2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/uuid.h>
21 #include "transaction.h"
23 #include "print-tree.h"
26 * Read a root item from the tree. In case we detect a root item smaller then
27 * sizeof(root_item), we know it's an old version of the root structure and
28 * initialize all new fields to zero. The same happens if we detect mismatching
29 * generation numbers as then we know the root was once mounted with an older
30 * kernel that was not aware of the root item structure change.
32 void btrfs_read_root_item(struct extent_buffer
*eb
, int slot
,
33 struct btrfs_root_item
*item
)
39 len
= btrfs_item_size_nr(eb
, slot
);
40 read_extent_buffer(eb
, item
, btrfs_item_ptr_offset(eb
, slot
),
41 min_t(int, len
, (int)sizeof(*item
)));
42 if (len
< sizeof(*item
))
44 if (!need_reset
&& btrfs_root_generation(item
)
45 != btrfs_root_generation_v2(item
)) {
46 if (btrfs_root_generation_v2(item
) != 0) {
47 printk(KERN_WARNING
"btrfs: mismatching "
48 "generation and generation_v2 "
49 "found in root item. This root "
50 "was probably mounted with an "
51 "older kernel. Resetting all "
57 memset(&item
->generation_v2
, 0,
58 sizeof(*item
) - offsetof(struct btrfs_root_item
,
62 memcpy(item
->uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
67 * btrfs_find_root - lookup the root by the key.
68 * root: the root of the root tree
69 * search_key: the key to search
70 * path: the path we search
71 * root_item: the root item of the tree we look for
72 * root_key: the reak key of the tree we look for
74 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
75 * of the search key, just lookup the root with the highest offset for a
78 * If we find something return 0, otherwise > 0, < 0 on error.
80 int btrfs_find_root(struct btrfs_root
*root
, struct btrfs_key
*search_key
,
81 struct btrfs_path
*path
, struct btrfs_root_item
*root_item
,
82 struct btrfs_key
*root_key
)
84 struct btrfs_key found_key
;
85 struct extent_buffer
*l
;
89 ret
= btrfs_search_slot(NULL
, root
, search_key
, path
, 0, 0);
93 if (search_key
->offset
!= -1ULL) { /* the search key is exact */
97 BUG_ON(ret
== 0); /* Logical error */
98 if (path
->slots
[0] == 0)
105 slot
= path
->slots
[0];
107 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
108 if (found_key
.objectid
!= search_key
->objectid
||
109 found_key
.type
!= BTRFS_ROOT_ITEM_KEY
) {
115 btrfs_read_root_item(l
, slot
, root_item
);
117 memcpy(root_key
, &found_key
, sizeof(found_key
));
119 btrfs_release_path(path
);
123 void btrfs_set_root_node(struct btrfs_root_item
*item
,
124 struct extent_buffer
*node
)
126 btrfs_set_root_bytenr(item
, node
->start
);
127 btrfs_set_root_level(item
, btrfs_header_level(node
));
128 btrfs_set_root_generation(item
, btrfs_header_generation(node
));
132 * copy the data in 'item' into the btree
134 int btrfs_update_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
135 *root
, struct btrfs_key
*key
, struct btrfs_root_item
138 struct btrfs_path
*path
;
139 struct extent_buffer
*l
;
145 path
= btrfs_alloc_path();
149 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
151 btrfs_abort_transaction(trans
, root
, ret
);
156 btrfs_print_leaf(root
, path
->nodes
[0]);
157 printk(KERN_CRIT
"unable to update root key %llu %u %llu\n",
158 (unsigned long long)key
->objectid
, key
->type
,
159 (unsigned long long)key
->offset
);
164 slot
= path
->slots
[0];
165 ptr
= btrfs_item_ptr_offset(l
, slot
);
166 old_len
= btrfs_item_size_nr(l
, slot
);
169 * If this is the first time we update the root item which originated
170 * from an older kernel, we need to enlarge the item size to make room
171 * for the added fields.
173 if (old_len
< sizeof(*item
)) {
174 btrfs_release_path(path
);
175 ret
= btrfs_search_slot(trans
, root
, key
, path
,
178 btrfs_abort_transaction(trans
, root
, ret
);
182 ret
= btrfs_del_item(trans
, root
, path
);
184 btrfs_abort_transaction(trans
, root
, ret
);
187 btrfs_release_path(path
);
188 ret
= btrfs_insert_empty_item(trans
, root
, path
,
191 btrfs_abort_transaction(trans
, root
, ret
);
195 slot
= path
->slots
[0];
196 ptr
= btrfs_item_ptr_offset(l
, slot
);
200 * Update generation_v2 so at the next mount we know the new root
203 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
205 write_extent_buffer(l
, item
, ptr
, sizeof(*item
));
206 btrfs_mark_buffer_dirty(path
->nodes
[0]);
208 btrfs_free_path(path
);
212 int btrfs_insert_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
213 struct btrfs_key
*key
, struct btrfs_root_item
*item
)
216 * Make sure generation v1 and v2 match. See update_root for details.
218 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
219 return btrfs_insert_item(trans
, root
, key
, item
, sizeof(*item
));
222 int btrfs_find_orphan_roots(struct btrfs_root
*tree_root
)
224 struct extent_buffer
*leaf
;
225 struct btrfs_path
*path
;
226 struct btrfs_key key
;
227 struct btrfs_key root_key
;
228 struct btrfs_root
*root
;
231 bool can_recover
= true;
233 if (tree_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
236 path
= btrfs_alloc_path();
240 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
241 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
244 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
245 root_key
.offset
= (u64
)-1;
248 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
254 leaf
= path
->nodes
[0];
255 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
256 ret
= btrfs_next_leaf(tree_root
, path
);
261 leaf
= path
->nodes
[0];
264 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
265 btrfs_release_path(path
);
267 if (key
.objectid
!= BTRFS_ORPHAN_OBJECTID
||
268 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
271 root_key
.objectid
= key
.offset
;
274 root
= btrfs_read_fs_root(tree_root
, &root_key
);
276 if (err
&& err
!= -ENOENT
) {
278 } else if (err
== -ENOENT
) {
279 struct btrfs_trans_handle
*trans
;
281 btrfs_release_path(path
);
283 trans
= btrfs_join_transaction(tree_root
);
285 err
= PTR_ERR(trans
);
286 btrfs_error(tree_root
->fs_info
, err
,
287 "Failed to start trans to delete "
291 err
= btrfs_del_orphan_item(trans
, tree_root
,
293 btrfs_end_transaction(trans
, tree_root
);
295 btrfs_error(tree_root
->fs_info
, err
,
296 "Failed to delete root orphan "
303 if (btrfs_root_refs(&root
->root_item
) == 0) {
304 btrfs_add_dead_root(root
);
308 err
= btrfs_init_fs_root(root
);
310 btrfs_free_fs_root(root
);
314 root
->orphan_item_inserted
= 1;
316 err
= btrfs_insert_fs_root(root
->fs_info
, root
);
318 BUG_ON(err
== -EEXIST
);
319 btrfs_free_fs_root(root
);
324 btrfs_free_path(path
);
328 /* drop the root item for 'key' from 'root' */
329 int btrfs_del_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
330 struct btrfs_key
*key
)
332 struct btrfs_path
*path
;
335 path
= btrfs_alloc_path();
338 ret
= btrfs_search_slot(trans
, root
, key
, path
, -1, 1);
344 ret
= btrfs_del_item(trans
, root
, path
);
346 btrfs_free_path(path
);
350 int btrfs_del_root_ref(struct btrfs_trans_handle
*trans
,
351 struct btrfs_root
*tree_root
,
352 u64 root_id
, u64 ref_id
, u64 dirid
, u64
*sequence
,
353 const char *name
, int name_len
)
356 struct btrfs_path
*path
;
357 struct btrfs_root_ref
*ref
;
358 struct extent_buffer
*leaf
;
359 struct btrfs_key key
;
364 path
= btrfs_alloc_path();
368 key
.objectid
= root_id
;
369 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
372 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
375 leaf
= path
->nodes
[0];
376 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
377 struct btrfs_root_ref
);
379 WARN_ON(btrfs_root_ref_dirid(leaf
, ref
) != dirid
);
380 WARN_ON(btrfs_root_ref_name_len(leaf
, ref
) != name_len
);
381 ptr
= (unsigned long)(ref
+ 1);
382 WARN_ON(memcmp_extent_buffer(leaf
, name
, ptr
, name_len
));
383 *sequence
= btrfs_root_ref_sequence(leaf
, ref
);
385 ret
= btrfs_del_item(trans
, tree_root
, path
);
393 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
394 btrfs_release_path(path
);
395 key
.objectid
= ref_id
;
396 key
.type
= BTRFS_ROOT_REF_KEY
;
397 key
.offset
= root_id
;
402 btrfs_free_path(path
);
406 int btrfs_find_root_ref(struct btrfs_root
*tree_root
,
407 struct btrfs_path
*path
,
408 u64 root_id
, u64 ref_id
)
410 struct btrfs_key key
;
413 key
.objectid
= root_id
;
414 key
.type
= BTRFS_ROOT_REF_KEY
;
417 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
422 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
423 * or BTRFS_ROOT_BACKREF_KEY.
425 * The dirid, sequence, name and name_len refer to the directory entry
426 * that is referencing the root.
428 * For a forward ref, the root_id is the id of the tree referencing
429 * the root and ref_id is the id of the subvol or snapshot.
431 * For a back ref the root_id is the id of the subvol or snapshot and
432 * ref_id is the id of the tree referencing it.
434 * Will return 0, -ENOMEM, or anything from the CoW path
436 int btrfs_add_root_ref(struct btrfs_trans_handle
*trans
,
437 struct btrfs_root
*tree_root
,
438 u64 root_id
, u64 ref_id
, u64 dirid
, u64 sequence
,
439 const char *name
, int name_len
)
441 struct btrfs_key key
;
443 struct btrfs_path
*path
;
444 struct btrfs_root_ref
*ref
;
445 struct extent_buffer
*leaf
;
448 path
= btrfs_alloc_path();
452 key
.objectid
= root_id
;
453 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
456 ret
= btrfs_insert_empty_item(trans
, tree_root
, path
, &key
,
457 sizeof(*ref
) + name_len
);
459 btrfs_abort_transaction(trans
, tree_root
, ret
);
460 btrfs_free_path(path
);
464 leaf
= path
->nodes
[0];
465 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
466 btrfs_set_root_ref_dirid(leaf
, ref
, dirid
);
467 btrfs_set_root_ref_sequence(leaf
, ref
, sequence
);
468 btrfs_set_root_ref_name_len(leaf
, ref
, name_len
);
469 ptr
= (unsigned long)(ref
+ 1);
470 write_extent_buffer(leaf
, name
, ptr
, name_len
);
471 btrfs_mark_buffer_dirty(leaf
);
473 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
474 btrfs_release_path(path
);
475 key
.objectid
= ref_id
;
476 key
.type
= BTRFS_ROOT_REF_KEY
;
477 key
.offset
= root_id
;
481 btrfs_free_path(path
);
486 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
487 * for subvolumes. To work around this problem, we steal a bit from
488 * root_item->inode_item->flags, and use it to indicate if those fields
489 * have been properly initialized.
491 void btrfs_check_and_init_root_item(struct btrfs_root_item
*root_item
)
493 u64 inode_flags
= le64_to_cpu(root_item
->inode
.flags
);
495 if (!(inode_flags
& BTRFS_INODE_ROOT_ITEM_INIT
)) {
496 inode_flags
|= BTRFS_INODE_ROOT_ITEM_INIT
;
497 root_item
->inode
.flags
= cpu_to_le64(inode_flags
);
498 root_item
->flags
= 0;
499 root_item
->byte_limit
= 0;
503 void btrfs_update_root_times(struct btrfs_trans_handle
*trans
,
504 struct btrfs_root
*root
)
506 struct btrfs_root_item
*item
= &root
->root_item
;
507 struct timespec ct
= CURRENT_TIME
;
509 spin_lock(&root
->root_item_lock
);
510 item
->ctransid
= cpu_to_le64(trans
->transid
);
511 item
->ctime
.sec
= cpu_to_le64(ct
.tv_sec
);
512 item
->ctime
.nsec
= cpu_to_le32(ct
.tv_nsec
);
513 spin_unlock(&root
->root_item_lock
);