[libata] sata_mv: add TODO list
[linux-2.6.git] / drivers / ieee1394 / eth1394.c
blob2296d43a24140ab121c3467313af3a5c4df2acb6
1 /*
2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
29 * TODO:
30 * RFC 2734 related:
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
51 #include <linux/netdevice.h>
52 #include <linux/inetdevice.h>
53 #include <linux/if_arp.h>
54 #include <linux/if_ether.h>
55 #include <linux/ip.h>
56 #include <linux/in.h>
57 #include <linux/tcp.h>
58 #include <linux/skbuff.h>
59 #include <linux/bitops.h>
60 #include <linux/ethtool.h>
61 #include <asm/uaccess.h>
62 #include <asm/delay.h>
63 #include <asm/unaligned.h>
64 #include <net/arp.h>
66 #include "config_roms.h"
67 #include "csr1212.h"
68 #include "eth1394.h"
69 #include "highlevel.h"
70 #include "ieee1394.h"
71 #include "ieee1394_core.h"
72 #include "ieee1394_hotplug.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394_types.h"
75 #include "iso.h"
76 #include "nodemgr.h"
78 #define ETH1394_PRINT_G(level, fmt, args...) \
79 printk(level "%s: " fmt, driver_name, ## args)
81 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
82 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84 struct fragment_info {
85 struct list_head list;
86 int offset;
87 int len;
90 struct partial_datagram {
91 struct list_head list;
92 u16 dgl;
93 u16 dg_size;
94 u16 ether_type;
95 struct sk_buff *skb;
96 char *pbuf;
97 struct list_head frag_info;
100 struct pdg_list {
101 struct list_head list; /* partial datagram list per node */
102 unsigned int sz; /* partial datagram list size per node */
103 spinlock_t lock; /* partial datagram lock */
106 struct eth1394_host_info {
107 struct hpsb_host *host;
108 struct net_device *dev;
111 struct eth1394_node_ref {
112 struct unit_directory *ud;
113 struct list_head list;
116 struct eth1394_node_info {
117 u16 maxpayload; /* max payload */
118 u8 sspd; /* max speed */
119 u64 fifo; /* FIFO address */
120 struct pdg_list pdg; /* partial RX datagram lists */
121 int dgl; /* outgoing datagram label */
124 static const char driver_name[] = "eth1394";
126 static struct kmem_cache *packet_task_cache;
128 static struct hpsb_highlevel eth1394_highlevel;
130 /* Use common.lf to determine header len */
131 static const int hdr_type_len[] = {
132 sizeof(struct eth1394_uf_hdr),
133 sizeof(struct eth1394_ff_hdr),
134 sizeof(struct eth1394_sf_hdr),
135 sizeof(struct eth1394_sf_hdr)
138 static const u16 eth1394_speedto_maxpayload[] = {
139 /* S100, S200, S400, S800, S1600, S3200 */
140 512, 1024, 2048, 4096, 4096, 4096
143 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
144 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
145 MODULE_LICENSE("GPL");
148 * The max_partial_datagrams parameter is the maximum number of fragmented
149 * datagrams per node that eth1394 will keep in memory. Providing an upper
150 * bound allows us to limit the amount of memory that partial datagrams
151 * consume in the event that some partial datagrams are never completed.
153 static int max_partial_datagrams = 25;
154 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
155 MODULE_PARM_DESC(max_partial_datagrams,
156 "Maximum number of partially received fragmented datagrams "
157 "(default = 25).");
160 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
161 unsigned short type, void *daddr, void *saddr,
162 unsigned len);
163 static int ether1394_rebuild_header(struct sk_buff *skb);
164 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
165 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
166 static void ether1394_header_cache_update(struct hh_cache *hh,
167 struct net_device *dev,
168 unsigned char *haddr);
169 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
170 static void ether1394_iso(struct hpsb_iso *iso);
172 static struct ethtool_ops ethtool_ops;
174 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
175 quadlet_t *data, u64 addr, size_t len, u16 flags);
176 static void ether1394_add_host(struct hpsb_host *host);
177 static void ether1394_remove_host(struct hpsb_host *host);
178 static void ether1394_host_reset(struct hpsb_host *host);
180 /* Function for incoming 1394 packets */
181 static struct hpsb_address_ops addr_ops = {
182 .write = ether1394_write,
185 /* Ieee1394 highlevel driver functions */
186 static struct hpsb_highlevel eth1394_highlevel = {
187 .name = driver_name,
188 .add_host = ether1394_add_host,
189 .remove_host = ether1394_remove_host,
190 .host_reset = ether1394_host_reset,
193 static int ether1394_recv_init(struct eth1394_priv *priv)
195 unsigned int iso_buf_size;
197 /* FIXME: rawiso limits us to PAGE_SIZE */
198 iso_buf_size = min((unsigned int)PAGE_SIZE,
199 2 * (1U << (priv->host->csr.max_rec + 1)));
201 priv->iso = hpsb_iso_recv_init(priv->host,
202 ETHER1394_GASP_BUFFERS * iso_buf_size,
203 ETHER1394_GASP_BUFFERS,
204 priv->broadcast_channel,
205 HPSB_ISO_DMA_PACKET_PER_BUFFER,
206 1, ether1394_iso);
207 if (priv->iso == NULL) {
208 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
209 priv->bc_state = ETHER1394_BC_ERROR;
210 return -EAGAIN;
213 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
214 priv->bc_state = ETHER1394_BC_STOPPED;
215 else
216 priv->bc_state = ETHER1394_BC_RUNNING;
217 return 0;
220 /* This is called after an "ifup" */
221 static int ether1394_open(struct net_device *dev)
223 struct eth1394_priv *priv = netdev_priv(dev);
224 int ret;
226 if (priv->bc_state == ETHER1394_BC_ERROR) {
227 ret = ether1394_recv_init(priv);
228 if (ret)
229 return ret;
231 netif_start_queue(dev);
232 return 0;
235 /* This is called after an "ifdown" */
236 static int ether1394_stop(struct net_device *dev)
238 netif_stop_queue(dev);
239 return 0;
242 /* Return statistics to the caller */
243 static struct net_device_stats *ether1394_stats(struct net_device *dev)
245 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
248 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
249 * so that's what we do. Should we increment the stat counters too? */
250 static void ether1394_tx_timeout(struct net_device *dev)
252 struct hpsb_host *host =
253 ((struct eth1394_priv *)netdev_priv(dev))->host;
255 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
256 ether1394_host_reset(host);
259 static inline int ether1394_max_mtu(struct hpsb_host* host)
261 return (1 << (host->csr.max_rec + 1))
262 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
265 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
267 int max_mtu;
269 if (new_mtu < 68)
270 return -EINVAL;
272 max_mtu = ether1394_max_mtu(
273 ((struct eth1394_priv *)netdev_priv(dev))->host);
274 if (new_mtu > max_mtu) {
275 ETH1394_PRINT(KERN_INFO, dev->name,
276 "Local node constrains MTU to %d\n", max_mtu);
277 return -ERANGE;
280 dev->mtu = new_mtu;
281 return 0;
284 static void purge_partial_datagram(struct list_head *old)
286 struct partial_datagram *pd;
287 struct list_head *lh, *n;
288 struct fragment_info *fi;
290 pd = list_entry(old, struct partial_datagram, list);
292 list_for_each_safe(lh, n, &pd->frag_info) {
293 fi = list_entry(lh, struct fragment_info, list);
294 list_del(lh);
295 kfree(fi);
297 list_del(old);
298 kfree_skb(pd->skb);
299 kfree(pd);
302 /******************************************
303 * 1394 bus activity functions
304 ******************************************/
306 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
307 struct unit_directory *ud)
309 struct eth1394_node_ref *node;
311 list_for_each_entry(node, inl, list)
312 if (node->ud == ud)
313 return node;
315 return NULL;
318 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
319 u64 guid)
321 struct eth1394_node_ref *node;
323 list_for_each_entry(node, inl, list)
324 if (node->ud->ne->guid == guid)
325 return node;
327 return NULL;
330 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
331 nodeid_t nodeid)
333 struct eth1394_node_ref *node;
335 list_for_each_entry(node, inl, list)
336 if (node->ud->ne->nodeid == nodeid)
337 return node;
339 return NULL;
342 static int eth1394_new_node(struct eth1394_host_info *hi,
343 struct unit_directory *ud)
345 struct eth1394_priv *priv;
346 struct eth1394_node_ref *new_node;
347 struct eth1394_node_info *node_info;
349 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
350 if (!new_node)
351 return -ENOMEM;
353 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
354 if (!node_info) {
355 kfree(new_node);
356 return -ENOMEM;
359 spin_lock_init(&node_info->pdg.lock);
360 INIT_LIST_HEAD(&node_info->pdg.list);
361 node_info->pdg.sz = 0;
362 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
364 ud->device.driver_data = node_info;
365 new_node->ud = ud;
367 priv = netdev_priv(hi->dev);
368 list_add_tail(&new_node->list, &priv->ip_node_list);
369 return 0;
372 static int eth1394_probe(struct device *dev)
374 struct unit_directory *ud;
375 struct eth1394_host_info *hi;
377 ud = container_of(dev, struct unit_directory, device);
378 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
379 if (!hi)
380 return -ENOENT;
382 return eth1394_new_node(hi, ud);
385 static int eth1394_remove(struct device *dev)
387 struct unit_directory *ud;
388 struct eth1394_host_info *hi;
389 struct eth1394_priv *priv;
390 struct eth1394_node_ref *old_node;
391 struct eth1394_node_info *node_info;
392 struct list_head *lh, *n;
393 unsigned long flags;
395 ud = container_of(dev, struct unit_directory, device);
396 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
397 if (!hi)
398 return -ENOENT;
400 priv = netdev_priv(hi->dev);
402 old_node = eth1394_find_node(&priv->ip_node_list, ud);
403 if (!old_node)
404 return 0;
406 list_del(&old_node->list);
407 kfree(old_node);
409 node_info = (struct eth1394_node_info*)ud->device.driver_data;
411 spin_lock_irqsave(&node_info->pdg.lock, flags);
412 /* The partial datagram list should be empty, but we'll just
413 * make sure anyway... */
414 list_for_each_safe(lh, n, &node_info->pdg.list)
415 purge_partial_datagram(lh);
416 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
418 kfree(node_info);
419 ud->device.driver_data = NULL;
420 return 0;
423 static int eth1394_update(struct unit_directory *ud)
425 struct eth1394_host_info *hi;
426 struct eth1394_priv *priv;
427 struct eth1394_node_ref *node;
429 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
430 if (!hi)
431 return -ENOENT;
433 priv = netdev_priv(hi->dev);
434 node = eth1394_find_node(&priv->ip_node_list, ud);
435 if (node)
436 return 0;
438 return eth1394_new_node(hi, ud);
441 static struct ieee1394_device_id eth1394_id_table[] = {
443 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
444 IEEE1394_MATCH_VERSION),
445 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
446 .version = ETHER1394_GASP_VERSION,
451 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
453 static struct hpsb_protocol_driver eth1394_proto_driver = {
454 .name = driver_name,
455 .id_table = eth1394_id_table,
456 .update = eth1394_update,
457 .driver = {
458 .probe = eth1394_probe,
459 .remove = eth1394_remove,
463 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
465 unsigned long flags;
466 int i;
467 struct eth1394_priv *priv = netdev_priv(dev);
468 struct hpsb_host *host = priv->host;
469 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
470 int max_speed = IEEE1394_SPEED_MAX;
472 spin_lock_irqsave(&priv->lock, flags);
474 memset(priv->ud_list, 0, sizeof(priv->ud_list));
475 priv->bc_maxpayload = 512;
477 /* Determine speed limit */
478 /* FIXME: This is broken for nodes with link speed < PHY speed,
479 * and it is suboptimal for S200B...S800B hardware.
480 * The result of nodemgr's speed probe should be used somehow. */
481 for (i = 0; i < host->node_count; i++) {
482 /* take care of S100B...S400B PHY ports */
483 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
484 max_speed = IEEE1394_SPEED_100;
485 break;
487 if (max_speed > host->speed[i])
488 max_speed = host->speed[i];
490 priv->bc_sspd = max_speed;
492 if (set_mtu) {
493 /* Use the RFC 2734 default 1500 octets or the maximum payload
494 * as initial MTU */
495 dev->mtu = min(1500, ether1394_max_mtu(host));
497 /* Set our hardware address while we're at it */
498 memcpy(dev->dev_addr, &guid, sizeof(u64));
499 memset(dev->broadcast, 0xff, sizeof(u64));
502 spin_unlock_irqrestore(&priv->lock, flags);
505 static void ether1394_init_dev(struct net_device *dev)
507 dev->open = ether1394_open;
508 dev->stop = ether1394_stop;
509 dev->hard_start_xmit = ether1394_tx;
510 dev->get_stats = ether1394_stats;
511 dev->tx_timeout = ether1394_tx_timeout;
512 dev->change_mtu = ether1394_change_mtu;
514 dev->hard_header = ether1394_header;
515 dev->rebuild_header = ether1394_rebuild_header;
516 dev->hard_header_cache = ether1394_header_cache;
517 dev->header_cache_update= ether1394_header_cache_update;
518 dev->hard_header_parse = ether1394_header_parse;
520 SET_ETHTOOL_OPS(dev, &ethtool_ops);
522 dev->watchdog_timeo = ETHER1394_TIMEOUT;
523 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
524 dev->features = NETIF_F_HIGHDMA;
525 dev->addr_len = ETH1394_ALEN;
526 dev->hard_header_len = ETH1394_HLEN;
527 dev->type = ARPHRD_IEEE1394;
529 /* FIXME: This value was copied from ether_setup(). Is it too much? */
530 dev->tx_queue_len = 1000;
534 * This function is called every time a card is found. It is generally called
535 * when the module is installed. This is where we add all of our ethernet
536 * devices. One for each host.
538 static void ether1394_add_host(struct hpsb_host *host)
540 struct eth1394_host_info *hi = NULL;
541 struct net_device *dev = NULL;
542 struct eth1394_priv *priv;
543 u64 fifo_addr;
545 if (hpsb_config_rom_ip1394_add(host) != 0) {
546 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
547 return;
550 fifo_addr = hpsb_allocate_and_register_addrspace(
551 &eth1394_highlevel, host, &addr_ops,
552 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
553 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
554 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
555 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
556 hpsb_config_rom_ip1394_remove(host);
557 return;
560 dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
561 if (dev == NULL) {
562 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
563 goto out;
566 SET_MODULE_OWNER(dev);
567 #if 0
568 /* FIXME - Is this the correct parent device anyway? */
569 SET_NETDEV_DEV(dev, &host->device);
570 #endif
572 priv = netdev_priv(dev);
573 INIT_LIST_HEAD(&priv->ip_node_list);
574 spin_lock_init(&priv->lock);
575 priv->host = host;
576 priv->local_fifo = fifo_addr;
578 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
579 if (hi == NULL) {
580 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
581 goto out;
584 ether1394_reset_priv(dev, 1);
586 if (register_netdev(dev)) {
587 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
588 goto out;
591 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
592 host->id);
594 hi->host = host;
595 hi->dev = dev;
597 /* Ignore validity in hopes that it will be set in the future. It'll
598 * be checked when the eth device is opened. */
599 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
601 ether1394_recv_init(priv);
602 return;
603 out:
604 if (dev)
605 free_netdev(dev);
606 if (hi)
607 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
608 hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
609 hpsb_config_rom_ip1394_remove(host);
612 /* Remove a card from our list */
613 static void ether1394_remove_host(struct hpsb_host *host)
615 struct eth1394_host_info *hi;
616 struct eth1394_priv *priv;
618 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
619 if (!hi)
620 return;
621 priv = netdev_priv(hi->dev);
622 hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
623 hpsb_config_rom_ip1394_remove(host);
624 if (priv->iso)
625 hpsb_iso_shutdown(priv->iso);
626 unregister_netdev(hi->dev);
627 free_netdev(hi->dev);
630 /* A bus reset happened */
631 static void ether1394_host_reset(struct hpsb_host *host)
633 struct eth1394_host_info *hi;
634 struct eth1394_priv *priv;
635 struct net_device *dev;
636 struct list_head *lh, *n;
637 struct eth1394_node_ref *node;
638 struct eth1394_node_info *node_info;
639 unsigned long flags;
641 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
643 /* This can happen for hosts that we don't use */
644 if (!hi)
645 return;
647 dev = hi->dev;
648 priv = netdev_priv(dev);
650 /* Reset our private host data, but not our MTU */
651 netif_stop_queue(dev);
652 ether1394_reset_priv(dev, 0);
654 list_for_each_entry(node, &priv->ip_node_list, list) {
655 node_info = node->ud->device.driver_data;
657 spin_lock_irqsave(&node_info->pdg.lock, flags);
659 list_for_each_safe(lh, n, &node_info->pdg.list)
660 purge_partial_datagram(lh);
662 INIT_LIST_HEAD(&(node_info->pdg.list));
663 node_info->pdg.sz = 0;
665 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
668 netif_wake_queue(dev);
671 /******************************************
672 * HW Header net device functions
673 ******************************************/
674 /* These functions have been adapted from net/ethernet/eth.c */
676 /* Create a fake MAC header for an arbitrary protocol layer.
677 * saddr=NULL means use device source address
678 * daddr=NULL means leave destination address (eg unresolved arp). */
679 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
680 unsigned short type, void *daddr, void *saddr,
681 unsigned len)
683 struct eth1394hdr *eth =
684 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
686 eth->h_proto = htons(type);
688 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
689 memset(eth->h_dest, 0, dev->addr_len);
690 return dev->hard_header_len;
693 if (daddr) {
694 memcpy(eth->h_dest, daddr, dev->addr_len);
695 return dev->hard_header_len;
698 return -dev->hard_header_len;
701 /* Rebuild the faked MAC header. This is called after an ARP
702 * (or in future other address resolution) has completed on this
703 * sk_buff. We now let ARP fill in the other fields.
705 * This routine CANNOT use cached dst->neigh!
706 * Really, it is used only when dst->neigh is wrong.
708 static int ether1394_rebuild_header(struct sk_buff *skb)
710 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
712 if (eth->h_proto == htons(ETH_P_IP))
713 return arp_find((unsigned char *)&eth->h_dest, skb);
715 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
716 "unable to resolve type %04x addresses\n",
717 ntohs(eth->h_proto));
718 return 0;
721 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
723 struct net_device *dev = skb->dev;
725 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
726 return ETH1394_ALEN;
729 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
731 unsigned short type = hh->hh_type;
732 struct net_device *dev = neigh->dev;
733 struct eth1394hdr *eth =
734 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
736 if (type == htons(ETH_P_802_3))
737 return -1;
739 eth->h_proto = type;
740 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
742 hh->hh_len = ETH1394_HLEN;
743 return 0;
746 /* Called by Address Resolution module to notify changes in address. */
747 static void ether1394_header_cache_update(struct hh_cache *hh,
748 struct net_device *dev,
749 unsigned char * haddr)
751 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
754 /******************************************
755 * Datagram reception code
756 ******************************************/
758 /* Copied from net/ethernet/eth.c */
759 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
761 struct eth1394hdr *eth;
762 unsigned char *rawp;
764 skb_reset_mac_header(skb);
765 skb_pull(skb, ETH1394_HLEN);
766 eth = eth1394_hdr(skb);
768 if (*eth->h_dest & 1) {
769 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
770 skb->pkt_type = PACKET_BROADCAST;
771 #if 0
772 else
773 skb->pkt_type = PACKET_MULTICAST;
774 #endif
775 } else {
776 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
777 skb->pkt_type = PACKET_OTHERHOST;
780 if (ntohs(eth->h_proto) >= 1536)
781 return eth->h_proto;
783 rawp = skb->data;
785 if (*(unsigned short *)rawp == 0xFFFF)
786 return htons(ETH_P_802_3);
788 return htons(ETH_P_802_2);
791 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
792 * We also perform ARP translation here, if need be. */
793 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
794 nodeid_t srcid, nodeid_t destid,
795 u16 ether_type)
797 struct eth1394_priv *priv = netdev_priv(dev);
798 u64 dest_hw;
799 unsigned short ret = 0;
801 /* Setup our hw addresses. We use these to build the ethernet header. */
802 if (destid == (LOCAL_BUS | ALL_NODES))
803 dest_hw = ~0ULL; /* broadcast */
804 else
805 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
806 priv->host->csr.guid_lo);
808 /* If this is an ARP packet, convert it. First, we want to make
809 * use of some of the fields, since they tell us a little bit
810 * about the sending machine. */
811 if (ether_type == htons(ETH_P_ARP)) {
812 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
813 struct arphdr *arp = (struct arphdr *)skb->data;
814 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
815 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
816 ntohl(arp1394->fifo_lo);
817 u8 max_rec = min(priv->host->csr.max_rec,
818 (u8)(arp1394->max_rec));
819 int sspd = arp1394->sspd;
820 u16 maxpayload;
821 struct eth1394_node_ref *node;
822 struct eth1394_node_info *node_info;
823 __be64 guid;
825 /* Sanity check. MacOSX seems to be sending us 131 in this
826 * field (atleast on my Panther G5). Not sure why. */
827 if (sspd > 5 || sspd < 0)
828 sspd = 0;
830 maxpayload = min(eth1394_speedto_maxpayload[sspd],
831 (u16)(1 << (max_rec + 1)));
833 guid = get_unaligned(&arp1394->s_uniq_id);
834 node = eth1394_find_node_guid(&priv->ip_node_list,
835 be64_to_cpu(guid));
836 if (!node)
837 return 0;
839 node_info =
840 (struct eth1394_node_info *)node->ud->device.driver_data;
842 /* Update our speed/payload/fifo_offset table */
843 node_info->maxpayload = maxpayload;
844 node_info->sspd = sspd;
845 node_info->fifo = fifo_addr;
847 /* Now that we're done with the 1394 specific stuff, we'll
848 * need to alter some of the data. Believe it or not, all
849 * that needs to be done is sender_IP_address needs to be
850 * moved, the destination hardware address get stuffed
851 * in and the hardware address length set to 8.
853 * IMPORTANT: The code below overwrites 1394 specific data
854 * needed above so keep the munging of the data for the
855 * higher level IP stack last. */
857 arp->ar_hln = 8;
858 arp_ptr += arp->ar_hln; /* skip over sender unique id */
859 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
860 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
862 if (arp->ar_op == htons(ARPOP_REQUEST))
863 memset(arp_ptr, 0, sizeof(u64));
864 else
865 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
868 /* Now add the ethernet header. */
869 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
870 skb->len) >= 0)
871 ret = ether1394_type_trans(skb, dev);
873 return ret;
876 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
878 struct fragment_info *fi;
879 int end = offset + len;
881 list_for_each_entry(fi, frag_list, list)
882 if (offset < fi->offset + fi->len && end > fi->offset)
883 return 1;
885 return 0;
888 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
890 struct partial_datagram *pd;
892 list_for_each_entry(pd, pdgl, list)
893 if (pd->dgl == dgl)
894 return &pd->list;
896 return NULL;
899 /* Assumes that new fragment does not overlap any existing fragments */
900 static int new_fragment(struct list_head *frag_info, int offset, int len)
902 struct list_head *lh;
903 struct fragment_info *fi, *fi2, *new;
905 list_for_each(lh, frag_info) {
906 fi = list_entry(lh, struct fragment_info, list);
907 if (fi->offset + fi->len == offset) {
908 /* The new fragment can be tacked on to the end */
909 fi->len += len;
910 /* Did the new fragment plug a hole? */
911 fi2 = list_entry(lh->next, struct fragment_info, list);
912 if (fi->offset + fi->len == fi2->offset) {
913 /* glue fragments together */
914 fi->len += fi2->len;
915 list_del(lh->next);
916 kfree(fi2);
918 return 0;
919 } else if (offset + len == fi->offset) {
920 /* The new fragment can be tacked on to the beginning */
921 fi->offset = offset;
922 fi->len += len;
923 /* Did the new fragment plug a hole? */
924 fi2 = list_entry(lh->prev, struct fragment_info, list);
925 if (fi2->offset + fi2->len == fi->offset) {
926 /* glue fragments together */
927 fi2->len += fi->len;
928 list_del(lh);
929 kfree(fi);
931 return 0;
932 } else if (offset > fi->offset + fi->len) {
933 break;
934 } else if (offset + len < fi->offset) {
935 lh = lh->prev;
936 break;
940 new = kmalloc(sizeof(*new), GFP_ATOMIC);
941 if (!new)
942 return -ENOMEM;
944 new->offset = offset;
945 new->len = len;
947 list_add(&new->list, lh);
948 return 0;
951 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
952 int dgl, int dg_size, char *frag_buf,
953 int frag_off, int frag_len)
955 struct partial_datagram *new;
957 new = kmalloc(sizeof(*new), GFP_ATOMIC);
958 if (!new)
959 return -ENOMEM;
961 INIT_LIST_HEAD(&new->frag_info);
963 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
964 kfree(new);
965 return -ENOMEM;
968 new->dgl = dgl;
969 new->dg_size = dg_size;
971 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
972 if (!new->skb) {
973 struct fragment_info *fi = list_entry(new->frag_info.next,
974 struct fragment_info,
975 list);
976 kfree(fi);
977 kfree(new);
978 return -ENOMEM;
981 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
982 new->pbuf = skb_put(new->skb, dg_size);
983 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
985 list_add(&new->list, pdgl);
986 return 0;
989 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
990 char *frag_buf, int frag_off, int frag_len)
992 struct partial_datagram *pd =
993 list_entry(lh, struct partial_datagram, list);
995 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
996 return -ENOMEM;
998 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1000 /* Move list entry to beginnig of list so that oldest partial
1001 * datagrams percolate to the end of the list */
1002 list_move(lh, pdgl);
1003 return 0;
1006 static int is_datagram_complete(struct list_head *lh, int dg_size)
1008 struct partial_datagram *pd;
1009 struct fragment_info *fi;
1011 pd = list_entry(lh, struct partial_datagram, list);
1012 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1014 return (fi->len == dg_size);
1017 /* Packet reception. We convert the IP1394 encapsulation header to an
1018 * ethernet header, and fill it with some of our other fields. This is
1019 * an incoming packet from the 1394 bus. */
1020 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1021 char *buf, int len)
1023 struct sk_buff *skb;
1024 unsigned long flags;
1025 struct eth1394_priv *priv = netdev_priv(dev);
1026 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1027 u16 ether_type = 0; /* initialized to clear warning */
1028 int hdr_len;
1029 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1030 struct eth1394_node_info *node_info;
1032 if (!ud) {
1033 struct eth1394_node_ref *node;
1034 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1035 if (unlikely(!node)) {
1036 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1037 "lookup failure: " NODE_BUS_FMT,
1038 NODE_BUS_ARGS(priv->host, srcid));
1039 priv->stats.rx_dropped++;
1040 return -1;
1042 ud = node->ud;
1044 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1047 node_info = (struct eth1394_node_info *)ud->device.driver_data;
1049 /* First, did we receive a fragmented or unfragmented datagram? */
1050 hdr->words.word1 = ntohs(hdr->words.word1);
1052 hdr_len = hdr_type_len[hdr->common.lf];
1054 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1055 /* An unfragmented datagram has been received by the ieee1394
1056 * bus. Build an skbuff around it so we can pass it to the
1057 * high level network layer. */
1059 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1060 if (unlikely(!skb)) {
1061 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1062 priv->stats.rx_dropped++;
1063 return -1;
1065 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1066 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1067 len - hdr_len);
1068 ether_type = hdr->uf.ether_type;
1069 } else {
1070 /* A datagram fragment has been received, now the fun begins. */
1072 struct list_head *pdgl, *lh;
1073 struct partial_datagram *pd;
1074 int fg_off;
1075 int fg_len = len - hdr_len;
1076 int dg_size;
1077 int dgl;
1078 int retval;
1079 struct pdg_list *pdg = &(node_info->pdg);
1081 hdr->words.word3 = ntohs(hdr->words.word3);
1082 /* The 4th header word is reserved so no need to do ntohs() */
1084 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1085 ether_type = hdr->ff.ether_type;
1086 dgl = hdr->ff.dgl;
1087 dg_size = hdr->ff.dg_size + 1;
1088 fg_off = 0;
1089 } else {
1090 hdr->words.word2 = ntohs(hdr->words.word2);
1091 dgl = hdr->sf.dgl;
1092 dg_size = hdr->sf.dg_size + 1;
1093 fg_off = hdr->sf.fg_off;
1095 spin_lock_irqsave(&pdg->lock, flags);
1097 pdgl = &(pdg->list);
1098 lh = find_partial_datagram(pdgl, dgl);
1100 if (lh == NULL) {
1101 while (pdg->sz >= max_partial_datagrams) {
1102 /* remove the oldest */
1103 purge_partial_datagram(pdgl->prev);
1104 pdg->sz--;
1107 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1108 buf + hdr_len, fg_off,
1109 fg_len);
1110 if (retval < 0) {
1111 spin_unlock_irqrestore(&pdg->lock, flags);
1112 goto bad_proto;
1114 pdg->sz++;
1115 lh = find_partial_datagram(pdgl, dgl);
1116 } else {
1117 struct partial_datagram *pd;
1119 pd = list_entry(lh, struct partial_datagram, list);
1121 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1122 /* Overlapping fragments, obliterate old
1123 * datagram and start new one. */
1124 purge_partial_datagram(lh);
1125 retval = new_partial_datagram(dev, pdgl, dgl,
1126 dg_size,
1127 buf + hdr_len,
1128 fg_off, fg_len);
1129 if (retval < 0) {
1130 pdg->sz--;
1131 spin_unlock_irqrestore(&pdg->lock, flags);
1132 goto bad_proto;
1134 } else {
1135 retval = update_partial_datagram(pdgl, lh,
1136 buf + hdr_len,
1137 fg_off, fg_len);
1138 if (retval < 0) {
1139 /* Couldn't save off fragment anyway
1140 * so might as well obliterate the
1141 * datagram now. */
1142 purge_partial_datagram(lh);
1143 pdg->sz--;
1144 spin_unlock_irqrestore(&pdg->lock, flags);
1145 goto bad_proto;
1147 } /* fragment overlap */
1148 } /* new datagram or add to existing one */
1150 pd = list_entry(lh, struct partial_datagram, list);
1152 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1153 pd->ether_type = ether_type;
1155 if (is_datagram_complete(lh, dg_size)) {
1156 ether_type = pd->ether_type;
1157 pdg->sz--;
1158 skb = skb_get(pd->skb);
1159 purge_partial_datagram(lh);
1160 spin_unlock_irqrestore(&pdg->lock, flags);
1161 } else {
1162 /* Datagram is not complete, we're done for the
1163 * moment. */
1164 spin_unlock_irqrestore(&pdg->lock, flags);
1165 return 0;
1167 } /* unframgented datagram or fragmented one */
1169 /* Write metadata, and then pass to the receive level */
1170 skb->dev = dev;
1171 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1173 /* Parse the encapsulation header. This actually does the job of
1174 * converting to an ethernet frame header, aswell as arp
1175 * conversion if needed. ARP conversion is easier in this
1176 * direction, since we are using ethernet as our backend. */
1177 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1178 ether_type);
1180 spin_lock_irqsave(&priv->lock, flags);
1182 if (!skb->protocol) {
1183 priv->stats.rx_errors++;
1184 priv->stats.rx_dropped++;
1185 dev_kfree_skb_any(skb);
1186 goto bad_proto;
1189 if (netif_rx(skb) == NET_RX_DROP) {
1190 priv->stats.rx_errors++;
1191 priv->stats.rx_dropped++;
1192 goto bad_proto;
1195 /* Statistics */
1196 priv->stats.rx_packets++;
1197 priv->stats.rx_bytes += skb->len;
1199 bad_proto:
1200 if (netif_queue_stopped(dev))
1201 netif_wake_queue(dev);
1202 spin_unlock_irqrestore(&priv->lock, flags);
1204 dev->last_rx = jiffies;
1206 return 0;
1209 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1210 quadlet_t *data, u64 addr, size_t len, u16 flags)
1212 struct eth1394_host_info *hi;
1214 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1215 if (unlikely(!hi)) {
1216 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1217 host->id);
1218 return RCODE_ADDRESS_ERROR;
1221 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1222 return RCODE_ADDRESS_ERROR;
1223 else
1224 return RCODE_COMPLETE;
1227 static void ether1394_iso(struct hpsb_iso *iso)
1229 quadlet_t *data;
1230 char *buf;
1231 struct eth1394_host_info *hi;
1232 struct net_device *dev;
1233 struct eth1394_priv *priv;
1234 unsigned int len;
1235 u32 specifier_id;
1236 u16 source_id;
1237 int i;
1238 int nready;
1240 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1241 if (unlikely(!hi)) {
1242 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1243 iso->host->id);
1244 return;
1247 dev = hi->dev;
1249 nready = hpsb_iso_n_ready(iso);
1250 for (i = 0; i < nready; i++) {
1251 struct hpsb_iso_packet_info *info =
1252 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1253 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1255 /* skip over GASP header */
1256 buf = (char *)data + 8;
1257 len = info->len - 8;
1259 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1260 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1261 source_id = be32_to_cpu(data[0]) >> 16;
1263 priv = netdev_priv(dev);
1265 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1266 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1267 /* This packet is not for us */
1268 continue;
1270 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1271 buf, len);
1274 hpsb_iso_recv_release_packets(iso, i);
1276 dev->last_rx = jiffies;
1279 /******************************************
1280 * Datagram transmission code
1281 ******************************************/
1283 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1284 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1285 * needs to be munged a bit. The remainder of the arphdr is formatted based
1286 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1287 * judge.
1289 * Now that the EUI is used for the hardware address all we need to do to make
1290 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1291 * speed, and unicast FIFO address information between the sender_unique_id
1292 * and the IP addresses.
1294 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1295 struct net_device *dev)
1297 struct eth1394_priv *priv = netdev_priv(dev);
1298 struct arphdr *arp = (struct arphdr *)skb->data;
1299 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1300 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1302 arp1394->hw_addr_len = 16;
1303 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1304 arp1394->max_rec = priv->host->csr.max_rec;
1305 arp1394->sspd = priv->host->csr.lnk_spd;
1306 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1307 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1310 /* We need to encapsulate the standard header with our own. We use the
1311 * ethernet header's proto for our own. */
1312 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1313 __be16 proto,
1314 union eth1394_hdr *hdr,
1315 u16 dg_size, u16 dgl)
1317 unsigned int adj_max_payload =
1318 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1320 /* Does it all fit in one packet? */
1321 if (dg_size <= adj_max_payload) {
1322 hdr->uf.lf = ETH1394_HDR_LF_UF;
1323 hdr->uf.ether_type = proto;
1324 } else {
1325 hdr->ff.lf = ETH1394_HDR_LF_FF;
1326 hdr->ff.ether_type = proto;
1327 hdr->ff.dg_size = dg_size - 1;
1328 hdr->ff.dgl = dgl;
1329 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1331 return (dg_size + adj_max_payload - 1) / adj_max_payload;
1334 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1335 unsigned int max_payload,
1336 union eth1394_hdr *hdr)
1338 union eth1394_hdr *bufhdr;
1339 int ftype = hdr->common.lf;
1340 int hdrsz = hdr_type_len[ftype];
1341 unsigned int adj_max_payload = max_payload - hdrsz;
1343 switch (ftype) {
1344 case ETH1394_HDR_LF_UF:
1345 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1346 bufhdr->words.word1 = htons(hdr->words.word1);
1347 bufhdr->words.word2 = hdr->words.word2;
1348 break;
1350 case ETH1394_HDR_LF_FF:
1351 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1352 bufhdr->words.word1 = htons(hdr->words.word1);
1353 bufhdr->words.word2 = hdr->words.word2;
1354 bufhdr->words.word3 = htons(hdr->words.word3);
1355 bufhdr->words.word4 = 0;
1357 /* Set frag type here for future interior fragments */
1358 hdr->common.lf = ETH1394_HDR_LF_IF;
1359 hdr->sf.fg_off = 0;
1360 break;
1362 default:
1363 hdr->sf.fg_off += adj_max_payload;
1364 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1365 if (max_payload >= skb->len)
1366 hdr->common.lf = ETH1394_HDR_LF_LF;
1367 bufhdr->words.word1 = htons(hdr->words.word1);
1368 bufhdr->words.word2 = htons(hdr->words.word2);
1369 bufhdr->words.word3 = htons(hdr->words.word3);
1370 bufhdr->words.word4 = 0;
1372 return min(max_payload, skb->len);
1375 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1377 struct hpsb_packet *p;
1379 p = hpsb_alloc_packet(0);
1380 if (p) {
1381 p->host = host;
1382 p->generation = get_hpsb_generation(host);
1383 p->type = hpsb_async;
1385 return p;
1388 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1389 struct hpsb_host *host, nodeid_t node,
1390 u64 addr, void *data, int tx_len)
1392 p->node_id = node;
1393 p->data = NULL;
1395 p->tcode = TCODE_WRITEB;
1396 p->header[1] = host->node_id << 16 | addr >> 32;
1397 p->header[2] = addr & 0xffffffff;
1399 p->header_size = 16;
1400 p->expect_response = 1;
1402 if (hpsb_get_tlabel(p)) {
1403 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1404 return -1;
1406 p->header[0] =
1407 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1409 p->header[3] = tx_len << 16;
1410 p->data_size = (tx_len + 3) & ~3;
1411 p->data = data;
1413 return 0;
1416 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1417 struct eth1394_priv *priv,
1418 struct sk_buff *skb, int length)
1420 p->header_size = 4;
1421 p->tcode = TCODE_STREAM_DATA;
1423 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1424 TCODE_STREAM_DATA << 4;
1425 p->data_size = length;
1426 p->data = (quadlet_t *)skb->data - 2;
1427 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1428 ETHER1394_GASP_SPECIFIER_ID_HI);
1429 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1430 ETHER1394_GASP_VERSION);
1432 p->speed_code = priv->bc_sspd;
1434 /* prevent hpsb_send_packet() from overriding our speed code */
1435 p->node_id = LOCAL_BUS | ALL_NODES;
1438 static void ether1394_free_packet(struct hpsb_packet *packet)
1440 if (packet->tcode != TCODE_STREAM_DATA)
1441 hpsb_free_tlabel(packet);
1442 hpsb_free_packet(packet);
1445 static void ether1394_complete_cb(void *__ptask);
1447 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1449 struct eth1394_priv *priv = ptask->priv;
1450 struct hpsb_packet *packet = NULL;
1452 packet = ether1394_alloc_common_packet(priv->host);
1453 if (!packet)
1454 return -1;
1456 if (ptask->tx_type == ETH1394_GASP) {
1457 int length = tx_len + 2 * sizeof(quadlet_t);
1459 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1460 } else if (ether1394_prep_write_packet(packet, priv->host,
1461 ptask->dest_node,
1462 ptask->addr, ptask->skb->data,
1463 tx_len)) {
1464 hpsb_free_packet(packet);
1465 return -1;
1468 ptask->packet = packet;
1469 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1470 ptask);
1472 if (hpsb_send_packet(packet) < 0) {
1473 ether1394_free_packet(packet);
1474 return -1;
1477 return 0;
1480 /* Task function to be run when a datagram transmission is completed */
1481 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1483 struct sk_buff *skb = ptask->skb;
1484 struct eth1394_priv *priv = netdev_priv(skb->dev);
1485 unsigned long flags;
1487 /* Statistics */
1488 spin_lock_irqsave(&priv->lock, flags);
1489 if (fail) {
1490 priv->stats.tx_dropped++;
1491 priv->stats.tx_errors++;
1492 } else {
1493 priv->stats.tx_bytes += skb->len;
1494 priv->stats.tx_packets++;
1496 spin_unlock_irqrestore(&priv->lock, flags);
1498 dev_kfree_skb_any(skb);
1499 kmem_cache_free(packet_task_cache, ptask);
1502 /* Callback for when a packet has been sent and the status of that packet is
1503 * known */
1504 static void ether1394_complete_cb(void *__ptask)
1506 struct packet_task *ptask = (struct packet_task *)__ptask;
1507 struct hpsb_packet *packet = ptask->packet;
1508 int fail = 0;
1510 if (packet->tcode != TCODE_STREAM_DATA)
1511 fail = hpsb_packet_success(packet);
1513 ether1394_free_packet(packet);
1515 ptask->outstanding_pkts--;
1516 if (ptask->outstanding_pkts > 0 && !fail) {
1517 int tx_len;
1519 /* Add the encapsulation header to the fragment */
1520 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1521 &ptask->hdr);
1522 if (ether1394_send_packet(ptask, tx_len))
1523 ether1394_dg_complete(ptask, 1);
1524 } else {
1525 ether1394_dg_complete(ptask, fail);
1529 /* Transmit a packet (called by kernel) */
1530 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1532 struct eth1394hdr *eth;
1533 struct eth1394_priv *priv = netdev_priv(dev);
1534 __be16 proto;
1535 unsigned long flags;
1536 nodeid_t dest_node;
1537 eth1394_tx_type tx_type;
1538 unsigned int tx_len;
1539 unsigned int max_payload;
1540 u16 dg_size;
1541 u16 dgl;
1542 struct packet_task *ptask;
1543 struct eth1394_node_ref *node;
1544 struct eth1394_node_info *node_info = NULL;
1546 ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1547 if (ptask == NULL)
1548 goto fail;
1550 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1551 * it does not set our validity bit. We need to compensate for
1552 * that somewhere else, but not in eth1394. */
1553 #if 0
1554 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1555 goto fail;
1556 #endif
1558 skb = skb_share_check(skb, GFP_ATOMIC);
1559 if (!skb)
1560 goto fail;
1562 /* Get rid of the fake eth1394 header, but save a pointer */
1563 eth = (struct eth1394hdr *)skb->data;
1564 skb_pull(skb, ETH1394_HLEN);
1566 proto = eth->h_proto;
1567 dg_size = skb->len;
1569 /* Set the transmission type for the packet. ARP packets and IP
1570 * broadcast packets are sent via GASP. */
1571 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1572 proto == htons(ETH_P_ARP) ||
1573 (proto == htons(ETH_P_IP) &&
1574 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1575 tx_type = ETH1394_GASP;
1576 dest_node = LOCAL_BUS | ALL_NODES;
1577 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1578 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1579 dgl = priv->bc_dgl;
1580 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1581 priv->bc_dgl++;
1582 } else {
1583 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1585 node = eth1394_find_node_guid(&priv->ip_node_list,
1586 be64_to_cpu(guid));
1587 if (!node)
1588 goto fail;
1590 node_info =
1591 (struct eth1394_node_info *)node->ud->device.driver_data;
1592 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1593 goto fail;
1595 dest_node = node->ud->ne->nodeid;
1596 max_payload = node_info->maxpayload;
1597 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1599 dgl = node_info->dgl;
1600 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1601 node_info->dgl++;
1602 tx_type = ETH1394_WRREQ;
1605 /* If this is an ARP packet, convert it */
1606 if (proto == htons(ETH_P_ARP))
1607 ether1394_arp_to_1394arp(skb, dev);
1609 ptask->hdr.words.word1 = 0;
1610 ptask->hdr.words.word2 = 0;
1611 ptask->hdr.words.word3 = 0;
1612 ptask->hdr.words.word4 = 0;
1613 ptask->skb = skb;
1614 ptask->priv = priv;
1615 ptask->tx_type = tx_type;
1617 if (tx_type != ETH1394_GASP) {
1618 u64 addr;
1620 spin_lock_irqsave(&priv->lock, flags);
1621 addr = node_info->fifo;
1622 spin_unlock_irqrestore(&priv->lock, flags);
1624 ptask->addr = addr;
1625 ptask->dest_node = dest_node;
1628 ptask->tx_type = tx_type;
1629 ptask->max_payload = max_payload;
1630 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1631 proto, &ptask->hdr, dg_size, dgl);
1633 /* Add the encapsulation header to the fragment */
1634 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1635 dev->trans_start = jiffies;
1636 if (ether1394_send_packet(ptask, tx_len))
1637 goto fail;
1639 netif_wake_queue(dev);
1640 return NETDEV_TX_OK;
1641 fail:
1642 if (ptask)
1643 kmem_cache_free(packet_task_cache, ptask);
1645 if (skb != NULL)
1646 dev_kfree_skb(skb);
1648 spin_lock_irqsave(&priv->lock, flags);
1649 priv->stats.tx_dropped++;
1650 priv->stats.tx_errors++;
1651 spin_unlock_irqrestore(&priv->lock, flags);
1653 if (netif_queue_stopped(dev))
1654 netif_wake_queue(dev);
1657 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1658 * causes serious problems" here, allegedly. Before that patch,
1659 * -ERRNO was returned which is not appropriate under Linux 2.6.
1660 * Perhaps more needs to be done? Stop the queue in serious
1661 * conditions and restart it elsewhere?
1663 /* return NETDEV_TX_BUSY; */
1664 return NETDEV_TX_OK;
1667 static void ether1394_get_drvinfo(struct net_device *dev,
1668 struct ethtool_drvinfo *info)
1670 strcpy(info->driver, driver_name);
1671 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1674 static struct ethtool_ops ethtool_ops = {
1675 .get_drvinfo = ether1394_get_drvinfo
1678 static int __init ether1394_init_module(void)
1680 int err;
1682 packet_task_cache = kmem_cache_create("packet_task",
1683 sizeof(struct packet_task),
1684 0, 0, NULL, NULL);
1685 if (!packet_task_cache)
1686 return -ENOMEM;
1688 hpsb_register_highlevel(&eth1394_highlevel);
1689 err = hpsb_register_protocol(&eth1394_proto_driver);
1690 if (err) {
1691 hpsb_unregister_highlevel(&eth1394_highlevel);
1692 kmem_cache_destroy(packet_task_cache);
1694 return err;
1697 static void __exit ether1394_exit_module(void)
1699 hpsb_unregister_protocol(&eth1394_proto_driver);
1700 hpsb_unregister_highlevel(&eth1394_highlevel);
1701 kmem_cache_destroy(packet_task_cache);
1704 module_init(ether1394_init_module);
1705 module_exit(ether1394_exit_module);