4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
17 static struct kmem_cache
*fsync_entry_slab
;
19 bool space_for_roll_forward(struct f2fs_sb_info
*sbi
)
21 if (sbi
->last_valid_block_count
+ sbi
->alloc_valid_block_count
22 > sbi
->user_block_count
)
27 static struct fsync_inode_entry
*get_fsync_inode(struct list_head
*head
,
30 struct list_head
*this;
31 struct fsync_inode_entry
*entry
;
33 list_for_each(this, head
) {
34 entry
= list_entry(this, struct fsync_inode_entry
, list
);
35 if (entry
->inode
->i_ino
== ino
)
41 static int recover_dentry(struct page
*ipage
, struct inode
*inode
)
43 void *kaddr
= page_address(ipage
);
44 struct f2fs_node
*raw_node
= (struct f2fs_node
*)kaddr
;
45 struct f2fs_inode
*raw_inode
= &(raw_node
->i
);
46 nid_t pino
= le32_to_cpu(raw_inode
->i_pino
);
47 struct f2fs_dir_entry
*de
;
50 struct inode
*dir
, *einode
;
53 dir
= check_dirty_dir_inode(F2FS_SB(inode
->i_sb
), pino
);
55 dir
= f2fs_iget(inode
->i_sb
, pino
);
60 set_inode_flag(F2FS_I(dir
), FI_DELAY_IPUT
);
61 add_dirty_dir_inode(dir
);
64 name
.len
= le32_to_cpu(raw_inode
->i_namelen
);
65 name
.name
= raw_inode
->i_name
;
67 de
= f2fs_find_entry(dir
, &name
, &page
);
68 if (de
&& inode
->i_ino
== le32_to_cpu(de
->ino
)) {
70 f2fs_put_page(page
, 0);
74 einode
= f2fs_iget(inode
->i_sb
, le32_to_cpu(de
->ino
));
77 if (PTR_ERR(einode
) == -ENOENT
)
81 f2fs_delete_entry(de
, page
, einode
);
85 err
= __f2fs_add_link(dir
, &name
, inode
);
87 f2fs_msg(inode
->i_sb
, KERN_NOTICE
, "recover_inode and its dentry: "
88 "ino = %x, name = %s, dir = %lx, err = %d",
89 ino_of_node(ipage
), raw_inode
->i_name
,
90 IS_ERR(dir
) ? 0 : dir
->i_ino
, err
);
94 static int recover_inode(struct inode
*inode
, struct page
*node_page
)
96 void *kaddr
= page_address(node_page
);
97 struct f2fs_node
*raw_node
= (struct f2fs_node
*)kaddr
;
98 struct f2fs_inode
*raw_inode
= &(raw_node
->i
);
100 if (!IS_INODE(node_page
))
103 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
104 i_size_write(inode
, le64_to_cpu(raw_inode
->i_size
));
105 inode
->i_atime
.tv_sec
= le64_to_cpu(raw_inode
->i_mtime
);
106 inode
->i_ctime
.tv_sec
= le64_to_cpu(raw_inode
->i_ctime
);
107 inode
->i_mtime
.tv_sec
= le64_to_cpu(raw_inode
->i_mtime
);
108 inode
->i_atime
.tv_nsec
= le32_to_cpu(raw_inode
->i_mtime_nsec
);
109 inode
->i_ctime
.tv_nsec
= le32_to_cpu(raw_inode
->i_ctime_nsec
);
110 inode
->i_mtime
.tv_nsec
= le32_to_cpu(raw_inode
->i_mtime_nsec
);
112 if (is_dent_dnode(node_page
))
113 return recover_dentry(node_page
, inode
);
115 f2fs_msg(inode
->i_sb
, KERN_NOTICE
, "recover_inode: ino = %x, name = %s",
116 ino_of_node(node_page
), raw_inode
->i_name
);
120 static int find_fsync_dnodes(struct f2fs_sb_info
*sbi
, struct list_head
*head
)
122 unsigned long long cp_ver
= le64_to_cpu(sbi
->ckpt
->checkpoint_ver
);
123 struct curseg_info
*curseg
;
128 /* get node pages in the current segment */
129 curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
130 blkaddr
= START_BLOCK(sbi
, curseg
->segno
) + curseg
->next_blkoff
;
133 page
= alloc_page(GFP_F2FS_ZERO
);
135 return PTR_ERR(page
);
139 struct fsync_inode_entry
*entry
;
141 err
= f2fs_readpage(sbi
, page
, blkaddr
, READ_SYNC
);
147 if (cp_ver
!= cpver_of_node(page
))
150 if (!is_fsync_dnode(page
))
153 entry
= get_fsync_inode(head
, ino_of_node(page
));
155 if (IS_INODE(page
) && is_dent_dnode(page
))
156 set_inode_flag(F2FS_I(entry
->inode
),
159 if (IS_INODE(page
) && is_dent_dnode(page
)) {
160 err
= recover_inode_page(sbi
, page
);
165 /* add this fsync inode to the list */
166 entry
= kmem_cache_alloc(fsync_entry_slab
, GFP_NOFS
);
172 entry
->inode
= f2fs_iget(sbi
->sb
, ino_of_node(page
));
173 if (IS_ERR(entry
->inode
)) {
174 err
= PTR_ERR(entry
->inode
);
175 kmem_cache_free(fsync_entry_slab
, entry
);
178 list_add_tail(&entry
->list
, head
);
180 entry
->blkaddr
= blkaddr
;
182 err
= recover_inode(entry
->inode
, page
);
183 if (err
&& err
!= -ENOENT
)
186 /* check next segment */
187 blkaddr
= next_blkaddr_of_node(page
);
191 __free_pages(page
, 0);
195 static void destroy_fsync_dnodes(struct list_head
*head
)
197 struct fsync_inode_entry
*entry
, *tmp
;
199 list_for_each_entry_safe(entry
, tmp
, head
, list
) {
201 list_del(&entry
->list
);
202 kmem_cache_free(fsync_entry_slab
, entry
);
206 static int check_index_in_prev_nodes(struct f2fs_sb_info
*sbi
,
207 block_t blkaddr
, struct dnode_of_data
*dn
)
209 struct seg_entry
*sentry
;
210 unsigned int segno
= GET_SEGNO(sbi
, blkaddr
);
211 unsigned short blkoff
= GET_SEGOFF_FROM_SEG0(sbi
, blkaddr
) &
212 (sbi
->blocks_per_seg
- 1);
213 struct f2fs_summary sum
;
217 struct page
*node_page
;
221 sentry
= get_seg_entry(sbi
, segno
);
222 if (!f2fs_test_bit(blkoff
, sentry
->cur_valid_map
))
225 /* Get the previous summary */
226 for (i
= CURSEG_WARM_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
227 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
);
228 if (curseg
->segno
== segno
) {
229 sum
= curseg
->sum_blk
->entries
[blkoff
];
233 if (i
> CURSEG_COLD_DATA
) {
234 struct page
*sum_page
= get_sum_page(sbi
, segno
);
235 struct f2fs_summary_block
*sum_node
;
236 kaddr
= page_address(sum_page
);
237 sum_node
= (struct f2fs_summary_block
*)kaddr
;
238 sum
= sum_node
->entries
[blkoff
];
239 f2fs_put_page(sum_page
, 1);
242 /* Use the locked dnode page and inode */
243 nid
= le32_to_cpu(sum
.nid
);
244 if (dn
->inode
->i_ino
== nid
) {
245 struct dnode_of_data tdn
= *dn
;
247 tdn
.node_page
= dn
->inode_page
;
248 tdn
.ofs_in_node
= le16_to_cpu(sum
.ofs_in_node
);
249 truncate_data_blocks_range(&tdn
, 1);
251 } else if (dn
->nid
== nid
) {
252 struct dnode_of_data tdn
= *dn
;
253 tdn
.ofs_in_node
= le16_to_cpu(sum
.ofs_in_node
);
254 truncate_data_blocks_range(&tdn
, 1);
258 /* Get the node page */
259 node_page
= get_node_page(sbi
, nid
);
260 if (IS_ERR(node_page
))
261 return PTR_ERR(node_page
);
262 bidx
= start_bidx_of_node(ofs_of_node(node_page
)) +
263 le16_to_cpu(sum
.ofs_in_node
);
264 ino
= ino_of_node(node_page
);
265 f2fs_put_page(node_page
, 1);
267 /* Deallocate previous index in the node page */
268 inode
= f2fs_iget(sbi
->sb
, ino
);
270 return PTR_ERR(inode
);
272 truncate_hole(inode
, bidx
, bidx
+ 1);
277 static int do_recover_data(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
278 struct page
*page
, block_t blkaddr
)
280 unsigned int start
, end
;
281 struct dnode_of_data dn
;
282 struct f2fs_summary sum
;
284 int err
= 0, recovered
= 0;
287 start
= start_bidx_of_node(ofs_of_node(page
));
289 end
= start
+ ADDRS_PER_INODE
;
291 end
= start
+ ADDRS_PER_BLOCK
;
293 ilock
= mutex_lock_op(sbi
);
294 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
296 err
= get_dnode_of_data(&dn
, start
, ALLOC_NODE
);
298 mutex_unlock_op(sbi
, ilock
);
302 wait_on_page_writeback(dn
.node_page
);
304 get_node_info(sbi
, dn
.nid
, &ni
);
305 BUG_ON(ni
.ino
!= ino_of_node(page
));
306 BUG_ON(ofs_of_node(dn
.node_page
) != ofs_of_node(page
));
308 for (; start
< end
; start
++) {
311 src
= datablock_addr(dn
.node_page
, dn
.ofs_in_node
);
312 dest
= datablock_addr(page
, dn
.ofs_in_node
);
314 if (src
!= dest
&& dest
!= NEW_ADDR
&& dest
!= NULL_ADDR
) {
315 if (src
== NULL_ADDR
) {
316 int err
= reserve_new_block(&dn
);
317 /* We should not get -ENOSPC */
321 /* Check the previous node page having this index */
322 err
= check_index_in_prev_nodes(sbi
, dest
, &dn
);
326 set_summary(&sum
, dn
.nid
, dn
.ofs_in_node
, ni
.version
);
328 /* write dummy data page */
329 recover_data_page(sbi
, NULL
, &sum
, src
, dest
);
330 update_extent_cache(dest
, &dn
);
336 /* write node page in place */
337 set_summary(&sum
, dn
.nid
, 0, 0);
338 if (IS_INODE(dn
.node_page
))
339 sync_inode_page(&dn
);
341 copy_node_footer(dn
.node_page
, page
);
342 fill_node_footer(dn
.node_page
, dn
.nid
, ni
.ino
,
343 ofs_of_node(page
), false);
344 set_page_dirty(dn
.node_page
);
346 recover_node_page(sbi
, dn
.node_page
, &sum
, &ni
, blkaddr
);
349 mutex_unlock_op(sbi
, ilock
);
351 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "recover_data: ino = %lx, "
352 "recovered_data = %d blocks, err = %d",
353 inode
->i_ino
, recovered
, err
);
357 static int recover_data(struct f2fs_sb_info
*sbi
,
358 struct list_head
*head
, int type
)
360 unsigned long long cp_ver
= le64_to_cpu(sbi
->ckpt
->checkpoint_ver
);
361 struct curseg_info
*curseg
;
366 /* get node pages in the current segment */
367 curseg
= CURSEG_I(sbi
, type
);
368 blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
371 page
= alloc_page(GFP_NOFS
| __GFP_ZERO
);
378 struct fsync_inode_entry
*entry
;
380 err
= f2fs_readpage(sbi
, page
, blkaddr
, READ_SYNC
);
386 if (cp_ver
!= cpver_of_node(page
))
389 entry
= get_fsync_inode(head
, ino_of_node(page
));
393 err
= do_recover_data(sbi
, entry
->inode
, page
, blkaddr
);
397 if (entry
->blkaddr
== blkaddr
) {
399 list_del(&entry
->list
);
400 kmem_cache_free(fsync_entry_slab
, entry
);
403 /* check next segment */
404 blkaddr
= next_blkaddr_of_node(page
);
408 __free_pages(page
, 0);
411 allocate_new_segments(sbi
);
415 int recover_fsync_data(struct f2fs_sb_info
*sbi
)
417 struct list_head inode_list
;
420 fsync_entry_slab
= f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
421 sizeof(struct fsync_inode_entry
), NULL
);
422 if (unlikely(!fsync_entry_slab
))
425 INIT_LIST_HEAD(&inode_list
);
427 /* step #1: find fsynced inode numbers */
429 err
= find_fsync_dnodes(sbi
, &inode_list
);
433 if (list_empty(&inode_list
))
436 /* step #2: recover data */
437 err
= recover_data(sbi
, &inode_list
, CURSEG_WARM_NODE
);
438 BUG_ON(!list_empty(&inode_list
));
440 destroy_fsync_dnodes(&inode_list
);
441 kmem_cache_destroy(fsync_entry_slab
);
444 write_checkpoint(sbi
, false);