USB: gadget: atmel_usba: add DT support
[linux-2.6.git] / mm / memory.c
blob6dc1882fbd725c61badb4fd072418c7330001ce1
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
70 #include "internal.h"
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
85 unsigned long num_physpages;
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
93 void * high_memory;
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
107 #else
109 #endif
111 static int __init disable_randmaps(char *s)
113 randomize_va_space = 0;
114 return 1;
116 __setup("norandmaps", disable_randmaps);
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init init_zero_pfn(void)
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
129 core_initcall(init_zero_pfn);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct *mm)
136 int i;
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
144 current->rss_stat.events = 0;
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
149 struct task_struct *task = current;
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct *task)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather *tlb)
183 struct mmu_gather_batch *batch;
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
203 tlb->active->next = batch;
204 tlb->active = batch;
206 return 1;
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
216 tlb->mm = mm;
218 tlb->fullmm = fullmm;
219 tlb->need_flush_all = 0;
220 tlb->start = -1UL;
221 tlb->end = 0;
222 tlb->need_flush = 0;
223 tlb->fast_mode = (num_possible_cpus() == 1);
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
235 void tlb_flush_mmu(struct mmu_gather *tlb)
237 struct mmu_gather_batch *batch;
239 if (!tlb->need_flush)
240 return;
241 tlb->need_flush = 0;
242 tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
247 if (tlb_fast_mode(tlb))
248 return;
250 for (batch = &tlb->local; batch; batch = batch->next) {
251 free_pages_and_swap_cache(batch->pages, batch->nr);
252 batch->nr = 0;
254 tlb->active = &tlb->local;
257 /* tlb_finish_mmu
258 * Called at the end of the shootdown operation to free up any resources
259 * that were required.
261 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
263 struct mmu_gather_batch *batch, *next;
265 tlb->start = start;
266 tlb->end = end;
267 tlb_flush_mmu(tlb);
269 /* keep the page table cache within bounds */
270 check_pgt_cache();
272 for (batch = tlb->local.next; batch; batch = next) {
273 next = batch->next;
274 free_pages((unsigned long)batch, 0);
276 tlb->local.next = NULL;
279 /* __tlb_remove_page
280 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
281 * handling the additional races in SMP caused by other CPUs caching valid
282 * mappings in their TLBs. Returns the number of free page slots left.
283 * When out of page slots we must call tlb_flush_mmu().
285 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
287 struct mmu_gather_batch *batch;
289 VM_BUG_ON(!tlb->need_flush);
291 if (tlb_fast_mode(tlb)) {
292 free_page_and_swap_cache(page);
293 return 1; /* avoid calling tlb_flush_mmu() */
296 batch = tlb->active;
297 batch->pages[batch->nr++] = page;
298 if (batch->nr == batch->max) {
299 if (!tlb_next_batch(tlb))
300 return 0;
301 batch = tlb->active;
303 VM_BUG_ON(batch->nr > batch->max);
305 return batch->max - batch->nr;
308 #endif /* HAVE_GENERIC_MMU_GATHER */
310 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313 * See the comment near struct mmu_table_batch.
316 static void tlb_remove_table_smp_sync(void *arg)
318 /* Simply deliver the interrupt */
321 static void tlb_remove_table_one(void *table)
324 * This isn't an RCU grace period and hence the page-tables cannot be
325 * assumed to be actually RCU-freed.
327 * It is however sufficient for software page-table walkers that rely on
328 * IRQ disabling. See the comment near struct mmu_table_batch.
330 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
331 __tlb_remove_table(table);
334 static void tlb_remove_table_rcu(struct rcu_head *head)
336 struct mmu_table_batch *batch;
337 int i;
339 batch = container_of(head, struct mmu_table_batch, rcu);
341 for (i = 0; i < batch->nr; i++)
342 __tlb_remove_table(batch->tables[i]);
344 free_page((unsigned long)batch);
347 void tlb_table_flush(struct mmu_gather *tlb)
349 struct mmu_table_batch **batch = &tlb->batch;
351 if (*batch) {
352 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
353 *batch = NULL;
357 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 struct mmu_table_batch **batch = &tlb->batch;
361 tlb->need_flush = 1;
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
367 if (atomic_read(&tlb->mm->mm_users) < 2) {
368 __tlb_remove_table(table);
369 return;
372 if (*batch == NULL) {
373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 if (*batch == NULL) {
375 tlb_remove_table_one(table);
376 return;
378 (*batch)->nr = 0;
380 (*batch)->tables[(*batch)->nr++] = table;
381 if ((*batch)->nr == MAX_TABLE_BATCH)
382 tlb_table_flush(tlb);
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 * If a p?d_bad entry is found while walking page tables, report
389 * the error, before resetting entry to p?d_none. Usually (but
390 * very seldom) called out from the p?d_none_or_clear_bad macros.
393 void pgd_clear_bad(pgd_t *pgd)
395 pgd_ERROR(*pgd);
396 pgd_clear(pgd);
399 void pud_clear_bad(pud_t *pud)
401 pud_ERROR(*pud);
402 pud_clear(pud);
405 void pmd_clear_bad(pmd_t *pmd)
407 pmd_ERROR(*pmd);
408 pmd_clear(pmd);
412 * Note: this doesn't free the actual pages themselves. That
413 * has been handled earlier when unmapping all the memory regions.
415 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
416 unsigned long addr)
418 pgtable_t token = pmd_pgtable(*pmd);
419 pmd_clear(pmd);
420 pte_free_tlb(tlb, token, addr);
421 tlb->mm->nr_ptes--;
424 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
425 unsigned long addr, unsigned long end,
426 unsigned long floor, unsigned long ceiling)
428 pmd_t *pmd;
429 unsigned long next;
430 unsigned long start;
432 start = addr;
433 pmd = pmd_offset(pud, addr);
434 do {
435 next = pmd_addr_end(addr, end);
436 if (pmd_none_or_clear_bad(pmd))
437 continue;
438 free_pte_range(tlb, pmd, addr);
439 } while (pmd++, addr = next, addr != end);
441 start &= PUD_MASK;
442 if (start < floor)
443 return;
444 if (ceiling) {
445 ceiling &= PUD_MASK;
446 if (!ceiling)
447 return;
449 if (end - 1 > ceiling - 1)
450 return;
452 pmd = pmd_offset(pud, start);
453 pud_clear(pud);
454 pmd_free_tlb(tlb, pmd, start);
457 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
458 unsigned long addr, unsigned long end,
459 unsigned long floor, unsigned long ceiling)
461 pud_t *pud;
462 unsigned long next;
463 unsigned long start;
465 start = addr;
466 pud = pud_offset(pgd, addr);
467 do {
468 next = pud_addr_end(addr, end);
469 if (pud_none_or_clear_bad(pud))
470 continue;
471 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
472 } while (pud++, addr = next, addr != end);
474 start &= PGDIR_MASK;
475 if (start < floor)
476 return;
477 if (ceiling) {
478 ceiling &= PGDIR_MASK;
479 if (!ceiling)
480 return;
482 if (end - 1 > ceiling - 1)
483 return;
485 pud = pud_offset(pgd, start);
486 pgd_clear(pgd);
487 pud_free_tlb(tlb, pud, start);
491 * This function frees user-level page tables of a process.
493 * Must be called with pagetable lock held.
495 void free_pgd_range(struct mmu_gather *tlb,
496 unsigned long addr, unsigned long end,
497 unsigned long floor, unsigned long ceiling)
499 pgd_t *pgd;
500 unsigned long next;
503 * The next few lines have given us lots of grief...
505 * Why are we testing PMD* at this top level? Because often
506 * there will be no work to do at all, and we'd prefer not to
507 * go all the way down to the bottom just to discover that.
509 * Why all these "- 1"s? Because 0 represents both the bottom
510 * of the address space and the top of it (using -1 for the
511 * top wouldn't help much: the masks would do the wrong thing).
512 * The rule is that addr 0 and floor 0 refer to the bottom of
513 * the address space, but end 0 and ceiling 0 refer to the top
514 * Comparisons need to use "end - 1" and "ceiling - 1" (though
515 * that end 0 case should be mythical).
517 * Wherever addr is brought up or ceiling brought down, we must
518 * be careful to reject "the opposite 0" before it confuses the
519 * subsequent tests. But what about where end is brought down
520 * by PMD_SIZE below? no, end can't go down to 0 there.
522 * Whereas we round start (addr) and ceiling down, by different
523 * masks at different levels, in order to test whether a table
524 * now has no other vmas using it, so can be freed, we don't
525 * bother to round floor or end up - the tests don't need that.
528 addr &= PMD_MASK;
529 if (addr < floor) {
530 addr += PMD_SIZE;
531 if (!addr)
532 return;
534 if (ceiling) {
535 ceiling &= PMD_MASK;
536 if (!ceiling)
537 return;
539 if (end - 1 > ceiling - 1)
540 end -= PMD_SIZE;
541 if (addr > end - 1)
542 return;
544 pgd = pgd_offset(tlb->mm, addr);
545 do {
546 next = pgd_addr_end(addr, end);
547 if (pgd_none_or_clear_bad(pgd))
548 continue;
549 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
550 } while (pgd++, addr = next, addr != end);
553 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
554 unsigned long floor, unsigned long ceiling)
556 while (vma) {
557 struct vm_area_struct *next = vma->vm_next;
558 unsigned long addr = vma->vm_start;
561 * Hide vma from rmap and truncate_pagecache before freeing
562 * pgtables
564 unlink_anon_vmas(vma);
565 unlink_file_vma(vma);
567 if (is_vm_hugetlb_page(vma)) {
568 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
569 floor, next? next->vm_start: ceiling);
570 } else {
572 * Optimization: gather nearby vmas into one call down
574 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
575 && !is_vm_hugetlb_page(next)) {
576 vma = next;
577 next = vma->vm_next;
578 unlink_anon_vmas(vma);
579 unlink_file_vma(vma);
581 free_pgd_range(tlb, addr, vma->vm_end,
582 floor, next? next->vm_start: ceiling);
584 vma = next;
588 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
589 pmd_t *pmd, unsigned long address)
591 pgtable_t new = pte_alloc_one(mm, address);
592 int wait_split_huge_page;
593 if (!new)
594 return -ENOMEM;
597 * Ensure all pte setup (eg. pte page lock and page clearing) are
598 * visible before the pte is made visible to other CPUs by being
599 * put into page tables.
601 * The other side of the story is the pointer chasing in the page
602 * table walking code (when walking the page table without locking;
603 * ie. most of the time). Fortunately, these data accesses consist
604 * of a chain of data-dependent loads, meaning most CPUs (alpha
605 * being the notable exception) will already guarantee loads are
606 * seen in-order. See the alpha page table accessors for the
607 * smp_read_barrier_depends() barriers in page table walking code.
609 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
611 spin_lock(&mm->page_table_lock);
612 wait_split_huge_page = 0;
613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
614 mm->nr_ptes++;
615 pmd_populate(mm, pmd, new);
616 new = NULL;
617 } else if (unlikely(pmd_trans_splitting(*pmd)))
618 wait_split_huge_page = 1;
619 spin_unlock(&mm->page_table_lock);
620 if (new)
621 pte_free(mm, new);
622 if (wait_split_huge_page)
623 wait_split_huge_page(vma->anon_vma, pmd);
624 return 0;
627 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
629 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
630 if (!new)
631 return -ENOMEM;
633 smp_wmb(); /* See comment in __pte_alloc */
635 spin_lock(&init_mm.page_table_lock);
636 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
637 pmd_populate_kernel(&init_mm, pmd, new);
638 new = NULL;
639 } else
640 VM_BUG_ON(pmd_trans_splitting(*pmd));
641 spin_unlock(&init_mm.page_table_lock);
642 if (new)
643 pte_free_kernel(&init_mm, new);
644 return 0;
647 static inline void init_rss_vec(int *rss)
649 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
652 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
654 int i;
656 if (current->mm == mm)
657 sync_mm_rss(mm);
658 for (i = 0; i < NR_MM_COUNTERS; i++)
659 if (rss[i])
660 add_mm_counter(mm, i, rss[i]);
664 * This function is called to print an error when a bad pte
665 * is found. For example, we might have a PFN-mapped pte in
666 * a region that doesn't allow it.
668 * The calling function must still handle the error.
670 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
671 pte_t pte, struct page *page)
673 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
674 pud_t *pud = pud_offset(pgd, addr);
675 pmd_t *pmd = pmd_offset(pud, addr);
676 struct address_space *mapping;
677 pgoff_t index;
678 static unsigned long resume;
679 static unsigned long nr_shown;
680 static unsigned long nr_unshown;
683 * Allow a burst of 60 reports, then keep quiet for that minute;
684 * or allow a steady drip of one report per second.
686 if (nr_shown == 60) {
687 if (time_before(jiffies, resume)) {
688 nr_unshown++;
689 return;
691 if (nr_unshown) {
692 printk(KERN_ALERT
693 "BUG: Bad page map: %lu messages suppressed\n",
694 nr_unshown);
695 nr_unshown = 0;
697 nr_shown = 0;
699 if (nr_shown++ == 0)
700 resume = jiffies + 60 * HZ;
702 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
703 index = linear_page_index(vma, addr);
705 printk(KERN_ALERT
706 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
707 current->comm,
708 (long long)pte_val(pte), (long long)pmd_val(*pmd));
709 if (page)
710 dump_page(page);
711 printk(KERN_ALERT
712 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
713 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
715 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
717 if (vma->vm_ops)
718 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
719 vma->vm_ops->fault);
720 if (vma->vm_file && vma->vm_file->f_op)
721 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
722 vma->vm_file->f_op->mmap);
723 dump_stack();
724 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
727 static inline bool is_cow_mapping(vm_flags_t flags)
729 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
733 * vm_normal_page -- This function gets the "struct page" associated with a pte.
735 * "Special" mappings do not wish to be associated with a "struct page" (either
736 * it doesn't exist, or it exists but they don't want to touch it). In this
737 * case, NULL is returned here. "Normal" mappings do have a struct page.
739 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
740 * pte bit, in which case this function is trivial. Secondly, an architecture
741 * may not have a spare pte bit, which requires a more complicated scheme,
742 * described below.
744 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
745 * special mapping (even if there are underlying and valid "struct pages").
746 * COWed pages of a VM_PFNMAP are always normal.
748 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
749 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
750 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
751 * mapping will always honor the rule
753 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
755 * And for normal mappings this is false.
757 * This restricts such mappings to be a linear translation from virtual address
758 * to pfn. To get around this restriction, we allow arbitrary mappings so long
759 * as the vma is not a COW mapping; in that case, we know that all ptes are
760 * special (because none can have been COWed).
763 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
765 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
766 * page" backing, however the difference is that _all_ pages with a struct
767 * page (that is, those where pfn_valid is true) are refcounted and considered
768 * normal pages by the VM. The disadvantage is that pages are refcounted
769 * (which can be slower and simply not an option for some PFNMAP users). The
770 * advantage is that we don't have to follow the strict linearity rule of
771 * PFNMAP mappings in order to support COWable mappings.
774 #ifdef __HAVE_ARCH_PTE_SPECIAL
775 # define HAVE_PTE_SPECIAL 1
776 #else
777 # define HAVE_PTE_SPECIAL 0
778 #endif
779 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
780 pte_t pte)
782 unsigned long pfn = pte_pfn(pte);
784 if (HAVE_PTE_SPECIAL) {
785 if (likely(!pte_special(pte)))
786 goto check_pfn;
787 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
788 return NULL;
789 if (!is_zero_pfn(pfn))
790 print_bad_pte(vma, addr, pte, NULL);
791 return NULL;
794 /* !HAVE_PTE_SPECIAL case follows: */
796 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
797 if (vma->vm_flags & VM_MIXEDMAP) {
798 if (!pfn_valid(pfn))
799 return NULL;
800 goto out;
801 } else {
802 unsigned long off;
803 off = (addr - vma->vm_start) >> PAGE_SHIFT;
804 if (pfn == vma->vm_pgoff + off)
805 return NULL;
806 if (!is_cow_mapping(vma->vm_flags))
807 return NULL;
811 if (is_zero_pfn(pfn))
812 return NULL;
813 check_pfn:
814 if (unlikely(pfn > highest_memmap_pfn)) {
815 print_bad_pte(vma, addr, pte, NULL);
816 return NULL;
820 * NOTE! We still have PageReserved() pages in the page tables.
821 * eg. VDSO mappings can cause them to exist.
823 out:
824 return pfn_to_page(pfn);
828 * copy one vm_area from one task to the other. Assumes the page tables
829 * already present in the new task to be cleared in the whole range
830 * covered by this vma.
833 static inline unsigned long
834 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
835 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
836 unsigned long addr, int *rss)
838 unsigned long vm_flags = vma->vm_flags;
839 pte_t pte = *src_pte;
840 struct page *page;
842 /* pte contains position in swap or file, so copy. */
843 if (unlikely(!pte_present(pte))) {
844 if (!pte_file(pte)) {
845 swp_entry_t entry = pte_to_swp_entry(pte);
847 if (swap_duplicate(entry) < 0)
848 return entry.val;
850 /* make sure dst_mm is on swapoff's mmlist. */
851 if (unlikely(list_empty(&dst_mm->mmlist))) {
852 spin_lock(&mmlist_lock);
853 if (list_empty(&dst_mm->mmlist))
854 list_add(&dst_mm->mmlist,
855 &src_mm->mmlist);
856 spin_unlock(&mmlist_lock);
858 if (likely(!non_swap_entry(entry)))
859 rss[MM_SWAPENTS]++;
860 else if (is_migration_entry(entry)) {
861 page = migration_entry_to_page(entry);
863 if (PageAnon(page))
864 rss[MM_ANONPAGES]++;
865 else
866 rss[MM_FILEPAGES]++;
868 if (is_write_migration_entry(entry) &&
869 is_cow_mapping(vm_flags)) {
871 * COW mappings require pages in both
872 * parent and child to be set to read.
874 make_migration_entry_read(&entry);
875 pte = swp_entry_to_pte(entry);
876 set_pte_at(src_mm, addr, src_pte, pte);
880 goto out_set_pte;
884 * If it's a COW mapping, write protect it both
885 * in the parent and the child
887 if (is_cow_mapping(vm_flags)) {
888 ptep_set_wrprotect(src_mm, addr, src_pte);
889 pte = pte_wrprotect(pte);
893 * If it's a shared mapping, mark it clean in
894 * the child
896 if (vm_flags & VM_SHARED)
897 pte = pte_mkclean(pte);
898 pte = pte_mkold(pte);
900 page = vm_normal_page(vma, addr, pte);
901 if (page) {
902 get_page(page);
903 page_dup_rmap(page);
904 if (PageAnon(page))
905 rss[MM_ANONPAGES]++;
906 else
907 rss[MM_FILEPAGES]++;
910 out_set_pte:
911 set_pte_at(dst_mm, addr, dst_pte, pte);
912 return 0;
915 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
919 pte_t *orig_src_pte, *orig_dst_pte;
920 pte_t *src_pte, *dst_pte;
921 spinlock_t *src_ptl, *dst_ptl;
922 int progress = 0;
923 int rss[NR_MM_COUNTERS];
924 swp_entry_t entry = (swp_entry_t){0};
926 again:
927 init_rss_vec(rss);
929 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
930 if (!dst_pte)
931 return -ENOMEM;
932 src_pte = pte_offset_map(src_pmd, addr);
933 src_ptl = pte_lockptr(src_mm, src_pmd);
934 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935 orig_src_pte = src_pte;
936 orig_dst_pte = dst_pte;
937 arch_enter_lazy_mmu_mode();
939 do {
941 * We are holding two locks at this point - either of them
942 * could generate latencies in another task on another CPU.
944 if (progress >= 32) {
945 progress = 0;
946 if (need_resched() ||
947 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
948 break;
950 if (pte_none(*src_pte)) {
951 progress++;
952 continue;
954 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955 vma, addr, rss);
956 if (entry.val)
957 break;
958 progress += 8;
959 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
961 arch_leave_lazy_mmu_mode();
962 spin_unlock(src_ptl);
963 pte_unmap(orig_src_pte);
964 add_mm_rss_vec(dst_mm, rss);
965 pte_unmap_unlock(orig_dst_pte, dst_ptl);
966 cond_resched();
968 if (entry.val) {
969 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970 return -ENOMEM;
971 progress = 0;
973 if (addr != end)
974 goto again;
975 return 0;
978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980 unsigned long addr, unsigned long end)
982 pmd_t *src_pmd, *dst_pmd;
983 unsigned long next;
985 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986 if (!dst_pmd)
987 return -ENOMEM;
988 src_pmd = pmd_offset(src_pud, addr);
989 do {
990 next = pmd_addr_end(addr, end);
991 if (pmd_trans_huge(*src_pmd)) {
992 int err;
993 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
994 err = copy_huge_pmd(dst_mm, src_mm,
995 dst_pmd, src_pmd, addr, vma);
996 if (err == -ENOMEM)
997 return -ENOMEM;
998 if (!err)
999 continue;
1000 /* fall through */
1002 if (pmd_none_or_clear_bad(src_pmd))
1003 continue;
1004 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005 vma, addr, next))
1006 return -ENOMEM;
1007 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008 return 0;
1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013 unsigned long addr, unsigned long end)
1015 pud_t *src_pud, *dst_pud;
1016 unsigned long next;
1018 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019 if (!dst_pud)
1020 return -ENOMEM;
1021 src_pud = pud_offset(src_pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(src_pud))
1025 continue;
1026 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027 vma, addr, next))
1028 return -ENOMEM;
1029 } while (dst_pud++, src_pud++, addr = next, addr != end);
1030 return 0;
1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 struct vm_area_struct *vma)
1036 pgd_t *src_pgd, *dst_pgd;
1037 unsigned long next;
1038 unsigned long addr = vma->vm_start;
1039 unsigned long end = vma->vm_end;
1040 unsigned long mmun_start; /* For mmu_notifiers */
1041 unsigned long mmun_end; /* For mmu_notifiers */
1042 bool is_cow;
1043 int ret;
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1051 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1052 VM_PFNMAP | VM_MIXEDMAP))) {
1053 if (!vma->anon_vma)
1054 return 0;
1057 if (is_vm_hugetlb_page(vma))
1058 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1060 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1062 * We do not free on error cases below as remove_vma
1063 * gets called on error from higher level routine
1065 ret = track_pfn_copy(vma);
1066 if (ret)
1067 return ret;
1071 * We need to invalidate the secondary MMU mappings only when
1072 * there could be a permission downgrade on the ptes of the
1073 * parent mm. And a permission downgrade will only happen if
1074 * is_cow_mapping() returns true.
1076 is_cow = is_cow_mapping(vma->vm_flags);
1077 mmun_start = addr;
1078 mmun_end = end;
1079 if (is_cow)
1080 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1081 mmun_end);
1083 ret = 0;
1084 dst_pgd = pgd_offset(dst_mm, addr);
1085 src_pgd = pgd_offset(src_mm, addr);
1086 do {
1087 next = pgd_addr_end(addr, end);
1088 if (pgd_none_or_clear_bad(src_pgd))
1089 continue;
1090 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1091 vma, addr, next))) {
1092 ret = -ENOMEM;
1093 break;
1095 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1097 if (is_cow)
1098 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1099 return ret;
1102 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1103 struct vm_area_struct *vma, pmd_t *pmd,
1104 unsigned long addr, unsigned long end,
1105 struct zap_details *details)
1107 struct mm_struct *mm = tlb->mm;
1108 int force_flush = 0;
1109 int rss[NR_MM_COUNTERS];
1110 spinlock_t *ptl;
1111 pte_t *start_pte;
1112 pte_t *pte;
1114 again:
1115 init_rss_vec(rss);
1116 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1117 pte = start_pte;
1118 arch_enter_lazy_mmu_mode();
1119 do {
1120 pte_t ptent = *pte;
1121 if (pte_none(ptent)) {
1122 continue;
1125 if (pte_present(ptent)) {
1126 struct page *page;
1128 page = vm_normal_page(vma, addr, ptent);
1129 if (unlikely(details) && page) {
1131 * unmap_shared_mapping_pages() wants to
1132 * invalidate cache without truncating:
1133 * unmap shared but keep private pages.
1135 if (details->check_mapping &&
1136 details->check_mapping != page->mapping)
1137 continue;
1139 * Each page->index must be checked when
1140 * invalidating or truncating nonlinear.
1142 if (details->nonlinear_vma &&
1143 (page->index < details->first_index ||
1144 page->index > details->last_index))
1145 continue;
1147 ptent = ptep_get_and_clear_full(mm, addr, pte,
1148 tlb->fullmm);
1149 tlb_remove_tlb_entry(tlb, pte, addr);
1150 if (unlikely(!page))
1151 continue;
1152 if (unlikely(details) && details->nonlinear_vma
1153 && linear_page_index(details->nonlinear_vma,
1154 addr) != page->index)
1155 set_pte_at(mm, addr, pte,
1156 pgoff_to_pte(page->index));
1157 if (PageAnon(page))
1158 rss[MM_ANONPAGES]--;
1159 else {
1160 if (pte_dirty(ptent))
1161 set_page_dirty(page);
1162 if (pte_young(ptent) &&
1163 likely(!VM_SequentialReadHint(vma)))
1164 mark_page_accessed(page);
1165 rss[MM_FILEPAGES]--;
1167 page_remove_rmap(page);
1168 if (unlikely(page_mapcount(page) < 0))
1169 print_bad_pte(vma, addr, ptent, page);
1170 force_flush = !__tlb_remove_page(tlb, page);
1171 if (force_flush)
1172 break;
1173 continue;
1176 * If details->check_mapping, we leave swap entries;
1177 * if details->nonlinear_vma, we leave file entries.
1179 if (unlikely(details))
1180 continue;
1181 if (pte_file(ptent)) {
1182 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1183 print_bad_pte(vma, addr, ptent, NULL);
1184 } else {
1185 swp_entry_t entry = pte_to_swp_entry(ptent);
1187 if (!non_swap_entry(entry))
1188 rss[MM_SWAPENTS]--;
1189 else if (is_migration_entry(entry)) {
1190 struct page *page;
1192 page = migration_entry_to_page(entry);
1194 if (PageAnon(page))
1195 rss[MM_ANONPAGES]--;
1196 else
1197 rss[MM_FILEPAGES]--;
1199 if (unlikely(!free_swap_and_cache(entry)))
1200 print_bad_pte(vma, addr, ptent, NULL);
1202 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1203 } while (pte++, addr += PAGE_SIZE, addr != end);
1205 add_mm_rss_vec(mm, rss);
1206 arch_leave_lazy_mmu_mode();
1207 pte_unmap_unlock(start_pte, ptl);
1210 * mmu_gather ran out of room to batch pages, we break out of
1211 * the PTE lock to avoid doing the potential expensive TLB invalidate
1212 * and page-free while holding it.
1214 if (force_flush) {
1215 force_flush = 0;
1217 #ifdef HAVE_GENERIC_MMU_GATHER
1218 tlb->start = addr;
1219 tlb->end = end;
1220 #endif
1221 tlb_flush_mmu(tlb);
1222 if (addr != end)
1223 goto again;
1226 return addr;
1229 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma, pud_t *pud,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1234 pmd_t *pmd;
1235 unsigned long next;
1237 pmd = pmd_offset(pud, addr);
1238 do {
1239 next = pmd_addr_end(addr, end);
1240 if (pmd_trans_huge(*pmd)) {
1241 if (next - addr != HPAGE_PMD_SIZE) {
1242 #ifdef CONFIG_DEBUG_VM
1243 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1244 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1245 __func__, addr, end,
1246 vma->vm_start,
1247 vma->vm_end);
1248 BUG();
1250 #endif
1251 split_huge_page_pmd(vma, addr, pmd);
1252 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1253 goto next;
1254 /* fall through */
1257 * Here there can be other concurrent MADV_DONTNEED or
1258 * trans huge page faults running, and if the pmd is
1259 * none or trans huge it can change under us. This is
1260 * because MADV_DONTNEED holds the mmap_sem in read
1261 * mode.
1263 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264 goto next;
1265 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1266 next:
1267 cond_resched();
1268 } while (pmd++, addr = next, addr != end);
1270 return addr;
1273 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1274 struct vm_area_struct *vma, pgd_t *pgd,
1275 unsigned long addr, unsigned long end,
1276 struct zap_details *details)
1278 pud_t *pud;
1279 unsigned long next;
1281 pud = pud_offset(pgd, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_none_or_clear_bad(pud))
1285 continue;
1286 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287 } while (pud++, addr = next, addr != end);
1289 return addr;
1292 static void unmap_page_range(struct mmu_gather *tlb,
1293 struct vm_area_struct *vma,
1294 unsigned long addr, unsigned long end,
1295 struct zap_details *details)
1297 pgd_t *pgd;
1298 unsigned long next;
1300 if (details && !details->check_mapping && !details->nonlinear_vma)
1301 details = NULL;
1303 BUG_ON(addr >= end);
1304 mem_cgroup_uncharge_start();
1305 tlb_start_vma(tlb, vma);
1306 pgd = pgd_offset(vma->vm_mm, addr);
1307 do {
1308 next = pgd_addr_end(addr, end);
1309 if (pgd_none_or_clear_bad(pgd))
1310 continue;
1311 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312 } while (pgd++, addr = next, addr != end);
1313 tlb_end_vma(tlb, vma);
1314 mem_cgroup_uncharge_end();
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319 struct vm_area_struct *vma, unsigned long start_addr,
1320 unsigned long end_addr,
1321 struct zap_details *details)
1323 unsigned long start = max(vma->vm_start, start_addr);
1324 unsigned long end;
1326 if (start >= vma->vm_end)
1327 return;
1328 end = min(vma->vm_end, end_addr);
1329 if (end <= vma->vm_start)
1330 return;
1332 if (vma->vm_file)
1333 uprobe_munmap(vma, start, end);
1335 if (unlikely(vma->vm_flags & VM_PFNMAP))
1336 untrack_pfn(vma, 0, 0);
1338 if (start != end) {
1339 if (unlikely(is_vm_hugetlb_page(vma))) {
1341 * It is undesirable to test vma->vm_file as it
1342 * should be non-null for valid hugetlb area.
1343 * However, vm_file will be NULL in the error
1344 * cleanup path of do_mmap_pgoff. When
1345 * hugetlbfs ->mmap method fails,
1346 * do_mmap_pgoff() nullifies vma->vm_file
1347 * before calling this function to clean up.
1348 * Since no pte has actually been setup, it is
1349 * safe to do nothing in this case.
1351 if (vma->vm_file) {
1352 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1353 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1356 } else
1357 unmap_page_range(tlb, vma, start, end, details);
1362 * unmap_vmas - unmap a range of memory covered by a list of vma's
1363 * @tlb: address of the caller's struct mmu_gather
1364 * @vma: the starting vma
1365 * @start_addr: virtual address at which to start unmapping
1366 * @end_addr: virtual address at which to end unmapping
1368 * Unmap all pages in the vma list.
1370 * Only addresses between `start' and `end' will be unmapped.
1372 * The VMA list must be sorted in ascending virtual address order.
1374 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375 * range after unmap_vmas() returns. So the only responsibility here is to
1376 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377 * drops the lock and schedules.
1379 void unmap_vmas(struct mmu_gather *tlb,
1380 struct vm_area_struct *vma, unsigned long start_addr,
1381 unsigned long end_addr)
1383 struct mm_struct *mm = vma->vm_mm;
1385 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1392 * zap_page_range - remove user pages in a given range
1393 * @vma: vm_area_struct holding the applicable pages
1394 * @start: starting address of pages to zap
1395 * @size: number of bytes to zap
1396 * @details: details of nonlinear truncation or shared cache invalidation
1398 * Caller must protect the VMA list
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401 unsigned long size, struct zap_details *details)
1403 struct mm_struct *mm = vma->vm_mm;
1404 struct mmu_gather tlb;
1405 unsigned long end = start + size;
1407 lru_add_drain();
1408 tlb_gather_mmu(&tlb, mm, 0);
1409 update_hiwater_rss(mm);
1410 mmu_notifier_invalidate_range_start(mm, start, end);
1411 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412 unmap_single_vma(&tlb, vma, start, end, details);
1413 mmu_notifier_invalidate_range_end(mm, start, end);
1414 tlb_finish_mmu(&tlb, start, end);
1418 * zap_page_range_single - remove user pages in a given range
1419 * @vma: vm_area_struct holding the applicable pages
1420 * @address: starting address of pages to zap
1421 * @size: number of bytes to zap
1422 * @details: details of nonlinear truncation or shared cache invalidation
1424 * The range must fit into one VMA.
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427 unsigned long size, struct zap_details *details)
1429 struct mm_struct *mm = vma->vm_mm;
1430 struct mmu_gather tlb;
1431 unsigned long end = address + size;
1433 lru_add_drain();
1434 tlb_gather_mmu(&tlb, mm, 0);
1435 update_hiwater_rss(mm);
1436 mmu_notifier_invalidate_range_start(mm, address, end);
1437 unmap_single_vma(&tlb, vma, address, end, details);
1438 mmu_notifier_invalidate_range_end(mm, address, end);
1439 tlb_finish_mmu(&tlb, address, end);
1443 * zap_vma_ptes - remove ptes mapping the vma
1444 * @vma: vm_area_struct holding ptes to be zapped
1445 * @address: starting address of pages to zap
1446 * @size: number of bytes to zap
1448 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1450 * The entire address range must be fully contained within the vma.
1452 * Returns 0 if successful.
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455 unsigned long size)
1457 if (address < vma->vm_start || address + size > vma->vm_end ||
1458 !(vma->vm_flags & VM_PFNMAP))
1459 return -1;
1460 zap_page_range_single(vma, address, size, NULL);
1461 return 0;
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1466 * follow_page_mask - look up a page descriptor from a user-virtual address
1467 * @vma: vm_area_struct mapping @address
1468 * @address: virtual address to look up
1469 * @flags: flags modifying lookup behaviour
1470 * @page_mask: on output, *page_mask is set according to the size of the page
1472 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1474 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1475 * an error pointer if there is a mapping to something not represented
1476 * by a page descriptor (see also vm_normal_page()).
1478 struct page *follow_page_mask(struct vm_area_struct *vma,
1479 unsigned long address, unsigned int flags,
1480 unsigned int *page_mask)
1482 pgd_t *pgd;
1483 pud_t *pud;
1484 pmd_t *pmd;
1485 pte_t *ptep, pte;
1486 spinlock_t *ptl;
1487 struct page *page;
1488 struct mm_struct *mm = vma->vm_mm;
1490 *page_mask = 0;
1492 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1493 if (!IS_ERR(page)) {
1494 BUG_ON(flags & FOLL_GET);
1495 goto out;
1498 page = NULL;
1499 pgd = pgd_offset(mm, address);
1500 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1501 goto no_page_table;
1503 pud = pud_offset(pgd, address);
1504 if (pud_none(*pud))
1505 goto no_page_table;
1506 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1507 BUG_ON(flags & FOLL_GET);
1508 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1509 goto out;
1511 if (unlikely(pud_bad(*pud)))
1512 goto no_page_table;
1514 pmd = pmd_offset(pud, address);
1515 if (pmd_none(*pmd))
1516 goto no_page_table;
1517 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1518 BUG_ON(flags & FOLL_GET);
1519 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1520 goto out;
1522 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1523 goto no_page_table;
1524 if (pmd_trans_huge(*pmd)) {
1525 if (flags & FOLL_SPLIT) {
1526 split_huge_page_pmd(vma, address, pmd);
1527 goto split_fallthrough;
1529 spin_lock(&mm->page_table_lock);
1530 if (likely(pmd_trans_huge(*pmd))) {
1531 if (unlikely(pmd_trans_splitting(*pmd))) {
1532 spin_unlock(&mm->page_table_lock);
1533 wait_split_huge_page(vma->anon_vma, pmd);
1534 } else {
1535 page = follow_trans_huge_pmd(vma, address,
1536 pmd, flags);
1537 spin_unlock(&mm->page_table_lock);
1538 *page_mask = HPAGE_PMD_NR - 1;
1539 goto out;
1541 } else
1542 spin_unlock(&mm->page_table_lock);
1543 /* fall through */
1545 split_fallthrough:
1546 if (unlikely(pmd_bad(*pmd)))
1547 goto no_page_table;
1549 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1551 pte = *ptep;
1552 if (!pte_present(pte)) {
1553 swp_entry_t entry;
1555 * KSM's break_ksm() relies upon recognizing a ksm page
1556 * even while it is being migrated, so for that case we
1557 * need migration_entry_wait().
1559 if (likely(!(flags & FOLL_MIGRATION)))
1560 goto no_page;
1561 if (pte_none(pte) || pte_file(pte))
1562 goto no_page;
1563 entry = pte_to_swp_entry(pte);
1564 if (!is_migration_entry(entry))
1565 goto no_page;
1566 pte_unmap_unlock(ptep, ptl);
1567 migration_entry_wait(mm, pmd, address);
1568 goto split_fallthrough;
1570 if ((flags & FOLL_NUMA) && pte_numa(pte))
1571 goto no_page;
1572 if ((flags & FOLL_WRITE) && !pte_write(pte))
1573 goto unlock;
1575 page = vm_normal_page(vma, address, pte);
1576 if (unlikely(!page)) {
1577 if ((flags & FOLL_DUMP) ||
1578 !is_zero_pfn(pte_pfn(pte)))
1579 goto bad_page;
1580 page = pte_page(pte);
1583 if (flags & FOLL_GET)
1584 get_page_foll(page);
1585 if (flags & FOLL_TOUCH) {
1586 if ((flags & FOLL_WRITE) &&
1587 !pte_dirty(pte) && !PageDirty(page))
1588 set_page_dirty(page);
1590 * pte_mkyoung() would be more correct here, but atomic care
1591 * is needed to avoid losing the dirty bit: it is easier to use
1592 * mark_page_accessed().
1594 mark_page_accessed(page);
1596 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1598 * The preliminary mapping check is mainly to avoid the
1599 * pointless overhead of lock_page on the ZERO_PAGE
1600 * which might bounce very badly if there is contention.
1602 * If the page is already locked, we don't need to
1603 * handle it now - vmscan will handle it later if and
1604 * when it attempts to reclaim the page.
1606 if (page->mapping && trylock_page(page)) {
1607 lru_add_drain(); /* push cached pages to LRU */
1609 * Because we lock page here, and migration is
1610 * blocked by the pte's page reference, and we
1611 * know the page is still mapped, we don't even
1612 * need to check for file-cache page truncation.
1614 mlock_vma_page(page);
1615 unlock_page(page);
1618 unlock:
1619 pte_unmap_unlock(ptep, ptl);
1620 out:
1621 return page;
1623 bad_page:
1624 pte_unmap_unlock(ptep, ptl);
1625 return ERR_PTR(-EFAULT);
1627 no_page:
1628 pte_unmap_unlock(ptep, ptl);
1629 if (!pte_none(pte))
1630 return page;
1632 no_page_table:
1634 * When core dumping an enormous anonymous area that nobody
1635 * has touched so far, we don't want to allocate unnecessary pages or
1636 * page tables. Return error instead of NULL to skip handle_mm_fault,
1637 * then get_dump_page() will return NULL to leave a hole in the dump.
1638 * But we can only make this optimization where a hole would surely
1639 * be zero-filled if handle_mm_fault() actually did handle it.
1641 if ((flags & FOLL_DUMP) &&
1642 (!vma->vm_ops || !vma->vm_ops->fault))
1643 return ERR_PTR(-EFAULT);
1644 return page;
1647 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1649 return stack_guard_page_start(vma, addr) ||
1650 stack_guard_page_end(vma, addr+PAGE_SIZE);
1654 * __get_user_pages() - pin user pages in memory
1655 * @tsk: task_struct of target task
1656 * @mm: mm_struct of target mm
1657 * @start: starting user address
1658 * @nr_pages: number of pages from start to pin
1659 * @gup_flags: flags modifying pin behaviour
1660 * @pages: array that receives pointers to the pages pinned.
1661 * Should be at least nr_pages long. Or NULL, if caller
1662 * only intends to ensure the pages are faulted in.
1663 * @vmas: array of pointers to vmas corresponding to each page.
1664 * Or NULL if the caller does not require them.
1665 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1667 * Returns number of pages pinned. This may be fewer than the number
1668 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1669 * were pinned, returns -errno. Each page returned must be released
1670 * with a put_page() call when it is finished with. vmas will only
1671 * remain valid while mmap_sem is held.
1673 * Must be called with mmap_sem held for read or write.
1675 * __get_user_pages walks a process's page tables and takes a reference to
1676 * each struct page that each user address corresponds to at a given
1677 * instant. That is, it takes the page that would be accessed if a user
1678 * thread accesses the given user virtual address at that instant.
1680 * This does not guarantee that the page exists in the user mappings when
1681 * __get_user_pages returns, and there may even be a completely different
1682 * page there in some cases (eg. if mmapped pagecache has been invalidated
1683 * and subsequently re faulted). However it does guarantee that the page
1684 * won't be freed completely. And mostly callers simply care that the page
1685 * contains data that was valid *at some point in time*. Typically, an IO
1686 * or similar operation cannot guarantee anything stronger anyway because
1687 * locks can't be held over the syscall boundary.
1689 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1690 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1691 * appropriate) must be called after the page is finished with, and
1692 * before put_page is called.
1694 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1695 * or mmap_sem contention, and if waiting is needed to pin all pages,
1696 * *@nonblocking will be set to 0.
1698 * In most cases, get_user_pages or get_user_pages_fast should be used
1699 * instead of __get_user_pages. __get_user_pages should be used only if
1700 * you need some special @gup_flags.
1702 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1703 unsigned long start, unsigned long nr_pages,
1704 unsigned int gup_flags, struct page **pages,
1705 struct vm_area_struct **vmas, int *nonblocking)
1707 long i;
1708 unsigned long vm_flags;
1709 unsigned int page_mask;
1711 if (!nr_pages)
1712 return 0;
1714 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1717 * Require read or write permissions.
1718 * If FOLL_FORCE is set, we only require the "MAY" flags.
1720 vm_flags = (gup_flags & FOLL_WRITE) ?
1721 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1722 vm_flags &= (gup_flags & FOLL_FORCE) ?
1723 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1726 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1727 * would be called on PROT_NONE ranges. We must never invoke
1728 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1729 * page faults would unprotect the PROT_NONE ranges if
1730 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1731 * bitflag. So to avoid that, don't set FOLL_NUMA if
1732 * FOLL_FORCE is set.
1734 if (!(gup_flags & FOLL_FORCE))
1735 gup_flags |= FOLL_NUMA;
1737 i = 0;
1739 do {
1740 struct vm_area_struct *vma;
1742 vma = find_extend_vma(mm, start);
1743 if (!vma && in_gate_area(mm, start)) {
1744 unsigned long pg = start & PAGE_MASK;
1745 pgd_t *pgd;
1746 pud_t *pud;
1747 pmd_t *pmd;
1748 pte_t *pte;
1750 /* user gate pages are read-only */
1751 if (gup_flags & FOLL_WRITE)
1752 return i ? : -EFAULT;
1753 if (pg > TASK_SIZE)
1754 pgd = pgd_offset_k(pg);
1755 else
1756 pgd = pgd_offset_gate(mm, pg);
1757 BUG_ON(pgd_none(*pgd));
1758 pud = pud_offset(pgd, pg);
1759 BUG_ON(pud_none(*pud));
1760 pmd = pmd_offset(pud, pg);
1761 if (pmd_none(*pmd))
1762 return i ? : -EFAULT;
1763 VM_BUG_ON(pmd_trans_huge(*pmd));
1764 pte = pte_offset_map(pmd, pg);
1765 if (pte_none(*pte)) {
1766 pte_unmap(pte);
1767 return i ? : -EFAULT;
1769 vma = get_gate_vma(mm);
1770 if (pages) {
1771 struct page *page;
1773 page = vm_normal_page(vma, start, *pte);
1774 if (!page) {
1775 if (!(gup_flags & FOLL_DUMP) &&
1776 is_zero_pfn(pte_pfn(*pte)))
1777 page = pte_page(*pte);
1778 else {
1779 pte_unmap(pte);
1780 return i ? : -EFAULT;
1783 pages[i] = page;
1784 get_page(page);
1786 pte_unmap(pte);
1787 page_mask = 0;
1788 goto next_page;
1791 if (!vma ||
1792 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1793 !(vm_flags & vma->vm_flags))
1794 return i ? : -EFAULT;
1796 if (is_vm_hugetlb_page(vma)) {
1797 i = follow_hugetlb_page(mm, vma, pages, vmas,
1798 &start, &nr_pages, i, gup_flags);
1799 continue;
1802 do {
1803 struct page *page;
1804 unsigned int foll_flags = gup_flags;
1805 unsigned int page_increm;
1808 * If we have a pending SIGKILL, don't keep faulting
1809 * pages and potentially allocating memory.
1811 if (unlikely(fatal_signal_pending(current)))
1812 return i ? i : -ERESTARTSYS;
1814 cond_resched();
1815 while (!(page = follow_page_mask(vma, start,
1816 foll_flags, &page_mask))) {
1817 int ret;
1818 unsigned int fault_flags = 0;
1820 /* For mlock, just skip the stack guard page. */
1821 if (foll_flags & FOLL_MLOCK) {
1822 if (stack_guard_page(vma, start))
1823 goto next_page;
1825 if (foll_flags & FOLL_WRITE)
1826 fault_flags |= FAULT_FLAG_WRITE;
1827 if (nonblocking)
1828 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1829 if (foll_flags & FOLL_NOWAIT)
1830 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1832 ret = handle_mm_fault(mm, vma, start,
1833 fault_flags);
1835 if (ret & VM_FAULT_ERROR) {
1836 if (ret & VM_FAULT_OOM)
1837 return i ? i : -ENOMEM;
1838 if (ret & (VM_FAULT_HWPOISON |
1839 VM_FAULT_HWPOISON_LARGE)) {
1840 if (i)
1841 return i;
1842 else if (gup_flags & FOLL_HWPOISON)
1843 return -EHWPOISON;
1844 else
1845 return -EFAULT;
1847 if (ret & VM_FAULT_SIGBUS)
1848 return i ? i : -EFAULT;
1849 BUG();
1852 if (tsk) {
1853 if (ret & VM_FAULT_MAJOR)
1854 tsk->maj_flt++;
1855 else
1856 tsk->min_flt++;
1859 if (ret & VM_FAULT_RETRY) {
1860 if (nonblocking)
1861 *nonblocking = 0;
1862 return i;
1866 * The VM_FAULT_WRITE bit tells us that
1867 * do_wp_page has broken COW when necessary,
1868 * even if maybe_mkwrite decided not to set
1869 * pte_write. We can thus safely do subsequent
1870 * page lookups as if they were reads. But only
1871 * do so when looping for pte_write is futile:
1872 * in some cases userspace may also be wanting
1873 * to write to the gotten user page, which a
1874 * read fault here might prevent (a readonly
1875 * page might get reCOWed by userspace write).
1877 if ((ret & VM_FAULT_WRITE) &&
1878 !(vma->vm_flags & VM_WRITE))
1879 foll_flags &= ~FOLL_WRITE;
1881 cond_resched();
1883 if (IS_ERR(page))
1884 return i ? i : PTR_ERR(page);
1885 if (pages) {
1886 pages[i] = page;
1888 flush_anon_page(vma, page, start);
1889 flush_dcache_page(page);
1890 page_mask = 0;
1892 next_page:
1893 if (vmas) {
1894 vmas[i] = vma;
1895 page_mask = 0;
1897 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1898 if (page_increm > nr_pages)
1899 page_increm = nr_pages;
1900 i += page_increm;
1901 start += page_increm * PAGE_SIZE;
1902 nr_pages -= page_increm;
1903 } while (nr_pages && start < vma->vm_end);
1904 } while (nr_pages);
1905 return i;
1907 EXPORT_SYMBOL(__get_user_pages);
1910 * fixup_user_fault() - manually resolve a user page fault
1911 * @tsk: the task_struct to use for page fault accounting, or
1912 * NULL if faults are not to be recorded.
1913 * @mm: mm_struct of target mm
1914 * @address: user address
1915 * @fault_flags:flags to pass down to handle_mm_fault()
1917 * This is meant to be called in the specific scenario where for locking reasons
1918 * we try to access user memory in atomic context (within a pagefault_disable()
1919 * section), this returns -EFAULT, and we want to resolve the user fault before
1920 * trying again.
1922 * Typically this is meant to be used by the futex code.
1924 * The main difference with get_user_pages() is that this function will
1925 * unconditionally call handle_mm_fault() which will in turn perform all the
1926 * necessary SW fixup of the dirty and young bits in the PTE, while
1927 * handle_mm_fault() only guarantees to update these in the struct page.
1929 * This is important for some architectures where those bits also gate the
1930 * access permission to the page because they are maintained in software. On
1931 * such architectures, gup() will not be enough to make a subsequent access
1932 * succeed.
1934 * This should be called with the mm_sem held for read.
1936 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1937 unsigned long address, unsigned int fault_flags)
1939 struct vm_area_struct *vma;
1940 int ret;
1942 vma = find_extend_vma(mm, address);
1943 if (!vma || address < vma->vm_start)
1944 return -EFAULT;
1946 ret = handle_mm_fault(mm, vma, address, fault_flags);
1947 if (ret & VM_FAULT_ERROR) {
1948 if (ret & VM_FAULT_OOM)
1949 return -ENOMEM;
1950 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1951 return -EHWPOISON;
1952 if (ret & VM_FAULT_SIGBUS)
1953 return -EFAULT;
1954 BUG();
1956 if (tsk) {
1957 if (ret & VM_FAULT_MAJOR)
1958 tsk->maj_flt++;
1959 else
1960 tsk->min_flt++;
1962 return 0;
1966 * get_user_pages() - pin user pages in memory
1967 * @tsk: the task_struct to use for page fault accounting, or
1968 * NULL if faults are not to be recorded.
1969 * @mm: mm_struct of target mm
1970 * @start: starting user address
1971 * @nr_pages: number of pages from start to pin
1972 * @write: whether pages will be written to by the caller
1973 * @force: whether to force write access even if user mapping is
1974 * readonly. This will result in the page being COWed even
1975 * in MAP_SHARED mappings. You do not want this.
1976 * @pages: array that receives pointers to the pages pinned.
1977 * Should be at least nr_pages long. Or NULL, if caller
1978 * only intends to ensure the pages are faulted in.
1979 * @vmas: array of pointers to vmas corresponding to each page.
1980 * Or NULL if the caller does not require them.
1982 * Returns number of pages pinned. This may be fewer than the number
1983 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1984 * were pinned, returns -errno. Each page returned must be released
1985 * with a put_page() call when it is finished with. vmas will only
1986 * remain valid while mmap_sem is held.
1988 * Must be called with mmap_sem held for read or write.
1990 * get_user_pages walks a process's page tables and takes a reference to
1991 * each struct page that each user address corresponds to at a given
1992 * instant. That is, it takes the page that would be accessed if a user
1993 * thread accesses the given user virtual address at that instant.
1995 * This does not guarantee that the page exists in the user mappings when
1996 * get_user_pages returns, and there may even be a completely different
1997 * page there in some cases (eg. if mmapped pagecache has been invalidated
1998 * and subsequently re faulted). However it does guarantee that the page
1999 * won't be freed completely. And mostly callers simply care that the page
2000 * contains data that was valid *at some point in time*. Typically, an IO
2001 * or similar operation cannot guarantee anything stronger anyway because
2002 * locks can't be held over the syscall boundary.
2004 * If write=0, the page must not be written to. If the page is written to,
2005 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2006 * after the page is finished with, and before put_page is called.
2008 * get_user_pages is typically used for fewer-copy IO operations, to get a
2009 * handle on the memory by some means other than accesses via the user virtual
2010 * addresses. The pages may be submitted for DMA to devices or accessed via
2011 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2012 * use the correct cache flushing APIs.
2014 * See also get_user_pages_fast, for performance critical applications.
2016 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2017 unsigned long start, unsigned long nr_pages, int write,
2018 int force, struct page **pages, struct vm_area_struct **vmas)
2020 int flags = FOLL_TOUCH;
2022 if (pages)
2023 flags |= FOLL_GET;
2024 if (write)
2025 flags |= FOLL_WRITE;
2026 if (force)
2027 flags |= FOLL_FORCE;
2029 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2030 NULL);
2032 EXPORT_SYMBOL(get_user_pages);
2035 * get_dump_page() - pin user page in memory while writing it to core dump
2036 * @addr: user address
2038 * Returns struct page pointer of user page pinned for dump,
2039 * to be freed afterwards by page_cache_release() or put_page().
2041 * Returns NULL on any kind of failure - a hole must then be inserted into
2042 * the corefile, to preserve alignment with its headers; and also returns
2043 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2044 * allowing a hole to be left in the corefile to save diskspace.
2046 * Called without mmap_sem, but after all other threads have been killed.
2048 #ifdef CONFIG_ELF_CORE
2049 struct page *get_dump_page(unsigned long addr)
2051 struct vm_area_struct *vma;
2052 struct page *page;
2054 if (__get_user_pages(current, current->mm, addr, 1,
2055 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2056 NULL) < 1)
2057 return NULL;
2058 flush_cache_page(vma, addr, page_to_pfn(page));
2059 return page;
2061 #endif /* CONFIG_ELF_CORE */
2063 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2064 spinlock_t **ptl)
2066 pgd_t * pgd = pgd_offset(mm, addr);
2067 pud_t * pud = pud_alloc(mm, pgd, addr);
2068 if (pud) {
2069 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2070 if (pmd) {
2071 VM_BUG_ON(pmd_trans_huge(*pmd));
2072 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2075 return NULL;
2079 * This is the old fallback for page remapping.
2081 * For historical reasons, it only allows reserved pages. Only
2082 * old drivers should use this, and they needed to mark their
2083 * pages reserved for the old functions anyway.
2085 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2086 struct page *page, pgprot_t prot)
2088 struct mm_struct *mm = vma->vm_mm;
2089 int retval;
2090 pte_t *pte;
2091 spinlock_t *ptl;
2093 retval = -EINVAL;
2094 if (PageAnon(page))
2095 goto out;
2096 retval = -ENOMEM;
2097 flush_dcache_page(page);
2098 pte = get_locked_pte(mm, addr, &ptl);
2099 if (!pte)
2100 goto out;
2101 retval = -EBUSY;
2102 if (!pte_none(*pte))
2103 goto out_unlock;
2105 /* Ok, finally just insert the thing.. */
2106 get_page(page);
2107 inc_mm_counter_fast(mm, MM_FILEPAGES);
2108 page_add_file_rmap(page);
2109 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2111 retval = 0;
2112 pte_unmap_unlock(pte, ptl);
2113 return retval;
2114 out_unlock:
2115 pte_unmap_unlock(pte, ptl);
2116 out:
2117 return retval;
2121 * vm_insert_page - insert single page into user vma
2122 * @vma: user vma to map to
2123 * @addr: target user address of this page
2124 * @page: source kernel page
2126 * This allows drivers to insert individual pages they've allocated
2127 * into a user vma.
2129 * The page has to be a nice clean _individual_ kernel allocation.
2130 * If you allocate a compound page, you need to have marked it as
2131 * such (__GFP_COMP), or manually just split the page up yourself
2132 * (see split_page()).
2134 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2135 * took an arbitrary page protection parameter. This doesn't allow
2136 * that. Your vma protection will have to be set up correctly, which
2137 * means that if you want a shared writable mapping, you'd better
2138 * ask for a shared writable mapping!
2140 * The page does not need to be reserved.
2142 * Usually this function is called from f_op->mmap() handler
2143 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2144 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2145 * function from other places, for example from page-fault handler.
2147 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2148 struct page *page)
2150 if (addr < vma->vm_start || addr >= vma->vm_end)
2151 return -EFAULT;
2152 if (!page_count(page))
2153 return -EINVAL;
2154 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2155 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2156 BUG_ON(vma->vm_flags & VM_PFNMAP);
2157 vma->vm_flags |= VM_MIXEDMAP;
2159 return insert_page(vma, addr, page, vma->vm_page_prot);
2161 EXPORT_SYMBOL(vm_insert_page);
2163 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2164 unsigned long pfn, pgprot_t prot)
2166 struct mm_struct *mm = vma->vm_mm;
2167 int retval;
2168 pte_t *pte, entry;
2169 spinlock_t *ptl;
2171 retval = -ENOMEM;
2172 pte = get_locked_pte(mm, addr, &ptl);
2173 if (!pte)
2174 goto out;
2175 retval = -EBUSY;
2176 if (!pte_none(*pte))
2177 goto out_unlock;
2179 /* Ok, finally just insert the thing.. */
2180 entry = pte_mkspecial(pfn_pte(pfn, prot));
2181 set_pte_at(mm, addr, pte, entry);
2182 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2184 retval = 0;
2185 out_unlock:
2186 pte_unmap_unlock(pte, ptl);
2187 out:
2188 return retval;
2192 * vm_insert_pfn - insert single pfn into user vma
2193 * @vma: user vma to map to
2194 * @addr: target user address of this page
2195 * @pfn: source kernel pfn
2197 * Similar to vm_insert_page, this allows drivers to insert individual pages
2198 * they've allocated into a user vma. Same comments apply.
2200 * This function should only be called from a vm_ops->fault handler, and
2201 * in that case the handler should return NULL.
2203 * vma cannot be a COW mapping.
2205 * As this is called only for pages that do not currently exist, we
2206 * do not need to flush old virtual caches or the TLB.
2208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2209 unsigned long pfn)
2211 int ret;
2212 pgprot_t pgprot = vma->vm_page_prot;
2214 * Technically, architectures with pte_special can avoid all these
2215 * restrictions (same for remap_pfn_range). However we would like
2216 * consistency in testing and feature parity among all, so we should
2217 * try to keep these invariants in place for everybody.
2219 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2220 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2221 (VM_PFNMAP|VM_MIXEDMAP));
2222 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2223 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2225 if (addr < vma->vm_start || addr >= vma->vm_end)
2226 return -EFAULT;
2227 if (track_pfn_insert(vma, &pgprot, pfn))
2228 return -EINVAL;
2230 ret = insert_pfn(vma, addr, pfn, pgprot);
2232 return ret;
2234 EXPORT_SYMBOL(vm_insert_pfn);
2236 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2237 unsigned long pfn)
2239 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2241 if (addr < vma->vm_start || addr >= vma->vm_end)
2242 return -EFAULT;
2245 * If we don't have pte special, then we have to use the pfn_valid()
2246 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2247 * refcount the page if pfn_valid is true (hence insert_page rather
2248 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2249 * without pte special, it would there be refcounted as a normal page.
2251 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2252 struct page *page;
2254 page = pfn_to_page(pfn);
2255 return insert_page(vma, addr, page, vma->vm_page_prot);
2257 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2259 EXPORT_SYMBOL(vm_insert_mixed);
2262 * maps a range of physical memory into the requested pages. the old
2263 * mappings are removed. any references to nonexistent pages results
2264 * in null mappings (currently treated as "copy-on-access")
2266 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2267 unsigned long addr, unsigned long end,
2268 unsigned long pfn, pgprot_t prot)
2270 pte_t *pte;
2271 spinlock_t *ptl;
2273 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2274 if (!pte)
2275 return -ENOMEM;
2276 arch_enter_lazy_mmu_mode();
2277 do {
2278 BUG_ON(!pte_none(*pte));
2279 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2280 pfn++;
2281 } while (pte++, addr += PAGE_SIZE, addr != end);
2282 arch_leave_lazy_mmu_mode();
2283 pte_unmap_unlock(pte - 1, ptl);
2284 return 0;
2287 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2288 unsigned long addr, unsigned long end,
2289 unsigned long pfn, pgprot_t prot)
2291 pmd_t *pmd;
2292 unsigned long next;
2294 pfn -= addr >> PAGE_SHIFT;
2295 pmd = pmd_alloc(mm, pud, addr);
2296 if (!pmd)
2297 return -ENOMEM;
2298 VM_BUG_ON(pmd_trans_huge(*pmd));
2299 do {
2300 next = pmd_addr_end(addr, end);
2301 if (remap_pte_range(mm, pmd, addr, next,
2302 pfn + (addr >> PAGE_SHIFT), prot))
2303 return -ENOMEM;
2304 } while (pmd++, addr = next, addr != end);
2305 return 0;
2308 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2309 unsigned long addr, unsigned long end,
2310 unsigned long pfn, pgprot_t prot)
2312 pud_t *pud;
2313 unsigned long next;
2315 pfn -= addr >> PAGE_SHIFT;
2316 pud = pud_alloc(mm, pgd, addr);
2317 if (!pud)
2318 return -ENOMEM;
2319 do {
2320 next = pud_addr_end(addr, end);
2321 if (remap_pmd_range(mm, pud, addr, next,
2322 pfn + (addr >> PAGE_SHIFT), prot))
2323 return -ENOMEM;
2324 } while (pud++, addr = next, addr != end);
2325 return 0;
2329 * remap_pfn_range - remap kernel memory to userspace
2330 * @vma: user vma to map to
2331 * @addr: target user address to start at
2332 * @pfn: physical address of kernel memory
2333 * @size: size of map area
2334 * @prot: page protection flags for this mapping
2336 * Note: this is only safe if the mm semaphore is held when called.
2338 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2339 unsigned long pfn, unsigned long size, pgprot_t prot)
2341 pgd_t *pgd;
2342 unsigned long next;
2343 unsigned long end = addr + PAGE_ALIGN(size);
2344 struct mm_struct *mm = vma->vm_mm;
2345 int err;
2348 * Physically remapped pages are special. Tell the
2349 * rest of the world about it:
2350 * VM_IO tells people not to look at these pages
2351 * (accesses can have side effects).
2352 * VM_PFNMAP tells the core MM that the base pages are just
2353 * raw PFN mappings, and do not have a "struct page" associated
2354 * with them.
2355 * VM_DONTEXPAND
2356 * Disable vma merging and expanding with mremap().
2357 * VM_DONTDUMP
2358 * Omit vma from core dump, even when VM_IO turned off.
2360 * There's a horrible special case to handle copy-on-write
2361 * behaviour that some programs depend on. We mark the "original"
2362 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2363 * See vm_normal_page() for details.
2365 if (is_cow_mapping(vma->vm_flags)) {
2366 if (addr != vma->vm_start || end != vma->vm_end)
2367 return -EINVAL;
2368 vma->vm_pgoff = pfn;
2371 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2372 if (err)
2373 return -EINVAL;
2375 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2377 BUG_ON(addr >= end);
2378 pfn -= addr >> PAGE_SHIFT;
2379 pgd = pgd_offset(mm, addr);
2380 flush_cache_range(vma, addr, end);
2381 do {
2382 next = pgd_addr_end(addr, end);
2383 err = remap_pud_range(mm, pgd, addr, next,
2384 pfn + (addr >> PAGE_SHIFT), prot);
2385 if (err)
2386 break;
2387 } while (pgd++, addr = next, addr != end);
2389 if (err)
2390 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2392 return err;
2394 EXPORT_SYMBOL(remap_pfn_range);
2397 * vm_iomap_memory - remap memory to userspace
2398 * @vma: user vma to map to
2399 * @start: start of area
2400 * @len: size of area
2402 * This is a simplified io_remap_pfn_range() for common driver use. The
2403 * driver just needs to give us the physical memory range to be mapped,
2404 * we'll figure out the rest from the vma information.
2406 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2407 * whatever write-combining details or similar.
2409 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2411 unsigned long vm_len, pfn, pages;
2413 /* Check that the physical memory area passed in looks valid */
2414 if (start + len < start)
2415 return -EINVAL;
2417 * You *really* shouldn't map things that aren't page-aligned,
2418 * but we've historically allowed it because IO memory might
2419 * just have smaller alignment.
2421 len += start & ~PAGE_MASK;
2422 pfn = start >> PAGE_SHIFT;
2423 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2424 if (pfn + pages < pfn)
2425 return -EINVAL;
2427 /* We start the mapping 'vm_pgoff' pages into the area */
2428 if (vma->vm_pgoff > pages)
2429 return -EINVAL;
2430 pfn += vma->vm_pgoff;
2431 pages -= vma->vm_pgoff;
2433 /* Can we fit all of the mapping? */
2434 vm_len = vma->vm_end - vma->vm_start;
2435 if (vm_len >> PAGE_SHIFT > pages)
2436 return -EINVAL;
2438 /* Ok, let it rip */
2439 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2441 EXPORT_SYMBOL(vm_iomap_memory);
2443 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2444 unsigned long addr, unsigned long end,
2445 pte_fn_t fn, void *data)
2447 pte_t *pte;
2448 int err;
2449 pgtable_t token;
2450 spinlock_t *uninitialized_var(ptl);
2452 pte = (mm == &init_mm) ?
2453 pte_alloc_kernel(pmd, addr) :
2454 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2455 if (!pte)
2456 return -ENOMEM;
2458 BUG_ON(pmd_huge(*pmd));
2460 arch_enter_lazy_mmu_mode();
2462 token = pmd_pgtable(*pmd);
2464 do {
2465 err = fn(pte++, token, addr, data);
2466 if (err)
2467 break;
2468 } while (addr += PAGE_SIZE, addr != end);
2470 arch_leave_lazy_mmu_mode();
2472 if (mm != &init_mm)
2473 pte_unmap_unlock(pte-1, ptl);
2474 return err;
2477 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2478 unsigned long addr, unsigned long end,
2479 pte_fn_t fn, void *data)
2481 pmd_t *pmd;
2482 unsigned long next;
2483 int err;
2485 BUG_ON(pud_huge(*pud));
2487 pmd = pmd_alloc(mm, pud, addr);
2488 if (!pmd)
2489 return -ENOMEM;
2490 do {
2491 next = pmd_addr_end(addr, end);
2492 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2493 if (err)
2494 break;
2495 } while (pmd++, addr = next, addr != end);
2496 return err;
2499 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2500 unsigned long addr, unsigned long end,
2501 pte_fn_t fn, void *data)
2503 pud_t *pud;
2504 unsigned long next;
2505 int err;
2507 pud = pud_alloc(mm, pgd, addr);
2508 if (!pud)
2509 return -ENOMEM;
2510 do {
2511 next = pud_addr_end(addr, end);
2512 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2513 if (err)
2514 break;
2515 } while (pud++, addr = next, addr != end);
2516 return err;
2520 * Scan a region of virtual memory, filling in page tables as necessary
2521 * and calling a provided function on each leaf page table.
2523 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2524 unsigned long size, pte_fn_t fn, void *data)
2526 pgd_t *pgd;
2527 unsigned long next;
2528 unsigned long end = addr + size;
2529 int err;
2531 BUG_ON(addr >= end);
2532 pgd = pgd_offset(mm, addr);
2533 do {
2534 next = pgd_addr_end(addr, end);
2535 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2536 if (err)
2537 break;
2538 } while (pgd++, addr = next, addr != end);
2540 return err;
2542 EXPORT_SYMBOL_GPL(apply_to_page_range);
2545 * handle_pte_fault chooses page fault handler according to an entry
2546 * which was read non-atomically. Before making any commitment, on
2547 * those architectures or configurations (e.g. i386 with PAE) which
2548 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2549 * must check under lock before unmapping the pte and proceeding
2550 * (but do_wp_page is only called after already making such a check;
2551 * and do_anonymous_page can safely check later on).
2553 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2554 pte_t *page_table, pte_t orig_pte)
2556 int same = 1;
2557 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2558 if (sizeof(pte_t) > sizeof(unsigned long)) {
2559 spinlock_t *ptl = pte_lockptr(mm, pmd);
2560 spin_lock(ptl);
2561 same = pte_same(*page_table, orig_pte);
2562 spin_unlock(ptl);
2564 #endif
2565 pte_unmap(page_table);
2566 return same;
2569 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2572 * If the source page was a PFN mapping, we don't have
2573 * a "struct page" for it. We do a best-effort copy by
2574 * just copying from the original user address. If that
2575 * fails, we just zero-fill it. Live with it.
2577 if (unlikely(!src)) {
2578 void *kaddr = kmap_atomic(dst);
2579 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2582 * This really shouldn't fail, because the page is there
2583 * in the page tables. But it might just be unreadable,
2584 * in which case we just give up and fill the result with
2585 * zeroes.
2587 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2588 clear_page(kaddr);
2589 kunmap_atomic(kaddr);
2590 flush_dcache_page(dst);
2591 } else
2592 copy_user_highpage(dst, src, va, vma);
2596 * This routine handles present pages, when users try to write
2597 * to a shared page. It is done by copying the page to a new address
2598 * and decrementing the shared-page counter for the old page.
2600 * Note that this routine assumes that the protection checks have been
2601 * done by the caller (the low-level page fault routine in most cases).
2602 * Thus we can safely just mark it writable once we've done any necessary
2603 * COW.
2605 * We also mark the page dirty at this point even though the page will
2606 * change only once the write actually happens. This avoids a few races,
2607 * and potentially makes it more efficient.
2609 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2610 * but allow concurrent faults), with pte both mapped and locked.
2611 * We return with mmap_sem still held, but pte unmapped and unlocked.
2613 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2614 unsigned long address, pte_t *page_table, pmd_t *pmd,
2615 spinlock_t *ptl, pte_t orig_pte)
2616 __releases(ptl)
2618 struct page *old_page, *new_page = NULL;
2619 pte_t entry;
2620 int ret = 0;
2621 int page_mkwrite = 0;
2622 struct page *dirty_page = NULL;
2623 unsigned long mmun_start = 0; /* For mmu_notifiers */
2624 unsigned long mmun_end = 0; /* For mmu_notifiers */
2626 old_page = vm_normal_page(vma, address, orig_pte);
2627 if (!old_page) {
2629 * VM_MIXEDMAP !pfn_valid() case
2631 * We should not cow pages in a shared writeable mapping.
2632 * Just mark the pages writable as we can't do any dirty
2633 * accounting on raw pfn maps.
2635 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2636 (VM_WRITE|VM_SHARED))
2637 goto reuse;
2638 goto gotten;
2642 * Take out anonymous pages first, anonymous shared vmas are
2643 * not dirty accountable.
2645 if (PageAnon(old_page) && !PageKsm(old_page)) {
2646 if (!trylock_page(old_page)) {
2647 page_cache_get(old_page);
2648 pte_unmap_unlock(page_table, ptl);
2649 lock_page(old_page);
2650 page_table = pte_offset_map_lock(mm, pmd, address,
2651 &ptl);
2652 if (!pte_same(*page_table, orig_pte)) {
2653 unlock_page(old_page);
2654 goto unlock;
2656 page_cache_release(old_page);
2658 if (reuse_swap_page(old_page)) {
2660 * The page is all ours. Move it to our anon_vma so
2661 * the rmap code will not search our parent or siblings.
2662 * Protected against the rmap code by the page lock.
2664 page_move_anon_rmap(old_page, vma, address);
2665 unlock_page(old_page);
2666 goto reuse;
2668 unlock_page(old_page);
2669 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2670 (VM_WRITE|VM_SHARED))) {
2672 * Only catch write-faults on shared writable pages,
2673 * read-only shared pages can get COWed by
2674 * get_user_pages(.write=1, .force=1).
2676 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2677 struct vm_fault vmf;
2678 int tmp;
2680 vmf.virtual_address = (void __user *)(address &
2681 PAGE_MASK);
2682 vmf.pgoff = old_page->index;
2683 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2684 vmf.page = old_page;
2687 * Notify the address space that the page is about to
2688 * become writable so that it can prohibit this or wait
2689 * for the page to get into an appropriate state.
2691 * We do this without the lock held, so that it can
2692 * sleep if it needs to.
2694 page_cache_get(old_page);
2695 pte_unmap_unlock(page_table, ptl);
2697 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2698 if (unlikely(tmp &
2699 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2700 ret = tmp;
2701 goto unwritable_page;
2703 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2704 lock_page(old_page);
2705 if (!old_page->mapping) {
2706 ret = 0; /* retry the fault */
2707 unlock_page(old_page);
2708 goto unwritable_page;
2710 } else
2711 VM_BUG_ON(!PageLocked(old_page));
2714 * Since we dropped the lock we need to revalidate
2715 * the PTE as someone else may have changed it. If
2716 * they did, we just return, as we can count on the
2717 * MMU to tell us if they didn't also make it writable.
2719 page_table = pte_offset_map_lock(mm, pmd, address,
2720 &ptl);
2721 if (!pte_same(*page_table, orig_pte)) {
2722 unlock_page(old_page);
2723 goto unlock;
2726 page_mkwrite = 1;
2728 dirty_page = old_page;
2729 get_page(dirty_page);
2731 reuse:
2732 flush_cache_page(vma, address, pte_pfn(orig_pte));
2733 entry = pte_mkyoung(orig_pte);
2734 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2735 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2736 update_mmu_cache(vma, address, page_table);
2737 pte_unmap_unlock(page_table, ptl);
2738 ret |= VM_FAULT_WRITE;
2740 if (!dirty_page)
2741 return ret;
2744 * Yes, Virginia, this is actually required to prevent a race
2745 * with clear_page_dirty_for_io() from clearing the page dirty
2746 * bit after it clear all dirty ptes, but before a racing
2747 * do_wp_page installs a dirty pte.
2749 * __do_fault is protected similarly.
2751 if (!page_mkwrite) {
2752 wait_on_page_locked(dirty_page);
2753 set_page_dirty_balance(dirty_page, page_mkwrite);
2754 /* file_update_time outside page_lock */
2755 if (vma->vm_file)
2756 file_update_time(vma->vm_file);
2758 put_page(dirty_page);
2759 if (page_mkwrite) {
2760 struct address_space *mapping = dirty_page->mapping;
2762 set_page_dirty(dirty_page);
2763 unlock_page(dirty_page);
2764 page_cache_release(dirty_page);
2765 if (mapping) {
2767 * Some device drivers do not set page.mapping
2768 * but still dirty their pages
2770 balance_dirty_pages_ratelimited(mapping);
2774 return ret;
2778 * Ok, we need to copy. Oh, well..
2780 page_cache_get(old_page);
2781 gotten:
2782 pte_unmap_unlock(page_table, ptl);
2784 if (unlikely(anon_vma_prepare(vma)))
2785 goto oom;
2787 if (is_zero_pfn(pte_pfn(orig_pte))) {
2788 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2789 if (!new_page)
2790 goto oom;
2791 } else {
2792 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2793 if (!new_page)
2794 goto oom;
2795 cow_user_page(new_page, old_page, address, vma);
2797 __SetPageUptodate(new_page);
2799 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2800 goto oom_free_new;
2802 mmun_start = address & PAGE_MASK;
2803 mmun_end = mmun_start + PAGE_SIZE;
2804 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2807 * Re-check the pte - we dropped the lock
2809 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2810 if (likely(pte_same(*page_table, orig_pte))) {
2811 if (old_page) {
2812 if (!PageAnon(old_page)) {
2813 dec_mm_counter_fast(mm, MM_FILEPAGES);
2814 inc_mm_counter_fast(mm, MM_ANONPAGES);
2816 } else
2817 inc_mm_counter_fast(mm, MM_ANONPAGES);
2818 flush_cache_page(vma, address, pte_pfn(orig_pte));
2819 entry = mk_pte(new_page, vma->vm_page_prot);
2820 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2822 * Clear the pte entry and flush it first, before updating the
2823 * pte with the new entry. This will avoid a race condition
2824 * seen in the presence of one thread doing SMC and another
2825 * thread doing COW.
2827 ptep_clear_flush(vma, address, page_table);
2828 page_add_new_anon_rmap(new_page, vma, address);
2830 * We call the notify macro here because, when using secondary
2831 * mmu page tables (such as kvm shadow page tables), we want the
2832 * new page to be mapped directly into the secondary page table.
2834 set_pte_at_notify(mm, address, page_table, entry);
2835 update_mmu_cache(vma, address, page_table);
2836 if (old_page) {
2838 * Only after switching the pte to the new page may
2839 * we remove the mapcount here. Otherwise another
2840 * process may come and find the rmap count decremented
2841 * before the pte is switched to the new page, and
2842 * "reuse" the old page writing into it while our pte
2843 * here still points into it and can be read by other
2844 * threads.
2846 * The critical issue is to order this
2847 * page_remove_rmap with the ptp_clear_flush above.
2848 * Those stores are ordered by (if nothing else,)
2849 * the barrier present in the atomic_add_negative
2850 * in page_remove_rmap.
2852 * Then the TLB flush in ptep_clear_flush ensures that
2853 * no process can access the old page before the
2854 * decremented mapcount is visible. And the old page
2855 * cannot be reused until after the decremented
2856 * mapcount is visible. So transitively, TLBs to
2857 * old page will be flushed before it can be reused.
2859 page_remove_rmap(old_page);
2862 /* Free the old page.. */
2863 new_page = old_page;
2864 ret |= VM_FAULT_WRITE;
2865 } else
2866 mem_cgroup_uncharge_page(new_page);
2868 if (new_page)
2869 page_cache_release(new_page);
2870 unlock:
2871 pte_unmap_unlock(page_table, ptl);
2872 if (mmun_end > mmun_start)
2873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2874 if (old_page) {
2876 * Don't let another task, with possibly unlocked vma,
2877 * keep the mlocked page.
2879 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2880 lock_page(old_page); /* LRU manipulation */
2881 munlock_vma_page(old_page);
2882 unlock_page(old_page);
2884 page_cache_release(old_page);
2886 return ret;
2887 oom_free_new:
2888 page_cache_release(new_page);
2889 oom:
2890 if (old_page)
2891 page_cache_release(old_page);
2892 return VM_FAULT_OOM;
2894 unwritable_page:
2895 page_cache_release(old_page);
2896 return ret;
2899 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2900 unsigned long start_addr, unsigned long end_addr,
2901 struct zap_details *details)
2903 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2906 static inline void unmap_mapping_range_tree(struct rb_root *root,
2907 struct zap_details *details)
2909 struct vm_area_struct *vma;
2910 pgoff_t vba, vea, zba, zea;
2912 vma_interval_tree_foreach(vma, root,
2913 details->first_index, details->last_index) {
2915 vba = vma->vm_pgoff;
2916 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2917 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2918 zba = details->first_index;
2919 if (zba < vba)
2920 zba = vba;
2921 zea = details->last_index;
2922 if (zea > vea)
2923 zea = vea;
2925 unmap_mapping_range_vma(vma,
2926 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2927 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2928 details);
2932 static inline void unmap_mapping_range_list(struct list_head *head,
2933 struct zap_details *details)
2935 struct vm_area_struct *vma;
2938 * In nonlinear VMAs there is no correspondence between virtual address
2939 * offset and file offset. So we must perform an exhaustive search
2940 * across *all* the pages in each nonlinear VMA, not just the pages
2941 * whose virtual address lies outside the file truncation point.
2943 list_for_each_entry(vma, head, shared.nonlinear) {
2944 details->nonlinear_vma = vma;
2945 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2950 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2951 * @mapping: the address space containing mmaps to be unmapped.
2952 * @holebegin: byte in first page to unmap, relative to the start of
2953 * the underlying file. This will be rounded down to a PAGE_SIZE
2954 * boundary. Note that this is different from truncate_pagecache(), which
2955 * must keep the partial page. In contrast, we must get rid of
2956 * partial pages.
2957 * @holelen: size of prospective hole in bytes. This will be rounded
2958 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2959 * end of the file.
2960 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2961 * but 0 when invalidating pagecache, don't throw away private data.
2963 void unmap_mapping_range(struct address_space *mapping,
2964 loff_t const holebegin, loff_t const holelen, int even_cows)
2966 struct zap_details details;
2967 pgoff_t hba = holebegin >> PAGE_SHIFT;
2968 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2970 /* Check for overflow. */
2971 if (sizeof(holelen) > sizeof(hlen)) {
2972 long long holeend =
2973 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2974 if (holeend & ~(long long)ULONG_MAX)
2975 hlen = ULONG_MAX - hba + 1;
2978 details.check_mapping = even_cows? NULL: mapping;
2979 details.nonlinear_vma = NULL;
2980 details.first_index = hba;
2981 details.last_index = hba + hlen - 1;
2982 if (details.last_index < details.first_index)
2983 details.last_index = ULONG_MAX;
2986 mutex_lock(&mapping->i_mmap_mutex);
2987 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2988 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2989 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2990 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2991 mutex_unlock(&mapping->i_mmap_mutex);
2993 EXPORT_SYMBOL(unmap_mapping_range);
2996 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2997 * but allow concurrent faults), and pte mapped but not yet locked.
2998 * We return with mmap_sem still held, but pte unmapped and unlocked.
3000 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3001 unsigned long address, pte_t *page_table, pmd_t *pmd,
3002 unsigned int flags, pte_t orig_pte)
3004 spinlock_t *ptl;
3005 struct page *page, *swapcache;
3006 swp_entry_t entry;
3007 pte_t pte;
3008 int locked;
3009 struct mem_cgroup *ptr;
3010 int exclusive = 0;
3011 int ret = 0;
3013 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3014 goto out;
3016 entry = pte_to_swp_entry(orig_pte);
3017 if (unlikely(non_swap_entry(entry))) {
3018 if (is_migration_entry(entry)) {
3019 migration_entry_wait(mm, pmd, address);
3020 } else if (is_hwpoison_entry(entry)) {
3021 ret = VM_FAULT_HWPOISON;
3022 } else {
3023 print_bad_pte(vma, address, orig_pte, NULL);
3024 ret = VM_FAULT_SIGBUS;
3026 goto out;
3028 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3029 page = lookup_swap_cache(entry);
3030 if (!page) {
3031 page = swapin_readahead(entry,
3032 GFP_HIGHUSER_MOVABLE, vma, address);
3033 if (!page) {
3035 * Back out if somebody else faulted in this pte
3036 * while we released the pte lock.
3038 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3039 if (likely(pte_same(*page_table, orig_pte)))
3040 ret = VM_FAULT_OOM;
3041 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3042 goto unlock;
3045 /* Had to read the page from swap area: Major fault */
3046 ret = VM_FAULT_MAJOR;
3047 count_vm_event(PGMAJFAULT);
3048 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3049 } else if (PageHWPoison(page)) {
3051 * hwpoisoned dirty swapcache pages are kept for killing
3052 * owner processes (which may be unknown at hwpoison time)
3054 ret = VM_FAULT_HWPOISON;
3055 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3056 swapcache = page;
3057 goto out_release;
3060 swapcache = page;
3061 locked = lock_page_or_retry(page, mm, flags);
3063 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3064 if (!locked) {
3065 ret |= VM_FAULT_RETRY;
3066 goto out_release;
3070 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3071 * release the swapcache from under us. The page pin, and pte_same
3072 * test below, are not enough to exclude that. Even if it is still
3073 * swapcache, we need to check that the page's swap has not changed.
3075 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3076 goto out_page;
3078 page = ksm_might_need_to_copy(page, vma, address);
3079 if (unlikely(!page)) {
3080 ret = VM_FAULT_OOM;
3081 page = swapcache;
3082 goto out_page;
3085 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3086 ret = VM_FAULT_OOM;
3087 goto out_page;
3091 * Back out if somebody else already faulted in this pte.
3093 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3094 if (unlikely(!pte_same(*page_table, orig_pte)))
3095 goto out_nomap;
3097 if (unlikely(!PageUptodate(page))) {
3098 ret = VM_FAULT_SIGBUS;
3099 goto out_nomap;
3103 * The page isn't present yet, go ahead with the fault.
3105 * Be careful about the sequence of operations here.
3106 * To get its accounting right, reuse_swap_page() must be called
3107 * while the page is counted on swap but not yet in mapcount i.e.
3108 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3109 * must be called after the swap_free(), or it will never succeed.
3110 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3111 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3112 * in page->private. In this case, a record in swap_cgroup is silently
3113 * discarded at swap_free().
3116 inc_mm_counter_fast(mm, MM_ANONPAGES);
3117 dec_mm_counter_fast(mm, MM_SWAPENTS);
3118 pte = mk_pte(page, vma->vm_page_prot);
3119 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3120 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3121 flags &= ~FAULT_FLAG_WRITE;
3122 ret |= VM_FAULT_WRITE;
3123 exclusive = 1;
3125 flush_icache_page(vma, page);
3126 set_pte_at(mm, address, page_table, pte);
3127 if (page == swapcache)
3128 do_page_add_anon_rmap(page, vma, address, exclusive);
3129 else /* ksm created a completely new copy */
3130 page_add_new_anon_rmap(page, vma, address);
3131 /* It's better to call commit-charge after rmap is established */
3132 mem_cgroup_commit_charge_swapin(page, ptr);
3134 swap_free(entry);
3135 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3136 try_to_free_swap(page);
3137 unlock_page(page);
3138 if (page != swapcache) {
3140 * Hold the lock to avoid the swap entry to be reused
3141 * until we take the PT lock for the pte_same() check
3142 * (to avoid false positives from pte_same). For
3143 * further safety release the lock after the swap_free
3144 * so that the swap count won't change under a
3145 * parallel locked swapcache.
3147 unlock_page(swapcache);
3148 page_cache_release(swapcache);
3151 if (flags & FAULT_FLAG_WRITE) {
3152 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3153 if (ret & VM_FAULT_ERROR)
3154 ret &= VM_FAULT_ERROR;
3155 goto out;
3158 /* No need to invalidate - it was non-present before */
3159 update_mmu_cache(vma, address, page_table);
3160 unlock:
3161 pte_unmap_unlock(page_table, ptl);
3162 out:
3163 return ret;
3164 out_nomap:
3165 mem_cgroup_cancel_charge_swapin(ptr);
3166 pte_unmap_unlock(page_table, ptl);
3167 out_page:
3168 unlock_page(page);
3169 out_release:
3170 page_cache_release(page);
3171 if (page != swapcache) {
3172 unlock_page(swapcache);
3173 page_cache_release(swapcache);
3175 return ret;
3179 * This is like a special single-page "expand_{down|up}wards()",
3180 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3181 * doesn't hit another vma.
3183 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3185 address &= PAGE_MASK;
3186 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3187 struct vm_area_struct *prev = vma->vm_prev;
3190 * Is there a mapping abutting this one below?
3192 * That's only ok if it's the same stack mapping
3193 * that has gotten split..
3195 if (prev && prev->vm_end == address)
3196 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3198 expand_downwards(vma, address - PAGE_SIZE);
3200 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3201 struct vm_area_struct *next = vma->vm_next;
3203 /* As VM_GROWSDOWN but s/below/above/ */
3204 if (next && next->vm_start == address + PAGE_SIZE)
3205 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3207 expand_upwards(vma, address + PAGE_SIZE);
3209 return 0;
3213 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3214 * but allow concurrent faults), and pte mapped but not yet locked.
3215 * We return with mmap_sem still held, but pte unmapped and unlocked.
3217 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3218 unsigned long address, pte_t *page_table, pmd_t *pmd,
3219 unsigned int flags)
3221 struct page *page;
3222 spinlock_t *ptl;
3223 pte_t entry;
3225 pte_unmap(page_table);
3227 /* Check if we need to add a guard page to the stack */
3228 if (check_stack_guard_page(vma, address) < 0)
3229 return VM_FAULT_SIGBUS;
3231 /* Use the zero-page for reads */
3232 if (!(flags & FAULT_FLAG_WRITE)) {
3233 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3234 vma->vm_page_prot));
3235 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3236 if (!pte_none(*page_table))
3237 goto unlock;
3238 goto setpte;
3241 /* Allocate our own private page. */
3242 if (unlikely(anon_vma_prepare(vma)))
3243 goto oom;
3244 page = alloc_zeroed_user_highpage_movable(vma, address);
3245 if (!page)
3246 goto oom;
3248 * The memory barrier inside __SetPageUptodate makes sure that
3249 * preceeding stores to the page contents become visible before
3250 * the set_pte_at() write.
3252 __SetPageUptodate(page);
3254 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3255 goto oom_free_page;
3257 entry = mk_pte(page, vma->vm_page_prot);
3258 if (vma->vm_flags & VM_WRITE)
3259 entry = pte_mkwrite(pte_mkdirty(entry));
3261 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3262 if (!pte_none(*page_table))
3263 goto release;
3265 inc_mm_counter_fast(mm, MM_ANONPAGES);
3266 page_add_new_anon_rmap(page, vma, address);
3267 setpte:
3268 set_pte_at(mm, address, page_table, entry);
3270 /* No need to invalidate - it was non-present before */
3271 update_mmu_cache(vma, address, page_table);
3272 unlock:
3273 pte_unmap_unlock(page_table, ptl);
3274 return 0;
3275 release:
3276 mem_cgroup_uncharge_page(page);
3277 page_cache_release(page);
3278 goto unlock;
3279 oom_free_page:
3280 page_cache_release(page);
3281 oom:
3282 return VM_FAULT_OOM;
3286 * __do_fault() tries to create a new page mapping. It aggressively
3287 * tries to share with existing pages, but makes a separate copy if
3288 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3289 * the next page fault.
3291 * As this is called only for pages that do not currently exist, we
3292 * do not need to flush old virtual caches or the TLB.
3294 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3295 * but allow concurrent faults), and pte neither mapped nor locked.
3296 * We return with mmap_sem still held, but pte unmapped and unlocked.
3298 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3299 unsigned long address, pmd_t *pmd,
3300 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3302 pte_t *page_table;
3303 spinlock_t *ptl;
3304 struct page *page;
3305 struct page *cow_page;
3306 pte_t entry;
3307 int anon = 0;
3308 struct page *dirty_page = NULL;
3309 struct vm_fault vmf;
3310 int ret;
3311 int page_mkwrite = 0;
3314 * If we do COW later, allocate page befor taking lock_page()
3315 * on the file cache page. This will reduce lock holding time.
3317 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3319 if (unlikely(anon_vma_prepare(vma)))
3320 return VM_FAULT_OOM;
3322 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3323 if (!cow_page)
3324 return VM_FAULT_OOM;
3326 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3327 page_cache_release(cow_page);
3328 return VM_FAULT_OOM;
3330 } else
3331 cow_page = NULL;
3333 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3334 vmf.pgoff = pgoff;
3335 vmf.flags = flags;
3336 vmf.page = NULL;
3338 ret = vma->vm_ops->fault(vma, &vmf);
3339 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3340 VM_FAULT_RETRY)))
3341 goto uncharge_out;
3343 if (unlikely(PageHWPoison(vmf.page))) {
3344 if (ret & VM_FAULT_LOCKED)
3345 unlock_page(vmf.page);
3346 ret = VM_FAULT_HWPOISON;
3347 goto uncharge_out;
3351 * For consistency in subsequent calls, make the faulted page always
3352 * locked.
3354 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3355 lock_page(vmf.page);
3356 else
3357 VM_BUG_ON(!PageLocked(vmf.page));
3360 * Should we do an early C-O-W break?
3362 page = vmf.page;
3363 if (flags & FAULT_FLAG_WRITE) {
3364 if (!(vma->vm_flags & VM_SHARED)) {
3365 page = cow_page;
3366 anon = 1;
3367 copy_user_highpage(page, vmf.page, address, vma);
3368 __SetPageUptodate(page);
3369 } else {
3371 * If the page will be shareable, see if the backing
3372 * address space wants to know that the page is about
3373 * to become writable
3375 if (vma->vm_ops->page_mkwrite) {
3376 int tmp;
3378 unlock_page(page);
3379 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3380 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3381 if (unlikely(tmp &
3382 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3383 ret = tmp;
3384 goto unwritable_page;
3386 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3387 lock_page(page);
3388 if (!page->mapping) {
3389 ret = 0; /* retry the fault */
3390 unlock_page(page);
3391 goto unwritable_page;
3393 } else
3394 VM_BUG_ON(!PageLocked(page));
3395 page_mkwrite = 1;
3401 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3404 * This silly early PAGE_DIRTY setting removes a race
3405 * due to the bad i386 page protection. But it's valid
3406 * for other architectures too.
3408 * Note that if FAULT_FLAG_WRITE is set, we either now have
3409 * an exclusive copy of the page, or this is a shared mapping,
3410 * so we can make it writable and dirty to avoid having to
3411 * handle that later.
3413 /* Only go through if we didn't race with anybody else... */
3414 if (likely(pte_same(*page_table, orig_pte))) {
3415 flush_icache_page(vma, page);
3416 entry = mk_pte(page, vma->vm_page_prot);
3417 if (flags & FAULT_FLAG_WRITE)
3418 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419 if (anon) {
3420 inc_mm_counter_fast(mm, MM_ANONPAGES);
3421 page_add_new_anon_rmap(page, vma, address);
3422 } else {
3423 inc_mm_counter_fast(mm, MM_FILEPAGES);
3424 page_add_file_rmap(page);
3425 if (flags & FAULT_FLAG_WRITE) {
3426 dirty_page = page;
3427 get_page(dirty_page);
3430 set_pte_at(mm, address, page_table, entry);
3432 /* no need to invalidate: a not-present page won't be cached */
3433 update_mmu_cache(vma, address, page_table);
3434 } else {
3435 if (cow_page)
3436 mem_cgroup_uncharge_page(cow_page);
3437 if (anon)
3438 page_cache_release(page);
3439 else
3440 anon = 1; /* no anon but release faulted_page */
3443 pte_unmap_unlock(page_table, ptl);
3445 if (dirty_page) {
3446 struct address_space *mapping = page->mapping;
3447 int dirtied = 0;
3449 if (set_page_dirty(dirty_page))
3450 dirtied = 1;
3451 unlock_page(dirty_page);
3452 put_page(dirty_page);
3453 if ((dirtied || page_mkwrite) && mapping) {
3455 * Some device drivers do not set page.mapping but still
3456 * dirty their pages
3458 balance_dirty_pages_ratelimited(mapping);
3461 /* file_update_time outside page_lock */
3462 if (vma->vm_file && !page_mkwrite)
3463 file_update_time(vma->vm_file);
3464 } else {
3465 unlock_page(vmf.page);
3466 if (anon)
3467 page_cache_release(vmf.page);
3470 return ret;
3472 unwritable_page:
3473 page_cache_release(page);
3474 return ret;
3475 uncharge_out:
3476 /* fs's fault handler get error */
3477 if (cow_page) {
3478 mem_cgroup_uncharge_page(cow_page);
3479 page_cache_release(cow_page);
3481 return ret;
3484 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3485 unsigned long address, pte_t *page_table, pmd_t *pmd,
3486 unsigned int flags, pte_t orig_pte)
3488 pgoff_t pgoff = (((address & PAGE_MASK)
3489 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3491 pte_unmap(page_table);
3492 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3496 * Fault of a previously existing named mapping. Repopulate the pte
3497 * from the encoded file_pte if possible. This enables swappable
3498 * nonlinear vmas.
3500 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3501 * but allow concurrent faults), and pte mapped but not yet locked.
3502 * We return with mmap_sem still held, but pte unmapped and unlocked.
3504 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505 unsigned long address, pte_t *page_table, pmd_t *pmd,
3506 unsigned int flags, pte_t orig_pte)
3508 pgoff_t pgoff;
3510 flags |= FAULT_FLAG_NONLINEAR;
3512 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3513 return 0;
3515 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3517 * Page table corrupted: show pte and kill process.
3519 print_bad_pte(vma, address, orig_pte, NULL);
3520 return VM_FAULT_SIGBUS;
3523 pgoff = pte_to_pgoff(orig_pte);
3524 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3527 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3528 unsigned long addr, int current_nid)
3530 get_page(page);
3532 count_vm_numa_event(NUMA_HINT_FAULTS);
3533 if (current_nid == numa_node_id())
3534 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3536 return mpol_misplaced(page, vma, addr);
3539 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3540 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3542 struct page *page = NULL;
3543 spinlock_t *ptl;
3544 int current_nid = -1;
3545 int target_nid;
3546 bool migrated = false;
3549 * The "pte" at this point cannot be used safely without
3550 * validation through pte_unmap_same(). It's of NUMA type but
3551 * the pfn may be screwed if the read is non atomic.
3553 * ptep_modify_prot_start is not called as this is clearing
3554 * the _PAGE_NUMA bit and it is not really expected that there
3555 * would be concurrent hardware modifications to the PTE.
3557 ptl = pte_lockptr(mm, pmd);
3558 spin_lock(ptl);
3559 if (unlikely(!pte_same(*ptep, pte))) {
3560 pte_unmap_unlock(ptep, ptl);
3561 goto out;
3564 pte = pte_mknonnuma(pte);
3565 set_pte_at(mm, addr, ptep, pte);
3566 update_mmu_cache(vma, addr, ptep);
3568 page = vm_normal_page(vma, addr, pte);
3569 if (!page) {
3570 pte_unmap_unlock(ptep, ptl);
3571 return 0;
3574 current_nid = page_to_nid(page);
3575 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3576 pte_unmap_unlock(ptep, ptl);
3577 if (target_nid == -1) {
3579 * Account for the fault against the current node if it not
3580 * being replaced regardless of where the page is located.
3582 current_nid = numa_node_id();
3583 put_page(page);
3584 goto out;
3587 /* Migrate to the requested node */
3588 migrated = migrate_misplaced_page(page, target_nid);
3589 if (migrated)
3590 current_nid = target_nid;
3592 out:
3593 if (current_nid != -1)
3594 task_numa_fault(current_nid, 1, migrated);
3595 return 0;
3598 /* NUMA hinting page fault entry point for regular pmds */
3599 #ifdef CONFIG_NUMA_BALANCING
3600 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3601 unsigned long addr, pmd_t *pmdp)
3603 pmd_t pmd;
3604 pte_t *pte, *orig_pte;
3605 unsigned long _addr = addr & PMD_MASK;
3606 unsigned long offset;
3607 spinlock_t *ptl;
3608 bool numa = false;
3609 int local_nid = numa_node_id();
3611 spin_lock(&mm->page_table_lock);
3612 pmd = *pmdp;
3613 if (pmd_numa(pmd)) {
3614 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3615 numa = true;
3617 spin_unlock(&mm->page_table_lock);
3619 if (!numa)
3620 return 0;
3622 /* we're in a page fault so some vma must be in the range */
3623 BUG_ON(!vma);
3624 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3625 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3626 VM_BUG_ON(offset >= PMD_SIZE);
3627 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3628 pte += offset >> PAGE_SHIFT;
3629 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3630 pte_t pteval = *pte;
3631 struct page *page;
3632 int curr_nid = local_nid;
3633 int target_nid;
3634 bool migrated;
3635 if (!pte_present(pteval))
3636 continue;
3637 if (!pte_numa(pteval))
3638 continue;
3639 if (addr >= vma->vm_end) {
3640 vma = find_vma(mm, addr);
3641 /* there's a pte present so there must be a vma */
3642 BUG_ON(!vma);
3643 BUG_ON(addr < vma->vm_start);
3645 if (pte_numa(pteval)) {
3646 pteval = pte_mknonnuma(pteval);
3647 set_pte_at(mm, addr, pte, pteval);
3649 page = vm_normal_page(vma, addr, pteval);
3650 if (unlikely(!page))
3651 continue;
3652 /* only check non-shared pages */
3653 if (unlikely(page_mapcount(page) != 1))
3654 continue;
3657 * Note that the NUMA fault is later accounted to either
3658 * the node that is currently running or where the page is
3659 * migrated to.
3661 curr_nid = local_nid;
3662 target_nid = numa_migrate_prep(page, vma, addr,
3663 page_to_nid(page));
3664 if (target_nid == -1) {
3665 put_page(page);
3666 continue;
3669 /* Migrate to the requested node */
3670 pte_unmap_unlock(pte, ptl);
3671 migrated = migrate_misplaced_page(page, target_nid);
3672 if (migrated)
3673 curr_nid = target_nid;
3674 task_numa_fault(curr_nid, 1, migrated);
3676 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3678 pte_unmap_unlock(orig_pte, ptl);
3680 return 0;
3682 #else
3683 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3684 unsigned long addr, pmd_t *pmdp)
3686 BUG();
3687 return 0;
3689 #endif /* CONFIG_NUMA_BALANCING */
3692 * These routines also need to handle stuff like marking pages dirty
3693 * and/or accessed for architectures that don't do it in hardware (most
3694 * RISC architectures). The early dirtying is also good on the i386.
3696 * There is also a hook called "update_mmu_cache()" that architectures
3697 * with external mmu caches can use to update those (ie the Sparc or
3698 * PowerPC hashed page tables that act as extended TLBs).
3700 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3701 * but allow concurrent faults), and pte mapped but not yet locked.
3702 * We return with mmap_sem still held, but pte unmapped and unlocked.
3704 int handle_pte_fault(struct mm_struct *mm,
3705 struct vm_area_struct *vma, unsigned long address,
3706 pte_t *pte, pmd_t *pmd, unsigned int flags)
3708 pte_t entry;
3709 spinlock_t *ptl;
3711 entry = *pte;
3712 if (!pte_present(entry)) {
3713 if (pte_none(entry)) {
3714 if (vma->vm_ops) {
3715 if (likely(vma->vm_ops->fault))
3716 return do_linear_fault(mm, vma, address,
3717 pte, pmd, flags, entry);
3719 return do_anonymous_page(mm, vma, address,
3720 pte, pmd, flags);
3722 if (pte_file(entry))
3723 return do_nonlinear_fault(mm, vma, address,
3724 pte, pmd, flags, entry);
3725 return do_swap_page(mm, vma, address,
3726 pte, pmd, flags, entry);
3729 if (pte_numa(entry))
3730 return do_numa_page(mm, vma, address, entry, pte, pmd);
3732 ptl = pte_lockptr(mm, pmd);
3733 spin_lock(ptl);
3734 if (unlikely(!pte_same(*pte, entry)))
3735 goto unlock;
3736 if (flags & FAULT_FLAG_WRITE) {
3737 if (!pte_write(entry))
3738 return do_wp_page(mm, vma, address,
3739 pte, pmd, ptl, entry);
3740 entry = pte_mkdirty(entry);
3742 entry = pte_mkyoung(entry);
3743 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3744 update_mmu_cache(vma, address, pte);
3745 } else {
3747 * This is needed only for protection faults but the arch code
3748 * is not yet telling us if this is a protection fault or not.
3749 * This still avoids useless tlb flushes for .text page faults
3750 * with threads.
3752 if (flags & FAULT_FLAG_WRITE)
3753 flush_tlb_fix_spurious_fault(vma, address);
3755 unlock:
3756 pte_unmap_unlock(pte, ptl);
3757 return 0;
3761 * By the time we get here, we already hold the mm semaphore
3763 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3764 unsigned long address, unsigned int flags)
3766 pgd_t *pgd;
3767 pud_t *pud;
3768 pmd_t *pmd;
3769 pte_t *pte;
3771 __set_current_state(TASK_RUNNING);
3773 count_vm_event(PGFAULT);
3774 mem_cgroup_count_vm_event(mm, PGFAULT);
3776 /* do counter updates before entering really critical section. */
3777 check_sync_rss_stat(current);
3779 if (unlikely(is_vm_hugetlb_page(vma)))
3780 return hugetlb_fault(mm, vma, address, flags);
3782 retry:
3783 pgd = pgd_offset(mm, address);
3784 pud = pud_alloc(mm, pgd, address);
3785 if (!pud)
3786 return VM_FAULT_OOM;
3787 pmd = pmd_alloc(mm, pud, address);
3788 if (!pmd)
3789 return VM_FAULT_OOM;
3790 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3791 if (!vma->vm_ops)
3792 return do_huge_pmd_anonymous_page(mm, vma, address,
3793 pmd, flags);
3794 } else {
3795 pmd_t orig_pmd = *pmd;
3796 int ret;
3798 barrier();
3799 if (pmd_trans_huge(orig_pmd)) {
3800 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3803 * If the pmd is splitting, return and retry the
3804 * the fault. Alternative: wait until the split
3805 * is done, and goto retry.
3807 if (pmd_trans_splitting(orig_pmd))
3808 return 0;
3810 if (pmd_numa(orig_pmd))
3811 return do_huge_pmd_numa_page(mm, vma, address,
3812 orig_pmd, pmd);
3814 if (dirty && !pmd_write(orig_pmd)) {
3815 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3816 orig_pmd);
3818 * If COW results in an oom, the huge pmd will
3819 * have been split, so retry the fault on the
3820 * pte for a smaller charge.
3822 if (unlikely(ret & VM_FAULT_OOM))
3823 goto retry;
3824 return ret;
3825 } else {
3826 huge_pmd_set_accessed(mm, vma, address, pmd,
3827 orig_pmd, dirty);
3830 return 0;
3834 if (pmd_numa(*pmd))
3835 return do_pmd_numa_page(mm, vma, address, pmd);
3838 * Use __pte_alloc instead of pte_alloc_map, because we can't
3839 * run pte_offset_map on the pmd, if an huge pmd could
3840 * materialize from under us from a different thread.
3842 if (unlikely(pmd_none(*pmd)) &&
3843 unlikely(__pte_alloc(mm, vma, pmd, address)))
3844 return VM_FAULT_OOM;
3845 /* if an huge pmd materialized from under us just retry later */
3846 if (unlikely(pmd_trans_huge(*pmd)))
3847 return 0;
3849 * A regular pmd is established and it can't morph into a huge pmd
3850 * from under us anymore at this point because we hold the mmap_sem
3851 * read mode and khugepaged takes it in write mode. So now it's
3852 * safe to run pte_offset_map().
3854 pte = pte_offset_map(pmd, address);
3856 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3859 #ifndef __PAGETABLE_PUD_FOLDED
3861 * Allocate page upper directory.
3862 * We've already handled the fast-path in-line.
3864 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3866 pud_t *new = pud_alloc_one(mm, address);
3867 if (!new)
3868 return -ENOMEM;
3870 smp_wmb(); /* See comment in __pte_alloc */
3872 spin_lock(&mm->page_table_lock);
3873 if (pgd_present(*pgd)) /* Another has populated it */
3874 pud_free(mm, new);
3875 else
3876 pgd_populate(mm, pgd, new);
3877 spin_unlock(&mm->page_table_lock);
3878 return 0;
3880 #endif /* __PAGETABLE_PUD_FOLDED */
3882 #ifndef __PAGETABLE_PMD_FOLDED
3884 * Allocate page middle directory.
3885 * We've already handled the fast-path in-line.
3887 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3889 pmd_t *new = pmd_alloc_one(mm, address);
3890 if (!new)
3891 return -ENOMEM;
3893 smp_wmb(); /* See comment in __pte_alloc */
3895 spin_lock(&mm->page_table_lock);
3896 #ifndef __ARCH_HAS_4LEVEL_HACK
3897 if (pud_present(*pud)) /* Another has populated it */
3898 pmd_free(mm, new);
3899 else
3900 pud_populate(mm, pud, new);
3901 #else
3902 if (pgd_present(*pud)) /* Another has populated it */
3903 pmd_free(mm, new);
3904 else
3905 pgd_populate(mm, pud, new);
3906 #endif /* __ARCH_HAS_4LEVEL_HACK */
3907 spin_unlock(&mm->page_table_lock);
3908 return 0;
3910 #endif /* __PAGETABLE_PMD_FOLDED */
3912 #if !defined(__HAVE_ARCH_GATE_AREA)
3914 #if defined(AT_SYSINFO_EHDR)
3915 static struct vm_area_struct gate_vma;
3917 static int __init gate_vma_init(void)
3919 gate_vma.vm_mm = NULL;
3920 gate_vma.vm_start = FIXADDR_USER_START;
3921 gate_vma.vm_end = FIXADDR_USER_END;
3922 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3923 gate_vma.vm_page_prot = __P101;
3925 return 0;
3927 __initcall(gate_vma_init);
3928 #endif
3930 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3932 #ifdef AT_SYSINFO_EHDR
3933 return &gate_vma;
3934 #else
3935 return NULL;
3936 #endif
3939 int in_gate_area_no_mm(unsigned long addr)
3941 #ifdef AT_SYSINFO_EHDR
3942 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3943 return 1;
3944 #endif
3945 return 0;
3948 #endif /* __HAVE_ARCH_GATE_AREA */
3950 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3951 pte_t **ptepp, spinlock_t **ptlp)
3953 pgd_t *pgd;
3954 pud_t *pud;
3955 pmd_t *pmd;
3956 pte_t *ptep;
3958 pgd = pgd_offset(mm, address);
3959 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3960 goto out;
3962 pud = pud_offset(pgd, address);
3963 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3964 goto out;
3966 pmd = pmd_offset(pud, address);
3967 VM_BUG_ON(pmd_trans_huge(*pmd));
3968 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3969 goto out;
3971 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3972 if (pmd_huge(*pmd))
3973 goto out;
3975 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3976 if (!ptep)
3977 goto out;
3978 if (!pte_present(*ptep))
3979 goto unlock;
3980 *ptepp = ptep;
3981 return 0;
3982 unlock:
3983 pte_unmap_unlock(ptep, *ptlp);
3984 out:
3985 return -EINVAL;
3988 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3989 pte_t **ptepp, spinlock_t **ptlp)
3991 int res;
3993 /* (void) is needed to make gcc happy */
3994 (void) __cond_lock(*ptlp,
3995 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3996 return res;
4000 * follow_pfn - look up PFN at a user virtual address
4001 * @vma: memory mapping
4002 * @address: user virtual address
4003 * @pfn: location to store found PFN
4005 * Only IO mappings and raw PFN mappings are allowed.
4007 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4009 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4010 unsigned long *pfn)
4012 int ret = -EINVAL;
4013 spinlock_t *ptl;
4014 pte_t *ptep;
4016 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4017 return ret;
4019 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4020 if (ret)
4021 return ret;
4022 *pfn = pte_pfn(*ptep);
4023 pte_unmap_unlock(ptep, ptl);
4024 return 0;
4026 EXPORT_SYMBOL(follow_pfn);
4028 #ifdef CONFIG_HAVE_IOREMAP_PROT
4029 int follow_phys(struct vm_area_struct *vma,
4030 unsigned long address, unsigned int flags,
4031 unsigned long *prot, resource_size_t *phys)
4033 int ret = -EINVAL;
4034 pte_t *ptep, pte;
4035 spinlock_t *ptl;
4037 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4038 goto out;
4040 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4041 goto out;
4042 pte = *ptep;
4044 if ((flags & FOLL_WRITE) && !pte_write(pte))
4045 goto unlock;
4047 *prot = pgprot_val(pte_pgprot(pte));
4048 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4050 ret = 0;
4051 unlock:
4052 pte_unmap_unlock(ptep, ptl);
4053 out:
4054 return ret;
4057 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4058 void *buf, int len, int write)
4060 resource_size_t phys_addr;
4061 unsigned long prot = 0;
4062 void __iomem *maddr;
4063 int offset = addr & (PAGE_SIZE-1);
4065 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4066 return -EINVAL;
4068 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4069 if (write)
4070 memcpy_toio(maddr + offset, buf, len);
4071 else
4072 memcpy_fromio(buf, maddr + offset, len);
4073 iounmap(maddr);
4075 return len;
4077 #endif
4080 * Access another process' address space as given in mm. If non-NULL, use the
4081 * given task for page fault accounting.
4083 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4084 unsigned long addr, void *buf, int len, int write)
4086 struct vm_area_struct *vma;
4087 void *old_buf = buf;
4089 down_read(&mm->mmap_sem);
4090 /* ignore errors, just check how much was successfully transferred */
4091 while (len) {
4092 int bytes, ret, offset;
4093 void *maddr;
4094 struct page *page = NULL;
4096 ret = get_user_pages(tsk, mm, addr, 1,
4097 write, 1, &page, &vma);
4098 if (ret <= 0) {
4100 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4101 * we can access using slightly different code.
4103 #ifdef CONFIG_HAVE_IOREMAP_PROT
4104 vma = find_vma(mm, addr);
4105 if (!vma || vma->vm_start > addr)
4106 break;
4107 if (vma->vm_ops && vma->vm_ops->access)
4108 ret = vma->vm_ops->access(vma, addr, buf,
4109 len, write);
4110 if (ret <= 0)
4111 #endif
4112 break;
4113 bytes = ret;
4114 } else {
4115 bytes = len;
4116 offset = addr & (PAGE_SIZE-1);
4117 if (bytes > PAGE_SIZE-offset)
4118 bytes = PAGE_SIZE-offset;
4120 maddr = kmap(page);
4121 if (write) {
4122 copy_to_user_page(vma, page, addr,
4123 maddr + offset, buf, bytes);
4124 set_page_dirty_lock(page);
4125 } else {
4126 copy_from_user_page(vma, page, addr,
4127 buf, maddr + offset, bytes);
4129 kunmap(page);
4130 page_cache_release(page);
4132 len -= bytes;
4133 buf += bytes;
4134 addr += bytes;
4136 up_read(&mm->mmap_sem);
4138 return buf - old_buf;
4142 * access_remote_vm - access another process' address space
4143 * @mm: the mm_struct of the target address space
4144 * @addr: start address to access
4145 * @buf: source or destination buffer
4146 * @len: number of bytes to transfer
4147 * @write: whether the access is a write
4149 * The caller must hold a reference on @mm.
4151 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4152 void *buf, int len, int write)
4154 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4158 * Access another process' address space.
4159 * Source/target buffer must be kernel space,
4160 * Do not walk the page table directly, use get_user_pages
4162 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4163 void *buf, int len, int write)
4165 struct mm_struct *mm;
4166 int ret;
4168 mm = get_task_mm(tsk);
4169 if (!mm)
4170 return 0;
4172 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4173 mmput(mm);
4175 return ret;
4179 * Print the name of a VMA.
4181 void print_vma_addr(char *prefix, unsigned long ip)
4183 struct mm_struct *mm = current->mm;
4184 struct vm_area_struct *vma;
4187 * Do not print if we are in atomic
4188 * contexts (in exception stacks, etc.):
4190 if (preempt_count())
4191 return;
4193 down_read(&mm->mmap_sem);
4194 vma = find_vma(mm, ip);
4195 if (vma && vma->vm_file) {
4196 struct file *f = vma->vm_file;
4197 char *buf = (char *)__get_free_page(GFP_KERNEL);
4198 if (buf) {
4199 char *p;
4201 p = d_path(&f->f_path, buf, PAGE_SIZE);
4202 if (IS_ERR(p))
4203 p = "?";
4204 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4205 vma->vm_start,
4206 vma->vm_end - vma->vm_start);
4207 free_page((unsigned long)buf);
4210 up_read(&mm->mmap_sem);
4213 #ifdef CONFIG_PROVE_LOCKING
4214 void might_fault(void)
4217 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4218 * holding the mmap_sem, this is safe because kernel memory doesn't
4219 * get paged out, therefore we'll never actually fault, and the
4220 * below annotations will generate false positives.
4222 if (segment_eq(get_fs(), KERNEL_DS))
4223 return;
4225 might_sleep();
4227 * it would be nicer only to annotate paths which are not under
4228 * pagefault_disable, however that requires a larger audit and
4229 * providing helpers like get_user_atomic.
4231 if (!in_atomic() && current->mm)
4232 might_lock_read(&current->mm->mmap_sem);
4234 EXPORT_SYMBOL(might_fault);
4235 #endif
4237 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4238 static void clear_gigantic_page(struct page *page,
4239 unsigned long addr,
4240 unsigned int pages_per_huge_page)
4242 int i;
4243 struct page *p = page;
4245 might_sleep();
4246 for (i = 0; i < pages_per_huge_page;
4247 i++, p = mem_map_next(p, page, i)) {
4248 cond_resched();
4249 clear_user_highpage(p, addr + i * PAGE_SIZE);
4252 void clear_huge_page(struct page *page,
4253 unsigned long addr, unsigned int pages_per_huge_page)
4255 int i;
4257 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4258 clear_gigantic_page(page, addr, pages_per_huge_page);
4259 return;
4262 might_sleep();
4263 for (i = 0; i < pages_per_huge_page; i++) {
4264 cond_resched();
4265 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4269 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4270 unsigned long addr,
4271 struct vm_area_struct *vma,
4272 unsigned int pages_per_huge_page)
4274 int i;
4275 struct page *dst_base = dst;
4276 struct page *src_base = src;
4278 for (i = 0; i < pages_per_huge_page; ) {
4279 cond_resched();
4280 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4282 i++;
4283 dst = mem_map_next(dst, dst_base, i);
4284 src = mem_map_next(src, src_base, i);
4288 void copy_user_huge_page(struct page *dst, struct page *src,
4289 unsigned long addr, struct vm_area_struct *vma,
4290 unsigned int pages_per_huge_page)
4292 int i;
4294 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4295 copy_user_gigantic_page(dst, src, addr, vma,
4296 pages_per_huge_page);
4297 return;
4300 might_sleep();
4301 for (i = 0; i < pages_per_huge_page; i++) {
4302 cond_resched();
4303 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4306 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */