2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio
{
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios
;
50 /* the pages with the compressed data on them */
51 struct page
**compressed_pages
;
53 /* inode that owns this data */
56 /* starting offset in the inode for our pages */
59 /* number of bytes in the inode we're working on */
62 /* number of bytes on disk */
63 unsigned long compressed_len
;
65 /* the compression algorithm for this bio */
68 /* number of compressed pages in the array */
69 unsigned long nr_pages
;
75 /* for reads, this is the bio we are copying the data into */
79 * the start of a variable length array of checksums only
85 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
86 u64 disk_start
, struct bio_vec
*bvec
,
87 int vcnt
, size_t srclen
);
89 static inline int compressed_bio_size(struct btrfs_root
*root
,
90 unsigned long disk_size
)
92 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
94 return sizeof(struct compressed_bio
) +
95 ((disk_size
+ root
->sectorsize
- 1) / root
->sectorsize
) *
99 static struct bio
*compressed_bio_alloc(struct block_device
*bdev
,
100 u64 first_byte
, gfp_t gfp_flags
)
104 nr_vecs
= bio_get_nr_vecs(bdev
);
105 return btrfs_bio_alloc(bdev
, first_byte
>> 9, nr_vecs
, gfp_flags
);
108 static int check_compressed_csum(struct inode
*inode
,
109 struct compressed_bio
*cb
,
117 u32
*cb_sum
= &cb
->sums
;
119 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
122 for (i
= 0; i
< cb
->nr_pages
; i
++) {
123 page
= cb
->compressed_pages
[i
];
126 kaddr
= kmap_atomic(page
);
127 csum
= btrfs_csum_data(kaddr
, csum
, PAGE_CACHE_SIZE
);
128 btrfs_csum_final(csum
, (char *)&csum
);
129 kunmap_atomic(kaddr
);
131 if (csum
!= *cb_sum
) {
132 printk(KERN_INFO
"btrfs csum failed ino %llu "
133 "extent %llu csum %u "
134 "wanted %u mirror %d\n",
135 (unsigned long long)btrfs_ino(inode
),
136 (unsigned long long)disk_start
,
137 csum
, *cb_sum
, cb
->mirror_num
);
149 /* when we finish reading compressed pages from the disk, we
150 * decompress them and then run the bio end_io routines on the
151 * decompressed pages (in the inode address space).
153 * This allows the checksumming and other IO error handling routines
156 * The compressed pages are freed here, and it must be run
159 static void end_compressed_bio_read(struct bio
*bio
, int err
)
161 struct compressed_bio
*cb
= bio
->bi_private
;
170 /* if there are more bios still pending for this compressed
173 if (!atomic_dec_and_test(&cb
->pending_bios
))
177 ret
= check_compressed_csum(inode
, cb
, (u64
)bio
->bi_sector
<< 9);
181 /* ok, we're the last bio for this extent, lets start
184 ret
= btrfs_decompress_biovec(cb
->compress_type
,
185 cb
->compressed_pages
,
187 cb
->orig_bio
->bi_io_vec
,
188 cb
->orig_bio
->bi_vcnt
,
194 /* release the compressed pages */
196 for (index
= 0; index
< cb
->nr_pages
; index
++) {
197 page
= cb
->compressed_pages
[index
];
198 page
->mapping
= NULL
;
199 page_cache_release(page
);
202 /* do io completion on the original bio */
204 bio_io_error(cb
->orig_bio
);
207 struct bio_vec
*bvec
= cb
->orig_bio
->bi_io_vec
;
210 * we have verified the checksum already, set page
211 * checked so the end_io handlers know about it
213 while (bio_index
< cb
->orig_bio
->bi_vcnt
) {
214 SetPageChecked(bvec
->bv_page
);
218 bio_endio(cb
->orig_bio
, 0);
221 /* finally free the cb struct */
222 kfree(cb
->compressed_pages
);
229 * Clear the writeback bits on all of the file
230 * pages for a compressed write
232 static noinline
void end_compressed_writeback(struct inode
*inode
, u64 start
,
233 unsigned long ram_size
)
235 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
236 unsigned long end_index
= (start
+ ram_size
- 1) >> PAGE_CACHE_SHIFT
;
237 struct page
*pages
[16];
238 unsigned long nr_pages
= end_index
- index
+ 1;
242 while (nr_pages
> 0) {
243 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
245 nr_pages
, ARRAY_SIZE(pages
)), pages
);
251 for (i
= 0; i
< ret
; i
++) {
252 end_page_writeback(pages
[i
]);
253 page_cache_release(pages
[i
]);
258 /* the inode may be gone now */
262 * do the cleanup once all the compressed pages hit the disk.
263 * This will clear writeback on the file pages and free the compressed
266 * This also calls the writeback end hooks for the file pages so that
267 * metadata and checksums can be updated in the file.
269 static void end_compressed_bio_write(struct bio
*bio
, int err
)
271 struct extent_io_tree
*tree
;
272 struct compressed_bio
*cb
= bio
->bi_private
;
280 /* if there are more bios still pending for this compressed
283 if (!atomic_dec_and_test(&cb
->pending_bios
))
286 /* ok, we're the last bio for this extent, step one is to
287 * call back into the FS and do all the end_io operations
290 tree
= &BTRFS_I(inode
)->io_tree
;
291 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
292 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
294 cb
->start
+ cb
->len
- 1,
296 cb
->compressed_pages
[0]->mapping
= NULL
;
298 end_compressed_writeback(inode
, cb
->start
, cb
->len
);
299 /* note, our inode could be gone now */
302 * release the compressed pages, these came from alloc_page and
303 * are not attached to the inode at all
306 for (index
= 0; index
< cb
->nr_pages
; index
++) {
307 page
= cb
->compressed_pages
[index
];
308 page
->mapping
= NULL
;
309 page_cache_release(page
);
312 /* finally free the cb struct */
313 kfree(cb
->compressed_pages
);
320 * worker function to build and submit bios for previously compressed pages.
321 * The corresponding pages in the inode should be marked for writeback
322 * and the compressed pages should have a reference on them for dropping
323 * when the IO is complete.
325 * This also checksums the file bytes and gets things ready for
328 int btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
329 unsigned long len
, u64 disk_start
,
330 unsigned long compressed_len
,
331 struct page
**compressed_pages
,
332 unsigned long nr_pages
)
334 struct bio
*bio
= NULL
;
335 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
336 struct compressed_bio
*cb
;
337 unsigned long bytes_left
;
338 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
341 u64 first_byte
= disk_start
;
342 struct block_device
*bdev
;
344 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
346 WARN_ON(start
& ((u64
)PAGE_CACHE_SIZE
- 1));
347 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
350 atomic_set(&cb
->pending_bios
, 0);
356 cb
->compressed_pages
= compressed_pages
;
357 cb
->compressed_len
= compressed_len
;
359 cb
->nr_pages
= nr_pages
;
361 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
363 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
368 bio
->bi_private
= cb
;
369 bio
->bi_end_io
= end_compressed_bio_write
;
370 atomic_inc(&cb
->pending_bios
);
372 /* create and submit bios for the compressed pages */
373 bytes_left
= compressed_len
;
374 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
375 page
= compressed_pages
[pg_index
];
376 page
->mapping
= inode
->i_mapping
;
378 ret
= io_tree
->ops
->merge_bio_hook(WRITE
, page
, 0,
384 page
->mapping
= NULL
;
385 if (ret
|| bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0) <
390 * inc the count before we submit the bio so
391 * we know the end IO handler won't happen before
392 * we inc the count. Otherwise, the cb might get
393 * freed before we're done setting it up
395 atomic_inc(&cb
->pending_bios
);
396 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
397 BUG_ON(ret
); /* -ENOMEM */
400 ret
= btrfs_csum_one_bio(root
, inode
, bio
,
402 BUG_ON(ret
); /* -ENOMEM */
405 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
406 BUG_ON(ret
); /* -ENOMEM */
410 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
412 bio
->bi_private
= cb
;
413 bio
->bi_end_io
= end_compressed_bio_write
;
414 bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
416 if (bytes_left
< PAGE_CACHE_SIZE
) {
417 printk("bytes left %lu compress len %lu nr %lu\n",
418 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
420 bytes_left
-= PAGE_CACHE_SIZE
;
421 first_byte
+= PAGE_CACHE_SIZE
;
426 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
427 BUG_ON(ret
); /* -ENOMEM */
430 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
431 BUG_ON(ret
); /* -ENOMEM */
434 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
435 BUG_ON(ret
); /* -ENOMEM */
441 static noinline
int add_ra_bio_pages(struct inode
*inode
,
443 struct compressed_bio
*cb
)
445 unsigned long end_index
;
446 unsigned long pg_index
;
448 u64 isize
= i_size_read(inode
);
451 unsigned long nr_pages
= 0;
452 struct extent_map
*em
;
453 struct address_space
*mapping
= inode
->i_mapping
;
454 struct extent_map_tree
*em_tree
;
455 struct extent_io_tree
*tree
;
459 page
= cb
->orig_bio
->bi_io_vec
[cb
->orig_bio
->bi_vcnt
- 1].bv_page
;
460 last_offset
= (page_offset(page
) + PAGE_CACHE_SIZE
);
461 em_tree
= &BTRFS_I(inode
)->extent_tree
;
462 tree
= &BTRFS_I(inode
)->io_tree
;
467 end_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
469 while (last_offset
< compressed_end
) {
470 pg_index
= last_offset
>> PAGE_CACHE_SHIFT
;
472 if (pg_index
> end_index
)
476 page
= radix_tree_lookup(&mapping
->page_tree
, pg_index
);
485 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) &
490 if (add_to_page_cache_lru(page
, mapping
, pg_index
,
492 page_cache_release(page
);
496 end
= last_offset
+ PAGE_CACHE_SIZE
- 1;
498 * at this point, we have a locked page in the page cache
499 * for these bytes in the file. But, we have to make
500 * sure they map to this compressed extent on disk.
502 set_page_extent_mapped(page
);
503 lock_extent(tree
, last_offset
, end
);
504 read_lock(&em_tree
->lock
);
505 em
= lookup_extent_mapping(em_tree
, last_offset
,
507 read_unlock(&em_tree
->lock
);
509 if (!em
|| last_offset
< em
->start
||
510 (last_offset
+ PAGE_CACHE_SIZE
> extent_map_end(em
)) ||
511 (em
->block_start
>> 9) != cb
->orig_bio
->bi_sector
) {
513 unlock_extent(tree
, last_offset
, end
);
515 page_cache_release(page
);
520 if (page
->index
== end_index
) {
522 size_t zero_offset
= isize
& (PAGE_CACHE_SIZE
- 1);
526 zeros
= PAGE_CACHE_SIZE
- zero_offset
;
527 userpage
= kmap_atomic(page
);
528 memset(userpage
+ zero_offset
, 0, zeros
);
529 flush_dcache_page(page
);
530 kunmap_atomic(userpage
);
534 ret
= bio_add_page(cb
->orig_bio
, page
,
537 if (ret
== PAGE_CACHE_SIZE
) {
539 page_cache_release(page
);
541 unlock_extent(tree
, last_offset
, end
);
543 page_cache_release(page
);
547 last_offset
+= PAGE_CACHE_SIZE
;
553 * for a compressed read, the bio we get passed has all the inode pages
554 * in it. We don't actually do IO on those pages but allocate new ones
555 * to hold the compressed pages on disk.
557 * bio->bi_sector points to the compressed extent on disk
558 * bio->bi_io_vec points to all of the inode pages
559 * bio->bi_vcnt is a count of pages
561 * After the compressed pages are read, we copy the bytes into the
562 * bio we were passed and then call the bio end_io calls
564 int btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
565 int mirror_num
, unsigned long bio_flags
)
567 struct extent_io_tree
*tree
;
568 struct extent_map_tree
*em_tree
;
569 struct compressed_bio
*cb
;
570 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
571 unsigned long uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
572 unsigned long compressed_len
;
573 unsigned long nr_pages
;
574 unsigned long pg_index
;
576 struct block_device
*bdev
;
577 struct bio
*comp_bio
;
578 u64 cur_disk_byte
= (u64
)bio
->bi_sector
<< 9;
581 struct extent_map
*em
;
586 tree
= &BTRFS_I(inode
)->io_tree
;
587 em_tree
= &BTRFS_I(inode
)->extent_tree
;
589 /* we need the actual starting offset of this extent in the file */
590 read_lock(&em_tree
->lock
);
591 em
= lookup_extent_mapping(em_tree
,
592 page_offset(bio
->bi_io_vec
->bv_page
),
594 read_unlock(&em_tree
->lock
);
598 compressed_len
= em
->block_len
;
599 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
603 atomic_set(&cb
->pending_bios
, 0);
606 cb
->mirror_num
= mirror_num
;
609 cb
->start
= em
->orig_start
;
611 em_start
= em
->start
;
616 cb
->len
= uncompressed_len
;
617 cb
->compressed_len
= compressed_len
;
618 cb
->compress_type
= extent_compress_type(bio_flags
);
621 nr_pages
= (compressed_len
+ PAGE_CACHE_SIZE
- 1) /
623 cb
->compressed_pages
= kzalloc(sizeof(struct page
*) * nr_pages
,
625 if (!cb
->compressed_pages
)
628 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
630 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
631 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
633 if (!cb
->compressed_pages
[pg_index
]) {
634 faili
= pg_index
- 1;
639 faili
= nr_pages
- 1;
640 cb
->nr_pages
= nr_pages
;
642 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
644 /* include any pages we added in add_ra-bio_pages */
645 uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
646 cb
->len
= uncompressed_len
;
648 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
, GFP_NOFS
);
651 comp_bio
->bi_private
= cb
;
652 comp_bio
->bi_end_io
= end_compressed_bio_read
;
653 atomic_inc(&cb
->pending_bios
);
655 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
656 page
= cb
->compressed_pages
[pg_index
];
657 page
->mapping
= inode
->i_mapping
;
658 page
->index
= em_start
>> PAGE_CACHE_SHIFT
;
660 if (comp_bio
->bi_size
)
661 ret
= tree
->ops
->merge_bio_hook(READ
, page
, 0,
667 page
->mapping
= NULL
;
668 if (ret
|| bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0) <
672 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
673 BUG_ON(ret
); /* -ENOMEM */
676 * inc the count before we submit the bio so
677 * we know the end IO handler won't happen before
678 * we inc the count. Otherwise, the cb might get
679 * freed before we're done setting it up
681 atomic_inc(&cb
->pending_bios
);
683 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
684 ret
= btrfs_lookup_bio_sums(root
, inode
,
686 BUG_ON(ret
); /* -ENOMEM */
688 sums
+= (comp_bio
->bi_size
+ root
->sectorsize
- 1) /
691 ret
= btrfs_map_bio(root
, READ
, comp_bio
,
694 bio_endio(comp_bio
, ret
);
698 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
,
701 comp_bio
->bi_private
= cb
;
702 comp_bio
->bi_end_io
= end_compressed_bio_read
;
704 bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0);
706 cur_disk_byte
+= PAGE_CACHE_SIZE
;
710 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
711 BUG_ON(ret
); /* -ENOMEM */
713 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
714 ret
= btrfs_lookup_bio_sums(root
, inode
, comp_bio
, sums
);
715 BUG_ON(ret
); /* -ENOMEM */
718 ret
= btrfs_map_bio(root
, READ
, comp_bio
, mirror_num
, 0);
720 bio_endio(comp_bio
, ret
);
727 __free_page(cb
->compressed_pages
[faili
]);
731 kfree(cb
->compressed_pages
);
739 static struct list_head comp_idle_workspace
[BTRFS_COMPRESS_TYPES
];
740 static spinlock_t comp_workspace_lock
[BTRFS_COMPRESS_TYPES
];
741 static int comp_num_workspace
[BTRFS_COMPRESS_TYPES
];
742 static atomic_t comp_alloc_workspace
[BTRFS_COMPRESS_TYPES
];
743 static wait_queue_head_t comp_workspace_wait
[BTRFS_COMPRESS_TYPES
];
745 static struct btrfs_compress_op
*btrfs_compress_op
[] = {
746 &btrfs_zlib_compress
,
750 void __init
btrfs_init_compress(void)
754 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
755 INIT_LIST_HEAD(&comp_idle_workspace
[i
]);
756 spin_lock_init(&comp_workspace_lock
[i
]);
757 atomic_set(&comp_alloc_workspace
[i
], 0);
758 init_waitqueue_head(&comp_workspace_wait
[i
]);
763 * this finds an available workspace or allocates a new one
764 * ERR_PTR is returned if things go bad.
766 static struct list_head
*find_workspace(int type
)
768 struct list_head
*workspace
;
769 int cpus
= num_online_cpus();
772 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
773 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
774 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
775 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
776 int *num_workspace
= &comp_num_workspace
[idx
];
778 spin_lock(workspace_lock
);
779 if (!list_empty(idle_workspace
)) {
780 workspace
= idle_workspace
->next
;
783 spin_unlock(workspace_lock
);
787 if (atomic_read(alloc_workspace
) > cpus
) {
790 spin_unlock(workspace_lock
);
791 prepare_to_wait(workspace_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
792 if (atomic_read(alloc_workspace
) > cpus
&& !*num_workspace
)
794 finish_wait(workspace_wait
, &wait
);
797 atomic_inc(alloc_workspace
);
798 spin_unlock(workspace_lock
);
800 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
801 if (IS_ERR(workspace
)) {
802 atomic_dec(alloc_workspace
);
803 wake_up(workspace_wait
);
809 * put a workspace struct back on the list or free it if we have enough
810 * idle ones sitting around
812 static void free_workspace(int type
, struct list_head
*workspace
)
815 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
816 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
817 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
818 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
819 int *num_workspace
= &comp_num_workspace
[idx
];
821 spin_lock(workspace_lock
);
822 if (*num_workspace
< num_online_cpus()) {
823 list_add_tail(workspace
, idle_workspace
);
825 spin_unlock(workspace_lock
);
828 spin_unlock(workspace_lock
);
830 btrfs_compress_op
[idx
]->free_workspace(workspace
);
831 atomic_dec(alloc_workspace
);
834 if (waitqueue_active(workspace_wait
))
835 wake_up(workspace_wait
);
839 * cleanup function for module exit
841 static void free_workspaces(void)
843 struct list_head
*workspace
;
846 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
847 while (!list_empty(&comp_idle_workspace
[i
])) {
848 workspace
= comp_idle_workspace
[i
].next
;
850 btrfs_compress_op
[i
]->free_workspace(workspace
);
851 atomic_dec(&comp_alloc_workspace
[i
]);
857 * given an address space and start/len, compress the bytes.
859 * pages are allocated to hold the compressed result and stored
862 * out_pages is used to return the number of pages allocated. There
863 * may be pages allocated even if we return an error
865 * total_in is used to return the number of bytes actually read. It
866 * may be smaller then len if we had to exit early because we
867 * ran out of room in the pages array or because we cross the
870 * total_out is used to return the total number of compressed bytes
872 * max_out tells us the max number of bytes that we're allowed to
875 int btrfs_compress_pages(int type
, struct address_space
*mapping
,
876 u64 start
, unsigned long len
,
878 unsigned long nr_dest_pages
,
879 unsigned long *out_pages
,
880 unsigned long *total_in
,
881 unsigned long *total_out
,
882 unsigned long max_out
)
884 struct list_head
*workspace
;
887 workspace
= find_workspace(type
);
888 if (IS_ERR(workspace
))
891 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
893 nr_dest_pages
, out_pages
,
896 free_workspace(type
, workspace
);
901 * pages_in is an array of pages with compressed data.
903 * disk_start is the starting logical offset of this array in the file
905 * bvec is a bio_vec of pages from the file that we want to decompress into
907 * vcnt is the count of pages in the biovec
909 * srclen is the number of bytes in pages_in
911 * The basic idea is that we have a bio that was created by readpages.
912 * The pages in the bio are for the uncompressed data, and they may not
913 * be contiguous. They all correspond to the range of bytes covered by
914 * the compressed extent.
916 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
917 u64 disk_start
, struct bio_vec
*bvec
,
918 int vcnt
, size_t srclen
)
920 struct list_head
*workspace
;
923 workspace
= find_workspace(type
);
924 if (IS_ERR(workspace
))
927 ret
= btrfs_compress_op
[type
-1]->decompress_biovec(workspace
, pages_in
,
930 free_workspace(type
, workspace
);
935 * a less complex decompression routine. Our compressed data fits in a
936 * single page, and we want to read a single page out of it.
937 * start_byte tells us the offset into the compressed data we're interested in
939 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
940 unsigned long start_byte
, size_t srclen
, size_t destlen
)
942 struct list_head
*workspace
;
945 workspace
= find_workspace(type
);
946 if (IS_ERR(workspace
))
949 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
950 dest_page
, start_byte
,
953 free_workspace(type
, workspace
);
957 void btrfs_exit_compress(void)
963 * Copy uncompressed data from working buffer to pages.
965 * buf_start is the byte offset we're of the start of our workspace buffer.
967 * total_out is the last byte of the buffer
969 int btrfs_decompress_buf2page(char *buf
, unsigned long buf_start
,
970 unsigned long total_out
, u64 disk_start
,
971 struct bio_vec
*bvec
, int vcnt
,
972 unsigned long *pg_index
,
973 unsigned long *pg_offset
)
975 unsigned long buf_offset
;
976 unsigned long current_buf_start
;
977 unsigned long start_byte
;
978 unsigned long working_bytes
= total_out
- buf_start
;
981 struct page
*page_out
= bvec
[*pg_index
].bv_page
;
984 * start byte is the first byte of the page we're currently
985 * copying into relative to the start of the compressed data.
987 start_byte
= page_offset(page_out
) - disk_start
;
989 /* we haven't yet hit data corresponding to this page */
990 if (total_out
<= start_byte
)
994 * the start of the data we care about is offset into
995 * the middle of our working buffer
997 if (total_out
> start_byte
&& buf_start
< start_byte
) {
998 buf_offset
= start_byte
- buf_start
;
999 working_bytes
-= buf_offset
;
1003 current_buf_start
= buf_start
;
1005 /* copy bytes from the working buffer into the pages */
1006 while (working_bytes
> 0) {
1007 bytes
= min(PAGE_CACHE_SIZE
- *pg_offset
,
1008 PAGE_CACHE_SIZE
- buf_offset
);
1009 bytes
= min(bytes
, working_bytes
);
1010 kaddr
= kmap_atomic(page_out
);
1011 memcpy(kaddr
+ *pg_offset
, buf
+ buf_offset
, bytes
);
1012 kunmap_atomic(kaddr
);
1013 flush_dcache_page(page_out
);
1015 *pg_offset
+= bytes
;
1016 buf_offset
+= bytes
;
1017 working_bytes
-= bytes
;
1018 current_buf_start
+= bytes
;
1020 /* check if we need to pick another page */
1021 if (*pg_offset
== PAGE_CACHE_SIZE
) {
1023 if (*pg_index
>= vcnt
)
1026 page_out
= bvec
[*pg_index
].bv_page
;
1028 start_byte
= page_offset(page_out
) - disk_start
;
1031 * make sure our new page is covered by this
1034 if (total_out
<= start_byte
)
1038 * the next page in the biovec might not be adjacent
1039 * to the last page, but it might still be found
1040 * inside this working buffer. bump our offset pointer
1042 if (total_out
> start_byte
&&
1043 current_buf_start
< start_byte
) {
1044 buf_offset
= start_byte
- buf_start
;
1045 working_bytes
= total_out
- start_byte
;
1046 current_buf_start
= buf_start
+ buf_offset
;