4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache
*orphan_entry_slab
;
26 static struct kmem_cache
*inode_entry_slab
;
29 * We guarantee no failure on the returned page.
31 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
33 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
34 struct page
*page
= NULL
;
36 page
= grab_cache_page(mapping
, index
);
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page
);
44 SetPageUptodate(page
);
49 * We guarantee no failure on the returned page.
51 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
53 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
56 page
= grab_cache_page(mapping
, index
);
61 if (PageUptodate(page
))
64 if (f2fs_readpage(sbi
, page
, index
, READ_SYNC
))
68 if (page
->mapping
!= mapping
) {
69 f2fs_put_page(page
, 1);
73 mark_page_accessed(page
);
77 static int f2fs_write_meta_page(struct page
*page
,
78 struct writeback_control
*wbc
)
80 struct inode
*inode
= page
->mapping
->host
;
81 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
83 /* Should not write any meta pages, if any IO error was occurred */
84 if (wbc
->for_reclaim
||
85 is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ERROR_FLAG
)) {
86 dec_page_count(sbi
, F2FS_DIRTY_META
);
89 return AOP_WRITEPAGE_ACTIVATE
;
92 wait_on_page_writeback(page
);
94 write_meta_page(sbi
, page
);
95 dec_page_count(sbi
, F2FS_DIRTY_META
);
100 static int f2fs_write_meta_pages(struct address_space
*mapping
,
101 struct writeback_control
*wbc
)
103 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
104 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
107 if (wbc
->for_kupdate
)
110 if (get_pages(sbi
, F2FS_DIRTY_META
) == 0)
113 /* if mounting is failed, skip writing node pages */
114 mutex_lock(&sbi
->cp_mutex
);
115 written
= sync_meta_pages(sbi
, META
, bio_get_nr_vecs(bdev
));
116 mutex_unlock(&sbi
->cp_mutex
);
117 wbc
->nr_to_write
-= written
;
121 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
124 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
125 pgoff_t index
= 0, end
= LONG_MAX
;
128 struct writeback_control wbc
= {
132 pagevec_init(&pvec
, 0);
134 while (index
<= end
) {
136 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
138 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
142 for (i
= 0; i
< nr_pages
; i
++) {
143 struct page
*page
= pvec
.pages
[i
];
145 BUG_ON(page
->mapping
!= mapping
);
146 BUG_ON(!PageDirty(page
));
147 clear_page_dirty_for_io(page
);
148 if (f2fs_write_meta_page(page
, &wbc
)) {
152 if (nwritten
++ >= nr_to_write
)
155 pagevec_release(&pvec
);
160 f2fs_submit_bio(sbi
, type
, nr_to_write
== LONG_MAX
);
165 static int f2fs_set_meta_page_dirty(struct page
*page
)
167 struct address_space
*mapping
= page
->mapping
;
168 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
170 SetPageUptodate(page
);
171 if (!PageDirty(page
)) {
172 __set_page_dirty_nobuffers(page
);
173 inc_page_count(sbi
, F2FS_DIRTY_META
);
179 const struct address_space_operations f2fs_meta_aops
= {
180 .writepage
= f2fs_write_meta_page
,
181 .writepages
= f2fs_write_meta_pages
,
182 .set_page_dirty
= f2fs_set_meta_page_dirty
,
185 int check_orphan_space(struct f2fs_sb_info
*sbi
)
187 unsigned int max_orphans
;
191 * considering 512 blocks in a segment 5 blocks are needed for cp
192 * and log segment summaries. Remaining blocks are used to keep
193 * orphan entries with the limitation one reserved segment
194 * for cp pack we can have max 1020*507 orphan entries
196 max_orphans
= (sbi
->blocks_per_seg
- 5) * F2FS_ORPHANS_PER_BLOCK
;
197 mutex_lock(&sbi
->orphan_inode_mutex
);
198 if (sbi
->n_orphans
>= max_orphans
)
200 mutex_unlock(&sbi
->orphan_inode_mutex
);
204 void add_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
206 struct list_head
*head
, *this;
207 struct orphan_inode_entry
*new = NULL
, *orphan
= NULL
;
209 mutex_lock(&sbi
->orphan_inode_mutex
);
210 head
= &sbi
->orphan_inode_list
;
211 list_for_each(this, head
) {
212 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
213 if (orphan
->ino
== ino
)
215 if (orphan
->ino
> ino
)
220 new = kmem_cache_alloc(orphan_entry_slab
, GFP_ATOMIC
);
227 /* add new_oentry into list which is sorted by inode number */
229 list_add(&new->list
, this->prev
);
231 list_add_tail(&new->list
, head
);
235 mutex_unlock(&sbi
->orphan_inode_mutex
);
238 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
240 struct list_head
*this, *next
, *head
;
241 struct orphan_inode_entry
*orphan
;
243 mutex_lock(&sbi
->orphan_inode_mutex
);
244 head
= &sbi
->orphan_inode_list
;
245 list_for_each_safe(this, next
, head
) {
246 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
247 if (orphan
->ino
== ino
) {
248 list_del(&orphan
->list
);
249 kmem_cache_free(orphan_entry_slab
, orphan
);
254 mutex_unlock(&sbi
->orphan_inode_mutex
);
257 static void recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
259 struct inode
*inode
= f2fs_iget(sbi
->sb
, ino
);
260 BUG_ON(IS_ERR(inode
));
263 /* truncate all the data during iput */
267 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
269 block_t start_blk
, orphan_blkaddr
, i
, j
;
271 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
275 start_blk
= __start_cp_addr(sbi
) + 1;
276 orphan_blkaddr
= __start_sum_addr(sbi
) - 1;
278 for (i
= 0; i
< orphan_blkaddr
; i
++) {
279 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
280 struct f2fs_orphan_block
*orphan_blk
;
282 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
283 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
284 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
285 recover_orphan_inode(sbi
, ino
);
287 f2fs_put_page(page
, 1);
289 /* clear Orphan Flag */
290 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
295 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
297 struct list_head
*head
, *this, *next
;
298 struct f2fs_orphan_block
*orphan_blk
= NULL
;
299 struct page
*page
= NULL
;
300 unsigned int nentries
= 0;
301 unsigned short index
= 1;
302 unsigned short orphan_blocks
;
304 orphan_blocks
= (unsigned short)((sbi
->n_orphans
+
305 (F2FS_ORPHANS_PER_BLOCK
- 1)) / F2FS_ORPHANS_PER_BLOCK
);
307 mutex_lock(&sbi
->orphan_inode_mutex
);
308 head
= &sbi
->orphan_inode_list
;
310 /* loop for each orphan inode entry and write them in Jornal block */
311 list_for_each_safe(this, next
, head
) {
312 struct orphan_inode_entry
*orphan
;
314 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
316 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
318 * an orphan block is full of 1020 entries,
319 * then we need to flush current orphan blocks
320 * and bring another one in memory
322 orphan_blk
->blk_addr
= cpu_to_le16(index
);
323 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
324 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
325 set_page_dirty(page
);
326 f2fs_put_page(page
, 1);
335 page
= grab_meta_page(sbi
, start_blk
);
336 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
337 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
339 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
344 orphan_blk
->blk_addr
= cpu_to_le16(index
);
345 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
346 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
347 set_page_dirty(page
);
348 f2fs_put_page(page
, 1);
350 mutex_unlock(&sbi
->orphan_inode_mutex
);
353 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
354 block_t cp_addr
, unsigned long long *version
)
356 struct page
*cp_page_1
, *cp_page_2
= NULL
;
357 unsigned long blk_size
= sbi
->blocksize
;
358 struct f2fs_checkpoint
*cp_block
;
359 unsigned long long cur_version
= 0, pre_version
= 0;
363 /* Read the 1st cp block in this CP pack */
364 cp_page_1
= get_meta_page(sbi
, cp_addr
);
366 /* get the version number */
367 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
368 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
369 if (crc_offset
>= blk_size
)
372 crc
= le32_to_cpu(*((__u32
*)((unsigned char *)cp_block
+ crc_offset
)));
373 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
376 pre_version
= le64_to_cpu(cp_block
->checkpoint_ver
);
378 /* Read the 2nd cp block in this CP pack */
379 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
380 cp_page_2
= get_meta_page(sbi
, cp_addr
);
382 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
383 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
384 if (crc_offset
>= blk_size
)
387 crc
= le32_to_cpu(*((__u32
*)((unsigned char *)cp_block
+ crc_offset
)));
388 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
391 cur_version
= le64_to_cpu(cp_block
->checkpoint_ver
);
393 if (cur_version
== pre_version
) {
394 *version
= cur_version
;
395 f2fs_put_page(cp_page_2
, 1);
399 f2fs_put_page(cp_page_2
, 1);
401 f2fs_put_page(cp_page_1
, 1);
405 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
407 struct f2fs_checkpoint
*cp_block
;
408 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
409 struct page
*cp1
, *cp2
, *cur_page
;
410 unsigned long blk_size
= sbi
->blocksize
;
411 unsigned long long cp1_version
= 0, cp2_version
= 0;
412 unsigned long long cp_start_blk_no
;
414 sbi
->ckpt
= kzalloc(blk_size
, GFP_KERNEL
);
418 * Finding out valid cp block involves read both
419 * sets( cp pack1 and cp pack 2)
421 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
422 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
424 /* The second checkpoint pack should start at the next segment */
425 cp_start_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
426 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
429 if (ver_after(cp2_version
, cp1_version
))
441 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
442 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
444 f2fs_put_page(cp1
, 1);
445 f2fs_put_page(cp2
, 1);
453 static int __add_dirty_inode(struct inode
*inode
, struct dir_inode_entry
*new)
455 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
456 struct list_head
*head
= &sbi
->dir_inode_list
;
457 struct list_head
*this;
459 list_for_each(this, head
) {
460 struct dir_inode_entry
*entry
;
461 entry
= list_entry(this, struct dir_inode_entry
, list
);
462 if (entry
->inode
== inode
)
465 list_add_tail(&new->list
, head
);
466 #ifdef CONFIG_F2FS_STAT_FS
472 void set_dirty_dir_page(struct inode
*inode
, struct page
*page
)
474 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
475 struct dir_inode_entry
*new;
477 if (!S_ISDIR(inode
->i_mode
))
480 new = kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
486 INIT_LIST_HEAD(&new->list
);
488 spin_lock(&sbi
->dir_inode_lock
);
489 if (__add_dirty_inode(inode
, new))
490 kmem_cache_free(inode_entry_slab
, new);
492 inc_page_count(sbi
, F2FS_DIRTY_DENTS
);
493 inode_inc_dirty_dents(inode
);
494 SetPagePrivate(page
);
495 spin_unlock(&sbi
->dir_inode_lock
);
498 void add_dirty_dir_inode(struct inode
*inode
)
500 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
501 struct dir_inode_entry
*new;
503 new = kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
509 INIT_LIST_HEAD(&new->list
);
511 spin_lock(&sbi
->dir_inode_lock
);
512 if (__add_dirty_inode(inode
, new))
513 kmem_cache_free(inode_entry_slab
, new);
514 spin_unlock(&sbi
->dir_inode_lock
);
517 void remove_dirty_dir_inode(struct inode
*inode
)
519 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
520 struct list_head
*head
= &sbi
->dir_inode_list
;
521 struct list_head
*this;
523 if (!S_ISDIR(inode
->i_mode
))
526 spin_lock(&sbi
->dir_inode_lock
);
527 if (atomic_read(&F2FS_I(inode
)->dirty_dents
)) {
528 spin_unlock(&sbi
->dir_inode_lock
);
532 list_for_each(this, head
) {
533 struct dir_inode_entry
*entry
;
534 entry
= list_entry(this, struct dir_inode_entry
, list
);
535 if (entry
->inode
== inode
) {
536 list_del(&entry
->list
);
537 kmem_cache_free(inode_entry_slab
, entry
);
538 #ifdef CONFIG_F2FS_STAT_FS
544 spin_unlock(&sbi
->dir_inode_lock
);
546 /* Only from the recovery routine */
547 if (is_inode_flag_set(F2FS_I(inode
), FI_DELAY_IPUT
)) {
548 clear_inode_flag(F2FS_I(inode
), FI_DELAY_IPUT
);
553 struct inode
*check_dirty_dir_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
555 struct list_head
*head
= &sbi
->dir_inode_list
;
556 struct list_head
*this;
557 struct inode
*inode
= NULL
;
559 spin_lock(&sbi
->dir_inode_lock
);
560 list_for_each(this, head
) {
561 struct dir_inode_entry
*entry
;
562 entry
= list_entry(this, struct dir_inode_entry
, list
);
563 if (entry
->inode
->i_ino
== ino
) {
564 inode
= entry
->inode
;
568 spin_unlock(&sbi
->dir_inode_lock
);
572 void sync_dirty_dir_inodes(struct f2fs_sb_info
*sbi
)
574 struct list_head
*head
= &sbi
->dir_inode_list
;
575 struct dir_inode_entry
*entry
;
578 spin_lock(&sbi
->dir_inode_lock
);
579 if (list_empty(head
)) {
580 spin_unlock(&sbi
->dir_inode_lock
);
583 entry
= list_entry(head
->next
, struct dir_inode_entry
, list
);
584 inode
= igrab(entry
->inode
);
585 spin_unlock(&sbi
->dir_inode_lock
);
587 filemap_flush(inode
->i_mapping
);
591 * We should submit bio, since it exists several
592 * wribacking dentry pages in the freeing inode.
594 f2fs_submit_bio(sbi
, DATA
, true);
600 * Freeze all the FS-operations for checkpoint.
602 static void block_operations(struct f2fs_sb_info
*sbi
)
604 struct writeback_control wbc
= {
605 .sync_mode
= WB_SYNC_ALL
,
606 .nr_to_write
= LONG_MAX
,
609 struct blk_plug plug
;
611 blk_start_plug(&plug
);
616 /* write all the dirty dentry pages */
617 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
618 mutex_unlock_all(sbi
);
619 sync_dirty_dir_inodes(sbi
);
620 goto retry_flush_dents
;
624 * POR: we should ensure that there is no dirty node pages
625 * until finishing nat/sit flush.
628 mutex_lock(&sbi
->node_write
);
630 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
631 mutex_unlock(&sbi
->node_write
);
632 sync_node_pages(sbi
, 0, &wbc
);
633 goto retry_flush_nodes
;
635 blk_finish_plug(&plug
);
638 static void unblock_operations(struct f2fs_sb_info
*sbi
)
640 mutex_unlock(&sbi
->node_write
);
641 mutex_unlock_all(sbi
);
644 static void do_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
646 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
649 struct page
*cp_page
;
650 unsigned int data_sum_blocks
, orphan_blocks
;
655 /* Flush all the NAT/SIT pages */
656 while (get_pages(sbi
, F2FS_DIRTY_META
))
657 sync_meta_pages(sbi
, META
, LONG_MAX
);
659 next_free_nid(sbi
, &last_nid
);
663 * version number is already updated
665 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
666 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
667 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
668 for (i
= 0; i
< 3; i
++) {
669 ckpt
->cur_node_segno
[i
] =
670 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
671 ckpt
->cur_node_blkoff
[i
] =
672 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
673 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
674 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
676 for (i
= 0; i
< 3; i
++) {
677 ckpt
->cur_data_segno
[i
] =
678 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
679 ckpt
->cur_data_blkoff
[i
] =
680 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
681 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
682 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
685 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
686 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
687 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
689 /* 2 cp + n data seg summary + orphan inode blocks */
690 data_sum_blocks
= npages_for_summary_flush(sbi
);
691 if (data_sum_blocks
< 3)
692 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
694 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
696 orphan_blocks
= (sbi
->n_orphans
+ F2FS_ORPHANS_PER_BLOCK
- 1)
697 / F2FS_ORPHANS_PER_BLOCK
;
698 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + orphan_blocks
);
701 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
702 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
703 data_sum_blocks
+ orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
705 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
706 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
707 data_sum_blocks
+ orphan_blocks
);
711 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
713 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
715 /* update SIT/NAT bitmap */
716 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
717 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
719 crc32
= f2fs_crc32(ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
720 *((__le32
*)((unsigned char *)ckpt
+
721 le32_to_cpu(ckpt
->checksum_offset
)))
722 = cpu_to_le32(crc32
);
724 start_blk
= __start_cp_addr(sbi
);
726 /* write out checkpoint buffer at block 0 */
727 cp_page
= grab_meta_page(sbi
, start_blk
++);
728 kaddr
= page_address(cp_page
);
729 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
730 set_page_dirty(cp_page
);
731 f2fs_put_page(cp_page
, 1);
733 if (sbi
->n_orphans
) {
734 write_orphan_inodes(sbi
, start_blk
);
735 start_blk
+= orphan_blocks
;
738 write_data_summaries(sbi
, start_blk
);
739 start_blk
+= data_sum_blocks
;
741 write_node_summaries(sbi
, start_blk
);
742 start_blk
+= NR_CURSEG_NODE_TYPE
;
745 /* writeout checkpoint block */
746 cp_page
= grab_meta_page(sbi
, start_blk
);
747 kaddr
= page_address(cp_page
);
748 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
749 set_page_dirty(cp_page
);
750 f2fs_put_page(cp_page
, 1);
752 /* wait for previous submitted node/meta pages writeback */
753 while (get_pages(sbi
, F2FS_WRITEBACK
))
754 congestion_wait(BLK_RW_ASYNC
, HZ
/ 50);
756 filemap_fdatawait_range(sbi
->node_inode
->i_mapping
, 0, LONG_MAX
);
757 filemap_fdatawait_range(sbi
->meta_inode
->i_mapping
, 0, LONG_MAX
);
759 /* update user_block_counts */
760 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
761 sbi
->alloc_valid_block_count
= 0;
763 /* Here, we only have one bio having CP pack */
764 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
766 if (!is_set_ckpt_flags(ckpt
, CP_ERROR_FLAG
)) {
767 clear_prefree_segments(sbi
);
768 F2FS_RESET_SB_DIRT(sbi
);
773 * We guarantee that this checkpoint procedure should not fail.
775 void write_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
777 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
778 unsigned long long ckpt_ver
;
780 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "start block_ops");
782 mutex_lock(&sbi
->cp_mutex
);
783 block_operations(sbi
);
785 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "finish block_ops");
787 f2fs_submit_bio(sbi
, DATA
, true);
788 f2fs_submit_bio(sbi
, NODE
, true);
789 f2fs_submit_bio(sbi
, META
, true);
792 * update checkpoint pack index
793 * Increase the version number so that
794 * SIT entries and seg summaries are written at correct place
796 ckpt_ver
= le64_to_cpu(ckpt
->checkpoint_ver
);
797 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
799 /* write cached NAT/SIT entries to NAT/SIT area */
800 flush_nat_entries(sbi
);
801 flush_sit_entries(sbi
);
803 /* unlock all the fs_lock[] in do_checkpoint() */
804 do_checkpoint(sbi
, is_umount
);
806 unblock_operations(sbi
);
807 mutex_unlock(&sbi
->cp_mutex
);
809 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "finish checkpoint");
812 void init_orphan_info(struct f2fs_sb_info
*sbi
)
814 mutex_init(&sbi
->orphan_inode_mutex
);
815 INIT_LIST_HEAD(&sbi
->orphan_inode_list
);
819 int __init
create_checkpoint_caches(void)
821 orphan_entry_slab
= f2fs_kmem_cache_create("f2fs_orphan_entry",
822 sizeof(struct orphan_inode_entry
), NULL
);
823 if (unlikely(!orphan_entry_slab
))
825 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
826 sizeof(struct dir_inode_entry
), NULL
);
827 if (unlikely(!inode_entry_slab
)) {
828 kmem_cache_destroy(orphan_entry_slab
);
834 void destroy_checkpoint_caches(void)
836 kmem_cache_destroy(orphan_entry_slab
);
837 kmem_cache_destroy(inode_entry_slab
);