dev) ||
1088 rt2500pci_init_bbp(rt2x00dev)) {
1089 ERROR(rt2x00dev, "Register initialization failed.\n");
1090 return -EIO;
1094 * Enable interrupts.
1096 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1099 * Enable LED
1101 rt2500pci_enable_led(rt2x00dev);
1103 return 0;
1106 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1108 u32 reg;
1111 * Disable LED
1113 rt2500pci_disable_led(rt2x00dev);
1115 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1118 * Disable synchronisation.
1120 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1123 * Cancel RX and TX.
1125 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1126 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1127 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1130 * Disable interrupts.
1132 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1135 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1136 enum dev_state state)
1138 u32 reg;
1139 unsigned int i;
1140 char put_to_sleep;
1141 char bbp_state;
1142 char rf_state;
1144 put_to_sleep = (state != STATE_AWAKE);
1146 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1147 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1148 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1149 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1150 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1151 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1154 * Device is not guaranteed to be in the requested state yet.
1155 * We must wait until the register indicates that the
1156 * device has entered the correct state.
1158 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1159 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1160 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1161 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1162 if (bbp_state == state && rf_state == state)
1163 return 0;
1164 msleep(10);
1167 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1168 "current device state: bbp %d and rf %d.\n",
1169 state, bbp_state, rf_state);
1171 return -EBUSY;
1174 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1175 enum dev_state state)
1177 int retval = 0;
1179 switch (state) {
1180 case STATE_RADIO_ON:
1181 retval = rt2500pci_enable_radio(rt2x00dev);
1182 break;
1183 case STATE_RADIO_OFF:
1184 rt2500pci_disable_radio(rt2x00dev);
1185 break;
1186 case STATE_RADIO_RX_ON:
1187 case STATE_RADIO_RX_OFF:
1188 rt2500pci_toggle_rx(rt2x00dev, state);
1189 break;
1190 case STATE_DEEP_SLEEP:
1191 case STATE_SLEEP:
1192 case STATE_STANDBY:
1193 case STATE_AWAKE:
1194 retval = rt2500pci_set_state(rt2x00dev, state);
1195 break;
1196 default:
1197 retval = -ENOTSUPP;
1198 break;
1201 return retval;
1205 * TX descriptor initialization
1207 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1208 struct data_desc *txd,
1209 struct txdata_entry_desc *desc,
1210 struct ieee80211_hdr *ieee80211hdr,
1211 unsigned int length,
1212 struct ieee80211_tx_control *control)
1214 u32 word;
1217 * Start writing the descriptor words.
1219 rt2x00_desc_read(txd, 2, &word);
1220 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1221 rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1222 rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1223 rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1224 rt2x00_desc_write(txd, 2, word);
1226 rt2x00_desc_read(txd, 3, &word);
1227 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1228 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1229 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1230 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1231 rt2x00_desc_write(txd, 3, word);
1233 rt2x00_desc_read(txd, 10, &word);
1234 rt2x00_set_field32(&word, TXD_W10_RTS,
1235 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1236 rt2x00_desc_write(txd, 10, word);
1238 rt2x00_desc_read(txd, 0, &word);
1239 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1240 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1241 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1242 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1243 rt2x00_set_field32(&word, TXD_W0_ACK,
1244 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1245 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1246 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1247 rt2x00_set_field32(&word, TXD_W0_OFDM,
1248 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1249 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1250 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1251 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1252 !!(control->flags &
1253 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1254 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1255 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1256 rt2x00_desc_write(txd, 0, word);
1260 * TX data initialization
1262 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1263 unsigned int queue)
1265 u32 reg;
1267 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1268 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1269 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1270 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1271 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1273 return;
1276 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1277 if (queue == IEEE80211_TX_QUEUE_DATA0)
1278 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1279 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1280 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1281 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1282 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1283 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1287 * RX control handlers
1289 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1290 struct rxdata_entry_desc *desc)
1292 struct data_desc *rxd = entry->priv;
1293 u32 word0;
1294 u32 word2;
1296 rt2x00_desc_read(rxd, 0, &word0);
1297 rt2x00_desc_read(rxd, 2, &word2);
1299 desc->flags = 0;
1300 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1301 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1302 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1303 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1305 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1306 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1307 entry->ring->rt2x00dev->rssi_offset;
1308 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1309 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1313 * Interrupt functions.
1315 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1317 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1318 struct data_entry *entry;
1319 struct data_desc *txd;
1320 u32 word;
1321 int tx_status;
1322 int retry;
1324 while (!rt2x00_ring_empty(ring)) {
1325 entry = rt2x00_get_data_entry_done(ring);
1326 txd = entry->priv;
1327 rt2x00_desc_read(txd, 0, &word);
1329 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1330 !rt2x00_get_field32(word, TXD_W0_VALID))
1331 break;
1334 * Obtain the status about this packet.
1336 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1337 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1339 rt2x00lib_txdone(entry, tx_status, retry);
1342 * Make this entry available for reuse.
1344 entry->flags = 0;
1345 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1346 rt2x00_desc_write(txd, 0, word);
1347 rt2x00_ring_index_done_inc(ring);
1351 * If the data ring was full before the txdone handler
1352 * we must make sure the packet queue in the mac80211 stack
1353 * is reenabled when the txdone handler has finished.
1355 entry = ring->entry;
1356 if (!rt2x00_ring_full(ring))
1357 ieee80211_wake_queue(rt2x00dev->hw,
1358 entry->tx_status.control.queue);
1361 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1363 struct rt2x00_dev *rt2x00dev = dev_instance;
1364 u32 reg;
1367 * Get the interrupt sources & saved to local variable.
1368 * Write register value back to clear pending interrupts.
1370 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1371 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1373 if (!reg)
1374 return IRQ_NONE;
1376 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1377 return IRQ_HANDLED;
1380 * Handle interrupts, walk through all bits
1381 * and run the tasks, the bits are checked in order of
1382 * priority.
1386 * 1 - Beacon timer expired interrupt.
1388 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1389 rt2x00lib_beacondone(rt2x00dev);
1392 * 2 - Rx ring done interrupt.
1394 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1395 rt2x00pci_rxdone(rt2x00dev);
1398 * 3 - Atim ring transmit done interrupt.
1400 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1401 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1404 * 4 - Priority ring transmit done interrupt.
1406 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1407 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1410 * 5 - Tx ring transmit done interrupt.
1412 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1413 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1415 return IRQ_HANDLED;
1419 * Device probe functions.
1421 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1423 struct eeprom_93cx6 eeprom;
1424 u32 reg;
1425 u16 word;
1426 u8 *mac;
1428 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1430 eeprom.data = rt2x00dev;
1431 eeprom.register_read = rt2500pci_eepromregister_read;
1432 eeprom.register_write = rt2500pci_eepromregister_write;
1433 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1434 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1435 eeprom.reg_data_in = 0;
1436 eeprom.reg_data_out = 0;
1437 eeprom.reg_data_clock = 0;
1438 eeprom.reg_chip_select = 0;
1440 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1441 EEPROM_SIZE / sizeof(u16));
1444 * Start validation of the data that has been read.
1446 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1447 if (!is_valid_ether_addr(mac)) {
1448 DECLARE_MAC_BUF(macbuf);
1450 random_ether_addr(mac);
1451 EEPROM(rt2x00dev, "MAC: %s\n",
1452 print_mac(macbuf, mac));
1455 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1456 if (word == 0xffff) {
1457 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1458 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
1459 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
1460 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
1461 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1462 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1463 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1464 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1465 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1468 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1469 if (word == 0xffff) {
1470 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1471 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1472 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1473 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1474 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1477 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1478 if (word == 0xffff) {
1479 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1480 DEFAULT_RSSI_OFFSET);
1481 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1482 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1485 return 0;
1488 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1490 u32 reg;
1491 u16 value;
1492 u16 eeprom;
1495 * Read EEPROM word for configuration.
1497 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1500 * Identify RF chipset.
1502 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1503 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1504 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1506 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1507 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1508 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1509 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1510 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1511 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1512 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1513 return -ENODEV;
1517 * Identify default antenna configuration.
1519 rt2x00dev->hw->conf.antenna_sel_tx =
1520 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1521 rt2x00dev->hw->conf.antenna_sel_rx =
1522 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1525 * Store led mode, for correct led behaviour.
1527 rt2x00dev->led_mode =
1528 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1531 * Detect if this device has an hardware controlled radio.
1533 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1534 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1537 * Check if the BBP tuning should be enabled.
1539 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1541 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1542 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1545 * Read the RSSI <-> dBm offset information.
1547 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1548 rt2x00dev->rssi_offset =
1549 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1551 return 0;
1555 * RF value list for RF2522
1556 * Supports: 2.4 GHz
1558 static const struct rf_channel rf_vals_bg_2522[] = {
1559 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1560 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1561 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1562 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1563 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1564 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1565 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1566 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1567 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1568 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1569 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1570 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1571 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1572 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1576 * RF value list for RF2523
1577 * Supports: 2.4 GHz
1579 static const struct rf_channel rf_vals_bg_2523[] = {
1580 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1581 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1582 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1583 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1584 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1585 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1586 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1587 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1588 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1589 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1590 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1591 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1592 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1593 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1597 * RF value list for RF2524
1598 * Supports: 2.4 GHz
1600 static const struct rf_channel rf_vals_bg_2524[] = {
1601 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1602 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1603 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1604 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1605 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1606 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1607 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1608 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1609 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1610 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1611 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1612 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1613 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1614 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1618 * RF value list for RF2525
1619 * Supports: 2.4 GHz
1621 static const struct rf_channel rf_vals_bg_2525[] = {
1622 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1623 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1624 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1625 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1626 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1627 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1628 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1629 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1630 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1631 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1632 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1633 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1634 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1635 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1639 * RF value list for RF2525e
1640 * Supports: 2.4 GHz
1642 static const struct rf_channel rf_vals_bg_2525e[] = {
1643 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1644 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1645 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1646 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1647 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1648 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1649 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1650 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1651 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1652 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1653 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1654 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1655 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1656 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1660 * RF value list for RF5222
1661 * Supports: 2.4 GHz & 5.2 GHz
1663 static const struct rf_channel rf_vals_5222[] = {
1664 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1665 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1666 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1667 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1668 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1669 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1670 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1671 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1672 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1673 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1674 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1675 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1676 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1677 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1679 /* 802.11 UNI / HyperLan 2 */
1680 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1681 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1682 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1683 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1684 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1685 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1686 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1687 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1689 /* 802.11 HyperLan 2 */
1690 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1691 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1692 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1693 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1694 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1695 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1696 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1697 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1698 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1699 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1701 /* 802.11 UNII */
1702 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1703 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1704 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1705 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1706 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1709 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1711 struct hw_mode_spec *spec = &rt2x00dev->spec;
1712 u8 *txpower;
1713 unsigned int i;
1716 * Initialize all hw fields.
1718 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1719 rt2x00dev->hw->extra_tx_headroom = 0;
1720 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1721 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1722 rt2x00dev->hw->queues = 2;
1724 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1725 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1726 rt2x00_eeprom_addr(rt2x00dev,
1727 EEPROM_MAC_ADDR_0));
1730 * Convert tx_power array in eeprom.
1732 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1733 for (i = 0; i < 14; i++)
1734 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1737 * Initialize hw_mode information.
1739 spec->num_modes = 2;
1740 spec->num_rates = 12;
1741 spec->tx_power_a = NULL;
1742 spec->tx_power_bg = txpower;
1743 spec->tx_power_default = DEFAULT_TXPOWER;
1745 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1746 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1747 spec->channels = rf_vals_bg_2522;
1748 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1749 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1750 spec->channels = rf_vals_bg_2523;
1751 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1752 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1753 spec->channels = rf_vals_bg_2524;
1754 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1755 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1756 spec->channels = rf_vals_bg_2525;
1757 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1758 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1759 spec->channels = rf_vals_bg_2525e;
1760 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1761 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1762 spec->channels = rf_vals_5222;
1763 spec->num_modes = 3;
1767 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1769 int retval;
1772 * Allocate eeprom data.
1774 retval = rt2500pci_validate_eeprom(rt2x00dev);
1775 if (retval)
1776 return retval;
1778 retval = rt2500pci_init_eeprom(rt2x00dev);
1779 if (retval)
1780 return retval;
1783 * Initialize hw specifications.
1785 rt2500pci_probe_hw_mode(rt2x00dev);
1788 * This device requires the beacon ring
1790 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1793 * Set the rssi offset.
1795 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1797 return 0;
1801 * IEEE80211 stack callback functions.
1803 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1804 unsigned int changed_flags,
1805 unsigned int *total_flags,
1806 int mc_count,
1807 struct dev_addr_list *mc_list)
1809 struct rt2x00_dev *rt2x00dev = hw->priv;
1810 struct interface *intf = &rt2x00dev->interface;
1811 u32 reg;
1814 * Mask off any flags we are going to ignore from
1815 * the total_flags field.
1817 *total_flags &=
1818 FIF_ALLMULTI |
1819 FIF_FCSFAIL |
1820 FIF_PLCPFAIL |
1821 FIF_CONTROL |
1822 FIF_OTHER_BSS |
1823 FIF_PROMISC_IN_BSS;
1826 * Apply some rules to the filters:
1827 * - Some filters imply different filters to be set.
1828 * - Some things we can't filter out at all.
1829 * - Some filters are set based on interface type.
1831 if (mc_count)
1832 *total_flags |= FIF_ALLMULTI;
1833 if (changed_flags & FIF_OTHER_BSS ||
1834 changed_flags & FIF_PROMISC_IN_BSS)
1835 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1836 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1837 *total_flags |= FIF_PROMISC_IN_BSS;
1840 * Check if there is any work left for us.
1842 if (intf->filter == *total_flags)
1843 return;
1844 intf->filter = *total_flags;
1847 * Start configuration steps.
1848 * Note that the version error will always be dropped
1849 * and broadcast frames will always be accepted since
1850 * there is no filter for it at this time.
1852 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1853 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1854 !(*total_flags & FIF_FCSFAIL));
1855 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1856 !(*total_flags & FIF_PLCPFAIL));
1857 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1858 !(*total_flags & FIF_CONTROL));
1859 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1860 !(*total_flags & FIF_PROMISC_IN_BSS));
1861 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1862 !(*total_flags & FIF_PROMISC_IN_BSS));
1863 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1864 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1865 !(*total_flags & FIF_ALLMULTI));
1866 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1867 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1870 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1871 u32 short_retry, u32 long_retry)
1873 struct rt2x00_dev *rt2x00dev = hw->priv;
1874 u32 reg;
1876 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1877 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1878 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1879 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1881 return 0;
1884 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1886 struct rt2x00_dev *rt2x00dev = hw->priv;
1887 u64 tsf;
1888 u32 reg;
1890 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1891 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1892 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1893 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1895 return tsf;
1898 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1900 struct rt2x00_dev *rt2x00dev = hw->priv;
1902 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1903 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1906 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1908 struct rt2x00_dev *rt2x00dev = hw->priv;
1909 u32 reg;
1911 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1912 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1915 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1916 .tx = rt2x00mac_tx,
1917 .start = rt2x00mac_start,
1918 .stop = rt2x00mac_stop,
1919 .add_interface = rt2x00mac_add_interface,
1920 .remove_interface = rt2x00mac_remove_interface,
1921 .config = rt2x00mac_config,
1922 .config_interface = rt2x00mac_config_interface,
1923 .configure_filter = rt2500pci_configure_filter,
1924 .get_stats = rt2x00mac_get_stats,
1925 .set_retry_limit = rt2500pci_set_retry_limit,
1926 .conf_tx = rt2x00mac_conf_tx,
1927 .get_tx_stats = rt2x00mac_get_tx_stats,
1928 .get_tsf = rt2500pci_get_tsf,
1929 .reset_tsf = rt2500pci_reset_tsf,
1930 .beacon_update = rt2x00pci_beacon_update,
1931 .tx_last_beacon = rt2500pci_tx_last_beacon,
1934 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1935 .irq_handler = rt2500pci_interrupt,
1936 .probe_hw = rt2500pci_probe_hw,
1937 .initialize = rt2x00pci_initialize,
1938 .uninitialize = rt2x00pci_uninitialize,
1939 .set_device_state = rt2500pci_set_device_state,
1940 #ifdef CONFIG_RT2500PCI_RFKILL
1941 .rfkill_poll = rt2500pci_rfkill_poll,
1942 #endif /* CONFIG_RT2500PCI_RFKILL */
1943 .link_stats = rt2500pci_link_stats,
1944 .reset_tuner = rt2500pci_reset_tuner,
1945 .link_tuner = rt2500pci_link_tuner,
1946 .write_tx_desc = rt2500pci_write_tx_desc,
1947 .write_tx_data = rt2x00pci_write_tx_data,
1948 .kick_tx_queue = rt2500pci_kick_tx_queue,
1949 .fill_rxdone = rt2500pci_fill_rxdone,
1950 .config_mac_addr = rt2500pci_config_mac_addr,
1951 .config_bssid = rt2500pci_config_bssid,
1952 .config_type = rt2500pci_config_type,
1953 .config = rt2500pci_config,
1956 static const struct rt2x00_ops rt2500pci_ops = {
1957 .name = DRV_NAME,
1958 .rxd_size = RXD_DESC_SIZE,
1959 .txd_size = TXD_DESC_SIZE,
1960 .eeprom_size = EEPROM_SIZE,
1961 .rf_size = RF_SIZE,
1962 .lib = &rt2500pci_rt2x00_ops,
1963 .hw = &rt2500pci_mac80211_ops,
1964 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1965 .debugfs = &rt2500pci_rt2x00debug,
1966 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1970 * RT2500pci module information.
1972 static struct pci_device_id rt2500pci_device_table[] = {
1973 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1974 { 0, }
1977 MODULE_AUTHOR(DRV_PROJECT);
1978 MODULE_VERSION(DRV_VERSION);
1979 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1980 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1981 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1982 MODULE_LICENSE("GPL");
1984 static struct pci_driver rt2500pci_driver = {
1985 .name = DRV_NAME,
1986 .id_table = rt2500pci_device_table,
1987 .probe = rt2x00pci_probe,
1988 .remove = __devexit_p(rt2x00pci_remove),
1989 .suspend = rt2x00pci_suspend,
1990 .resume = rt2x00pci_resume,
1993 static int __init rt2500pci_init(void)
1995 return pci_register_driver(&rt2500pci_driver);
1998 static void __exit rt2500pci_exit(void)
2000 pci_unregister_driver(&rt2500pci_driver);
2003 module_init(rt2500pci_init);
2004 module_exit(rt2500pci_exit);