Merge tag 'blackfin-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/realm...
[linux-2.6.git] / fs / f2fs / checkpoint.c
blob66a6b85a51d8ab1a1724f10858648876b09f8b4b
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
29 * We guarantee no failure on the returned page.
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 struct address_space *mapping = sbi->meta_inode->i_mapping;
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
49 * We guarantee no failure on the returned page.
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
53 struct address_space *mapping = sbi->meta_inode->i_mapping;
54 struct page *page;
55 repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
61 if (PageUptodate(page))
62 goto out;
64 if (f2fs_readpage(sbi, page, index, READ_SYNC))
65 goto repeat;
67 lock_page(page);
68 if (page->mapping != mapping) {
69 f2fs_put_page(page, 1);
70 goto repeat;
72 out:
73 mark_page_accessed(page);
74 return page;
77 static int f2fs_write_meta_page(struct page *page,
78 struct writeback_control *wbc)
80 struct inode *inode = page->mapping->host;
81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
83 /* Should not write any meta pages, if any IO error was occurred */
84 if (wbc->for_reclaim ||
85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 dec_page_count(sbi, F2FS_DIRTY_META);
87 wbc->pages_skipped++;
88 set_page_dirty(page);
89 return AOP_WRITEPAGE_ACTIVATE;
92 wait_on_page_writeback(page);
94 write_meta_page(sbi, page);
95 dec_page_count(sbi, F2FS_DIRTY_META);
96 unlock_page(page);
97 return 0;
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101 struct writeback_control *wbc)
103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 struct block_device *bdev = sbi->sb->s_bdev;
105 long written;
107 if (wbc->for_kupdate)
108 return 0;
110 if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 return 0;
113 /* if mounting is failed, skip writing node pages */
114 mutex_lock(&sbi->cp_mutex);
115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 mutex_unlock(&sbi->cp_mutex);
117 wbc->nr_to_write -= written;
118 return 0;
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 long nr_to_write)
124 struct address_space *mapping = sbi->meta_inode->i_mapping;
125 pgoff_t index = 0, end = LONG_MAX;
126 struct pagevec pvec;
127 long nwritten = 0;
128 struct writeback_control wbc = {
129 .for_reclaim = 0,
132 pagevec_init(&pvec, 0);
134 while (index <= end) {
135 int i, nr_pages;
136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 PAGECACHE_TAG_DIRTY,
138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 if (nr_pages == 0)
140 break;
142 for (i = 0; i < nr_pages; i++) {
143 struct page *page = pvec.pages[i];
144 lock_page(page);
145 BUG_ON(page->mapping != mapping);
146 BUG_ON(!PageDirty(page));
147 clear_page_dirty_for_io(page);
148 if (f2fs_write_meta_page(page, &wbc)) {
149 unlock_page(page);
150 break;
152 if (nwritten++ >= nr_to_write)
153 break;
155 pagevec_release(&pvec);
156 cond_resched();
159 if (nwritten)
160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
162 return nwritten;
165 static int f2fs_set_meta_page_dirty(struct page *page)
167 struct address_space *mapping = page->mapping;
168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
170 SetPageUptodate(page);
171 if (!PageDirty(page)) {
172 __set_page_dirty_nobuffers(page);
173 inc_page_count(sbi, F2FS_DIRTY_META);
174 return 1;
176 return 0;
179 const struct address_space_operations f2fs_meta_aops = {
180 .writepage = f2fs_write_meta_page,
181 .writepages = f2fs_write_meta_pages,
182 .set_page_dirty = f2fs_set_meta_page_dirty,
185 int check_orphan_space(struct f2fs_sb_info *sbi)
187 unsigned int max_orphans;
188 int err = 0;
191 * considering 512 blocks in a segment 5 blocks are needed for cp
192 * and log segment summaries. Remaining blocks are used to keep
193 * orphan entries with the limitation one reserved segment
194 * for cp pack we can have max 1020*507 orphan entries
196 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197 mutex_lock(&sbi->orphan_inode_mutex);
198 if (sbi->n_orphans >= max_orphans)
199 err = -ENOSPC;
200 mutex_unlock(&sbi->orphan_inode_mutex);
201 return err;
204 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
206 struct list_head *head, *this;
207 struct orphan_inode_entry *new = NULL, *orphan = NULL;
209 mutex_lock(&sbi->orphan_inode_mutex);
210 head = &sbi->orphan_inode_list;
211 list_for_each(this, head) {
212 orphan = list_entry(this, struct orphan_inode_entry, list);
213 if (orphan->ino == ino)
214 goto out;
215 if (orphan->ino > ino)
216 break;
217 orphan = NULL;
219 retry:
220 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
221 if (!new) {
222 cond_resched();
223 goto retry;
225 new->ino = ino;
227 /* add new_oentry into list which is sorted by inode number */
228 if (orphan)
229 list_add(&new->list, this->prev);
230 else
231 list_add_tail(&new->list, head);
233 sbi->n_orphans++;
234 out:
235 mutex_unlock(&sbi->orphan_inode_mutex);
238 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
240 struct list_head *this, *next, *head;
241 struct orphan_inode_entry *orphan;
243 mutex_lock(&sbi->orphan_inode_mutex);
244 head = &sbi->orphan_inode_list;
245 list_for_each_safe(this, next, head) {
246 orphan = list_entry(this, struct orphan_inode_entry, list);
247 if (orphan->ino == ino) {
248 list_del(&orphan->list);
249 kmem_cache_free(orphan_entry_slab, orphan);
250 sbi->n_orphans--;
251 break;
254 mutex_unlock(&sbi->orphan_inode_mutex);
257 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
259 struct inode *inode = f2fs_iget(sbi->sb, ino);
260 BUG_ON(IS_ERR(inode));
261 clear_nlink(inode);
263 /* truncate all the data during iput */
264 iput(inode);
267 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
269 block_t start_blk, orphan_blkaddr, i, j;
271 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
272 return 0;
274 sbi->por_doing = 1;
275 start_blk = __start_cp_addr(sbi) + 1;
276 orphan_blkaddr = __start_sum_addr(sbi) - 1;
278 for (i = 0; i < orphan_blkaddr; i++) {
279 struct page *page = get_meta_page(sbi, start_blk + i);
280 struct f2fs_orphan_block *orphan_blk;
282 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
283 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
284 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
285 recover_orphan_inode(sbi, ino);
287 f2fs_put_page(page, 1);
289 /* clear Orphan Flag */
290 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
291 sbi->por_doing = 0;
292 return 0;
295 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
297 struct list_head *head, *this, *next;
298 struct f2fs_orphan_block *orphan_blk = NULL;
299 struct page *page = NULL;
300 unsigned int nentries = 0;
301 unsigned short index = 1;
302 unsigned short orphan_blocks;
304 orphan_blocks = (unsigned short)((sbi->n_orphans +
305 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
307 mutex_lock(&sbi->orphan_inode_mutex);
308 head = &sbi->orphan_inode_list;
310 /* loop for each orphan inode entry and write them in Jornal block */
311 list_for_each_safe(this, next, head) {
312 struct orphan_inode_entry *orphan;
314 orphan = list_entry(this, struct orphan_inode_entry, list);
316 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
318 * an orphan block is full of 1020 entries,
319 * then we need to flush current orphan blocks
320 * and bring another one in memory
322 orphan_blk->blk_addr = cpu_to_le16(index);
323 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
324 orphan_blk->entry_count = cpu_to_le32(nentries);
325 set_page_dirty(page);
326 f2fs_put_page(page, 1);
327 index++;
328 start_blk++;
329 nentries = 0;
330 page = NULL;
332 if (page)
333 goto page_exist;
335 page = grab_meta_page(sbi, start_blk);
336 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
337 memset(orphan_blk, 0, sizeof(*orphan_blk));
338 page_exist:
339 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
341 if (!page)
342 goto end;
344 orphan_blk->blk_addr = cpu_to_le16(index);
345 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
346 orphan_blk->entry_count = cpu_to_le32(nentries);
347 set_page_dirty(page);
348 f2fs_put_page(page, 1);
349 end:
350 mutex_unlock(&sbi->orphan_inode_mutex);
353 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
354 block_t cp_addr, unsigned long long *version)
356 struct page *cp_page_1, *cp_page_2 = NULL;
357 unsigned long blk_size = sbi->blocksize;
358 struct f2fs_checkpoint *cp_block;
359 unsigned long long cur_version = 0, pre_version = 0;
360 size_t crc_offset;
361 __u32 crc = 0;
363 /* Read the 1st cp block in this CP pack */
364 cp_page_1 = get_meta_page(sbi, cp_addr);
366 /* get the version number */
367 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
368 crc_offset = le32_to_cpu(cp_block->checksum_offset);
369 if (crc_offset >= blk_size)
370 goto invalid_cp1;
372 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
373 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
374 goto invalid_cp1;
376 pre_version = le64_to_cpu(cp_block->checkpoint_ver);
378 /* Read the 2nd cp block in this CP pack */
379 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
380 cp_page_2 = get_meta_page(sbi, cp_addr);
382 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
383 crc_offset = le32_to_cpu(cp_block->checksum_offset);
384 if (crc_offset >= blk_size)
385 goto invalid_cp2;
387 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
388 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
389 goto invalid_cp2;
391 cur_version = le64_to_cpu(cp_block->checkpoint_ver);
393 if (cur_version == pre_version) {
394 *version = cur_version;
395 f2fs_put_page(cp_page_2, 1);
396 return cp_page_1;
398 invalid_cp2:
399 f2fs_put_page(cp_page_2, 1);
400 invalid_cp1:
401 f2fs_put_page(cp_page_1, 1);
402 return NULL;
405 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
407 struct f2fs_checkpoint *cp_block;
408 struct f2fs_super_block *fsb = sbi->raw_super;
409 struct page *cp1, *cp2, *cur_page;
410 unsigned long blk_size = sbi->blocksize;
411 unsigned long long cp1_version = 0, cp2_version = 0;
412 unsigned long long cp_start_blk_no;
414 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
415 if (!sbi->ckpt)
416 return -ENOMEM;
418 * Finding out valid cp block involves read both
419 * sets( cp pack1 and cp pack 2)
421 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
422 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
424 /* The second checkpoint pack should start at the next segment */
425 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
426 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
428 if (cp1 && cp2) {
429 if (ver_after(cp2_version, cp1_version))
430 cur_page = cp2;
431 else
432 cur_page = cp1;
433 } else if (cp1) {
434 cur_page = cp1;
435 } else if (cp2) {
436 cur_page = cp2;
437 } else {
438 goto fail_no_cp;
441 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
442 memcpy(sbi->ckpt, cp_block, blk_size);
444 f2fs_put_page(cp1, 1);
445 f2fs_put_page(cp2, 1);
446 return 0;
448 fail_no_cp:
449 kfree(sbi->ckpt);
450 return -EINVAL;
453 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
455 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
456 struct list_head *head = &sbi->dir_inode_list;
457 struct list_head *this;
459 list_for_each(this, head) {
460 struct dir_inode_entry *entry;
461 entry = list_entry(this, struct dir_inode_entry, list);
462 if (entry->inode == inode)
463 return -EEXIST;
465 list_add_tail(&new->list, head);
466 #ifdef CONFIG_F2FS_STAT_FS
467 sbi->n_dirty_dirs++;
468 #endif
469 return 0;
472 void set_dirty_dir_page(struct inode *inode, struct page *page)
474 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
475 struct dir_inode_entry *new;
477 if (!S_ISDIR(inode->i_mode))
478 return;
479 retry:
480 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
481 if (!new) {
482 cond_resched();
483 goto retry;
485 new->inode = inode;
486 INIT_LIST_HEAD(&new->list);
488 spin_lock(&sbi->dir_inode_lock);
489 if (__add_dirty_inode(inode, new))
490 kmem_cache_free(inode_entry_slab, new);
492 inc_page_count(sbi, F2FS_DIRTY_DENTS);
493 inode_inc_dirty_dents(inode);
494 SetPagePrivate(page);
495 spin_unlock(&sbi->dir_inode_lock);
498 void add_dirty_dir_inode(struct inode *inode)
500 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
501 struct dir_inode_entry *new;
502 retry:
503 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
504 if (!new) {
505 cond_resched();
506 goto retry;
508 new->inode = inode;
509 INIT_LIST_HEAD(&new->list);
511 spin_lock(&sbi->dir_inode_lock);
512 if (__add_dirty_inode(inode, new))
513 kmem_cache_free(inode_entry_slab, new);
514 spin_unlock(&sbi->dir_inode_lock);
517 void remove_dirty_dir_inode(struct inode *inode)
519 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
520 struct list_head *head = &sbi->dir_inode_list;
521 struct list_head *this;
523 if (!S_ISDIR(inode->i_mode))
524 return;
526 spin_lock(&sbi->dir_inode_lock);
527 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
528 spin_unlock(&sbi->dir_inode_lock);
529 return;
532 list_for_each(this, head) {
533 struct dir_inode_entry *entry;
534 entry = list_entry(this, struct dir_inode_entry, list);
535 if (entry->inode == inode) {
536 list_del(&entry->list);
537 kmem_cache_free(inode_entry_slab, entry);
538 #ifdef CONFIG_F2FS_STAT_FS
539 sbi->n_dirty_dirs--;
540 #endif
541 break;
544 spin_unlock(&sbi->dir_inode_lock);
546 /* Only from the recovery routine */
547 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
548 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
549 iput(inode);
553 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
555 struct list_head *head = &sbi->dir_inode_list;
556 struct list_head *this;
557 struct inode *inode = NULL;
559 spin_lock(&sbi->dir_inode_lock);
560 list_for_each(this, head) {
561 struct dir_inode_entry *entry;
562 entry = list_entry(this, struct dir_inode_entry, list);
563 if (entry->inode->i_ino == ino) {
564 inode = entry->inode;
565 break;
568 spin_unlock(&sbi->dir_inode_lock);
569 return inode;
572 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
574 struct list_head *head = &sbi->dir_inode_list;
575 struct dir_inode_entry *entry;
576 struct inode *inode;
577 retry:
578 spin_lock(&sbi->dir_inode_lock);
579 if (list_empty(head)) {
580 spin_unlock(&sbi->dir_inode_lock);
581 return;
583 entry = list_entry(head->next, struct dir_inode_entry, list);
584 inode = igrab(entry->inode);
585 spin_unlock(&sbi->dir_inode_lock);
586 if (inode) {
587 filemap_flush(inode->i_mapping);
588 iput(inode);
589 } else {
591 * We should submit bio, since it exists several
592 * wribacking dentry pages in the freeing inode.
594 f2fs_submit_bio(sbi, DATA, true);
596 goto retry;
600 * Freeze all the FS-operations for checkpoint.
602 static void block_operations(struct f2fs_sb_info *sbi)
604 struct writeback_control wbc = {
605 .sync_mode = WB_SYNC_ALL,
606 .nr_to_write = LONG_MAX,
607 .for_reclaim = 0,
609 struct blk_plug plug;
611 blk_start_plug(&plug);
613 retry_flush_dents:
614 mutex_lock_all(sbi);
616 /* write all the dirty dentry pages */
617 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
618 mutex_unlock_all(sbi);
619 sync_dirty_dir_inodes(sbi);
620 goto retry_flush_dents;
624 * POR: we should ensure that there is no dirty node pages
625 * until finishing nat/sit flush.
627 retry_flush_nodes:
628 mutex_lock(&sbi->node_write);
630 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
631 mutex_unlock(&sbi->node_write);
632 sync_node_pages(sbi, 0, &wbc);
633 goto retry_flush_nodes;
635 blk_finish_plug(&plug);
638 static void unblock_operations(struct f2fs_sb_info *sbi)
640 mutex_unlock(&sbi->node_write);
641 mutex_unlock_all(sbi);
644 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
646 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
647 nid_t last_nid = 0;
648 block_t start_blk;
649 struct page *cp_page;
650 unsigned int data_sum_blocks, orphan_blocks;
651 __u32 crc32 = 0;
652 void *kaddr;
653 int i;
655 /* Flush all the NAT/SIT pages */
656 while (get_pages(sbi, F2FS_DIRTY_META))
657 sync_meta_pages(sbi, META, LONG_MAX);
659 next_free_nid(sbi, &last_nid);
662 * modify checkpoint
663 * version number is already updated
665 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
666 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
667 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
668 for (i = 0; i < 3; i++) {
669 ckpt->cur_node_segno[i] =
670 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
671 ckpt->cur_node_blkoff[i] =
672 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
673 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
674 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
676 for (i = 0; i < 3; i++) {
677 ckpt->cur_data_segno[i] =
678 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
679 ckpt->cur_data_blkoff[i] =
680 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
681 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
682 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
685 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
686 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
687 ckpt->next_free_nid = cpu_to_le32(last_nid);
689 /* 2 cp + n data seg summary + orphan inode blocks */
690 data_sum_blocks = npages_for_summary_flush(sbi);
691 if (data_sum_blocks < 3)
692 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
693 else
694 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
696 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
697 / F2FS_ORPHANS_PER_BLOCK;
698 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
700 if (is_umount) {
701 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
702 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
703 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
704 } else {
705 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
706 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
707 data_sum_blocks + orphan_blocks);
710 if (sbi->n_orphans)
711 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
712 else
713 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
715 /* update SIT/NAT bitmap */
716 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
717 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
719 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
720 *((__le32 *)((unsigned char *)ckpt +
721 le32_to_cpu(ckpt->checksum_offset)))
722 = cpu_to_le32(crc32);
724 start_blk = __start_cp_addr(sbi);
726 /* write out checkpoint buffer at block 0 */
727 cp_page = grab_meta_page(sbi, start_blk++);
728 kaddr = page_address(cp_page);
729 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
730 set_page_dirty(cp_page);
731 f2fs_put_page(cp_page, 1);
733 if (sbi->n_orphans) {
734 write_orphan_inodes(sbi, start_blk);
735 start_blk += orphan_blocks;
738 write_data_summaries(sbi, start_blk);
739 start_blk += data_sum_blocks;
740 if (is_umount) {
741 write_node_summaries(sbi, start_blk);
742 start_blk += NR_CURSEG_NODE_TYPE;
745 /* writeout checkpoint block */
746 cp_page = grab_meta_page(sbi, start_blk);
747 kaddr = page_address(cp_page);
748 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
749 set_page_dirty(cp_page);
750 f2fs_put_page(cp_page, 1);
752 /* wait for previous submitted node/meta pages writeback */
753 while (get_pages(sbi, F2FS_WRITEBACK))
754 congestion_wait(BLK_RW_ASYNC, HZ / 50);
756 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
757 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
759 /* update user_block_counts */
760 sbi->last_valid_block_count = sbi->total_valid_block_count;
761 sbi->alloc_valid_block_count = 0;
763 /* Here, we only have one bio having CP pack */
764 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
766 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
767 clear_prefree_segments(sbi);
768 F2FS_RESET_SB_DIRT(sbi);
773 * We guarantee that this checkpoint procedure should not fail.
775 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
777 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
778 unsigned long long ckpt_ver;
780 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
782 mutex_lock(&sbi->cp_mutex);
783 block_operations(sbi);
785 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
787 f2fs_submit_bio(sbi, DATA, true);
788 f2fs_submit_bio(sbi, NODE, true);
789 f2fs_submit_bio(sbi, META, true);
792 * update checkpoint pack index
793 * Increase the version number so that
794 * SIT entries and seg summaries are written at correct place
796 ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
797 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
799 /* write cached NAT/SIT entries to NAT/SIT area */
800 flush_nat_entries(sbi);
801 flush_sit_entries(sbi);
803 /* unlock all the fs_lock[] in do_checkpoint() */
804 do_checkpoint(sbi, is_umount);
806 unblock_operations(sbi);
807 mutex_unlock(&sbi->cp_mutex);
809 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
812 void init_orphan_info(struct f2fs_sb_info *sbi)
814 mutex_init(&sbi->orphan_inode_mutex);
815 INIT_LIST_HEAD(&sbi->orphan_inode_list);
816 sbi->n_orphans = 0;
819 int __init create_checkpoint_caches(void)
821 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
822 sizeof(struct orphan_inode_entry), NULL);
823 if (unlikely(!orphan_entry_slab))
824 return -ENOMEM;
825 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
826 sizeof(struct dir_inode_entry), NULL);
827 if (unlikely(!inode_entry_slab)) {
828 kmem_cache_destroy(orphan_entry_slab);
829 return -ENOMEM;
831 return 0;
834 void destroy_checkpoint_caches(void)
836 kmem_cache_destroy(orphan_entry_slab);
837 kmem_cache_destroy(inode_entry_slab);