Merge tag 'blackfin-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/realm...
[linux-2.6.git] / fs / ntfs / mft.c
blob3014a36a255b97ddcac0b1852fa0d11c613b7a9d
1 /**
2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/buffer_head.h>
24 #include <linux/slab.h>
25 #include <linux/swap.h>
27 #include "attrib.h"
28 #include "aops.h"
29 #include "bitmap.h"
30 #include "debug.h"
31 #include "dir.h"
32 #include "lcnalloc.h"
33 #include "malloc.h"
34 #include "mft.h"
35 #include "ntfs.h"
37 /**
38 * map_mft_record_page - map the page in which a specific mft record resides
39 * @ni: ntfs inode whose mft record page to map
41 * This maps the page in which the mft record of the ntfs inode @ni is situated
42 * and returns a pointer to the mft record within the mapped page.
44 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
45 * contains the negative error code returned.
47 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
49 loff_t i_size;
50 ntfs_volume *vol = ni->vol;
51 struct inode *mft_vi = vol->mft_ino;
52 struct page *page;
53 unsigned long index, end_index;
54 unsigned ofs;
56 BUG_ON(ni->page);
58 * The index into the page cache and the offset within the page cache
59 * page of the wanted mft record. FIXME: We need to check for
60 * overflowing the unsigned long, but I don't think we would ever get
61 * here if the volume was that big...
63 index = (u64)ni->mft_no << vol->mft_record_size_bits >>
64 PAGE_CACHE_SHIFT;
65 ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
67 i_size = i_size_read(mft_vi);
68 /* The maximum valid index into the page cache for $MFT's data. */
69 end_index = i_size >> PAGE_CACHE_SHIFT;
71 /* If the wanted index is out of bounds the mft record doesn't exist. */
72 if (unlikely(index >= end_index)) {
73 if (index > end_index || (i_size & ~PAGE_CACHE_MASK) < ofs +
74 vol->mft_record_size) {
75 page = ERR_PTR(-ENOENT);
76 ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
77 "which is beyond the end of the mft. "
78 "This is probably a bug in the ntfs "
79 "driver.", ni->mft_no);
80 goto err_out;
83 /* Read, map, and pin the page. */
84 page = ntfs_map_page(mft_vi->i_mapping, index);
85 if (likely(!IS_ERR(page))) {
86 /* Catch multi sector transfer fixup errors. */
87 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
88 ofs)))) {
89 ni->page = page;
90 ni->page_ofs = ofs;
91 return page_address(page) + ofs;
93 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. "
94 "Run chkdsk.", ni->mft_no);
95 ntfs_unmap_page(page);
96 page = ERR_PTR(-EIO);
97 NVolSetErrors(vol);
99 err_out:
100 ni->page = NULL;
101 ni->page_ofs = 0;
102 return (void*)page;
106 * map_mft_record - map, pin and lock an mft record
107 * @ni: ntfs inode whose MFT record to map
109 * First, take the mrec_lock mutex. We might now be sleeping, while waiting
110 * for the mutex if it was already locked by someone else.
112 * The page of the record is mapped using map_mft_record_page() before being
113 * returned to the caller.
115 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
116 * record (it in turn calls read_cache_page() which reads it in from disk if
117 * necessary, increments the use count on the page so that it cannot disappear
118 * under us and returns a reference to the page cache page).
120 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
121 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
122 * and the post-read mst fixups on each mft record in the page have been
123 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
124 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
125 * ntfs_map_page() waits for PG_locked to become clear and checks if
126 * PG_uptodate is set and returns an error code if not. This provides
127 * sufficient protection against races when reading/using the page.
129 * However there is the write mapping to think about. Doing the above described
130 * checking here will be fine, because when initiating the write we will set
131 * PG_locked and clear PG_uptodate making sure nobody is touching the page
132 * contents. Doing the locking this way means that the commit to disk code in
133 * the page cache code paths is automatically sufficiently locked with us as
134 * we will not touch a page that has been locked or is not uptodate. The only
135 * locking problem then is them locking the page while we are accessing it.
137 * So that code will end up having to own the mrec_lock of all mft
138 * records/inodes present in the page before I/O can proceed. In that case we
139 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
140 * accessing anything without owning the mrec_lock mutex. But we do need to
141 * use them because of the read_cache_page() invocation and the code becomes so
142 * much simpler this way that it is well worth it.
144 * The mft record is now ours and we return a pointer to it. You need to check
145 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
146 * the error code.
148 * NOTE: Caller is responsible for setting the mft record dirty before calling
149 * unmap_mft_record(). This is obviously only necessary if the caller really
150 * modified the mft record...
151 * Q: Do we want to recycle one of the VFS inode state bits instead?
152 * A: No, the inode ones mean we want to change the mft record, not we want to
153 * write it out.
155 MFT_RECORD *map_mft_record(ntfs_inode *ni)
157 MFT_RECORD *m;
159 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
161 /* Make sure the ntfs inode doesn't go away. */
162 atomic_inc(&ni->count);
164 /* Serialize access to this mft record. */
165 mutex_lock(&ni->mrec_lock);
167 m = map_mft_record_page(ni);
168 if (likely(!IS_ERR(m)))
169 return m;
171 mutex_unlock(&ni->mrec_lock);
172 atomic_dec(&ni->count);
173 ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
174 return m;
178 * unmap_mft_record_page - unmap the page in which a specific mft record resides
179 * @ni: ntfs inode whose mft record page to unmap
181 * This unmaps the page in which the mft record of the ntfs inode @ni is
182 * situated and returns. This is a NOOP if highmem is not configured.
184 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
185 * count on the page thus releasing it from the pinned state.
187 * We do not actually unmap the page from memory of course, as that will be
188 * done by the page cache code itself when memory pressure increases or
189 * whatever.
191 static inline void unmap_mft_record_page(ntfs_inode *ni)
193 BUG_ON(!ni->page);
195 // TODO: If dirty, blah...
196 ntfs_unmap_page(ni->page);
197 ni->page = NULL;
198 ni->page_ofs = 0;
199 return;
203 * unmap_mft_record - release a mapped mft record
204 * @ni: ntfs inode whose MFT record to unmap
206 * We release the page mapping and the mrec_lock mutex which unmaps the mft
207 * record and releases it for others to get hold of. We also release the ntfs
208 * inode by decrementing the ntfs inode reference count.
210 * NOTE: If caller has modified the mft record, it is imperative to set the mft
211 * record dirty BEFORE calling unmap_mft_record().
213 void unmap_mft_record(ntfs_inode *ni)
215 struct page *page = ni->page;
217 BUG_ON(!page);
219 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
221 unmap_mft_record_page(ni);
222 mutex_unlock(&ni->mrec_lock);
223 atomic_dec(&ni->count);
225 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
226 * ntfs_clear_extent_inode() in the extent inode case, and to the
227 * caller in the non-extent, yet pure ntfs inode case, to do the actual
228 * tear down of all structures and freeing of all allocated memory.
230 return;
234 * map_extent_mft_record - load an extent inode and attach it to its base
235 * @base_ni: base ntfs inode
236 * @mref: mft reference of the extent inode to load
237 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure
239 * Load the extent mft record @mref and attach it to its base inode @base_ni.
240 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise
241 * PTR_ERR(result) gives the negative error code.
243 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
244 * structure of the mapped extent inode.
246 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
247 ntfs_inode **ntfs_ino)
249 MFT_RECORD *m;
250 ntfs_inode *ni = NULL;
251 ntfs_inode **extent_nis = NULL;
252 int i;
253 unsigned long mft_no = MREF(mref);
254 u16 seq_no = MSEQNO(mref);
255 bool destroy_ni = false;
257 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
258 mft_no, base_ni->mft_no);
259 /* Make sure the base ntfs inode doesn't go away. */
260 atomic_inc(&base_ni->count);
262 * Check if this extent inode has already been added to the base inode,
263 * in which case just return it. If not found, add it to the base
264 * inode before returning it.
266 mutex_lock(&base_ni->extent_lock);
267 if (base_ni->nr_extents > 0) {
268 extent_nis = base_ni->ext.extent_ntfs_inos;
269 for (i = 0; i < base_ni->nr_extents; i++) {
270 if (mft_no != extent_nis[i]->mft_no)
271 continue;
272 ni = extent_nis[i];
273 /* Make sure the ntfs inode doesn't go away. */
274 atomic_inc(&ni->count);
275 break;
278 if (likely(ni != NULL)) {
279 mutex_unlock(&base_ni->extent_lock);
280 atomic_dec(&base_ni->count);
281 /* We found the record; just have to map and return it. */
282 m = map_mft_record(ni);
283 /* map_mft_record() has incremented this on success. */
284 atomic_dec(&ni->count);
285 if (likely(!IS_ERR(m))) {
286 /* Verify the sequence number. */
287 if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
288 ntfs_debug("Done 1.");
289 *ntfs_ino = ni;
290 return m;
292 unmap_mft_record(ni);
293 ntfs_error(base_ni->vol->sb, "Found stale extent mft "
294 "reference! Corrupt filesystem. "
295 "Run chkdsk.");
296 return ERR_PTR(-EIO);
298 map_err_out:
299 ntfs_error(base_ni->vol->sb, "Failed to map extent "
300 "mft record, error code %ld.", -PTR_ERR(m));
301 return m;
303 /* Record wasn't there. Get a new ntfs inode and initialize it. */
304 ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
305 if (unlikely(!ni)) {
306 mutex_unlock(&base_ni->extent_lock);
307 atomic_dec(&base_ni->count);
308 return ERR_PTR(-ENOMEM);
310 ni->vol = base_ni->vol;
311 ni->seq_no = seq_no;
312 ni->nr_extents = -1;
313 ni->ext.base_ntfs_ino = base_ni;
314 /* Now map the record. */
315 m = map_mft_record(ni);
316 if (IS_ERR(m)) {
317 mutex_unlock(&base_ni->extent_lock);
318 atomic_dec(&base_ni->count);
319 ntfs_clear_extent_inode(ni);
320 goto map_err_out;
322 /* Verify the sequence number if it is present. */
323 if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
324 ntfs_error(base_ni->vol->sb, "Found stale extent mft "
325 "reference! Corrupt filesystem. Run chkdsk.");
326 destroy_ni = true;
327 m = ERR_PTR(-EIO);
328 goto unm_err_out;
330 /* Attach extent inode to base inode, reallocating memory if needed. */
331 if (!(base_ni->nr_extents & 3)) {
332 ntfs_inode **tmp;
333 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
335 tmp = kmalloc(new_size, GFP_NOFS);
336 if (unlikely(!tmp)) {
337 ntfs_error(base_ni->vol->sb, "Failed to allocate "
338 "internal buffer.");
339 destroy_ni = true;
340 m = ERR_PTR(-ENOMEM);
341 goto unm_err_out;
343 if (base_ni->nr_extents) {
344 BUG_ON(!base_ni->ext.extent_ntfs_inos);
345 memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
346 4 * sizeof(ntfs_inode *));
347 kfree(base_ni->ext.extent_ntfs_inos);
349 base_ni->ext.extent_ntfs_inos = tmp;
351 base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
352 mutex_unlock(&base_ni->extent_lock);
353 atomic_dec(&base_ni->count);
354 ntfs_debug("Done 2.");
355 *ntfs_ino = ni;
356 return m;
357 unm_err_out:
358 unmap_mft_record(ni);
359 mutex_unlock(&base_ni->extent_lock);
360 atomic_dec(&base_ni->count);
362 * If the extent inode was not attached to the base inode we need to
363 * release it or we will leak memory.
365 if (destroy_ni)
366 ntfs_clear_extent_inode(ni);
367 return m;
370 #ifdef NTFS_RW
373 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
374 * @ni: ntfs inode describing the mapped mft record
376 * Internal function. Users should call mark_mft_record_dirty() instead.
378 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
379 * as well as the page containing the mft record, dirty. Also, mark the base
380 * vfs inode dirty. This ensures that any changes to the mft record are
381 * written out to disk.
383 * NOTE: We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
384 * on the base vfs inode, because even though file data may have been modified,
385 * it is dirty in the inode meta data rather than the data page cache of the
386 * inode, and thus there are no data pages that need writing out. Therefore, a
387 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the
388 * other hand, is not sufficient, because ->write_inode needs to be called even
389 * in case of fdatasync. This needs to happen or the file data would not
390 * necessarily hit the device synchronously, even though the vfs inode has the
391 * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just
392 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
393 * which is not what I_DIRTY_SYNC on its own would suggest.
395 void __mark_mft_record_dirty(ntfs_inode *ni)
397 ntfs_inode *base_ni;
399 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
400 BUG_ON(NInoAttr(ni));
401 mark_ntfs_record_dirty(ni->page, ni->page_ofs);
402 /* Determine the base vfs inode and mark it dirty, too. */
403 mutex_lock(&ni->extent_lock);
404 if (likely(ni->nr_extents >= 0))
405 base_ni = ni;
406 else
407 base_ni = ni->ext.base_ntfs_ino;
408 mutex_unlock(&ni->extent_lock);
409 __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
412 static const char *ntfs_please_email = "Please email "
413 "linux-ntfs-dev@lists.sourceforge.net and say that you saw "
414 "this message. Thank you.";
417 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
418 * @vol: ntfs volume on which the mft record to synchronize resides
419 * @mft_no: mft record number of mft record to synchronize
420 * @m: mapped, mst protected (extent) mft record to synchronize
422 * Write the mapped, mst protected (extent) mft record @m with mft record
423 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
424 * bypassing the page cache and the $MFTMirr inode itself.
426 * This function is only for use at umount time when the mft mirror inode has
427 * already been disposed off. We BUG() if we are called while the mft mirror
428 * inode is still attached to the volume.
430 * On success return 0. On error return -errno.
432 * NOTE: This function is not implemented yet as I am not convinced it can
433 * actually be triggered considering the sequence of commits we do in super.c::
434 * ntfs_put_super(). But just in case we provide this place holder as the
435 * alternative would be either to BUG() or to get a NULL pointer dereference
436 * and Oops.
438 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
439 const unsigned long mft_no, MFT_RECORD *m)
441 BUG_ON(vol->mftmirr_ino);
442 ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
443 "implemented yet. %s", ntfs_please_email);
444 return -EOPNOTSUPP;
448 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
449 * @vol: ntfs volume on which the mft record to synchronize resides
450 * @mft_no: mft record number of mft record to synchronize
451 * @m: mapped, mst protected (extent) mft record to synchronize
452 * @sync: if true, wait for i/o completion
454 * Write the mapped, mst protected (extent) mft record @m with mft record
455 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
457 * On success return 0. On error return -errno and set the volume errors flag
458 * in the ntfs volume @vol.
460 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
462 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
463 * schedule i/o via ->writepage or do it via kntfsd or whatever.
465 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
466 MFT_RECORD *m, int sync)
468 struct page *page;
469 unsigned int blocksize = vol->sb->s_blocksize;
470 int max_bhs = vol->mft_record_size / blocksize;
471 struct buffer_head *bhs[max_bhs];
472 struct buffer_head *bh, *head;
473 u8 *kmirr;
474 runlist_element *rl;
475 unsigned int block_start, block_end, m_start, m_end, page_ofs;
476 int i_bhs, nr_bhs, err = 0;
477 unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
479 ntfs_debug("Entering for inode 0x%lx.", mft_no);
480 BUG_ON(!max_bhs);
481 if (unlikely(!vol->mftmirr_ino)) {
482 /* This could happen during umount... */
483 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
484 if (likely(!err))
485 return err;
486 goto err_out;
488 /* Get the page containing the mirror copy of the mft record @m. */
489 page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
490 (PAGE_CACHE_SHIFT - vol->mft_record_size_bits));
491 if (IS_ERR(page)) {
492 ntfs_error(vol->sb, "Failed to map mft mirror page.");
493 err = PTR_ERR(page);
494 goto err_out;
496 lock_page(page);
497 BUG_ON(!PageUptodate(page));
498 ClearPageUptodate(page);
499 /* Offset of the mft mirror record inside the page. */
500 page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
501 /* The address in the page of the mirror copy of the mft record @m. */
502 kmirr = page_address(page) + page_ofs;
503 /* Copy the mst protected mft record to the mirror. */
504 memcpy(kmirr, m, vol->mft_record_size);
505 /* Create uptodate buffers if not present. */
506 if (unlikely(!page_has_buffers(page))) {
507 struct buffer_head *tail;
509 bh = head = alloc_page_buffers(page, blocksize, 1);
510 do {
511 set_buffer_uptodate(bh);
512 tail = bh;
513 bh = bh->b_this_page;
514 } while (bh);
515 tail->b_this_page = head;
516 attach_page_buffers(page, head);
518 bh = head = page_buffers(page);
519 BUG_ON(!bh);
520 rl = NULL;
521 nr_bhs = 0;
522 block_start = 0;
523 m_start = kmirr - (u8*)page_address(page);
524 m_end = m_start + vol->mft_record_size;
525 do {
526 block_end = block_start + blocksize;
527 /* If the buffer is outside the mft record, skip it. */
528 if (block_end <= m_start)
529 continue;
530 if (unlikely(block_start >= m_end))
531 break;
532 /* Need to map the buffer if it is not mapped already. */
533 if (unlikely(!buffer_mapped(bh))) {
534 VCN vcn;
535 LCN lcn;
536 unsigned int vcn_ofs;
538 bh->b_bdev = vol->sb->s_bdev;
539 /* Obtain the vcn and offset of the current block. */
540 vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
541 (block_start - m_start);
542 vcn_ofs = vcn & vol->cluster_size_mask;
543 vcn >>= vol->cluster_size_bits;
544 if (!rl) {
545 down_read(&NTFS_I(vol->mftmirr_ino)->
546 runlist.lock);
547 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
549 * $MFTMirr always has the whole of its runlist
550 * in memory.
552 BUG_ON(!rl);
554 /* Seek to element containing target vcn. */
555 while (rl->length && rl[1].vcn <= vcn)
556 rl++;
557 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
558 /* For $MFTMirr, only lcn >= 0 is a successful remap. */
559 if (likely(lcn >= 0)) {
560 /* Setup buffer head to correct block. */
561 bh->b_blocknr = ((lcn <<
562 vol->cluster_size_bits) +
563 vcn_ofs) >> blocksize_bits;
564 set_buffer_mapped(bh);
565 } else {
566 bh->b_blocknr = -1;
567 ntfs_error(vol->sb, "Cannot write mft mirror "
568 "record 0x%lx because its "
569 "location on disk could not "
570 "be determined (error code "
571 "%lli).", mft_no,
572 (long long)lcn);
573 err = -EIO;
576 BUG_ON(!buffer_uptodate(bh));
577 BUG_ON(!nr_bhs && (m_start != block_start));
578 BUG_ON(nr_bhs >= max_bhs);
579 bhs[nr_bhs++] = bh;
580 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
581 } while (block_start = block_end, (bh = bh->b_this_page) != head);
582 if (unlikely(rl))
583 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
584 if (likely(!err)) {
585 /* Lock buffers and start synchronous write i/o on them. */
586 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
587 struct buffer_head *tbh = bhs[i_bhs];
589 if (!trylock_buffer(tbh))
590 BUG();
591 BUG_ON(!buffer_uptodate(tbh));
592 clear_buffer_dirty(tbh);
593 get_bh(tbh);
594 tbh->b_end_io = end_buffer_write_sync;
595 submit_bh(WRITE, tbh);
597 /* Wait on i/o completion of buffers. */
598 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
599 struct buffer_head *tbh = bhs[i_bhs];
601 wait_on_buffer(tbh);
602 if (unlikely(!buffer_uptodate(tbh))) {
603 err = -EIO;
605 * Set the buffer uptodate so the page and
606 * buffer states do not become out of sync.
608 set_buffer_uptodate(tbh);
611 } else /* if (unlikely(err)) */ {
612 /* Clean the buffers. */
613 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
614 clear_buffer_dirty(bhs[i_bhs]);
616 /* Current state: all buffers are clean, unlocked, and uptodate. */
617 /* Remove the mst protection fixups again. */
618 post_write_mst_fixup((NTFS_RECORD*)kmirr);
619 flush_dcache_page(page);
620 SetPageUptodate(page);
621 unlock_page(page);
622 ntfs_unmap_page(page);
623 if (likely(!err)) {
624 ntfs_debug("Done.");
625 } else {
626 ntfs_error(vol->sb, "I/O error while writing mft mirror "
627 "record 0x%lx!", mft_no);
628 err_out:
629 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
630 "code %i). Volume will be left marked dirty "
631 "on umount. Run ntfsfix on the partition "
632 "after umounting to correct this.", -err);
633 NVolSetErrors(vol);
635 return err;
639 * write_mft_record_nolock - write out a mapped (extent) mft record
640 * @ni: ntfs inode describing the mapped (extent) mft record
641 * @m: mapped (extent) mft record to write
642 * @sync: if true, wait for i/o completion
644 * Write the mapped (extent) mft record @m described by the (regular or extent)
645 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in
646 * the mft mirror, that is also updated.
648 * We only write the mft record if the ntfs inode @ni is dirty and the first
649 * buffer belonging to its mft record is dirty, too. We ignore the dirty state
650 * of subsequent buffers because we could have raced with
651 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
653 * On success, clean the mft record and return 0. On error, leave the mft
654 * record dirty and return -errno.
656 * NOTE: We always perform synchronous i/o and ignore the @sync parameter.
657 * However, if the mft record has a counterpart in the mft mirror and @sync is
658 * true, we write the mft record, wait for i/o completion, and only then write
659 * the mft mirror copy. This ensures that if the system crashes either the mft
660 * or the mft mirror will contain a self-consistent mft record @m. If @sync is
661 * false on the other hand, we start i/o on both and then wait for completion
662 * on them. This provides a speedup but no longer guarantees that you will end
663 * up with a self-consistent mft record in the case of a crash but if you asked
664 * for asynchronous writing you probably do not care about that anyway.
666 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just
667 * schedule i/o via ->writepage or do it via kntfsd or whatever.
669 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
671 ntfs_volume *vol = ni->vol;
672 struct page *page = ni->page;
673 unsigned int blocksize = vol->sb->s_blocksize;
674 unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
675 int max_bhs = vol->mft_record_size / blocksize;
676 struct buffer_head *bhs[max_bhs];
677 struct buffer_head *bh, *head;
678 runlist_element *rl;
679 unsigned int block_start, block_end, m_start, m_end;
680 int i_bhs, nr_bhs, err = 0;
682 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
683 BUG_ON(NInoAttr(ni));
684 BUG_ON(!max_bhs);
685 BUG_ON(!PageLocked(page));
687 * If the ntfs_inode is clean no need to do anything. If it is dirty,
688 * mark it as clean now so that it can be redirtied later on if needed.
689 * There is no danger of races since the caller is holding the locks
690 * for the mft record @m and the page it is in.
692 if (!NInoTestClearDirty(ni))
693 goto done;
694 bh = head = page_buffers(page);
695 BUG_ON(!bh);
696 rl = NULL;
697 nr_bhs = 0;
698 block_start = 0;
699 m_start = ni->page_ofs;
700 m_end = m_start + vol->mft_record_size;
701 do {
702 block_end = block_start + blocksize;
703 /* If the buffer is outside the mft record, skip it. */
704 if (block_end <= m_start)
705 continue;
706 if (unlikely(block_start >= m_end))
707 break;
709 * If this block is not the first one in the record, we ignore
710 * the buffer's dirty state because we could have raced with a
711 * parallel mark_ntfs_record_dirty().
713 if (block_start == m_start) {
714 /* This block is the first one in the record. */
715 if (!buffer_dirty(bh)) {
716 BUG_ON(nr_bhs);
717 /* Clean records are not written out. */
718 break;
721 /* Need to map the buffer if it is not mapped already. */
722 if (unlikely(!buffer_mapped(bh))) {
723 VCN vcn;
724 LCN lcn;
725 unsigned int vcn_ofs;
727 bh->b_bdev = vol->sb->s_bdev;
728 /* Obtain the vcn and offset of the current block. */
729 vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
730 (block_start - m_start);
731 vcn_ofs = vcn & vol->cluster_size_mask;
732 vcn >>= vol->cluster_size_bits;
733 if (!rl) {
734 down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
735 rl = NTFS_I(vol->mft_ino)->runlist.rl;
736 BUG_ON(!rl);
738 /* Seek to element containing target vcn. */
739 while (rl->length && rl[1].vcn <= vcn)
740 rl++;
741 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
742 /* For $MFT, only lcn >= 0 is a successful remap. */
743 if (likely(lcn >= 0)) {
744 /* Setup buffer head to correct block. */
745 bh->b_blocknr = ((lcn <<
746 vol->cluster_size_bits) +
747 vcn_ofs) >> blocksize_bits;
748 set_buffer_mapped(bh);
749 } else {
750 bh->b_blocknr = -1;
751 ntfs_error(vol->sb, "Cannot write mft record "
752 "0x%lx because its location "
753 "on disk could not be "
754 "determined (error code %lli).",
755 ni->mft_no, (long long)lcn);
756 err = -EIO;
759 BUG_ON(!buffer_uptodate(bh));
760 BUG_ON(!nr_bhs && (m_start != block_start));
761 BUG_ON(nr_bhs >= max_bhs);
762 bhs[nr_bhs++] = bh;
763 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
764 } while (block_start = block_end, (bh = bh->b_this_page) != head);
765 if (unlikely(rl))
766 up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
767 if (!nr_bhs)
768 goto done;
769 if (unlikely(err))
770 goto cleanup_out;
771 /* Apply the mst protection fixups. */
772 err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
773 if (err) {
774 ntfs_error(vol->sb, "Failed to apply mst fixups!");
775 goto cleanup_out;
777 flush_dcache_mft_record_page(ni);
778 /* Lock buffers and start synchronous write i/o on them. */
779 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
780 struct buffer_head *tbh = bhs[i_bhs];
782 if (!trylock_buffer(tbh))
783 BUG();
784 BUG_ON(!buffer_uptodate(tbh));
785 clear_buffer_dirty(tbh);
786 get_bh(tbh);
787 tbh->b_end_io = end_buffer_write_sync;
788 submit_bh(WRITE, tbh);
790 /* Synchronize the mft mirror now if not @sync. */
791 if (!sync && ni->mft_no < vol->mftmirr_size)
792 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
793 /* Wait on i/o completion of buffers. */
794 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
795 struct buffer_head *tbh = bhs[i_bhs];
797 wait_on_buffer(tbh);
798 if (unlikely(!buffer_uptodate(tbh))) {
799 err = -EIO;
801 * Set the buffer uptodate so the page and buffer
802 * states do not become out of sync.
804 if (PageUptodate(page))
805 set_buffer_uptodate(tbh);
808 /* If @sync, now synchronize the mft mirror. */
809 if (sync && ni->mft_no < vol->mftmirr_size)
810 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
811 /* Remove the mst protection fixups again. */
812 post_write_mst_fixup((NTFS_RECORD*)m);
813 flush_dcache_mft_record_page(ni);
814 if (unlikely(err)) {
815 /* I/O error during writing. This is really bad! */
816 ntfs_error(vol->sb, "I/O error while writing mft record "
817 "0x%lx! Marking base inode as bad. You "
818 "should unmount the volume and run chkdsk.",
819 ni->mft_no);
820 goto err_out;
822 done:
823 ntfs_debug("Done.");
824 return 0;
825 cleanup_out:
826 /* Clean the buffers. */
827 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
828 clear_buffer_dirty(bhs[i_bhs]);
829 err_out:
831 * Current state: all buffers are clean, unlocked, and uptodate.
832 * The caller should mark the base inode as bad so that no more i/o
833 * happens. ->clear_inode() will still be invoked so all extent inodes
834 * and other allocated memory will be freed.
836 if (err == -ENOMEM) {
837 ntfs_error(vol->sb, "Not enough memory to write mft record. "
838 "Redirtying so the write is retried later.");
839 mark_mft_record_dirty(ni);
840 err = 0;
841 } else
842 NVolSetErrors(vol);
843 return err;
847 * ntfs_may_write_mft_record - check if an mft record may be written out
848 * @vol: [IN] ntfs volume on which the mft record to check resides
849 * @mft_no: [IN] mft record number of the mft record to check
850 * @m: [IN] mapped mft record to check
851 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned
853 * Check if the mapped (base or extent) mft record @m with mft record number
854 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary
855 * and possible the ntfs inode of the mft record is locked and the base vfs
856 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The
857 * caller is responsible for unlocking the ntfs inode and unpinning the base
858 * vfs inode.
860 * Return 'true' if the mft record may be written out and 'false' if not.
862 * The caller has locked the page and cleared the uptodate flag on it which
863 * means that we can safely write out any dirty mft records that do not have
864 * their inodes in icache as determined by ilookup5() as anyone
865 * opening/creating such an inode would block when attempting to map the mft
866 * record in read_cache_page() until we are finished with the write out.
868 * Here is a description of the tests we perform:
870 * If the inode is found in icache we know the mft record must be a base mft
871 * record. If it is dirty, we do not write it and return 'false' as the vfs
872 * inode write paths will result in the access times being updated which would
873 * cause the base mft record to be redirtied and written out again. (We know
874 * the access time update will modify the base mft record because Windows
875 * chkdsk complains if the standard information attribute is not in the base
876 * mft record.)
878 * If the inode is in icache and not dirty, we attempt to lock the mft record
879 * and if we find the lock was already taken, it is not safe to write the mft
880 * record and we return 'false'.
882 * If we manage to obtain the lock we have exclusive access to the mft record,
883 * which also allows us safe writeout of the mft record. We then set
884 * @locked_ni to the locked ntfs inode and return 'true'.
886 * Note we cannot just lock the mft record and sleep while waiting for the lock
887 * because this would deadlock due to lock reversal (normally the mft record is
888 * locked before the page is locked but we already have the page locked here
889 * when we try to lock the mft record).
891 * If the inode is not in icache we need to perform further checks.
893 * If the mft record is not a FILE record or it is a base mft record, we can
894 * safely write it and return 'true'.
896 * We now know the mft record is an extent mft record. We check if the inode
897 * corresponding to its base mft record is in icache and obtain a reference to
898 * it if it is. If it is not, we can safely write it and return 'true'.
900 * We now have the base inode for the extent mft record. We check if it has an
901 * ntfs inode for the extent mft record attached and if not it is safe to write
902 * the extent mft record and we return 'true'.
904 * The ntfs inode for the extent mft record is attached to the base inode so we
905 * attempt to lock the extent mft record and if we find the lock was already
906 * taken, it is not safe to write the extent mft record and we return 'false'.
908 * If we manage to obtain the lock we have exclusive access to the extent mft
909 * record, which also allows us safe writeout of the extent mft record. We
910 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
911 * the now locked ntfs inode and return 'true'.
913 * Note, the reason for actually writing dirty mft records here and not just
914 * relying on the vfs inode dirty code paths is that we can have mft records
915 * modified without them ever having actual inodes in memory. Also we can have
916 * dirty mft records with clean ntfs inodes in memory. None of the described
917 * cases would result in the dirty mft records being written out if we only
918 * relied on the vfs inode dirty code paths. And these cases can really occur
919 * during allocation of new mft records and in particular when the
920 * initialized_size of the $MFT/$DATA attribute is extended and the new space
921 * is initialized using ntfs_mft_record_format(). The clean inode can then
922 * appear if the mft record is reused for a new inode before it got written
923 * out.
925 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
926 const MFT_RECORD *m, ntfs_inode **locked_ni)
928 struct super_block *sb = vol->sb;
929 struct inode *mft_vi = vol->mft_ino;
930 struct inode *vi;
931 ntfs_inode *ni, *eni, **extent_nis;
932 int i;
933 ntfs_attr na;
935 ntfs_debug("Entering for inode 0x%lx.", mft_no);
937 * Normally we do not return a locked inode so set @locked_ni to NULL.
939 BUG_ON(!locked_ni);
940 *locked_ni = NULL;
942 * Check if the inode corresponding to this mft record is in the VFS
943 * inode cache and obtain a reference to it if it is.
945 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
946 na.mft_no = mft_no;
947 na.name = NULL;
948 na.name_len = 0;
949 na.type = AT_UNUSED;
951 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
952 * we get here for it rather often.
954 if (!mft_no) {
955 /* Balance the below iput(). */
956 vi = igrab(mft_vi);
957 BUG_ON(vi != mft_vi);
958 } else {
960 * Have to use ilookup5_nowait() since ilookup5() waits for the
961 * inode lock which causes ntfs to deadlock when a concurrent
962 * inode write via the inode dirty code paths and the page
963 * dirty code path of the inode dirty code path when writing
964 * $MFT occurs.
966 vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
968 if (vi) {
969 ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
970 /* The inode is in icache. */
971 ni = NTFS_I(vi);
972 /* Take a reference to the ntfs inode. */
973 atomic_inc(&ni->count);
974 /* If the inode is dirty, do not write this record. */
975 if (NInoDirty(ni)) {
976 ntfs_debug("Inode 0x%lx is dirty, do not write it.",
977 mft_no);
978 atomic_dec(&ni->count);
979 iput(vi);
980 return false;
982 ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
983 /* The inode is not dirty, try to take the mft record lock. */
984 if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
985 ntfs_debug("Mft record 0x%lx is already locked, do "
986 "not write it.", mft_no);
987 atomic_dec(&ni->count);
988 iput(vi);
989 return false;
991 ntfs_debug("Managed to lock mft record 0x%lx, write it.",
992 mft_no);
994 * The write has to occur while we hold the mft record lock so
995 * return the locked ntfs inode.
997 *locked_ni = ni;
998 return true;
1000 ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
1001 /* The inode is not in icache. */
1002 /* Write the record if it is not a mft record (type "FILE"). */
1003 if (!ntfs_is_mft_record(m->magic)) {
1004 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1005 mft_no);
1006 return true;
1008 /* Write the mft record if it is a base inode. */
1009 if (!m->base_mft_record) {
1010 ntfs_debug("Mft record 0x%lx is a base record, write it.",
1011 mft_no);
1012 return true;
1015 * This is an extent mft record. Check if the inode corresponding to
1016 * its base mft record is in icache and obtain a reference to it if it
1017 * is.
1019 na.mft_no = MREF_LE(m->base_mft_record);
1020 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base "
1021 "inode 0x%lx in icache.", mft_no, na.mft_no);
1022 if (!na.mft_no) {
1023 /* Balance the below iput(). */
1024 vi = igrab(mft_vi);
1025 BUG_ON(vi != mft_vi);
1026 } else
1027 vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1028 &na);
1029 if (!vi) {
1031 * The base inode is not in icache, write this extent mft
1032 * record.
1034 ntfs_debug("Base inode 0x%lx is not in icache, write the "
1035 "extent record.", na.mft_no);
1036 return true;
1038 ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1040 * The base inode is in icache. Check if it has the extent inode
1041 * corresponding to this extent mft record attached.
1043 ni = NTFS_I(vi);
1044 mutex_lock(&ni->extent_lock);
1045 if (ni->nr_extents <= 0) {
1047 * The base inode has no attached extent inodes, write this
1048 * extent mft record.
1050 mutex_unlock(&ni->extent_lock);
1051 iput(vi);
1052 ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1053 "write the extent record.", na.mft_no);
1054 return true;
1056 /* Iterate over the attached extent inodes. */
1057 extent_nis = ni->ext.extent_ntfs_inos;
1058 for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1059 if (mft_no == extent_nis[i]->mft_no) {
1061 * Found the extent inode corresponding to this extent
1062 * mft record.
1064 eni = extent_nis[i];
1065 break;
1069 * If the extent inode was not attached to the base inode, write this
1070 * extent mft record.
1072 if (!eni) {
1073 mutex_unlock(&ni->extent_lock);
1074 iput(vi);
1075 ntfs_debug("Extent inode 0x%lx is not attached to its base "
1076 "inode 0x%lx, write the extent record.",
1077 mft_no, na.mft_no);
1078 return true;
1080 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1081 mft_no, na.mft_no);
1082 /* Take a reference to the extent ntfs inode. */
1083 atomic_inc(&eni->count);
1084 mutex_unlock(&ni->extent_lock);
1086 * Found the extent inode coresponding to this extent mft record.
1087 * Try to take the mft record lock.
1089 if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1090 atomic_dec(&eni->count);
1091 iput(vi);
1092 ntfs_debug("Extent mft record 0x%lx is already locked, do "
1093 "not write it.", mft_no);
1094 return false;
1096 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1097 mft_no);
1098 if (NInoTestClearDirty(eni))
1099 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1100 mft_no);
1102 * The write has to occur while we hold the mft record lock so return
1103 * the locked extent ntfs inode.
1105 *locked_ni = eni;
1106 return true;
1109 static const char *es = " Leaving inconsistent metadata. Unmount and run "
1110 "chkdsk.";
1113 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1114 * @vol: volume on which to search for a free mft record
1115 * @base_ni: open base inode if allocating an extent mft record or NULL
1117 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1118 * @vol.
1120 * If @base_ni is NULL start the search at the default allocator position.
1122 * If @base_ni is not NULL start the search at the mft record after the base
1123 * mft record @base_ni.
1125 * Return the free mft record on success and -errno on error. An error code of
1126 * -ENOSPC means that there are no free mft records in the currently
1127 * initialized mft bitmap.
1129 * Locking: Caller must hold vol->mftbmp_lock for writing.
1131 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1132 ntfs_inode *base_ni)
1134 s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1135 unsigned long flags;
1136 struct address_space *mftbmp_mapping;
1137 u8 *buf, *byte;
1138 struct page *page;
1139 unsigned int page_ofs, size;
1140 u8 pass, b;
1142 ntfs_debug("Searching for free mft record in the currently "
1143 "initialized mft bitmap.");
1144 mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1146 * Set the end of the pass making sure we do not overflow the mft
1147 * bitmap.
1149 read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1150 pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1151 vol->mft_record_size_bits;
1152 read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1153 read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1154 ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1155 read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1156 if (pass_end > ll)
1157 pass_end = ll;
1158 pass = 1;
1159 if (!base_ni)
1160 data_pos = vol->mft_data_pos;
1161 else
1162 data_pos = base_ni->mft_no + 1;
1163 if (data_pos < 24)
1164 data_pos = 24;
1165 if (data_pos >= pass_end) {
1166 data_pos = 24;
1167 pass = 2;
1168 /* This happens on a freshly formatted volume. */
1169 if (data_pos >= pass_end)
1170 return -ENOSPC;
1172 pass_start = data_pos;
1173 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1174 "pass_end 0x%llx, data_pos 0x%llx.", pass,
1175 (long long)pass_start, (long long)pass_end,
1176 (long long)data_pos);
1177 /* Loop until a free mft record is found. */
1178 for (; pass <= 2;) {
1179 /* Cap size to pass_end. */
1180 ofs = data_pos >> 3;
1181 page_ofs = ofs & ~PAGE_CACHE_MASK;
1182 size = PAGE_CACHE_SIZE - page_ofs;
1183 ll = ((pass_end + 7) >> 3) - ofs;
1184 if (size > ll)
1185 size = ll;
1186 size <<= 3;
1188 * If we are still within the active pass, search the next page
1189 * for a zero bit.
1191 if (size) {
1192 page = ntfs_map_page(mftbmp_mapping,
1193 ofs >> PAGE_CACHE_SHIFT);
1194 if (IS_ERR(page)) {
1195 ntfs_error(vol->sb, "Failed to read mft "
1196 "bitmap, aborting.");
1197 return PTR_ERR(page);
1199 buf = (u8*)page_address(page) + page_ofs;
1200 bit = data_pos & 7;
1201 data_pos &= ~7ull;
1202 ntfs_debug("Before inner for loop: size 0x%x, "
1203 "data_pos 0x%llx, bit 0x%llx", size,
1204 (long long)data_pos, (long long)bit);
1205 for (; bit < size && data_pos + bit < pass_end;
1206 bit &= ~7ull, bit += 8) {
1207 byte = buf + (bit >> 3);
1208 if (*byte == 0xff)
1209 continue;
1210 b = ffz((unsigned long)*byte);
1211 if (b < 8 && b >= (bit & 7)) {
1212 ll = data_pos + (bit & ~7ull) + b;
1213 if (unlikely(ll > (1ll << 32))) {
1214 ntfs_unmap_page(page);
1215 return -ENOSPC;
1217 *byte |= 1 << b;
1218 flush_dcache_page(page);
1219 set_page_dirty(page);
1220 ntfs_unmap_page(page);
1221 ntfs_debug("Done. (Found and "
1222 "allocated mft record "
1223 "0x%llx.)",
1224 (long long)ll);
1225 return ll;
1228 ntfs_debug("After inner for loop: size 0x%x, "
1229 "data_pos 0x%llx, bit 0x%llx", size,
1230 (long long)data_pos, (long long)bit);
1231 data_pos += size;
1232 ntfs_unmap_page(page);
1234 * If the end of the pass has not been reached yet,
1235 * continue searching the mft bitmap for a zero bit.
1237 if (data_pos < pass_end)
1238 continue;
1240 /* Do the next pass. */
1241 if (++pass == 2) {
1243 * Starting the second pass, in which we scan the first
1244 * part of the zone which we omitted earlier.
1246 pass_end = pass_start;
1247 data_pos = pass_start = 24;
1248 ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1249 "0x%llx.", pass, (long long)pass_start,
1250 (long long)pass_end);
1251 if (data_pos >= pass_end)
1252 break;
1255 /* No free mft records in currently initialized mft bitmap. */
1256 ntfs_debug("Done. (No free mft records left in currently initialized "
1257 "mft bitmap.)");
1258 return -ENOSPC;
1262 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1263 * @vol: volume on which to extend the mft bitmap attribute
1265 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1267 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1268 * data_size.
1270 * Return 0 on success and -errno on error.
1272 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1273 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1274 * writing and releases it before returning.
1275 * - This function takes vol->lcnbmp_lock for writing and releases it
1276 * before returning.
1278 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1280 LCN lcn;
1281 s64 ll;
1282 unsigned long flags;
1283 struct page *page;
1284 ntfs_inode *mft_ni, *mftbmp_ni;
1285 runlist_element *rl, *rl2 = NULL;
1286 ntfs_attr_search_ctx *ctx = NULL;
1287 MFT_RECORD *mrec;
1288 ATTR_RECORD *a = NULL;
1289 int ret, mp_size;
1290 u32 old_alen = 0;
1291 u8 *b, tb;
1292 struct {
1293 u8 added_cluster:1;
1294 u8 added_run:1;
1295 u8 mp_rebuilt:1;
1296 } status = { 0, 0, 0 };
1298 ntfs_debug("Extending mft bitmap allocation.");
1299 mft_ni = NTFS_I(vol->mft_ino);
1300 mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1302 * Determine the last lcn of the mft bitmap. The allocated size of the
1303 * mft bitmap cannot be zero so we are ok to do this.
1305 down_write(&mftbmp_ni->runlist.lock);
1306 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1307 ll = mftbmp_ni->allocated_size;
1308 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1309 rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1310 (ll - 1) >> vol->cluster_size_bits, NULL);
1311 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1312 up_write(&mftbmp_ni->runlist.lock);
1313 ntfs_error(vol->sb, "Failed to determine last allocated "
1314 "cluster of mft bitmap attribute.");
1315 if (!IS_ERR(rl))
1316 ret = -EIO;
1317 else
1318 ret = PTR_ERR(rl);
1319 return ret;
1321 lcn = rl->lcn + rl->length;
1322 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1323 (long long)lcn);
1325 * Attempt to get the cluster following the last allocated cluster by
1326 * hand as it may be in the MFT zone so the allocator would not give it
1327 * to us.
1329 ll = lcn >> 3;
1330 page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1331 ll >> PAGE_CACHE_SHIFT);
1332 if (IS_ERR(page)) {
1333 up_write(&mftbmp_ni->runlist.lock);
1334 ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1335 return PTR_ERR(page);
1337 b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK);
1338 tb = 1 << (lcn & 7ull);
1339 down_write(&vol->lcnbmp_lock);
1340 if (*b != 0xff && !(*b & tb)) {
1341 /* Next cluster is free, allocate it. */
1342 *b |= tb;
1343 flush_dcache_page(page);
1344 set_page_dirty(page);
1345 up_write(&vol->lcnbmp_lock);
1346 ntfs_unmap_page(page);
1347 /* Update the mft bitmap runlist. */
1348 rl->length++;
1349 rl[1].vcn++;
1350 status.added_cluster = 1;
1351 ntfs_debug("Appending one cluster to mft bitmap.");
1352 } else {
1353 up_write(&vol->lcnbmp_lock);
1354 ntfs_unmap_page(page);
1355 /* Allocate a cluster from the DATA_ZONE. */
1356 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1357 true);
1358 if (IS_ERR(rl2)) {
1359 up_write(&mftbmp_ni->runlist.lock);
1360 ntfs_error(vol->sb, "Failed to allocate a cluster for "
1361 "the mft bitmap.");
1362 return PTR_ERR(rl2);
1364 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1365 if (IS_ERR(rl)) {
1366 up_write(&mftbmp_ni->runlist.lock);
1367 ntfs_error(vol->sb, "Failed to merge runlists for mft "
1368 "bitmap.");
1369 if (ntfs_cluster_free_from_rl(vol, rl2)) {
1370 ntfs_error(vol->sb, "Failed to deallocate "
1371 "allocated cluster.%s", es);
1372 NVolSetErrors(vol);
1374 ntfs_free(rl2);
1375 return PTR_ERR(rl);
1377 mftbmp_ni->runlist.rl = rl;
1378 status.added_run = 1;
1379 ntfs_debug("Adding one run to mft bitmap.");
1380 /* Find the last run in the new runlist. */
1381 for (; rl[1].length; rl++)
1385 * Update the attribute record as well. Note: @rl is the last
1386 * (non-terminator) runlist element of mft bitmap.
1388 mrec = map_mft_record(mft_ni);
1389 if (IS_ERR(mrec)) {
1390 ntfs_error(vol->sb, "Failed to map mft record.");
1391 ret = PTR_ERR(mrec);
1392 goto undo_alloc;
1394 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1395 if (unlikely(!ctx)) {
1396 ntfs_error(vol->sb, "Failed to get search context.");
1397 ret = -ENOMEM;
1398 goto undo_alloc;
1400 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1401 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1402 0, ctx);
1403 if (unlikely(ret)) {
1404 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1405 "mft bitmap attribute.");
1406 if (ret == -ENOENT)
1407 ret = -EIO;
1408 goto undo_alloc;
1410 a = ctx->attr;
1411 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1412 /* Search back for the previous last allocated cluster of mft bitmap. */
1413 for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1414 if (ll >= rl2->vcn)
1415 break;
1417 BUG_ON(ll < rl2->vcn);
1418 BUG_ON(ll >= rl2->vcn + rl2->length);
1419 /* Get the size for the new mapping pairs array for this extent. */
1420 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1421 if (unlikely(mp_size <= 0)) {
1422 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1423 "mft bitmap attribute extent.");
1424 ret = mp_size;
1425 if (!ret)
1426 ret = -EIO;
1427 goto undo_alloc;
1429 /* Expand the attribute record if necessary. */
1430 old_alen = le32_to_cpu(a->length);
1431 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1432 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1433 if (unlikely(ret)) {
1434 if (ret != -ENOSPC) {
1435 ntfs_error(vol->sb, "Failed to resize attribute "
1436 "record for mft bitmap attribute.");
1437 goto undo_alloc;
1439 // TODO: Deal with this by moving this extent to a new mft
1440 // record or by starting a new extent in a new mft record or by
1441 // moving other attributes out of this mft record.
1442 // Note: It will need to be a special mft record and if none of
1443 // those are available it gets rather complicated...
1444 ntfs_error(vol->sb, "Not enough space in this mft record to "
1445 "accommodate extended mft bitmap attribute "
1446 "extent. Cannot handle this yet.");
1447 ret = -EOPNOTSUPP;
1448 goto undo_alloc;
1450 status.mp_rebuilt = 1;
1451 /* Generate the mapping pairs array directly into the attr record. */
1452 ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1453 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1454 mp_size, rl2, ll, -1, NULL);
1455 if (unlikely(ret)) {
1456 ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1457 "mft bitmap attribute.");
1458 goto undo_alloc;
1460 /* Update the highest_vcn. */
1461 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1463 * We now have extended the mft bitmap allocated_size by one cluster.
1464 * Reflect this in the ntfs_inode structure and the attribute record.
1466 if (a->data.non_resident.lowest_vcn) {
1468 * We are not in the first attribute extent, switch to it, but
1469 * first ensure the changes will make it to disk later.
1471 flush_dcache_mft_record_page(ctx->ntfs_ino);
1472 mark_mft_record_dirty(ctx->ntfs_ino);
1473 ntfs_attr_reinit_search_ctx(ctx);
1474 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1475 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1476 0, ctx);
1477 if (unlikely(ret)) {
1478 ntfs_error(vol->sb, "Failed to find first attribute "
1479 "extent of mft bitmap attribute.");
1480 goto restore_undo_alloc;
1482 a = ctx->attr;
1484 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1485 mftbmp_ni->allocated_size += vol->cluster_size;
1486 a->data.non_resident.allocated_size =
1487 cpu_to_sle64(mftbmp_ni->allocated_size);
1488 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1489 /* Ensure the changes make it to disk. */
1490 flush_dcache_mft_record_page(ctx->ntfs_ino);
1491 mark_mft_record_dirty(ctx->ntfs_ino);
1492 ntfs_attr_put_search_ctx(ctx);
1493 unmap_mft_record(mft_ni);
1494 up_write(&mftbmp_ni->runlist.lock);
1495 ntfs_debug("Done.");
1496 return 0;
1497 restore_undo_alloc:
1498 ntfs_attr_reinit_search_ctx(ctx);
1499 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1500 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1501 0, ctx)) {
1502 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1503 "mft bitmap attribute.%s", es);
1504 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1505 mftbmp_ni->allocated_size += vol->cluster_size;
1506 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1507 ntfs_attr_put_search_ctx(ctx);
1508 unmap_mft_record(mft_ni);
1509 up_write(&mftbmp_ni->runlist.lock);
1511 * The only thing that is now wrong is ->allocated_size of the
1512 * base attribute extent which chkdsk should be able to fix.
1514 NVolSetErrors(vol);
1515 return ret;
1517 a = ctx->attr;
1518 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1519 undo_alloc:
1520 if (status.added_cluster) {
1521 /* Truncate the last run in the runlist by one cluster. */
1522 rl->length--;
1523 rl[1].vcn--;
1524 } else if (status.added_run) {
1525 lcn = rl->lcn;
1526 /* Remove the last run from the runlist. */
1527 rl->lcn = rl[1].lcn;
1528 rl->length = 0;
1530 /* Deallocate the cluster. */
1531 down_write(&vol->lcnbmp_lock);
1532 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1533 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1534 NVolSetErrors(vol);
1536 up_write(&vol->lcnbmp_lock);
1537 if (status.mp_rebuilt) {
1538 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1539 a->data.non_resident.mapping_pairs_offset),
1540 old_alen - le16_to_cpu(
1541 a->data.non_resident.mapping_pairs_offset),
1542 rl2, ll, -1, NULL)) {
1543 ntfs_error(vol->sb, "Failed to restore mapping pairs "
1544 "array.%s", es);
1545 NVolSetErrors(vol);
1547 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1548 ntfs_error(vol->sb, "Failed to restore attribute "
1549 "record.%s", es);
1550 NVolSetErrors(vol);
1552 flush_dcache_mft_record_page(ctx->ntfs_ino);
1553 mark_mft_record_dirty(ctx->ntfs_ino);
1555 if (ctx)
1556 ntfs_attr_put_search_ctx(ctx);
1557 if (!IS_ERR(mrec))
1558 unmap_mft_record(mft_ni);
1559 up_write(&mftbmp_ni->runlist.lock);
1560 return ret;
1564 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1565 * @vol: volume on which to extend the mft bitmap attribute
1567 * Extend the initialized portion of the mft bitmap attribute on the ntfs
1568 * volume @vol by 8 bytes.
1570 * Note: Only changes initialized_size and data_size, i.e. requires that
1571 * allocated_size is big enough to fit the new initialized_size.
1573 * Return 0 on success and -error on error.
1575 * Locking: Caller must hold vol->mftbmp_lock for writing.
1577 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1579 s64 old_data_size, old_initialized_size;
1580 unsigned long flags;
1581 struct inode *mftbmp_vi;
1582 ntfs_inode *mft_ni, *mftbmp_ni;
1583 ntfs_attr_search_ctx *ctx;
1584 MFT_RECORD *mrec;
1585 ATTR_RECORD *a;
1586 int ret;
1588 ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1589 mft_ni = NTFS_I(vol->mft_ino);
1590 mftbmp_vi = vol->mftbmp_ino;
1591 mftbmp_ni = NTFS_I(mftbmp_vi);
1592 /* Get the attribute record. */
1593 mrec = map_mft_record(mft_ni);
1594 if (IS_ERR(mrec)) {
1595 ntfs_error(vol->sb, "Failed to map mft record.");
1596 return PTR_ERR(mrec);
1598 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1599 if (unlikely(!ctx)) {
1600 ntfs_error(vol->sb, "Failed to get search context.");
1601 ret = -ENOMEM;
1602 goto unm_err_out;
1604 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1605 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1606 if (unlikely(ret)) {
1607 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1608 "mft bitmap attribute.");
1609 if (ret == -ENOENT)
1610 ret = -EIO;
1611 goto put_err_out;
1613 a = ctx->attr;
1614 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1615 old_data_size = i_size_read(mftbmp_vi);
1616 old_initialized_size = mftbmp_ni->initialized_size;
1618 * We can simply update the initialized_size before filling the space
1619 * with zeroes because the caller is holding the mft bitmap lock for
1620 * writing which ensures that no one else is trying to access the data.
1622 mftbmp_ni->initialized_size += 8;
1623 a->data.non_resident.initialized_size =
1624 cpu_to_sle64(mftbmp_ni->initialized_size);
1625 if (mftbmp_ni->initialized_size > old_data_size) {
1626 i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1627 a->data.non_resident.data_size =
1628 cpu_to_sle64(mftbmp_ni->initialized_size);
1630 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1631 /* Ensure the changes make it to disk. */
1632 flush_dcache_mft_record_page(ctx->ntfs_ino);
1633 mark_mft_record_dirty(ctx->ntfs_ino);
1634 ntfs_attr_put_search_ctx(ctx);
1635 unmap_mft_record(mft_ni);
1636 /* Initialize the mft bitmap attribute value with zeroes. */
1637 ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1638 if (likely(!ret)) {
1639 ntfs_debug("Done. (Wrote eight initialized bytes to mft "
1640 "bitmap.");
1641 return 0;
1643 ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1644 /* Try to recover from the error. */
1645 mrec = map_mft_record(mft_ni);
1646 if (IS_ERR(mrec)) {
1647 ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1648 NVolSetErrors(vol);
1649 return ret;
1651 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1652 if (unlikely(!ctx)) {
1653 ntfs_error(vol->sb, "Failed to get search context.%s", es);
1654 NVolSetErrors(vol);
1655 goto unm_err_out;
1657 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1658 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1659 ntfs_error(vol->sb, "Failed to find first attribute extent of "
1660 "mft bitmap attribute.%s", es);
1661 NVolSetErrors(vol);
1662 put_err_out:
1663 ntfs_attr_put_search_ctx(ctx);
1664 unm_err_out:
1665 unmap_mft_record(mft_ni);
1666 goto err_out;
1668 a = ctx->attr;
1669 write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1670 mftbmp_ni->initialized_size = old_initialized_size;
1671 a->data.non_resident.initialized_size =
1672 cpu_to_sle64(old_initialized_size);
1673 if (i_size_read(mftbmp_vi) != old_data_size) {
1674 i_size_write(mftbmp_vi, old_data_size);
1675 a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1677 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1678 flush_dcache_mft_record_page(ctx->ntfs_ino);
1679 mark_mft_record_dirty(ctx->ntfs_ino);
1680 ntfs_attr_put_search_ctx(ctx);
1681 unmap_mft_record(mft_ni);
1682 #ifdef DEBUG
1683 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1684 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1685 "data_size 0x%llx, initialized_size 0x%llx.",
1686 (long long)mftbmp_ni->allocated_size,
1687 (long long)i_size_read(mftbmp_vi),
1688 (long long)mftbmp_ni->initialized_size);
1689 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1690 #endif /* DEBUG */
1691 err_out:
1692 return ret;
1696 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1697 * @vol: volume on which to extend the mft data attribute
1699 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1700 * worth of clusters or if not enough space for this by one mft record worth
1701 * of clusters.
1703 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1704 * data_size.
1706 * Return 0 on success and -errno on error.
1708 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1709 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1710 * writing and releases it before returning.
1711 * - This function calls functions which take vol->lcnbmp_lock for
1712 * writing and release it before returning.
1714 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1716 LCN lcn;
1717 VCN old_last_vcn;
1718 s64 min_nr, nr, ll;
1719 unsigned long flags;
1720 ntfs_inode *mft_ni;
1721 runlist_element *rl, *rl2;
1722 ntfs_attr_search_ctx *ctx = NULL;
1723 MFT_RECORD *mrec;
1724 ATTR_RECORD *a = NULL;
1725 int ret, mp_size;
1726 u32 old_alen = 0;
1727 bool mp_rebuilt = false;
1729 ntfs_debug("Extending mft data allocation.");
1730 mft_ni = NTFS_I(vol->mft_ino);
1732 * Determine the preferred allocation location, i.e. the last lcn of
1733 * the mft data attribute. The allocated size of the mft data
1734 * attribute cannot be zero so we are ok to do this.
1736 down_write(&mft_ni->runlist.lock);
1737 read_lock_irqsave(&mft_ni->size_lock, flags);
1738 ll = mft_ni->allocated_size;
1739 read_unlock_irqrestore(&mft_ni->size_lock, flags);
1740 rl = ntfs_attr_find_vcn_nolock(mft_ni,
1741 (ll - 1) >> vol->cluster_size_bits, NULL);
1742 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1743 up_write(&mft_ni->runlist.lock);
1744 ntfs_error(vol->sb, "Failed to determine last allocated "
1745 "cluster of mft data attribute.");
1746 if (!IS_ERR(rl))
1747 ret = -EIO;
1748 else
1749 ret = PTR_ERR(rl);
1750 return ret;
1752 lcn = rl->lcn + rl->length;
1753 ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1754 /* Minimum allocation is one mft record worth of clusters. */
1755 min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1756 if (!min_nr)
1757 min_nr = 1;
1758 /* Want to allocate 16 mft records worth of clusters. */
1759 nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1760 if (!nr)
1761 nr = min_nr;
1762 /* Ensure we do not go above 2^32-1 mft records. */
1763 read_lock_irqsave(&mft_ni->size_lock, flags);
1764 ll = mft_ni->allocated_size;
1765 read_unlock_irqrestore(&mft_ni->size_lock, flags);
1766 if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1767 vol->mft_record_size_bits >= (1ll << 32))) {
1768 nr = min_nr;
1769 if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1770 vol->mft_record_size_bits >= (1ll << 32))) {
1771 ntfs_warning(vol->sb, "Cannot allocate mft record "
1772 "because the maximum number of inodes "
1773 "(2^32) has already been reached.");
1774 up_write(&mft_ni->runlist.lock);
1775 return -ENOSPC;
1778 ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1779 nr > min_nr ? "default" : "minimal", (long long)nr);
1780 old_last_vcn = rl[1].vcn;
1781 do {
1782 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1783 true);
1784 if (likely(!IS_ERR(rl2)))
1785 break;
1786 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1787 ntfs_error(vol->sb, "Failed to allocate the minimal "
1788 "number of clusters (%lli) for the "
1789 "mft data attribute.", (long long)nr);
1790 up_write(&mft_ni->runlist.lock);
1791 return PTR_ERR(rl2);
1794 * There is not enough space to do the allocation, but there
1795 * might be enough space to do a minimal allocation so try that
1796 * before failing.
1798 nr = min_nr;
1799 ntfs_debug("Retrying mft data allocation with minimal cluster "
1800 "count %lli.", (long long)nr);
1801 } while (1);
1802 rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1803 if (IS_ERR(rl)) {
1804 up_write(&mft_ni->runlist.lock);
1805 ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1806 "attribute.");
1807 if (ntfs_cluster_free_from_rl(vol, rl2)) {
1808 ntfs_error(vol->sb, "Failed to deallocate clusters "
1809 "from the mft data attribute.%s", es);
1810 NVolSetErrors(vol);
1812 ntfs_free(rl2);
1813 return PTR_ERR(rl);
1815 mft_ni->runlist.rl = rl;
1816 ntfs_debug("Allocated %lli clusters.", (long long)nr);
1817 /* Find the last run in the new runlist. */
1818 for (; rl[1].length; rl++)
1820 /* Update the attribute record as well. */
1821 mrec = map_mft_record(mft_ni);
1822 if (IS_ERR(mrec)) {
1823 ntfs_error(vol->sb, "Failed to map mft record.");
1824 ret = PTR_ERR(mrec);
1825 goto undo_alloc;
1827 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1828 if (unlikely(!ctx)) {
1829 ntfs_error(vol->sb, "Failed to get search context.");
1830 ret = -ENOMEM;
1831 goto undo_alloc;
1833 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1834 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1835 if (unlikely(ret)) {
1836 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1837 "mft data attribute.");
1838 if (ret == -ENOENT)
1839 ret = -EIO;
1840 goto undo_alloc;
1842 a = ctx->attr;
1843 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1844 /* Search back for the previous last allocated cluster of mft bitmap. */
1845 for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1846 if (ll >= rl2->vcn)
1847 break;
1849 BUG_ON(ll < rl2->vcn);
1850 BUG_ON(ll >= rl2->vcn + rl2->length);
1851 /* Get the size for the new mapping pairs array for this extent. */
1852 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1853 if (unlikely(mp_size <= 0)) {
1854 ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1855 "mft data attribute extent.");
1856 ret = mp_size;
1857 if (!ret)
1858 ret = -EIO;
1859 goto undo_alloc;
1861 /* Expand the attribute record if necessary. */
1862 old_alen = le32_to_cpu(a->length);
1863 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1864 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1865 if (unlikely(ret)) {
1866 if (ret != -ENOSPC) {
1867 ntfs_error(vol->sb, "Failed to resize attribute "
1868 "record for mft data attribute.");
1869 goto undo_alloc;
1871 // TODO: Deal with this by moving this extent to a new mft
1872 // record or by starting a new extent in a new mft record or by
1873 // moving other attributes out of this mft record.
1874 // Note: Use the special reserved mft records and ensure that
1875 // this extent is not required to find the mft record in
1876 // question. If no free special records left we would need to
1877 // move an existing record away, insert ours in its place, and
1878 // then place the moved record into the newly allocated space
1879 // and we would then need to update all references to this mft
1880 // record appropriately. This is rather complicated...
1881 ntfs_error(vol->sb, "Not enough space in this mft record to "
1882 "accommodate extended mft data attribute "
1883 "extent. Cannot handle this yet.");
1884 ret = -EOPNOTSUPP;
1885 goto undo_alloc;
1887 mp_rebuilt = true;
1888 /* Generate the mapping pairs array directly into the attr record. */
1889 ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1890 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1891 mp_size, rl2, ll, -1, NULL);
1892 if (unlikely(ret)) {
1893 ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1894 "mft data attribute.");
1895 goto undo_alloc;
1897 /* Update the highest_vcn. */
1898 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1900 * We now have extended the mft data allocated_size by nr clusters.
1901 * Reflect this in the ntfs_inode structure and the attribute record.
1902 * @rl is the last (non-terminator) runlist element of mft data
1903 * attribute.
1905 if (a->data.non_resident.lowest_vcn) {
1907 * We are not in the first attribute extent, switch to it, but
1908 * first ensure the changes will make it to disk later.
1910 flush_dcache_mft_record_page(ctx->ntfs_ino);
1911 mark_mft_record_dirty(ctx->ntfs_ino);
1912 ntfs_attr_reinit_search_ctx(ctx);
1913 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1914 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1915 ctx);
1916 if (unlikely(ret)) {
1917 ntfs_error(vol->sb, "Failed to find first attribute "
1918 "extent of mft data attribute.");
1919 goto restore_undo_alloc;
1921 a = ctx->attr;
1923 write_lock_irqsave(&mft_ni->size_lock, flags);
1924 mft_ni->allocated_size += nr << vol->cluster_size_bits;
1925 a->data.non_resident.allocated_size =
1926 cpu_to_sle64(mft_ni->allocated_size);
1927 write_unlock_irqrestore(&mft_ni->size_lock, flags);
1928 /* Ensure the changes make it to disk. */
1929 flush_dcache_mft_record_page(ctx->ntfs_ino);
1930 mark_mft_record_dirty(ctx->ntfs_ino);
1931 ntfs_attr_put_search_ctx(ctx);
1932 unmap_mft_record(mft_ni);
1933 up_write(&mft_ni->runlist.lock);
1934 ntfs_debug("Done.");
1935 return 0;
1936 restore_undo_alloc:
1937 ntfs_attr_reinit_search_ctx(ctx);
1938 if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1939 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1940 ntfs_error(vol->sb, "Failed to find last attribute extent of "
1941 "mft data attribute.%s", es);
1942 write_lock_irqsave(&mft_ni->size_lock, flags);
1943 mft_ni->allocated_size += nr << vol->cluster_size_bits;
1944 write_unlock_irqrestore(&mft_ni->size_lock, flags);
1945 ntfs_attr_put_search_ctx(ctx);
1946 unmap_mft_record(mft_ni);
1947 up_write(&mft_ni->runlist.lock);
1949 * The only thing that is now wrong is ->allocated_size of the
1950 * base attribute extent which chkdsk should be able to fix.
1952 NVolSetErrors(vol);
1953 return ret;
1955 ctx->attr->data.non_resident.highest_vcn =
1956 cpu_to_sle64(old_last_vcn - 1);
1957 undo_alloc:
1958 if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1959 ntfs_error(vol->sb, "Failed to free clusters from mft data "
1960 "attribute.%s", es);
1961 NVolSetErrors(vol);
1963 a = ctx->attr;
1964 if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1965 ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1966 "runlist.%s", es);
1967 NVolSetErrors(vol);
1969 if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1970 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1971 a->data.non_resident.mapping_pairs_offset),
1972 old_alen - le16_to_cpu(
1973 a->data.non_resident.mapping_pairs_offset),
1974 rl2, ll, -1, NULL)) {
1975 ntfs_error(vol->sb, "Failed to restore mapping pairs "
1976 "array.%s", es);
1977 NVolSetErrors(vol);
1979 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1980 ntfs_error(vol->sb, "Failed to restore attribute "
1981 "record.%s", es);
1982 NVolSetErrors(vol);
1984 flush_dcache_mft_record_page(ctx->ntfs_ino);
1985 mark_mft_record_dirty(ctx->ntfs_ino);
1986 } else if (IS_ERR(ctx->mrec)) {
1987 ntfs_error(vol->sb, "Failed to restore attribute search "
1988 "context.%s", es);
1989 NVolSetErrors(vol);
1991 if (ctx)
1992 ntfs_attr_put_search_ctx(ctx);
1993 if (!IS_ERR(mrec))
1994 unmap_mft_record(mft_ni);
1995 up_write(&mft_ni->runlist.lock);
1996 return ret;
2000 * ntfs_mft_record_layout - layout an mft record into a memory buffer
2001 * @vol: volume to which the mft record will belong
2002 * @mft_no: mft reference specifying the mft record number
2003 * @m: destination buffer of size >= @vol->mft_record_size bytes
2005 * Layout an empty, unused mft record with the mft record number @mft_no into
2006 * the buffer @m. The volume @vol is needed because the mft record structure
2007 * was modified in NTFS 3.1 so we need to know which volume version this mft
2008 * record will be used on.
2010 * Return 0 on success and -errno on error.
2012 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2013 MFT_RECORD *m)
2015 ATTR_RECORD *a;
2017 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2018 if (mft_no >= (1ll << 32)) {
2019 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2020 "maximum of 2^32.", (long long)mft_no);
2021 return -ERANGE;
2023 /* Start by clearing the whole mft record to gives us a clean slate. */
2024 memset(m, 0, vol->mft_record_size);
2025 /* Aligned to 2-byte boundary. */
2026 if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2027 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2028 else {
2029 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2031 * Set the NTFS 3.1+ specific fields while we know that the
2032 * volume version is 3.1+.
2034 m->reserved = 0;
2035 m->mft_record_number = cpu_to_le32((u32)mft_no);
2037 m->magic = magic_FILE;
2038 if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2039 m->usa_count = cpu_to_le16(vol->mft_record_size /
2040 NTFS_BLOCK_SIZE + 1);
2041 else {
2042 m->usa_count = cpu_to_le16(1);
2043 ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2044 "size. Setting usa_count to 1. If chkdsk "
2045 "reports this as corruption, please email "
2046 "linux-ntfs-dev@lists.sourceforge.net stating "
2047 "that you saw this message and that the "
2048 "modified filesystem created was corrupt. "
2049 "Thank you.");
2051 /* Set the update sequence number to 1. */
2052 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2053 m->lsn = 0;
2054 m->sequence_number = cpu_to_le16(1);
2055 m->link_count = 0;
2057 * Place the attributes straight after the update sequence array,
2058 * aligned to 8-byte boundary.
2060 m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2061 (le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2062 m->flags = 0;
2064 * Using attrs_offset plus eight bytes (for the termination attribute).
2065 * attrs_offset is already aligned to 8-byte boundary, so no need to
2066 * align again.
2068 m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2069 m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2070 m->base_mft_record = 0;
2071 m->next_attr_instance = 0;
2072 /* Add the termination attribute. */
2073 a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2074 a->type = AT_END;
2075 a->length = 0;
2076 ntfs_debug("Done.");
2077 return 0;
2081 * ntfs_mft_record_format - format an mft record on an ntfs volume
2082 * @vol: volume on which to format the mft record
2083 * @mft_no: mft record number to format
2085 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2086 * mft record into the appropriate place of the mft data attribute. This is
2087 * used when extending the mft data attribute.
2089 * Return 0 on success and -errno on error.
2091 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2093 loff_t i_size;
2094 struct inode *mft_vi = vol->mft_ino;
2095 struct page *page;
2096 MFT_RECORD *m;
2097 pgoff_t index, end_index;
2098 unsigned int ofs;
2099 int err;
2101 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2103 * The index into the page cache and the offset within the page cache
2104 * page of the wanted mft record.
2106 index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2107 ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2108 /* The maximum valid index into the page cache for $MFT's data. */
2109 i_size = i_size_read(mft_vi);
2110 end_index = i_size >> PAGE_CACHE_SHIFT;
2111 if (unlikely(index >= end_index)) {
2112 if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2113 (i_size & ~PAGE_CACHE_MASK))) {
2114 ntfs_error(vol->sb, "Tried to format non-existing mft "
2115 "record 0x%llx.", (long long)mft_no);
2116 return -ENOENT;
2119 /* Read, map, and pin the page containing the mft record. */
2120 page = ntfs_map_page(mft_vi->i_mapping, index);
2121 if (IS_ERR(page)) {
2122 ntfs_error(vol->sb, "Failed to map page containing mft record "
2123 "to format 0x%llx.", (long long)mft_no);
2124 return PTR_ERR(page);
2126 lock_page(page);
2127 BUG_ON(!PageUptodate(page));
2128 ClearPageUptodate(page);
2129 m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2130 err = ntfs_mft_record_layout(vol, mft_no, m);
2131 if (unlikely(err)) {
2132 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2133 (long long)mft_no);
2134 SetPageUptodate(page);
2135 unlock_page(page);
2136 ntfs_unmap_page(page);
2137 return err;
2139 flush_dcache_page(page);
2140 SetPageUptodate(page);
2141 unlock_page(page);
2143 * Make sure the mft record is written out to disk. We could use
2144 * ilookup5() to check if an inode is in icache and so on but this is
2145 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2147 mark_ntfs_record_dirty(page, ofs);
2148 ntfs_unmap_page(page);
2149 ntfs_debug("Done.");
2150 return 0;
2154 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2155 * @vol: [IN] volume on which to allocate the mft record
2156 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0
2157 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL
2158 * @mrec: [OUT] on successful return this is the mapped mft record
2160 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2162 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2163 * direvctory inode, and allocate it at the default allocator position. In
2164 * this case @mode is the file mode as given to us by the caller. We in
2165 * particular use @mode to distinguish whether a file or a directory is being
2166 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2168 * If @base_ni is not NULL make the allocated mft record an extent record,
2169 * allocate it starting at the mft record after the base mft record and attach
2170 * the allocated and opened ntfs inode to the base inode @base_ni. In this
2171 * case @mode must be 0 as it is meaningless for extent inodes.
2173 * You need to check the return value with IS_ERR(). If false, the function
2174 * was successful and the return value is the now opened ntfs inode of the
2175 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned,
2176 * and locked mft record. If IS_ERR() is true, the function failed and the
2177 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in
2178 * this case.
2180 * Allocation strategy:
2182 * To find a free mft record, we scan the mft bitmap for a zero bit. To
2183 * optimize this we start scanning at the place specified by @base_ni or if
2184 * @base_ni is NULL we start where we last stopped and we perform wrap around
2185 * when we reach the end. Note, we do not try to allocate mft records below
2186 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2187 * to 24 are special in that they are used for storing extension mft records
2188 * for the $DATA attribute of $MFT. This is required to avoid the possibility
2189 * of creating a runlist with a circular dependency which once written to disk
2190 * can never be read in again. Windows will only use records 16 to 24 for
2191 * normal files if the volume is completely out of space. We never use them
2192 * which means that when the volume is really out of space we cannot create any
2193 * more files while Windows can still create up to 8 small files. We can start
2194 * doing this at some later time, it does not matter much for now.
2196 * When scanning the mft bitmap, we only search up to the last allocated mft
2197 * record. If there are no free records left in the range 24 to number of
2198 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2199 * create free mft records. We extend the allocated size of $MFT/$DATA by 16
2200 * records at a time or one cluster, if cluster size is above 16kiB. If there
2201 * is not sufficient space to do this, we try to extend by a single mft record
2202 * or one cluster, if cluster size is above the mft record size.
2204 * No matter how many mft records we allocate, we initialize only the first
2205 * allocated mft record, incrementing mft data size and initialized size
2206 * accordingly, open an ntfs_inode for it and return it to the caller, unless
2207 * there are less than 24 mft records, in which case we allocate and initialize
2208 * mft records until we reach record 24 which we consider as the first free mft
2209 * record for use by normal files.
2211 * If during any stage we overflow the initialized data in the mft bitmap, we
2212 * extend the initialized size (and data size) by 8 bytes, allocating another
2213 * cluster if required. The bitmap data size has to be at least equal to the
2214 * number of mft records in the mft, but it can be bigger, in which case the
2215 * superflous bits are padded with zeroes.
2217 * Thus, when we return successfully (IS_ERR() is false), we will have:
2218 * - initialized / extended the mft bitmap if necessary,
2219 * - initialized / extended the mft data if necessary,
2220 * - set the bit corresponding to the mft record being allocated in the
2221 * mft bitmap,
2222 * - opened an ntfs_inode for the allocated mft record, and we will have
2223 * - returned the ntfs_inode as well as the allocated mapped, pinned, and
2224 * locked mft record.
2226 * On error, the volume will be left in a consistent state and no record will
2227 * be allocated. If rolling back a partial operation fails, we may leave some
2228 * inconsistent metadata in which case we set NVolErrors() so the volume is
2229 * left dirty when unmounted.
2231 * Note, this function cannot make use of most of the normal functions, like
2232 * for example for attribute resizing, etc, because when the run list overflows
2233 * the base mft record and an attribute list is used, it is very important that
2234 * the extension mft records used to store the $DATA attribute of $MFT can be
2235 * reached without having to read the information contained inside them, as
2236 * this would make it impossible to find them in the first place after the
2237 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this
2238 * rule because the bitmap is not essential for finding the mft records, but on
2239 * the other hand, handling the bitmap in this special way would make life
2240 * easier because otherwise there might be circular invocations of functions
2241 * when reading the bitmap.
2243 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2244 ntfs_inode *base_ni, MFT_RECORD **mrec)
2246 s64 ll, bit, old_data_initialized, old_data_size;
2247 unsigned long flags;
2248 struct inode *vi;
2249 struct page *page;
2250 ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2251 ntfs_attr_search_ctx *ctx;
2252 MFT_RECORD *m;
2253 ATTR_RECORD *a;
2254 pgoff_t index;
2255 unsigned int ofs;
2256 int err;
2257 le16 seq_no, usn;
2258 bool record_formatted = false;
2260 if (base_ni) {
2261 ntfs_debug("Entering (allocating an extent mft record for "
2262 "base mft record 0x%llx).",
2263 (long long)base_ni->mft_no);
2264 /* @mode and @base_ni are mutually exclusive. */
2265 BUG_ON(mode);
2266 } else
2267 ntfs_debug("Entering (allocating a base mft record).");
2268 if (mode) {
2269 /* @mode and @base_ni are mutually exclusive. */
2270 BUG_ON(base_ni);
2271 /* We only support creation of normal files and directories. */
2272 if (!S_ISREG(mode) && !S_ISDIR(mode))
2273 return ERR_PTR(-EOPNOTSUPP);
2275 BUG_ON(!mrec);
2276 mft_ni = NTFS_I(vol->mft_ino);
2277 mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2278 down_write(&vol->mftbmp_lock);
2279 bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2280 if (bit >= 0) {
2281 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2282 (long long)bit);
2283 goto have_alloc_rec;
2285 if (bit != -ENOSPC) {
2286 up_write(&vol->mftbmp_lock);
2287 return ERR_PTR(bit);
2290 * No free mft records left. If the mft bitmap already covers more
2291 * than the currently used mft records, the next records are all free,
2292 * so we can simply allocate the first unused mft record.
2293 * Note: We also have to make sure that the mft bitmap at least covers
2294 * the first 24 mft records as they are special and whilst they may not
2295 * be in use, we do not allocate from them.
2297 read_lock_irqsave(&mft_ni->size_lock, flags);
2298 ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2299 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2300 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2301 old_data_initialized = mftbmp_ni->initialized_size;
2302 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2303 if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2304 bit = ll;
2305 if (bit < 24)
2306 bit = 24;
2307 if (unlikely(bit >= (1ll << 32)))
2308 goto max_err_out;
2309 ntfs_debug("Found free record (#2), bit 0x%llx.",
2310 (long long)bit);
2311 goto found_free_rec;
2314 * The mft bitmap needs to be expanded until it covers the first unused
2315 * mft record that we can allocate.
2316 * Note: The smallest mft record we allocate is mft record 24.
2318 bit = old_data_initialized << 3;
2319 if (unlikely(bit >= (1ll << 32)))
2320 goto max_err_out;
2321 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2322 old_data_size = mftbmp_ni->allocated_size;
2323 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2324 "data_size 0x%llx, initialized_size 0x%llx.",
2325 (long long)old_data_size,
2326 (long long)i_size_read(vol->mftbmp_ino),
2327 (long long)old_data_initialized);
2328 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2329 if (old_data_initialized + 8 > old_data_size) {
2330 /* Need to extend bitmap by one more cluster. */
2331 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2332 err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2333 if (unlikely(err)) {
2334 up_write(&vol->mftbmp_lock);
2335 goto err_out;
2337 #ifdef DEBUG
2338 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2339 ntfs_debug("Status of mftbmp after allocation extension: "
2340 "allocated_size 0x%llx, data_size 0x%llx, "
2341 "initialized_size 0x%llx.",
2342 (long long)mftbmp_ni->allocated_size,
2343 (long long)i_size_read(vol->mftbmp_ino),
2344 (long long)mftbmp_ni->initialized_size);
2345 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2346 #endif /* DEBUG */
2349 * We now have sufficient allocated space, extend the initialized_size
2350 * as well as the data_size if necessary and fill the new space with
2351 * zeroes.
2353 err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2354 if (unlikely(err)) {
2355 up_write(&vol->mftbmp_lock);
2356 goto err_out;
2358 #ifdef DEBUG
2359 read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2360 ntfs_debug("Status of mftbmp after initialized extension: "
2361 "allocated_size 0x%llx, data_size 0x%llx, "
2362 "initialized_size 0x%llx.",
2363 (long long)mftbmp_ni->allocated_size,
2364 (long long)i_size_read(vol->mftbmp_ino),
2365 (long long)mftbmp_ni->initialized_size);
2366 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2367 #endif /* DEBUG */
2368 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2369 found_free_rec:
2370 /* @bit is the found free mft record, allocate it in the mft bitmap. */
2371 ntfs_debug("At found_free_rec.");
2372 err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2373 if (unlikely(err)) {
2374 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2375 up_write(&vol->mftbmp_lock);
2376 goto err_out;
2378 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2379 have_alloc_rec:
2381 * The mft bitmap is now uptodate. Deal with mft data attribute now.
2382 * Note, we keep hold of the mft bitmap lock for writing until all
2383 * modifications to the mft data attribute are complete, too, as they
2384 * will impact decisions for mft bitmap and mft record allocation done
2385 * by a parallel allocation and if the lock is not maintained a
2386 * parallel allocation could allocate the same mft record as this one.
2388 ll = (bit + 1) << vol->mft_record_size_bits;
2389 read_lock_irqsave(&mft_ni->size_lock, flags);
2390 old_data_initialized = mft_ni->initialized_size;
2391 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2392 if (ll <= old_data_initialized) {
2393 ntfs_debug("Allocated mft record already initialized.");
2394 goto mft_rec_already_initialized;
2396 ntfs_debug("Initializing allocated mft record.");
2398 * The mft record is outside the initialized data. Extend the mft data
2399 * attribute until it covers the allocated record. The loop is only
2400 * actually traversed more than once when a freshly formatted volume is
2401 * first written to so it optimizes away nicely in the common case.
2403 read_lock_irqsave(&mft_ni->size_lock, flags);
2404 ntfs_debug("Status of mft data before extension: "
2405 "allocated_size 0x%llx, data_size 0x%llx, "
2406 "initialized_size 0x%llx.",
2407 (long long)mft_ni->allocated_size,
2408 (long long)i_size_read(vol->mft_ino),
2409 (long long)mft_ni->initialized_size);
2410 while (ll > mft_ni->allocated_size) {
2411 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2412 err = ntfs_mft_data_extend_allocation_nolock(vol);
2413 if (unlikely(err)) {
2414 ntfs_error(vol->sb, "Failed to extend mft data "
2415 "allocation.");
2416 goto undo_mftbmp_alloc_nolock;
2418 read_lock_irqsave(&mft_ni->size_lock, flags);
2419 ntfs_debug("Status of mft data after allocation extension: "
2420 "allocated_size 0x%llx, data_size 0x%llx, "
2421 "initialized_size 0x%llx.",
2422 (long long)mft_ni->allocated_size,
2423 (long long)i_size_read(vol->mft_ino),
2424 (long long)mft_ni->initialized_size);
2426 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2428 * Extend mft data initialized size (and data size of course) to reach
2429 * the allocated mft record, formatting the mft records allong the way.
2430 * Note: We only modify the ntfs_inode structure as that is all that is
2431 * needed by ntfs_mft_record_format(). We will update the attribute
2432 * record itself in one fell swoop later on.
2434 write_lock_irqsave(&mft_ni->size_lock, flags);
2435 old_data_initialized = mft_ni->initialized_size;
2436 old_data_size = vol->mft_ino->i_size;
2437 while (ll > mft_ni->initialized_size) {
2438 s64 new_initialized_size, mft_no;
2440 new_initialized_size = mft_ni->initialized_size +
2441 vol->mft_record_size;
2442 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2443 if (new_initialized_size > i_size_read(vol->mft_ino))
2444 i_size_write(vol->mft_ino, new_initialized_size);
2445 write_unlock_irqrestore(&mft_ni->size_lock, flags);
2446 ntfs_debug("Initializing mft record 0x%llx.",
2447 (long long)mft_no);
2448 err = ntfs_mft_record_format(vol, mft_no);
2449 if (unlikely(err)) {
2450 ntfs_error(vol->sb, "Failed to format mft record.");
2451 goto undo_data_init;
2453 write_lock_irqsave(&mft_ni->size_lock, flags);
2454 mft_ni->initialized_size = new_initialized_size;
2456 write_unlock_irqrestore(&mft_ni->size_lock, flags);
2457 record_formatted = true;
2458 /* Update the mft data attribute record to reflect the new sizes. */
2459 m = map_mft_record(mft_ni);
2460 if (IS_ERR(m)) {
2461 ntfs_error(vol->sb, "Failed to map mft record.");
2462 err = PTR_ERR(m);
2463 goto undo_data_init;
2465 ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2466 if (unlikely(!ctx)) {
2467 ntfs_error(vol->sb, "Failed to get search context.");
2468 err = -ENOMEM;
2469 unmap_mft_record(mft_ni);
2470 goto undo_data_init;
2472 err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2473 CASE_SENSITIVE, 0, NULL, 0, ctx);
2474 if (unlikely(err)) {
2475 ntfs_error(vol->sb, "Failed to find first attribute extent of "
2476 "mft data attribute.");
2477 ntfs_attr_put_search_ctx(ctx);
2478 unmap_mft_record(mft_ni);
2479 goto undo_data_init;
2481 a = ctx->attr;
2482 read_lock_irqsave(&mft_ni->size_lock, flags);
2483 a->data.non_resident.initialized_size =
2484 cpu_to_sle64(mft_ni->initialized_size);
2485 a->data.non_resident.data_size =
2486 cpu_to_sle64(i_size_read(vol->mft_ino));
2487 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2488 /* Ensure the changes make it to disk. */
2489 flush_dcache_mft_record_page(ctx->ntfs_ino);
2490 mark_mft_record_dirty(ctx->ntfs_ino);
2491 ntfs_attr_put_search_ctx(ctx);
2492 unmap_mft_record(mft_ni);
2493 read_lock_irqsave(&mft_ni->size_lock, flags);
2494 ntfs_debug("Status of mft data after mft record initialization: "
2495 "allocated_size 0x%llx, data_size 0x%llx, "
2496 "initialized_size 0x%llx.",
2497 (long long)mft_ni->allocated_size,
2498 (long long)i_size_read(vol->mft_ino),
2499 (long long)mft_ni->initialized_size);
2500 BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2501 BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2502 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2503 mft_rec_already_initialized:
2505 * We can finally drop the mft bitmap lock as the mft data attribute
2506 * has been fully updated. The only disparity left is that the
2507 * allocated mft record still needs to be marked as in use to match the
2508 * set bit in the mft bitmap but this is actually not a problem since
2509 * this mft record is not referenced from anywhere yet and the fact
2510 * that it is allocated in the mft bitmap means that no-one will try to
2511 * allocate it either.
2513 up_write(&vol->mftbmp_lock);
2515 * We now have allocated and initialized the mft record. Calculate the
2516 * index of and the offset within the page cache page the record is in.
2518 index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2519 ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2520 /* Read, map, and pin the page containing the mft record. */
2521 page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2522 if (IS_ERR(page)) {
2523 ntfs_error(vol->sb, "Failed to map page containing allocated "
2524 "mft record 0x%llx.", (long long)bit);
2525 err = PTR_ERR(page);
2526 goto undo_mftbmp_alloc;
2528 lock_page(page);
2529 BUG_ON(!PageUptodate(page));
2530 ClearPageUptodate(page);
2531 m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2532 /* If we just formatted the mft record no need to do it again. */
2533 if (!record_formatted) {
2534 /* Sanity check that the mft record is really not in use. */
2535 if (ntfs_is_file_record(m->magic) &&
2536 (m->flags & MFT_RECORD_IN_USE)) {
2537 ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2538 "free in mft bitmap but is marked "
2539 "used itself. Corrupt filesystem. "
2540 "Unmount and run chkdsk.",
2541 (long long)bit);
2542 err = -EIO;
2543 SetPageUptodate(page);
2544 unlock_page(page);
2545 ntfs_unmap_page(page);
2546 NVolSetErrors(vol);
2547 goto undo_mftbmp_alloc;
2550 * We need to (re-)format the mft record, preserving the
2551 * sequence number if it is not zero as well as the update
2552 * sequence number if it is not zero or -1 (0xffff). This
2553 * means we do not need to care whether or not something went
2554 * wrong with the previous mft record.
2556 seq_no = m->sequence_number;
2557 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2558 err = ntfs_mft_record_layout(vol, bit, m);
2559 if (unlikely(err)) {
2560 ntfs_error(vol->sb, "Failed to layout allocated mft "
2561 "record 0x%llx.", (long long)bit);
2562 SetPageUptodate(page);
2563 unlock_page(page);
2564 ntfs_unmap_page(page);
2565 goto undo_mftbmp_alloc;
2567 if (seq_no)
2568 m->sequence_number = seq_no;
2569 if (usn && le16_to_cpu(usn) != 0xffff)
2570 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2572 /* Set the mft record itself in use. */
2573 m->flags |= MFT_RECORD_IN_USE;
2574 if (S_ISDIR(mode))
2575 m->flags |= MFT_RECORD_IS_DIRECTORY;
2576 flush_dcache_page(page);
2577 SetPageUptodate(page);
2578 if (base_ni) {
2579 MFT_RECORD *m_tmp;
2582 * Setup the base mft record in the extent mft record. This
2583 * completes initialization of the allocated extent mft record
2584 * and we can simply use it with map_extent_mft_record().
2586 m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2587 base_ni->seq_no);
2589 * Allocate an extent inode structure for the new mft record,
2590 * attach it to the base inode @base_ni and map, pin, and lock
2591 * its, i.e. the allocated, mft record.
2593 m_tmp = map_extent_mft_record(base_ni, bit, &ni);
2594 if (IS_ERR(m_tmp)) {
2595 ntfs_error(vol->sb, "Failed to map allocated extent "
2596 "mft record 0x%llx.", (long long)bit);
2597 err = PTR_ERR(m_tmp);
2598 /* Set the mft record itself not in use. */
2599 m->flags &= cpu_to_le16(
2600 ~le16_to_cpu(MFT_RECORD_IN_USE));
2601 flush_dcache_page(page);
2602 /* Make sure the mft record is written out to disk. */
2603 mark_ntfs_record_dirty(page, ofs);
2604 unlock_page(page);
2605 ntfs_unmap_page(page);
2606 goto undo_mftbmp_alloc;
2608 BUG_ON(m != m_tmp);
2610 * Make sure the allocated mft record is written out to disk.
2611 * No need to set the inode dirty because the caller is going
2612 * to do that anyway after finishing with the new extent mft
2613 * record (e.g. at a minimum a new attribute will be added to
2614 * the mft record.
2616 mark_ntfs_record_dirty(page, ofs);
2617 unlock_page(page);
2619 * Need to unmap the page since map_extent_mft_record() mapped
2620 * it as well so we have it mapped twice at the moment.
2622 ntfs_unmap_page(page);
2623 } else {
2625 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink
2626 * is set to 1 but the mft record->link_count is 0. The caller
2627 * needs to bear this in mind.
2629 vi = new_inode(vol->sb);
2630 if (unlikely(!vi)) {
2631 err = -ENOMEM;
2632 /* Set the mft record itself not in use. */
2633 m->flags &= cpu_to_le16(
2634 ~le16_to_cpu(MFT_RECORD_IN_USE));
2635 flush_dcache_page(page);
2636 /* Make sure the mft record is written out to disk. */
2637 mark_ntfs_record_dirty(page, ofs);
2638 unlock_page(page);
2639 ntfs_unmap_page(page);
2640 goto undo_mftbmp_alloc;
2642 vi->i_ino = bit;
2644 * This is for checking whether an inode has changed w.r.t. a
2645 * file so that the file can be updated if necessary (compare
2646 * with f_version).
2648 vi->i_version = 1;
2650 /* The owner and group come from the ntfs volume. */
2651 vi->i_uid = vol->uid;
2652 vi->i_gid = vol->gid;
2654 /* Initialize the ntfs specific part of @vi. */
2655 ntfs_init_big_inode(vi);
2656 ni = NTFS_I(vi);
2658 * Set the appropriate mode, attribute type, and name. For
2659 * directories, also setup the index values to the defaults.
2661 if (S_ISDIR(mode)) {
2662 vi->i_mode = S_IFDIR | S_IRWXUGO;
2663 vi->i_mode &= ~vol->dmask;
2665 NInoSetMstProtected(ni);
2666 ni->type = AT_INDEX_ALLOCATION;
2667 ni->name = I30;
2668 ni->name_len = 4;
2670 ni->itype.index.block_size = 4096;
2671 ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2672 ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2673 if (vol->cluster_size <= ni->itype.index.block_size) {
2674 ni->itype.index.vcn_size = vol->cluster_size;
2675 ni->itype.index.vcn_size_bits =
2676 vol->cluster_size_bits;
2677 } else {
2678 ni->itype.index.vcn_size = vol->sector_size;
2679 ni->itype.index.vcn_size_bits =
2680 vol->sector_size_bits;
2682 } else {
2683 vi->i_mode = S_IFREG | S_IRWXUGO;
2684 vi->i_mode &= ~vol->fmask;
2686 ni->type = AT_DATA;
2687 ni->name = NULL;
2688 ni->name_len = 0;
2690 if (IS_RDONLY(vi))
2691 vi->i_mode &= ~S_IWUGO;
2693 /* Set the inode times to the current time. */
2694 vi->i_atime = vi->i_mtime = vi->i_ctime =
2695 current_fs_time(vi->i_sb);
2697 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2698 * the call to ntfs_init_big_inode() below.
2700 vi->i_size = 0;
2701 vi->i_blocks = 0;
2703 /* Set the sequence number. */
2704 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2706 * Manually map, pin, and lock the mft record as we already
2707 * have its page mapped and it is very easy to do.
2709 atomic_inc(&ni->count);
2710 mutex_lock(&ni->mrec_lock);
2711 ni->page = page;
2712 ni->page_ofs = ofs;
2714 * Make sure the allocated mft record is written out to disk.
2715 * NOTE: We do not set the ntfs inode dirty because this would
2716 * fail in ntfs_write_inode() because the inode does not have a
2717 * standard information attribute yet. Also, there is no need
2718 * to set the inode dirty because the caller is going to do
2719 * that anyway after finishing with the new mft record (e.g. at
2720 * a minimum some new attributes will be added to the mft
2721 * record.
2723 mark_ntfs_record_dirty(page, ofs);
2724 unlock_page(page);
2726 /* Add the inode to the inode hash for the superblock. */
2727 insert_inode_hash(vi);
2729 /* Update the default mft allocation position. */
2730 vol->mft_data_pos = bit + 1;
2733 * Return the opened, allocated inode of the allocated mft record as
2734 * well as the mapped, pinned, and locked mft record.
2736 ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2737 base_ni ? "extent " : "", (long long)bit);
2738 *mrec = m;
2739 return ni;
2740 undo_data_init:
2741 write_lock_irqsave(&mft_ni->size_lock, flags);
2742 mft_ni->initialized_size = old_data_initialized;
2743 i_size_write(vol->mft_ino, old_data_size);
2744 write_unlock_irqrestore(&mft_ni->size_lock, flags);
2745 goto undo_mftbmp_alloc_nolock;
2746 undo_mftbmp_alloc:
2747 down_write(&vol->mftbmp_lock);
2748 undo_mftbmp_alloc_nolock:
2749 if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2750 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2751 NVolSetErrors(vol);
2753 up_write(&vol->mftbmp_lock);
2754 err_out:
2755 return ERR_PTR(err);
2756 max_err_out:
2757 ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2758 "number of inodes (2^32) has already been reached.");
2759 up_write(&vol->mftbmp_lock);
2760 return ERR_PTR(-ENOSPC);
2764 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2765 * @ni: ntfs inode of the mapped extent mft record to free
2766 * @m: mapped extent mft record of the ntfs inode @ni
2768 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2770 * Note that this function unmaps the mft record and closes and destroys @ni
2771 * internally and hence you cannot use either @ni nor @m any more after this
2772 * function returns success.
2774 * On success return 0 and on error return -errno. @ni and @m are still valid
2775 * in this case and have not been freed.
2777 * For some errors an error message is displayed and the success code 0 is
2778 * returned and the volume is then left dirty on umount. This makes sense in
2779 * case we could not rollback the changes that were already done since the
2780 * caller no longer wants to reference this mft record so it does not matter to
2781 * the caller if something is wrong with it as long as it is properly detached
2782 * from the base inode.
2784 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2786 unsigned long mft_no = ni->mft_no;
2787 ntfs_volume *vol = ni->vol;
2788 ntfs_inode *base_ni;
2789 ntfs_inode **extent_nis;
2790 int i, err;
2791 le16 old_seq_no;
2792 u16 seq_no;
2794 BUG_ON(NInoAttr(ni));
2795 BUG_ON(ni->nr_extents != -1);
2797 mutex_lock(&ni->extent_lock);
2798 base_ni = ni->ext.base_ntfs_ino;
2799 mutex_unlock(&ni->extent_lock);
2801 BUG_ON(base_ni->nr_extents <= 0);
2803 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2804 mft_no, base_ni->mft_no);
2806 mutex_lock(&base_ni->extent_lock);
2808 /* Make sure we are holding the only reference to the extent inode. */
2809 if (atomic_read(&ni->count) > 2) {
2810 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2811 "not freeing.", base_ni->mft_no);
2812 mutex_unlock(&base_ni->extent_lock);
2813 return -EBUSY;
2816 /* Dissociate the ntfs inode from the base inode. */
2817 extent_nis = base_ni->ext.extent_ntfs_inos;
2818 err = -ENOENT;
2819 for (i = 0; i < base_ni->nr_extents; i++) {
2820 if (ni != extent_nis[i])
2821 continue;
2822 extent_nis += i;
2823 base_ni->nr_extents--;
2824 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2825 sizeof(ntfs_inode*));
2826 err = 0;
2827 break;
2830 mutex_unlock(&base_ni->extent_lock);
2832 if (unlikely(err)) {
2833 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2834 "its base inode 0x%lx.", mft_no,
2835 base_ni->mft_no);
2836 BUG();
2840 * The extent inode is no longer attached to the base inode so no one
2841 * can get a reference to it any more.
2844 /* Mark the mft record as not in use. */
2845 m->flags &= ~MFT_RECORD_IN_USE;
2847 /* Increment the sequence number, skipping zero, if it is not zero. */
2848 old_seq_no = m->sequence_number;
2849 seq_no = le16_to_cpu(old_seq_no);
2850 if (seq_no == 0xffff)
2851 seq_no = 1;
2852 else if (seq_no)
2853 seq_no++;
2854 m->sequence_number = cpu_to_le16(seq_no);
2857 * Set the ntfs inode dirty and write it out. We do not need to worry
2858 * about the base inode here since whatever caused the extent mft
2859 * record to be freed is guaranteed to do it already.
2861 NInoSetDirty(ni);
2862 err = write_mft_record(ni, m, 0);
2863 if (unlikely(err)) {
2864 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2865 "freeing.", mft_no);
2866 goto rollback;
2868 rollback_error:
2869 /* Unmap and throw away the now freed extent inode. */
2870 unmap_extent_mft_record(ni);
2871 ntfs_clear_extent_inode(ni);
2873 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2874 down_write(&vol->mftbmp_lock);
2875 err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2876 up_write(&vol->mftbmp_lock);
2877 if (unlikely(err)) {
2879 * The extent inode is gone but we failed to deallocate it in
2880 * the mft bitmap. Just emit a warning and leave the volume
2881 * dirty on umount.
2883 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2884 NVolSetErrors(vol);
2886 return 0;
2887 rollback:
2888 /* Rollback what we did... */
2889 mutex_lock(&base_ni->extent_lock);
2890 extent_nis = base_ni->ext.extent_ntfs_inos;
2891 if (!(base_ni->nr_extents & 3)) {
2892 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2894 extent_nis = kmalloc(new_size, GFP_NOFS);
2895 if (unlikely(!extent_nis)) {
2896 ntfs_error(vol->sb, "Failed to allocate internal "
2897 "buffer during rollback.%s", es);
2898 mutex_unlock(&base_ni->extent_lock);
2899 NVolSetErrors(vol);
2900 goto rollback_error;
2902 if (base_ni->nr_extents) {
2903 BUG_ON(!base_ni->ext.extent_ntfs_inos);
2904 memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2905 new_size - 4 * sizeof(ntfs_inode*));
2906 kfree(base_ni->ext.extent_ntfs_inos);
2908 base_ni->ext.extent_ntfs_inos = extent_nis;
2910 m->flags |= MFT_RECORD_IN_USE;
2911 m->sequence_number = old_seq_no;
2912 extent_nis[base_ni->nr_extents++] = ni;
2913 mutex_unlock(&base_ni->extent_lock);
2914 mark_mft_record_dirty(ni);
2915 return err;
2917 #endif /* NTFS_RW */