2 * linux/mm/memory_hotplug.c
7 #include <linux/stddef.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
34 #include <asm/tlbflush.h>
39 * online_page_callback contains pointer to current page onlining function.
40 * Initially it is generic_online_page(). If it is required it could be
41 * changed by calling set_online_page_callback() for callback registration
42 * and restore_online_page_callback() for generic callback restore.
45 static void generic_online_page(struct page
*page
);
47 static online_page_callback_t online_page_callback
= generic_online_page
;
49 DEFINE_MUTEX(mem_hotplug_mutex
);
51 void lock_memory_hotplug(void)
53 mutex_lock(&mem_hotplug_mutex
);
55 /* for exclusive hibernation if CONFIG_HIBERNATION=y */
59 void unlock_memory_hotplug(void)
61 unlock_system_sleep();
62 mutex_unlock(&mem_hotplug_mutex
);
66 /* add this memory to iomem resource */
67 static struct resource
*register_memory_resource(u64 start
, u64 size
)
70 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
73 res
->name
= "System RAM";
75 res
->end
= start
+ size
- 1;
76 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
77 if (request_resource(&iomem_resource
, res
) < 0) {
78 printk("System RAM resource %pR cannot be added\n", res
);
85 static void release_memory_resource(struct resource
*res
)
89 release_resource(res
);
94 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
95 void get_page_bootmem(unsigned long info
, struct page
*page
,
98 page
->lru
.next
= (struct list_head
*) type
;
100 set_page_private(page
, info
);
101 atomic_inc(&page
->_count
);
104 /* reference to __meminit __free_pages_bootmem is valid
105 * so use __ref to tell modpost not to generate a warning */
106 void __ref
put_page_bootmem(struct page
*page
)
109 static DEFINE_MUTEX(ppb_lock
);
111 type
= (unsigned long) page
->lru
.next
;
112 BUG_ON(type
< MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE
||
113 type
> MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE
);
115 if (atomic_dec_return(&page
->_count
) == 1) {
116 ClearPagePrivate(page
);
117 set_page_private(page
, 0);
118 INIT_LIST_HEAD(&page
->lru
);
121 * Please refer to comment for __free_pages_bootmem()
122 * for why we serialize here.
124 mutex_lock(&ppb_lock
);
125 __free_pages_bootmem(page
, 0);
126 mutex_unlock(&ppb_lock
);
132 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
133 #ifndef CONFIG_SPARSEMEM_VMEMMAP
134 static void register_page_bootmem_info_section(unsigned long start_pfn
)
136 unsigned long *usemap
, mapsize
, section_nr
, i
;
137 struct mem_section
*ms
;
138 struct page
*page
, *memmap
;
140 section_nr
= pfn_to_section_nr(start_pfn
);
141 ms
= __nr_to_section(section_nr
);
143 /* Get section's memmap address */
144 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
147 * Get page for the memmap's phys address
148 * XXX: need more consideration for sparse_vmemmap...
150 page
= virt_to_page(memmap
);
151 mapsize
= sizeof(struct page
) * PAGES_PER_SECTION
;
152 mapsize
= PAGE_ALIGN(mapsize
) >> PAGE_SHIFT
;
154 /* remember memmap's page */
155 for (i
= 0; i
< mapsize
; i
++, page
++)
156 get_page_bootmem(section_nr
, page
, SECTION_INFO
);
158 usemap
= __nr_to_section(section_nr
)->pageblock_flags
;
159 page
= virt_to_page(usemap
);
161 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
163 for (i
= 0; i
< mapsize
; i
++, page
++)
164 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
167 #else /* CONFIG_SPARSEMEM_VMEMMAP */
168 static void register_page_bootmem_info_section(unsigned long start_pfn
)
170 unsigned long *usemap
, mapsize
, section_nr
, i
;
171 struct mem_section
*ms
;
172 struct page
*page
, *memmap
;
174 if (!pfn_valid(start_pfn
))
177 section_nr
= pfn_to_section_nr(start_pfn
);
178 ms
= __nr_to_section(section_nr
);
180 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
182 register_page_bootmem_memmap(section_nr
, memmap
, PAGES_PER_SECTION
);
184 usemap
= __nr_to_section(section_nr
)->pageblock_flags
;
185 page
= virt_to_page(usemap
);
187 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
189 for (i
= 0; i
< mapsize
; i
++, page
++)
190 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
192 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
194 void register_page_bootmem_info_node(struct pglist_data
*pgdat
)
196 unsigned long i
, pfn
, end_pfn
, nr_pages
;
197 int node
= pgdat
->node_id
;
201 nr_pages
= PAGE_ALIGN(sizeof(struct pglist_data
)) >> PAGE_SHIFT
;
202 page
= virt_to_page(pgdat
);
204 for (i
= 0; i
< nr_pages
; i
++, page
++)
205 get_page_bootmem(node
, page
, NODE_INFO
);
207 zone
= &pgdat
->node_zones
[0];
208 for (; zone
< pgdat
->node_zones
+ MAX_NR_ZONES
- 1; zone
++) {
209 if (zone
->wait_table
) {
210 nr_pages
= zone
->wait_table_hash_nr_entries
211 * sizeof(wait_queue_head_t
);
212 nr_pages
= PAGE_ALIGN(nr_pages
) >> PAGE_SHIFT
;
213 page
= virt_to_page(zone
->wait_table
);
215 for (i
= 0; i
< nr_pages
; i
++, page
++)
216 get_page_bootmem(node
, page
, NODE_INFO
);
220 pfn
= pgdat
->node_start_pfn
;
221 end_pfn
= pgdat_end_pfn(pgdat
);
223 /* register_section info */
224 for (; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
226 * Some platforms can assign the same pfn to multiple nodes - on
227 * node0 as well as nodeN. To avoid registering a pfn against
228 * multiple nodes we check that this pfn does not already
229 * reside in some other node.
231 if (pfn_valid(pfn
) && (pfn_to_nid(pfn
) == node
))
232 register_page_bootmem_info_section(pfn
);
235 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
237 static void grow_zone_span(struct zone
*zone
, unsigned long start_pfn
,
238 unsigned long end_pfn
)
240 unsigned long old_zone_end_pfn
;
242 zone_span_writelock(zone
);
244 old_zone_end_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
245 if (!zone
->spanned_pages
|| start_pfn
< zone
->zone_start_pfn
)
246 zone
->zone_start_pfn
= start_pfn
;
248 zone
->spanned_pages
= max(old_zone_end_pfn
, end_pfn
) -
249 zone
->zone_start_pfn
;
251 zone_span_writeunlock(zone
);
254 static void resize_zone(struct zone
*zone
, unsigned long start_pfn
,
255 unsigned long end_pfn
)
257 zone_span_writelock(zone
);
259 if (end_pfn
- start_pfn
) {
260 zone
->zone_start_pfn
= start_pfn
;
261 zone
->spanned_pages
= end_pfn
- start_pfn
;
264 * make it consist as free_area_init_core(),
265 * if spanned_pages = 0, then keep start_pfn = 0
267 zone
->zone_start_pfn
= 0;
268 zone
->spanned_pages
= 0;
271 zone_span_writeunlock(zone
);
274 static void fix_zone_id(struct zone
*zone
, unsigned long start_pfn
,
275 unsigned long end_pfn
)
277 enum zone_type zid
= zone_idx(zone
);
278 int nid
= zone
->zone_pgdat
->node_id
;
281 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
282 set_page_links(pfn_to_page(pfn
), zid
, nid
, pfn
);
285 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
286 * alloc_bootmem_node_nopanic() */
287 static int __ref
ensure_zone_is_initialized(struct zone
*zone
,
288 unsigned long start_pfn
, unsigned long num_pages
)
290 if (!zone_is_initialized(zone
))
291 return init_currently_empty_zone(zone
, start_pfn
, num_pages
,
296 static int __meminit
move_pfn_range_left(struct zone
*z1
, struct zone
*z2
,
297 unsigned long start_pfn
, unsigned long end_pfn
)
301 unsigned long z1_start_pfn
;
303 ret
= ensure_zone_is_initialized(z1
, start_pfn
, end_pfn
- start_pfn
);
307 pgdat_resize_lock(z1
->zone_pgdat
, &flags
);
309 /* can't move pfns which are higher than @z2 */
310 if (end_pfn
> zone_end_pfn(z2
))
312 /* the move out part mast at the left most of @z2 */
313 if (start_pfn
> z2
->zone_start_pfn
)
315 /* must included/overlap */
316 if (end_pfn
<= z2
->zone_start_pfn
)
319 /* use start_pfn for z1's start_pfn if z1 is empty */
320 if (z1
->spanned_pages
)
321 z1_start_pfn
= z1
->zone_start_pfn
;
323 z1_start_pfn
= start_pfn
;
325 resize_zone(z1
, z1_start_pfn
, end_pfn
);
326 resize_zone(z2
, end_pfn
, zone_end_pfn(z2
));
328 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
330 fix_zone_id(z1
, start_pfn
, end_pfn
);
334 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
338 static int __meminit
move_pfn_range_right(struct zone
*z1
, struct zone
*z2
,
339 unsigned long start_pfn
, unsigned long end_pfn
)
343 unsigned long z2_end_pfn
;
345 ret
= ensure_zone_is_initialized(z2
, start_pfn
, end_pfn
- start_pfn
);
349 pgdat_resize_lock(z1
->zone_pgdat
, &flags
);
351 /* can't move pfns which are lower than @z1 */
352 if (z1
->zone_start_pfn
> start_pfn
)
354 /* the move out part mast at the right most of @z1 */
355 if (zone_end_pfn(z1
) > end_pfn
)
357 /* must included/overlap */
358 if (start_pfn
>= zone_end_pfn(z1
))
361 /* use end_pfn for z2's end_pfn if z2 is empty */
362 if (z2
->spanned_pages
)
363 z2_end_pfn
= zone_end_pfn(z2
);
365 z2_end_pfn
= end_pfn
;
367 resize_zone(z1
, z1
->zone_start_pfn
, start_pfn
);
368 resize_zone(z2
, start_pfn
, z2_end_pfn
);
370 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
372 fix_zone_id(z2
, start_pfn
, end_pfn
);
376 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
380 static void grow_pgdat_span(struct pglist_data
*pgdat
, unsigned long start_pfn
,
381 unsigned long end_pfn
)
383 unsigned long old_pgdat_end_pfn
=
384 pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
386 if (!pgdat
->node_spanned_pages
|| start_pfn
< pgdat
->node_start_pfn
)
387 pgdat
->node_start_pfn
= start_pfn
;
389 pgdat
->node_spanned_pages
= max(old_pgdat_end_pfn
, end_pfn
) -
390 pgdat
->node_start_pfn
;
393 static int __meminit
__add_zone(struct zone
*zone
, unsigned long phys_start_pfn
)
395 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
396 int nr_pages
= PAGES_PER_SECTION
;
397 int nid
= pgdat
->node_id
;
402 zone_type
= zone
- pgdat
->node_zones
;
403 ret
= ensure_zone_is_initialized(zone
, phys_start_pfn
, nr_pages
);
407 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
408 grow_zone_span(zone
, phys_start_pfn
, phys_start_pfn
+ nr_pages
);
409 grow_pgdat_span(zone
->zone_pgdat
, phys_start_pfn
,
410 phys_start_pfn
+ nr_pages
);
411 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
412 memmap_init_zone(nr_pages
, nid
, zone_type
,
413 phys_start_pfn
, MEMMAP_HOTPLUG
);
417 static int __meminit
__add_section(int nid
, struct zone
*zone
,
418 unsigned long phys_start_pfn
)
420 int nr_pages
= PAGES_PER_SECTION
;
423 if (pfn_valid(phys_start_pfn
))
426 ret
= sparse_add_one_section(zone
, phys_start_pfn
, nr_pages
);
431 ret
= __add_zone(zone
, phys_start_pfn
);
436 return register_new_memory(nid
, __pfn_to_section(phys_start_pfn
));
440 * Reasonably generic function for adding memory. It is
441 * expected that archs that support memory hotplug will
442 * call this function after deciding the zone to which to
445 int __ref
__add_pages(int nid
, struct zone
*zone
, unsigned long phys_start_pfn
,
446 unsigned long nr_pages
)
450 int start_sec
, end_sec
;
451 /* during initialize mem_map, align hot-added range to section */
452 start_sec
= pfn_to_section_nr(phys_start_pfn
);
453 end_sec
= pfn_to_section_nr(phys_start_pfn
+ nr_pages
- 1);
455 for (i
= start_sec
; i
<= end_sec
; i
++) {
456 err
= __add_section(nid
, zone
, i
<< PFN_SECTION_SHIFT
);
459 * EEXIST is finally dealt with by ioresource collision
460 * check. see add_memory() => register_memory_resource()
461 * Warning will be printed if there is collision.
463 if (err
&& (err
!= -EEXIST
))
470 EXPORT_SYMBOL_GPL(__add_pages
);
472 #ifdef CONFIG_MEMORY_HOTREMOVE
473 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
474 static int find_smallest_section_pfn(int nid
, struct zone
*zone
,
475 unsigned long start_pfn
,
476 unsigned long end_pfn
)
478 struct mem_section
*ms
;
480 for (; start_pfn
< end_pfn
; start_pfn
+= PAGES_PER_SECTION
) {
481 ms
= __pfn_to_section(start_pfn
);
483 if (unlikely(!valid_section(ms
)))
486 if (unlikely(pfn_to_nid(start_pfn
) != nid
))
489 if (zone
&& zone
!= page_zone(pfn_to_page(start_pfn
)))
498 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
499 static int find_biggest_section_pfn(int nid
, struct zone
*zone
,
500 unsigned long start_pfn
,
501 unsigned long end_pfn
)
503 struct mem_section
*ms
;
506 /* pfn is the end pfn of a memory section. */
508 for (; pfn
>= start_pfn
; pfn
-= PAGES_PER_SECTION
) {
509 ms
= __pfn_to_section(pfn
);
511 if (unlikely(!valid_section(ms
)))
514 if (unlikely(pfn_to_nid(pfn
) != nid
))
517 if (zone
&& zone
!= page_zone(pfn_to_page(pfn
)))
526 static void shrink_zone_span(struct zone
*zone
, unsigned long start_pfn
,
527 unsigned long end_pfn
)
529 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
530 unsigned long zone_end_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
532 struct mem_section
*ms
;
533 int nid
= zone_to_nid(zone
);
535 zone_span_writelock(zone
);
536 if (zone_start_pfn
== start_pfn
) {
538 * If the section is smallest section in the zone, it need
539 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
540 * In this case, we find second smallest valid mem_section
541 * for shrinking zone.
543 pfn
= find_smallest_section_pfn(nid
, zone
, end_pfn
,
546 zone
->zone_start_pfn
= pfn
;
547 zone
->spanned_pages
= zone_end_pfn
- pfn
;
549 } else if (zone_end_pfn
== end_pfn
) {
551 * If the section is biggest section in the zone, it need
552 * shrink zone->spanned_pages.
553 * In this case, we find second biggest valid mem_section for
556 pfn
= find_biggest_section_pfn(nid
, zone
, zone_start_pfn
,
559 zone
->spanned_pages
= pfn
- zone_start_pfn
+ 1;
563 * The section is not biggest or smallest mem_section in the zone, it
564 * only creates a hole in the zone. So in this case, we need not
565 * change the zone. But perhaps, the zone has only hole data. Thus
566 * it check the zone has only hole or not.
568 pfn
= zone_start_pfn
;
569 for (; pfn
< zone_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
570 ms
= __pfn_to_section(pfn
);
572 if (unlikely(!valid_section(ms
)))
575 if (page_zone(pfn_to_page(pfn
)) != zone
)
578 /* If the section is current section, it continues the loop */
579 if (start_pfn
== pfn
)
582 /* If we find valid section, we have nothing to do */
583 zone_span_writeunlock(zone
);
587 /* The zone has no valid section */
588 zone
->zone_start_pfn
= 0;
589 zone
->spanned_pages
= 0;
590 zone_span_writeunlock(zone
);
593 static void shrink_pgdat_span(struct pglist_data
*pgdat
,
594 unsigned long start_pfn
, unsigned long end_pfn
)
596 unsigned long pgdat_start_pfn
= pgdat
->node_start_pfn
;
597 unsigned long pgdat_end_pfn
=
598 pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
600 struct mem_section
*ms
;
601 int nid
= pgdat
->node_id
;
603 if (pgdat_start_pfn
== start_pfn
) {
605 * If the section is smallest section in the pgdat, it need
606 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
607 * In this case, we find second smallest valid mem_section
608 * for shrinking zone.
610 pfn
= find_smallest_section_pfn(nid
, NULL
, end_pfn
,
613 pgdat
->node_start_pfn
= pfn
;
614 pgdat
->node_spanned_pages
= pgdat_end_pfn
- pfn
;
616 } else if (pgdat_end_pfn
== end_pfn
) {
618 * If the section is biggest section in the pgdat, it need
619 * shrink pgdat->node_spanned_pages.
620 * In this case, we find second biggest valid mem_section for
623 pfn
= find_biggest_section_pfn(nid
, NULL
, pgdat_start_pfn
,
626 pgdat
->node_spanned_pages
= pfn
- pgdat_start_pfn
+ 1;
630 * If the section is not biggest or smallest mem_section in the pgdat,
631 * it only creates a hole in the pgdat. So in this case, we need not
633 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
634 * has only hole or not.
636 pfn
= pgdat_start_pfn
;
637 for (; pfn
< pgdat_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
638 ms
= __pfn_to_section(pfn
);
640 if (unlikely(!valid_section(ms
)))
643 if (pfn_to_nid(pfn
) != nid
)
646 /* If the section is current section, it continues the loop */
647 if (start_pfn
== pfn
)
650 /* If we find valid section, we have nothing to do */
654 /* The pgdat has no valid section */
655 pgdat
->node_start_pfn
= 0;
656 pgdat
->node_spanned_pages
= 0;
659 static void __remove_zone(struct zone
*zone
, unsigned long start_pfn
)
661 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
662 int nr_pages
= PAGES_PER_SECTION
;
666 zone_type
= zone
- pgdat
->node_zones
;
668 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
669 shrink_zone_span(zone
, start_pfn
, start_pfn
+ nr_pages
);
670 shrink_pgdat_span(pgdat
, start_pfn
, start_pfn
+ nr_pages
);
671 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
674 static int __remove_section(struct zone
*zone
, struct mem_section
*ms
)
676 unsigned long start_pfn
;
680 if (!valid_section(ms
))
683 ret
= unregister_memory_section(ms
);
687 scn_nr
= __section_nr(ms
);
688 start_pfn
= section_nr_to_pfn(scn_nr
);
689 __remove_zone(zone
, start_pfn
);
691 sparse_remove_one_section(zone
, ms
);
696 * __remove_pages() - remove sections of pages from a zone
697 * @zone: zone from which pages need to be removed
698 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
699 * @nr_pages: number of pages to remove (must be multiple of section size)
701 * Generic helper function to remove section mappings and sysfs entries
702 * for the section of the memory we are removing. Caller needs to make
703 * sure that pages are marked reserved and zones are adjust properly by
704 * calling offline_pages().
706 int __remove_pages(struct zone
*zone
, unsigned long phys_start_pfn
,
707 unsigned long nr_pages
)
710 int sections_to_remove
;
711 resource_size_t start
, size
;
715 * We can only remove entire sections
717 BUG_ON(phys_start_pfn
& ~PAGE_SECTION_MASK
);
718 BUG_ON(nr_pages
% PAGES_PER_SECTION
);
720 start
= phys_start_pfn
<< PAGE_SHIFT
;
721 size
= nr_pages
* PAGE_SIZE
;
722 ret
= release_mem_region_adjustable(&iomem_resource
, start
, size
);
724 pr_warn("Unable to release resource <%016llx-%016llx> (%d)\n",
725 start
, start
+ size
- 1, ret
);
727 sections_to_remove
= nr_pages
/ PAGES_PER_SECTION
;
728 for (i
= 0; i
< sections_to_remove
; i
++) {
729 unsigned long pfn
= phys_start_pfn
+ i
*PAGES_PER_SECTION
;
730 ret
= __remove_section(zone
, __pfn_to_section(pfn
));
736 EXPORT_SYMBOL_GPL(__remove_pages
);
737 #endif /* CONFIG_MEMORY_HOTREMOVE */
739 int set_online_page_callback(online_page_callback_t callback
)
743 lock_memory_hotplug();
745 if (online_page_callback
== generic_online_page
) {
746 online_page_callback
= callback
;
750 unlock_memory_hotplug();
754 EXPORT_SYMBOL_GPL(set_online_page_callback
);
756 int restore_online_page_callback(online_page_callback_t callback
)
760 lock_memory_hotplug();
762 if (online_page_callback
== callback
) {
763 online_page_callback
= generic_online_page
;
767 unlock_memory_hotplug();
771 EXPORT_SYMBOL_GPL(restore_online_page_callback
);
773 void __online_page_set_limits(struct page
*page
)
775 unsigned long pfn
= page_to_pfn(page
);
777 if (pfn
>= num_physpages
)
778 num_physpages
= pfn
+ 1;
780 EXPORT_SYMBOL_GPL(__online_page_set_limits
);
782 void __online_page_increment_counters(struct page
*page
)
786 #ifdef CONFIG_HIGHMEM
787 if (PageHighMem(page
))
791 EXPORT_SYMBOL_GPL(__online_page_increment_counters
);
793 void __online_page_free(struct page
*page
)
795 ClearPageReserved(page
);
796 init_page_count(page
);
799 EXPORT_SYMBOL_GPL(__online_page_free
);
801 static void generic_online_page(struct page
*page
)
803 __online_page_set_limits(page
);
804 __online_page_increment_counters(page
);
805 __online_page_free(page
);
808 static int online_pages_range(unsigned long start_pfn
, unsigned long nr_pages
,
812 unsigned long onlined_pages
= *(unsigned long *)arg
;
814 if (PageReserved(pfn_to_page(start_pfn
)))
815 for (i
= 0; i
< nr_pages
; i
++) {
816 page
= pfn_to_page(start_pfn
+ i
);
817 (*online_page_callback
)(page
);
820 *(unsigned long *)arg
= onlined_pages
;
824 #ifdef CONFIG_MOVABLE_NODE
826 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
829 static bool can_online_high_movable(struct zone
*zone
)
833 #else /* CONFIG_MOVABLE_NODE */
834 /* ensure every online node has NORMAL memory */
835 static bool can_online_high_movable(struct zone
*zone
)
837 return node_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
839 #endif /* CONFIG_MOVABLE_NODE */
841 /* check which state of node_states will be changed when online memory */
842 static void node_states_check_changes_online(unsigned long nr_pages
,
843 struct zone
*zone
, struct memory_notify
*arg
)
845 int nid
= zone_to_nid(zone
);
846 enum zone_type zone_last
= ZONE_NORMAL
;
849 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
850 * contains nodes which have zones of 0...ZONE_NORMAL,
851 * set zone_last to ZONE_NORMAL.
853 * If we don't have HIGHMEM nor movable node,
854 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
855 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
857 if (N_MEMORY
== N_NORMAL_MEMORY
)
858 zone_last
= ZONE_MOVABLE
;
861 * if the memory to be online is in a zone of 0...zone_last, and
862 * the zones of 0...zone_last don't have memory before online, we will
863 * need to set the node to node_states[N_NORMAL_MEMORY] after
864 * the memory is online.
866 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_NORMAL_MEMORY
))
867 arg
->status_change_nid_normal
= nid
;
869 arg
->status_change_nid_normal
= -1;
871 #ifdef CONFIG_HIGHMEM
873 * If we have movable node, node_states[N_HIGH_MEMORY]
874 * contains nodes which have zones of 0...ZONE_HIGHMEM,
875 * set zone_last to ZONE_HIGHMEM.
877 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
878 * contains nodes which have zones of 0...ZONE_MOVABLE,
879 * set zone_last to ZONE_MOVABLE.
881 zone_last
= ZONE_HIGHMEM
;
882 if (N_MEMORY
== N_HIGH_MEMORY
)
883 zone_last
= ZONE_MOVABLE
;
885 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_HIGH_MEMORY
))
886 arg
->status_change_nid_high
= nid
;
888 arg
->status_change_nid_high
= -1;
890 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
894 * if the node don't have memory befor online, we will need to
895 * set the node to node_states[N_MEMORY] after the memory
898 if (!node_state(nid
, N_MEMORY
))
899 arg
->status_change_nid
= nid
;
901 arg
->status_change_nid
= -1;
904 static void node_states_set_node(int node
, struct memory_notify
*arg
)
906 if (arg
->status_change_nid_normal
>= 0)
907 node_set_state(node
, N_NORMAL_MEMORY
);
909 if (arg
->status_change_nid_high
>= 0)
910 node_set_state(node
, N_HIGH_MEMORY
);
912 node_set_state(node
, N_MEMORY
);
916 int __ref
online_pages(unsigned long pfn
, unsigned long nr_pages
, int online_type
)
918 unsigned long onlined_pages
= 0;
920 int need_zonelists_rebuild
= 0;
923 struct memory_notify arg
;
925 lock_memory_hotplug();
927 * This doesn't need a lock to do pfn_to_page().
928 * The section can't be removed here because of the
929 * memory_block->state_mutex.
931 zone
= page_zone(pfn_to_page(pfn
));
933 if ((zone_idx(zone
) > ZONE_NORMAL
|| online_type
== ONLINE_MOVABLE
) &&
934 !can_online_high_movable(zone
)) {
935 unlock_memory_hotplug();
939 if (online_type
== ONLINE_KERNEL
&& zone_idx(zone
) == ZONE_MOVABLE
) {
940 if (move_pfn_range_left(zone
- 1, zone
, pfn
, pfn
+ nr_pages
)) {
941 unlock_memory_hotplug();
945 if (online_type
== ONLINE_MOVABLE
&& zone_idx(zone
) == ZONE_MOVABLE
- 1) {
946 if (move_pfn_range_right(zone
, zone
+ 1, pfn
, pfn
+ nr_pages
)) {
947 unlock_memory_hotplug();
952 /* Previous code may changed the zone of the pfn range */
953 zone
= page_zone(pfn_to_page(pfn
));
956 arg
.nr_pages
= nr_pages
;
957 node_states_check_changes_online(nr_pages
, zone
, &arg
);
959 nid
= page_to_nid(pfn_to_page(pfn
));
961 ret
= memory_notify(MEM_GOING_ONLINE
, &arg
);
962 ret
= notifier_to_errno(ret
);
964 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
965 unlock_memory_hotplug();
969 * If this zone is not populated, then it is not in zonelist.
970 * This means the page allocator ignores this zone.
971 * So, zonelist must be updated after online.
973 mutex_lock(&zonelists_mutex
);
974 if (!populated_zone(zone
)) {
975 need_zonelists_rebuild
= 1;
976 build_all_zonelists(NULL
, zone
);
979 ret
= walk_system_ram_range(pfn
, nr_pages
, &onlined_pages
,
982 if (need_zonelists_rebuild
)
983 zone_pcp_reset(zone
);
984 mutex_unlock(&zonelists_mutex
);
985 printk(KERN_DEBUG
"online_pages [mem %#010llx-%#010llx] failed\n",
986 (unsigned long long) pfn
<< PAGE_SHIFT
,
987 (((unsigned long long) pfn
+ nr_pages
)
989 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
990 unlock_memory_hotplug();
994 zone
->managed_pages
+= onlined_pages
;
995 zone
->present_pages
+= onlined_pages
;
996 zone
->zone_pgdat
->node_present_pages
+= onlined_pages
;
998 node_states_set_node(zone_to_nid(zone
), &arg
);
999 if (need_zonelists_rebuild
)
1000 build_all_zonelists(NULL
, NULL
);
1002 zone_pcp_update(zone
);
1005 mutex_unlock(&zonelists_mutex
);
1007 init_per_zone_wmark_min();
1010 kswapd_run(zone_to_nid(zone
));
1012 vm_total_pages
= nr_free_pagecache_pages();
1014 writeback_set_ratelimit();
1017 memory_notify(MEM_ONLINE
, &arg
);
1018 unlock_memory_hotplug();
1022 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1024 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1025 static pg_data_t __ref
*hotadd_new_pgdat(int nid
, u64 start
)
1027 struct pglist_data
*pgdat
;
1028 unsigned long zones_size
[MAX_NR_ZONES
] = {0};
1029 unsigned long zholes_size
[MAX_NR_ZONES
] = {0};
1030 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
1032 pgdat
= NODE_DATA(nid
);
1034 pgdat
= arch_alloc_nodedata(nid
);
1038 arch_refresh_nodedata(nid
, pgdat
);
1041 /* we can use NODE_DATA(nid) from here */
1043 /* init node's zones as empty zones, we don't have any present pages.*/
1044 free_area_init_node(nid
, zones_size
, start_pfn
, zholes_size
);
1047 * The node we allocated has no zone fallback lists. For avoiding
1048 * to access not-initialized zonelist, build here.
1050 mutex_lock(&zonelists_mutex
);
1051 build_all_zonelists(pgdat
, NULL
);
1052 mutex_unlock(&zonelists_mutex
);
1057 static void rollback_node_hotadd(int nid
, pg_data_t
*pgdat
)
1059 arch_refresh_nodedata(nid
, NULL
);
1060 arch_free_nodedata(pgdat
);
1066 * called by cpu_up() to online a node without onlined memory.
1068 int mem_online_node(int nid
)
1073 lock_memory_hotplug();
1074 pgdat
= hotadd_new_pgdat(nid
, 0);
1079 node_set_online(nid
);
1080 ret
= register_one_node(nid
);
1084 unlock_memory_hotplug();
1088 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1089 int __ref
add_memory(int nid
, u64 start
, u64 size
)
1091 pg_data_t
*pgdat
= NULL
;
1094 struct resource
*res
;
1097 lock_memory_hotplug();
1099 res
= register_memory_resource(start
, size
);
1104 { /* Stupid hack to suppress address-never-null warning */
1105 void *p
= NODE_DATA(nid
);
1108 new_node
= !node_online(nid
);
1110 pgdat
= hotadd_new_pgdat(nid
, start
);
1116 /* call arch's memory hotadd */
1117 ret
= arch_add_memory(nid
, start
, size
);
1122 /* we online node here. we can't roll back from here. */
1123 node_set_online(nid
);
1126 ret
= register_one_node(nid
);
1128 * If sysfs file of new node can't create, cpu on the node
1129 * can't be hot-added. There is no rollback way now.
1130 * So, check by BUG_ON() to catch it reluctantly..
1135 /* create new memmap entry */
1136 firmware_map_add_hotplug(start
, start
+ size
, "System RAM");
1141 /* rollback pgdat allocation and others */
1143 rollback_node_hotadd(nid
, pgdat
);
1144 release_memory_resource(res
);
1147 unlock_memory_hotplug();
1150 EXPORT_SYMBOL_GPL(add_memory
);
1152 #ifdef CONFIG_MEMORY_HOTREMOVE
1154 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1155 * set and the size of the free page is given by page_order(). Using this,
1156 * the function determines if the pageblock contains only free pages.
1157 * Due to buddy contraints, a free page at least the size of a pageblock will
1158 * be located at the start of the pageblock
1160 static inline int pageblock_free(struct page
*page
)
1162 return PageBuddy(page
) && page_order(page
) >= pageblock_order
;
1165 /* Return the start of the next active pageblock after a given page */
1166 static struct page
*next_active_pageblock(struct page
*page
)
1168 /* Ensure the starting page is pageblock-aligned */
1169 BUG_ON(page_to_pfn(page
) & (pageblock_nr_pages
- 1));
1171 /* If the entire pageblock is free, move to the end of free page */
1172 if (pageblock_free(page
)) {
1174 /* be careful. we don't have locks, page_order can be changed.*/
1175 order
= page_order(page
);
1176 if ((order
< MAX_ORDER
) && (order
>= pageblock_order
))
1177 return page
+ (1 << order
);
1180 return page
+ pageblock_nr_pages
;
1183 /* Checks if this range of memory is likely to be hot-removable. */
1184 int is_mem_section_removable(unsigned long start_pfn
, unsigned long nr_pages
)
1186 struct page
*page
= pfn_to_page(start_pfn
);
1187 struct page
*end_page
= page
+ nr_pages
;
1189 /* Check the starting page of each pageblock within the range */
1190 for (; page
< end_page
; page
= next_active_pageblock(page
)) {
1191 if (!is_pageblock_removable_nolock(page
))
1196 /* All pageblocks in the memory block are likely to be hot-removable */
1201 * Confirm all pages in a range [start, end) is belongs to the same zone.
1203 static int test_pages_in_a_zone(unsigned long start_pfn
, unsigned long end_pfn
)
1206 struct zone
*zone
= NULL
;
1209 for (pfn
= start_pfn
;
1211 pfn
+= MAX_ORDER_NR_PAGES
) {
1213 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1214 while ((i
< MAX_ORDER_NR_PAGES
) && !pfn_valid_within(pfn
+ i
))
1216 if (i
== MAX_ORDER_NR_PAGES
)
1218 page
= pfn_to_page(pfn
+ i
);
1219 if (zone
&& page_zone(page
) != zone
)
1221 zone
= page_zone(page
);
1227 * Scanning pfn is much easier than scanning lru list.
1228 * Scan pfn from start to end and Find LRU page.
1230 static unsigned long scan_lru_pages(unsigned long start
, unsigned long end
)
1234 for (pfn
= start
; pfn
< end
; pfn
++) {
1235 if (pfn_valid(pfn
)) {
1236 page
= pfn_to_page(pfn
);
1244 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1246 do_migrate_range(unsigned long start_pfn
, unsigned long end_pfn
)
1250 int move_pages
= NR_OFFLINE_AT_ONCE_PAGES
;
1251 int not_managed
= 0;
1255 for (pfn
= start_pfn
; pfn
< end_pfn
&& move_pages
> 0; pfn
++) {
1256 if (!pfn_valid(pfn
))
1258 page
= pfn_to_page(pfn
);
1259 if (!get_page_unless_zero(page
))
1262 * We can skip free pages. And we can only deal with pages on
1265 ret
= isolate_lru_page(page
);
1266 if (!ret
) { /* Success */
1268 list_add_tail(&page
->lru
, &source
);
1270 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1271 page_is_file_cache(page
));
1274 #ifdef CONFIG_DEBUG_VM
1275 printk(KERN_ALERT
"removing pfn %lx from LRU failed\n",
1280 /* Because we don't have big zone->lock. we should
1281 check this again here. */
1282 if (page_count(page
)) {
1289 if (!list_empty(&source
)) {
1291 putback_lru_pages(&source
);
1296 * alloc_migrate_target should be improooooved!!
1297 * migrate_pages returns # of failed pages.
1299 ret
= migrate_pages(&source
, alloc_migrate_target
, 0,
1300 MIGRATE_SYNC
, MR_MEMORY_HOTPLUG
);
1302 putback_lru_pages(&source
);
1309 * remove from free_area[] and mark all as Reserved.
1312 offline_isolated_pages_cb(unsigned long start
, unsigned long nr_pages
,
1315 __offline_isolated_pages(start
, start
+ nr_pages
);
1320 offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1322 walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, NULL
,
1323 offline_isolated_pages_cb
);
1327 * Check all pages in range, recoreded as memory resource, are isolated.
1330 check_pages_isolated_cb(unsigned long start_pfn
, unsigned long nr_pages
,
1334 long offlined
= *(long *)data
;
1335 ret
= test_pages_isolated(start_pfn
, start_pfn
+ nr_pages
, true);
1336 offlined
= nr_pages
;
1338 *(long *)data
+= offlined
;
1343 check_pages_isolated(unsigned long start_pfn
, unsigned long end_pfn
)
1348 ret
= walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, &offlined
,
1349 check_pages_isolated_cb
);
1351 offlined
= (long)ret
;
1355 #ifdef CONFIG_MOVABLE_NODE
1357 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1360 static bool can_offline_normal(struct zone
*zone
, unsigned long nr_pages
)
1364 #else /* CONFIG_MOVABLE_NODE */
1365 /* ensure the node has NORMAL memory if it is still online */
1366 static bool can_offline_normal(struct zone
*zone
, unsigned long nr_pages
)
1368 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1369 unsigned long present_pages
= 0;
1372 for (zt
= 0; zt
<= ZONE_NORMAL
; zt
++)
1373 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1375 if (present_pages
> nr_pages
)
1379 for (; zt
<= ZONE_MOVABLE
; zt
++)
1380 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1383 * we can't offline the last normal memory until all
1384 * higher memory is offlined.
1386 return present_pages
== 0;
1388 #endif /* CONFIG_MOVABLE_NODE */
1390 /* check which state of node_states will be changed when offline memory */
1391 static void node_states_check_changes_offline(unsigned long nr_pages
,
1392 struct zone
*zone
, struct memory_notify
*arg
)
1394 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1395 unsigned long present_pages
= 0;
1396 enum zone_type zt
, zone_last
= ZONE_NORMAL
;
1399 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1400 * contains nodes which have zones of 0...ZONE_NORMAL,
1401 * set zone_last to ZONE_NORMAL.
1403 * If we don't have HIGHMEM nor movable node,
1404 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1405 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1407 if (N_MEMORY
== N_NORMAL_MEMORY
)
1408 zone_last
= ZONE_MOVABLE
;
1411 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1412 * If the memory to be offline is in a zone of 0...zone_last,
1413 * and it is the last present memory, 0...zone_last will
1414 * become empty after offline , thus we can determind we will
1415 * need to clear the node from node_states[N_NORMAL_MEMORY].
1417 for (zt
= 0; zt
<= zone_last
; zt
++)
1418 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1419 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1420 arg
->status_change_nid_normal
= zone_to_nid(zone
);
1422 arg
->status_change_nid_normal
= -1;
1424 #ifdef CONFIG_HIGHMEM
1426 * If we have movable node, node_states[N_HIGH_MEMORY]
1427 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1428 * set zone_last to ZONE_HIGHMEM.
1430 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1431 * contains nodes which have zones of 0...ZONE_MOVABLE,
1432 * set zone_last to ZONE_MOVABLE.
1434 zone_last
= ZONE_HIGHMEM
;
1435 if (N_MEMORY
== N_HIGH_MEMORY
)
1436 zone_last
= ZONE_MOVABLE
;
1438 for (; zt
<= zone_last
; zt
++)
1439 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1440 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1441 arg
->status_change_nid_high
= zone_to_nid(zone
);
1443 arg
->status_change_nid_high
= -1;
1445 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
1449 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1451 zone_last
= ZONE_MOVABLE
;
1454 * check whether node_states[N_HIGH_MEMORY] will be changed
1455 * If we try to offline the last present @nr_pages from the node,
1456 * we can determind we will need to clear the node from
1457 * node_states[N_HIGH_MEMORY].
1459 for (; zt
<= zone_last
; zt
++)
1460 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1461 if (nr_pages
>= present_pages
)
1462 arg
->status_change_nid
= zone_to_nid(zone
);
1464 arg
->status_change_nid
= -1;
1467 static void node_states_clear_node(int node
, struct memory_notify
*arg
)
1469 if (arg
->status_change_nid_normal
>= 0)
1470 node_clear_state(node
, N_NORMAL_MEMORY
);
1472 if ((N_MEMORY
!= N_NORMAL_MEMORY
) &&
1473 (arg
->status_change_nid_high
>= 0))
1474 node_clear_state(node
, N_HIGH_MEMORY
);
1476 if ((N_MEMORY
!= N_HIGH_MEMORY
) &&
1477 (arg
->status_change_nid
>= 0))
1478 node_clear_state(node
, N_MEMORY
);
1481 static int __ref
__offline_pages(unsigned long start_pfn
,
1482 unsigned long end_pfn
, unsigned long timeout
)
1484 unsigned long pfn
, nr_pages
, expire
;
1485 long offlined_pages
;
1486 int ret
, drain
, retry_max
, node
;
1488 struct memory_notify arg
;
1490 BUG_ON(start_pfn
>= end_pfn
);
1491 /* at least, alignment against pageblock is necessary */
1492 if (!IS_ALIGNED(start_pfn
, pageblock_nr_pages
))
1494 if (!IS_ALIGNED(end_pfn
, pageblock_nr_pages
))
1496 /* This makes hotplug much easier...and readable.
1497 we assume this for now. .*/
1498 if (!test_pages_in_a_zone(start_pfn
, end_pfn
))
1501 lock_memory_hotplug();
1503 zone
= page_zone(pfn_to_page(start_pfn
));
1504 node
= zone_to_nid(zone
);
1505 nr_pages
= end_pfn
- start_pfn
;
1508 if (zone_idx(zone
) <= ZONE_NORMAL
&& !can_offline_normal(zone
, nr_pages
))
1511 /* set above range as isolated */
1512 ret
= start_isolate_page_range(start_pfn
, end_pfn
,
1513 MIGRATE_MOVABLE
, true);
1517 arg
.start_pfn
= start_pfn
;
1518 arg
.nr_pages
= nr_pages
;
1519 node_states_check_changes_offline(nr_pages
, zone
, &arg
);
1521 ret
= memory_notify(MEM_GOING_OFFLINE
, &arg
);
1522 ret
= notifier_to_errno(ret
);
1524 goto failed_removal
;
1527 expire
= jiffies
+ timeout
;
1531 /* start memory hot removal */
1533 if (time_after(jiffies
, expire
))
1534 goto failed_removal
;
1536 if (signal_pending(current
))
1537 goto failed_removal
;
1540 lru_add_drain_all();
1545 pfn
= scan_lru_pages(start_pfn
, end_pfn
);
1546 if (pfn
) { /* We have page on LRU */
1547 ret
= do_migrate_range(pfn
, end_pfn
);
1553 if (--retry_max
== 0)
1554 goto failed_removal
;
1560 /* drain all zone's lru pagevec, this is asynchronous... */
1561 lru_add_drain_all();
1563 /* drain pcp pages, this is synchronous. */
1566 offlined_pages
= check_pages_isolated(start_pfn
, end_pfn
);
1567 if (offlined_pages
< 0) {
1569 goto failed_removal
;
1571 printk(KERN_INFO
"Offlined Pages %ld\n", offlined_pages
);
1572 /* Ok, all of our target is isolated.
1573 We cannot do rollback at this point. */
1574 offline_isolated_pages(start_pfn
, end_pfn
);
1575 /* reset pagetype flags and makes migrate type to be MOVABLE */
1576 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1577 /* removal success */
1578 zone
->managed_pages
-= offlined_pages
;
1579 zone
->present_pages
-= offlined_pages
;
1580 zone
->zone_pgdat
->node_present_pages
-= offlined_pages
;
1581 totalram_pages
-= offlined_pages
;
1583 init_per_zone_wmark_min();
1585 if (!populated_zone(zone
)) {
1586 zone_pcp_reset(zone
);
1587 mutex_lock(&zonelists_mutex
);
1588 build_all_zonelists(NULL
, NULL
);
1589 mutex_unlock(&zonelists_mutex
);
1591 zone_pcp_update(zone
);
1593 node_states_clear_node(node
, &arg
);
1594 if (arg
.status_change_nid
>= 0)
1597 vm_total_pages
= nr_free_pagecache_pages();
1598 writeback_set_ratelimit();
1600 memory_notify(MEM_OFFLINE
, &arg
);
1601 unlock_memory_hotplug();
1605 printk(KERN_INFO
"memory offlining [mem %#010llx-%#010llx] failed\n",
1606 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
1607 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
1608 memory_notify(MEM_CANCEL_OFFLINE
, &arg
);
1609 /* pushback to free area */
1610 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1613 unlock_memory_hotplug();
1617 int offline_pages(unsigned long start_pfn
, unsigned long nr_pages
)
1619 return __offline_pages(start_pfn
, start_pfn
+ nr_pages
, 120 * HZ
);
1623 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1624 * @start_pfn: start pfn of the memory range
1625 * @end_pfn: end pfn of the memory range
1626 * @arg: argument passed to func
1627 * @func: callback for each memory section walked
1629 * This function walks through all present mem sections in range
1630 * [start_pfn, end_pfn) and call func on each mem section.
1632 * Returns the return value of func.
1634 static int walk_memory_range(unsigned long start_pfn
, unsigned long end_pfn
,
1635 void *arg
, int (*func
)(struct memory_block
*, void *))
1637 struct memory_block
*mem
= NULL
;
1638 struct mem_section
*section
;
1639 unsigned long pfn
, section_nr
;
1642 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1643 section_nr
= pfn_to_section_nr(pfn
);
1644 if (!present_section_nr(section_nr
))
1647 section
= __nr_to_section(section_nr
);
1648 /* same memblock? */
1650 if ((section_nr
>= mem
->start_section_nr
) &&
1651 (section_nr
<= mem
->end_section_nr
))
1654 mem
= find_memory_block_hinted(section
, mem
);
1658 ret
= func(mem
, arg
);
1660 kobject_put(&mem
->dev
.kobj
);
1666 kobject_put(&mem
->dev
.kobj
);
1672 * offline_memory_block_cb - callback function for offlining memory block
1673 * @mem: the memory block to be offlined
1674 * @arg: buffer to hold error msg
1676 * Always return 0, and put the error msg in arg if any.
1678 static int offline_memory_block_cb(struct memory_block
*mem
, void *arg
)
1681 int error
= offline_memory_block(mem
);
1683 if (error
!= 0 && *ret
== 0)
1689 static int is_memblock_offlined_cb(struct memory_block
*mem
, void *arg
)
1691 int ret
= !is_memblock_offlined(mem
);
1693 if (unlikely(ret
)) {
1694 phys_addr_t beginpa
, endpa
;
1696 beginpa
= PFN_PHYS(section_nr_to_pfn(mem
->start_section_nr
));
1697 endpa
= PFN_PHYS(section_nr_to_pfn(mem
->end_section_nr
+ 1))-1;
1698 pr_warn("removing memory fails, because memory "
1699 "[%pa-%pa] is onlined\n",
1706 static int check_cpu_on_node(void *data
)
1708 struct pglist_data
*pgdat
= data
;
1711 for_each_present_cpu(cpu
) {
1712 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1714 * the cpu on this node isn't removed, and we can't
1715 * offline this node.
1723 static void unmap_cpu_on_node(void *data
)
1725 #ifdef CONFIG_ACPI_NUMA
1726 struct pglist_data
*pgdat
= data
;
1729 for_each_possible_cpu(cpu
)
1730 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1731 numa_clear_node(cpu
);
1735 static int check_and_unmap_cpu_on_node(void *data
)
1737 int ret
= check_cpu_on_node(data
);
1743 * the node will be offlined when we come here, so we can clear
1744 * the cpu_to_node() now.
1747 unmap_cpu_on_node(data
);
1751 /* offline the node if all memory sections of this node are removed */
1752 void try_offline_node(int nid
)
1754 pg_data_t
*pgdat
= NODE_DATA(nid
);
1755 unsigned long start_pfn
= pgdat
->node_start_pfn
;
1756 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
1758 struct page
*pgdat_page
= virt_to_page(pgdat
);
1761 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1762 unsigned long section_nr
= pfn_to_section_nr(pfn
);
1764 if (!present_section_nr(section_nr
))
1767 if (pfn_to_nid(pfn
) != nid
)
1771 * some memory sections of this node are not removed, and we
1772 * can't offline node now.
1777 if (stop_machine(check_and_unmap_cpu_on_node
, pgdat
, NULL
))
1781 * all memory/cpu of this node are removed, we can offline this
1784 node_set_offline(nid
);
1785 unregister_one_node(nid
);
1787 if (!PageSlab(pgdat_page
) && !PageCompound(pgdat_page
))
1788 /* node data is allocated from boot memory */
1791 /* free waittable in each zone */
1792 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1793 struct zone
*zone
= pgdat
->node_zones
+ i
;
1796 * wait_table may be allocated from boot memory,
1797 * here only free if it's allocated by vmalloc.
1799 if (is_vmalloc_addr(zone
->wait_table
))
1800 vfree(zone
->wait_table
);
1804 * Since there is no way to guarentee the address of pgdat/zone is not
1805 * on stack of any kernel threads or used by other kernel objects
1806 * without reference counting or other symchronizing method, do not
1807 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1808 * the memory when the node is online again.
1810 memset(pgdat
, 0, sizeof(*pgdat
));
1812 EXPORT_SYMBOL(try_offline_node
);
1814 int __ref
remove_memory(int nid
, u64 start
, u64 size
)
1816 unsigned long start_pfn
, end_pfn
;
1820 start_pfn
= PFN_DOWN(start
);
1821 end_pfn
= PFN_UP(start
+ size
- 1);
1824 * When CONFIG_MEMCG is on, one memory block may be used by other
1825 * blocks to store page cgroup when onlining pages. But we don't know
1826 * in what order pages are onlined. So we iterate twice to offline
1828 * 1st iterate: offline every non primary memory block.
1829 * 2nd iterate: offline primary (i.e. first added) memory block.
1832 walk_memory_range(start_pfn
, end_pfn
, &ret
,
1833 offline_memory_block_cb
);
1843 lock_memory_hotplug();
1846 * we have offlined all memory blocks like this:
1847 * 1. lock memory hotplug
1848 * 2. offline a memory block
1849 * 3. unlock memory hotplug
1851 * repeat step1-3 to offline the memory block. All memory blocks
1852 * must be offlined before removing memory. But we don't hold the
1853 * lock in the whole operation. So we should check whether all
1854 * memory blocks are offlined.
1857 ret
= walk_memory_range(start_pfn
, end_pfn
, NULL
,
1858 is_memblock_offlined_cb
);
1860 unlock_memory_hotplug();
1864 /* remove memmap entry */
1865 firmware_map_remove(start
, start
+ size
, "System RAM");
1867 arch_remove_memory(start
, size
);
1869 try_offline_node(nid
);
1871 unlock_memory_hotplug();
1876 int offline_pages(unsigned long start_pfn
, unsigned long nr_pages
)
1880 int remove_memory(int nid
, u64 start
, u64 size
)
1884 #endif /* CONFIG_MEMORY_HOTREMOVE */
1885 EXPORT_SYMBOL_GPL(remove_memory
);