watchdog: ie6xx_wdt needs io.h
[linux-2.6.git] / mm / memory.c
blob1e77da6d82c1ef8b5c96ede4c7be04c7d38771dd
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 void sync_mm_rss(struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
138 current->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
162 #else /* SPLIT_RSS_COUNTING */
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
167 static void check_sync_rss_stat(struct task_struct *task)
171 #endif /* SPLIT_RSS_COUNTING */
173 #ifdef HAVE_GENERIC_MMU_GATHER
175 static int tlb_next_batch(struct mmu_gather *tlb)
177 struct mmu_gather_batch *batch;
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
193 tlb->active->next = batch;
194 tlb->active = batch;
196 return 1;
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
206 tlb->mm = mm;
208 tlb->fullmm = fullmm;
209 tlb->need_flush = 0;
210 tlb->fast_mode = (num_possible_cpus() == 1);
211 tlb->local.next = NULL;
212 tlb->local.nr = 0;
213 tlb->local.max = ARRAY_SIZE(tlb->__pages);
214 tlb->active = &tlb->local;
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217 tlb->batch = NULL;
218 #endif
221 void tlb_flush_mmu(struct mmu_gather *tlb)
223 struct mmu_gather_batch *batch;
225 if (!tlb->need_flush)
226 return;
227 tlb->need_flush = 0;
228 tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb_table_flush(tlb);
231 #endif
233 if (tlb_fast_mode(tlb))
234 return;
236 for (batch = &tlb->local; batch; batch = batch->next) {
237 free_pages_and_swap_cache(batch->pages, batch->nr);
238 batch->nr = 0;
240 tlb->active = &tlb->local;
243 /* tlb_finish_mmu
244 * Called at the end of the shootdown operation to free up any resources
245 * that were required.
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
249 struct mmu_gather_batch *batch, *next;
251 tlb_flush_mmu(tlb);
253 /* keep the page table cache within bounds */
254 check_pgt_cache();
256 for (batch = tlb->local.next; batch; batch = next) {
257 next = batch->next;
258 free_pages((unsigned long)batch, 0);
260 tlb->local.next = NULL;
263 /* __tlb_remove_page
264 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265 * handling the additional races in SMP caused by other CPUs caching valid
266 * mappings in their TLBs. Returns the number of free page slots left.
267 * When out of page slots we must call tlb_flush_mmu().
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
271 struct mmu_gather_batch *batch;
273 VM_BUG_ON(!tlb->need_flush);
275 if (tlb_fast_mode(tlb)) {
276 free_page_and_swap_cache(page);
277 return 1; /* avoid calling tlb_flush_mmu() */
280 batch = tlb->active;
281 batch->pages[batch->nr++] = page;
282 if (batch->nr == batch->max) {
283 if (!tlb_next_batch(tlb))
284 return 0;
285 batch = tlb->active;
287 VM_BUG_ON(batch->nr > batch->max);
289 return batch->max - batch->nr;
292 #endif /* HAVE_GENERIC_MMU_GATHER */
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
297 * See the comment near struct mmu_table_batch.
300 static void tlb_remove_table_smp_sync(void *arg)
302 /* Simply deliver the interrupt */
305 static void tlb_remove_table_one(void *table)
308 * This isn't an RCU grace period and hence the page-tables cannot be
309 * assumed to be actually RCU-freed.
311 * It is however sufficient for software page-table walkers that rely on
312 * IRQ disabling. See the comment near struct mmu_table_batch.
314 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315 __tlb_remove_table(table);
318 static void tlb_remove_table_rcu(struct rcu_head *head)
320 struct mmu_table_batch *batch;
321 int i;
323 batch = container_of(head, struct mmu_table_batch, rcu);
325 for (i = 0; i < batch->nr; i++)
326 __tlb_remove_table(batch->tables[i]);
328 free_page((unsigned long)batch);
331 void tlb_table_flush(struct mmu_gather *tlb)
333 struct mmu_table_batch **batch = &tlb->batch;
335 if (*batch) {
336 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337 *batch = NULL;
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
343 struct mmu_table_batch **batch = &tlb->batch;
345 tlb->need_flush = 1;
348 * When there's less then two users of this mm there cannot be a
349 * concurrent page-table walk.
351 if (atomic_read(&tlb->mm->mm_users) < 2) {
352 __tlb_remove_table(table);
353 return;
356 if (*batch == NULL) {
357 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358 if (*batch == NULL) {
359 tlb_remove_table_one(table);
360 return;
362 (*batch)->nr = 0;
364 (*batch)->tables[(*batch)->nr++] = table;
365 if ((*batch)->nr == MAX_TABLE_BATCH)
366 tlb_table_flush(tlb);
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
372 * If a p?d_bad entry is found while walking page tables, report
373 * the error, before resetting entry to p?d_none. Usually (but
374 * very seldom) called out from the p?d_none_or_clear_bad macros.
377 void pgd_clear_bad(pgd_t *pgd)
379 pgd_ERROR(*pgd);
380 pgd_clear(pgd);
383 void pud_clear_bad(pud_t *pud)
385 pud_ERROR(*pud);
386 pud_clear(pud);
389 void pmd_clear_bad(pmd_t *pmd)
391 pmd_ERROR(*pmd);
392 pmd_clear(pmd);
396 * Note: this doesn't free the actual pages themselves. That
397 * has been handled earlier when unmapping all the memory regions.
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400 unsigned long addr)
402 pgtable_t token = pmd_pgtable(*pmd);
403 pmd_clear(pmd);
404 pte_free_tlb(tlb, token, addr);
405 tlb->mm->nr_ptes--;
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409 unsigned long addr, unsigned long end,
410 unsigned long floor, unsigned long ceiling)
412 pmd_t *pmd;
413 unsigned long next;
414 unsigned long start;
416 start = addr;
417 pmd = pmd_offset(pud, addr);
418 do {
419 next = pmd_addr_end(addr, end);
420 if (pmd_none_or_clear_bad(pmd))
421 continue;
422 free_pte_range(tlb, pmd, addr);
423 } while (pmd++, addr = next, addr != end);
425 start &= PUD_MASK;
426 if (start < floor)
427 return;
428 if (ceiling) {
429 ceiling &= PUD_MASK;
430 if (!ceiling)
431 return;
433 if (end - 1 > ceiling - 1)
434 return;
436 pmd = pmd_offset(pud, start);
437 pud_clear(pud);
438 pmd_free_tlb(tlb, pmd, start);
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442 unsigned long addr, unsigned long end,
443 unsigned long floor, unsigned long ceiling)
445 pud_t *pud;
446 unsigned long next;
447 unsigned long start;
449 start = addr;
450 pud = pud_offset(pgd, addr);
451 do {
452 next = pud_addr_end(addr, end);
453 if (pud_none_or_clear_bad(pud))
454 continue;
455 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456 } while (pud++, addr = next, addr != end);
458 start &= PGDIR_MASK;
459 if (start < floor)
460 return;
461 if (ceiling) {
462 ceiling &= PGDIR_MASK;
463 if (!ceiling)
464 return;
466 if (end - 1 > ceiling - 1)
467 return;
469 pud = pud_offset(pgd, start);
470 pgd_clear(pgd);
471 pud_free_tlb(tlb, pud, start);
475 * This function frees user-level page tables of a process.
477 * Must be called with pagetable lock held.
479 void free_pgd_range(struct mmu_gather *tlb,
480 unsigned long addr, unsigned long end,
481 unsigned long floor, unsigned long ceiling)
483 pgd_t *pgd;
484 unsigned long next;
487 * The next few lines have given us lots of grief...
489 * Why are we testing PMD* at this top level? Because often
490 * there will be no work to do at all, and we'd prefer not to
491 * go all the way down to the bottom just to discover that.
493 * Why all these "- 1"s? Because 0 represents both the bottom
494 * of the address space and the top of it (using -1 for the
495 * top wouldn't help much: the masks would do the wrong thing).
496 * The rule is that addr 0 and floor 0 refer to the bottom of
497 * the address space, but end 0 and ceiling 0 refer to the top
498 * Comparisons need to use "end - 1" and "ceiling - 1" (though
499 * that end 0 case should be mythical).
501 * Wherever addr is brought up or ceiling brought down, we must
502 * be careful to reject "the opposite 0" before it confuses the
503 * subsequent tests. But what about where end is brought down
504 * by PMD_SIZE below? no, end can't go down to 0 there.
506 * Whereas we round start (addr) and ceiling down, by different
507 * masks at different levels, in order to test whether a table
508 * now has no other vmas using it, so can be freed, we don't
509 * bother to round floor or end up - the tests don't need that.
512 addr &= PMD_MASK;
513 if (addr < floor) {
514 addr += PMD_SIZE;
515 if (!addr)
516 return;
518 if (ceiling) {
519 ceiling &= PMD_MASK;
520 if (!ceiling)
521 return;
523 if (end - 1 > ceiling - 1)
524 end -= PMD_SIZE;
525 if (addr > end - 1)
526 return;
528 pgd = pgd_offset(tlb->mm, addr);
529 do {
530 next = pgd_addr_end(addr, end);
531 if (pgd_none_or_clear_bad(pgd))
532 continue;
533 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534 } while (pgd++, addr = next, addr != end);
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538 unsigned long floor, unsigned long ceiling)
540 while (vma) {
541 struct vm_area_struct *next = vma->vm_next;
542 unsigned long addr = vma->vm_start;
545 * Hide vma from rmap and truncate_pagecache before freeing
546 * pgtables
548 unlink_anon_vmas(vma);
549 unlink_file_vma(vma);
551 if (is_vm_hugetlb_page(vma)) {
552 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553 floor, next? next->vm_start: ceiling);
554 } else {
556 * Optimization: gather nearby vmas into one call down
558 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559 && !is_vm_hugetlb_page(next)) {
560 vma = next;
561 next = vma->vm_next;
562 unlink_anon_vmas(vma);
563 unlink_file_vma(vma);
565 free_pgd_range(tlb, addr, vma->vm_end,
566 floor, next? next->vm_start: ceiling);
568 vma = next;
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573 pmd_t *pmd, unsigned long address)
575 pgtable_t new = pte_alloc_one(mm, address);
576 int wait_split_huge_page;
577 if (!new)
578 return -ENOMEM;
581 * Ensure all pte setup (eg. pte page lock and page clearing) are
582 * visible before the pte is made visible to other CPUs by being
583 * put into page tables.
585 * The other side of the story is the pointer chasing in the page
586 * table walking code (when walking the page table without locking;
587 * ie. most of the time). Fortunately, these data accesses consist
588 * of a chain of data-dependent loads, meaning most CPUs (alpha
589 * being the notable exception) will already guarantee loads are
590 * seen in-order. See the alpha page table accessors for the
591 * smp_read_barrier_depends() barriers in page table walking code.
593 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
595 spin_lock(&mm->page_table_lock);
596 wait_split_huge_page = 0;
597 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
598 mm->nr_ptes++;
599 pmd_populate(mm, pmd, new);
600 new = NULL;
601 } else if (unlikely(pmd_trans_splitting(*pmd)))
602 wait_split_huge_page = 1;
603 spin_unlock(&mm->page_table_lock);
604 if (new)
605 pte_free(mm, new);
606 if (wait_split_huge_page)
607 wait_split_huge_page(vma->anon_vma, pmd);
608 return 0;
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
613 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614 if (!new)
615 return -ENOMEM;
617 smp_wmb(); /* See comment in __pte_alloc */
619 spin_lock(&init_mm.page_table_lock);
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
621 pmd_populate_kernel(&init_mm, pmd, new);
622 new = NULL;
623 } else
624 VM_BUG_ON(pmd_trans_splitting(*pmd));
625 spin_unlock(&init_mm.page_table_lock);
626 if (new)
627 pte_free_kernel(&init_mm, new);
628 return 0;
631 static inline void init_rss_vec(int *rss)
633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
638 int i;
640 if (current->mm == mm)
641 sync_mm_rss(mm);
642 for (i = 0; i < NR_MM_COUNTERS; i++)
643 if (rss[i])
644 add_mm_counter(mm, i, rss[i]);
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
652 * The calling function must still handle the error.
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte, struct page *page)
657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 pud_t *pud = pud_offset(pgd, addr);
659 pmd_t *pmd = pmd_offset(pud, addr);
660 struct address_space *mapping;
661 pgoff_t index;
662 static unsigned long resume;
663 static unsigned long nr_shown;
664 static unsigned long nr_unshown;
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
670 if (nr_shown == 60) {
671 if (time_before(jiffies, resume)) {
672 nr_unshown++;
673 return;
675 if (nr_unshown) {
676 printk(KERN_ALERT
677 "BUG: Bad page map: %lu messages suppressed\n",
678 nr_unshown);
679 nr_unshown = 0;
681 nr_shown = 0;
683 if (nr_shown++ == 0)
684 resume = jiffies + 60 * HZ;
686 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687 index = linear_page_index(vma, addr);
689 printk(KERN_ALERT
690 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
691 current->comm,
692 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693 if (page)
694 dump_page(page);
695 printk(KERN_ALERT
696 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
699 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
701 if (vma->vm_ops)
702 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703 (unsigned long)vma->vm_ops->fault);
704 if (vma->vm_file && vma->vm_file->f_op)
705 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706 (unsigned long)vma->vm_file->f_op->mmap);
707 dump_stack();
708 add_taint(TAINT_BAD_PAGE);
711 static inline int is_cow_mapping(vm_flags_t flags)
713 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
719 return pfn == zero_pfn;
721 #endif
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
726 return zero_pfn;
728 #endif
731 * vm_normal_page -- This function gets the "struct page" associated with a pte.
733 * "Special" mappings do not wish to be associated with a "struct page" (either
734 * it doesn't exist, or it exists but they don't want to touch it). In this
735 * case, NULL is returned here. "Normal" mappings do have a struct page.
737 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738 * pte bit, in which case this function is trivial. Secondly, an architecture
739 * may not have a spare pte bit, which requires a more complicated scheme,
740 * described below.
742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743 * special mapping (even if there are underlying and valid "struct pages").
744 * COWed pages of a VM_PFNMAP are always normal.
746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749 * mapping will always honor the rule
751 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
753 * And for normal mappings this is false.
755 * This restricts such mappings to be a linear translation from virtual address
756 * to pfn. To get around this restriction, we allow arbitrary mappings so long
757 * as the vma is not a COW mapping; in that case, we know that all ptes are
758 * special (because none can have been COWed).
761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764 * page" backing, however the difference is that _all_ pages with a struct
765 * page (that is, those where pfn_valid is true) are refcounted and considered
766 * normal pages by the VM. The disadvantage is that pages are refcounted
767 * (which can be slower and simply not an option for some PFNMAP users). The
768 * advantage is that we don't have to follow the strict linearity rule of
769 * PFNMAP mappings in order to support COWable mappings.
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778 pte_t pte)
780 unsigned long pfn = pte_pfn(pte);
782 if (HAVE_PTE_SPECIAL) {
783 if (likely(!pte_special(pte)))
784 goto check_pfn;
785 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786 return NULL;
787 if (!is_zero_pfn(pfn))
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
792 /* !HAVE_PTE_SPECIAL case follows: */
794 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795 if (vma->vm_flags & VM_MIXEDMAP) {
796 if (!pfn_valid(pfn))
797 return NULL;
798 goto out;
799 } else {
800 unsigned long off;
801 off = (addr - vma->vm_start) >> PAGE_SHIFT;
802 if (pfn == vma->vm_pgoff + off)
803 return NULL;
804 if (!is_cow_mapping(vma->vm_flags))
805 return NULL;
809 if (is_zero_pfn(pfn))
810 return NULL;
811 check_pfn:
812 if (unlikely(pfn > highest_memmap_pfn)) {
813 print_bad_pte(vma, addr, pte, NULL);
814 return NULL;
818 * NOTE! We still have PageReserved() pages in the page tables.
819 * eg. VDSO mappings can cause them to exist.
821 out:
822 return pfn_to_page(pfn);
826 * copy one vm_area from one task to the other. Assumes the page tables
827 * already present in the new task to be cleared in the whole range
828 * covered by this vma.
831 static inline unsigned long
832 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
834 unsigned long addr, int *rss)
836 unsigned long vm_flags = vma->vm_flags;
837 pte_t pte = *src_pte;
838 struct page *page;
840 /* pte contains position in swap or file, so copy. */
841 if (unlikely(!pte_present(pte))) {
842 if (!pte_file(pte)) {
843 swp_entry_t entry = pte_to_swp_entry(pte);
845 if (swap_duplicate(entry) < 0)
846 return entry.val;
848 /* make sure dst_mm is on swapoff's mmlist. */
849 if (unlikely(list_empty(&dst_mm->mmlist))) {
850 spin_lock(&mmlist_lock);
851 if (list_empty(&dst_mm->mmlist))
852 list_add(&dst_mm->mmlist,
853 &src_mm->mmlist);
854 spin_unlock(&mmlist_lock);
856 if (likely(!non_swap_entry(entry)))
857 rss[MM_SWAPENTS]++;
858 else if (is_migration_entry(entry)) {
859 page = migration_entry_to_page(entry);
861 if (PageAnon(page))
862 rss[MM_ANONPAGES]++;
863 else
864 rss[MM_FILEPAGES]++;
866 if (is_write_migration_entry(entry) &&
867 is_cow_mapping(vm_flags)) {
869 * COW mappings require pages in both
870 * parent and child to be set to read.
872 make_migration_entry_read(&entry);
873 pte = swp_entry_to_pte(entry);
874 set_pte_at(src_mm, addr, src_pte, pte);
878 goto out_set_pte;
882 * If it's a COW mapping, write protect it both
883 * in the parent and the child
885 if (is_cow_mapping(vm_flags)) {
886 ptep_set_wrprotect(src_mm, addr, src_pte);
887 pte = pte_wrprotect(pte);
891 * If it's a shared mapping, mark it clean in
892 * the child
894 if (vm_flags & VM_SHARED)
895 pte = pte_mkclean(pte);
896 pte = pte_mkold(pte);
898 page = vm_normal_page(vma, addr, pte);
899 if (page) {
900 get_page(page);
901 page_dup_rmap(page);
902 if (PageAnon(page))
903 rss[MM_ANONPAGES]++;
904 else
905 rss[MM_FILEPAGES]++;
908 out_set_pte:
909 set_pte_at(dst_mm, addr, dst_pte, pte);
910 return 0;
913 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915 unsigned long addr, unsigned long end)
917 pte_t *orig_src_pte, *orig_dst_pte;
918 pte_t *src_pte, *dst_pte;
919 spinlock_t *src_ptl, *dst_ptl;
920 int progress = 0;
921 int rss[NR_MM_COUNTERS];
922 swp_entry_t entry = (swp_entry_t){0};
924 again:
925 init_rss_vec(rss);
927 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
928 if (!dst_pte)
929 return -ENOMEM;
930 src_pte = pte_offset_map(src_pmd, addr);
931 src_ptl = pte_lockptr(src_mm, src_pmd);
932 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933 orig_src_pte = src_pte;
934 orig_dst_pte = dst_pte;
935 arch_enter_lazy_mmu_mode();
937 do {
939 * We are holding two locks at this point - either of them
940 * could generate latencies in another task on another CPU.
942 if (progress >= 32) {
943 progress = 0;
944 if (need_resched() ||
945 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
946 break;
948 if (pte_none(*src_pte)) {
949 progress++;
950 continue;
952 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953 vma, addr, rss);
954 if (entry.val)
955 break;
956 progress += 8;
957 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
959 arch_leave_lazy_mmu_mode();
960 spin_unlock(src_ptl);
961 pte_unmap(orig_src_pte);
962 add_mm_rss_vec(dst_mm, rss);
963 pte_unmap_unlock(orig_dst_pte, dst_ptl);
964 cond_resched();
966 if (entry.val) {
967 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968 return -ENOMEM;
969 progress = 0;
971 if (addr != end)
972 goto again;
973 return 0;
976 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978 unsigned long addr, unsigned long end)
980 pmd_t *src_pmd, *dst_pmd;
981 unsigned long next;
983 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984 if (!dst_pmd)
985 return -ENOMEM;
986 src_pmd = pmd_offset(src_pud, addr);
987 do {
988 next = pmd_addr_end(addr, end);
989 if (pmd_trans_huge(*src_pmd)) {
990 int err;
991 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
992 err = copy_huge_pmd(dst_mm, src_mm,
993 dst_pmd, src_pmd, addr, vma);
994 if (err == -ENOMEM)
995 return -ENOMEM;
996 if (!err)
997 continue;
998 /* fall through */
1000 if (pmd_none_or_clear_bad(src_pmd))
1001 continue;
1002 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003 vma, addr, next))
1004 return -ENOMEM;
1005 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006 return 0;
1009 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011 unsigned long addr, unsigned long end)
1013 pud_t *src_pud, *dst_pud;
1014 unsigned long next;
1016 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017 if (!dst_pud)
1018 return -ENOMEM;
1019 src_pud = pud_offset(src_pgd, addr);
1020 do {
1021 next = pud_addr_end(addr, end);
1022 if (pud_none_or_clear_bad(src_pud))
1023 continue;
1024 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025 vma, addr, next))
1026 return -ENOMEM;
1027 } while (dst_pud++, src_pud++, addr = next, addr != end);
1028 return 0;
1031 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032 struct vm_area_struct *vma)
1034 pgd_t *src_pgd, *dst_pgd;
1035 unsigned long next;
1036 unsigned long addr = vma->vm_start;
1037 unsigned long end = vma->vm_end;
1038 int ret;
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1046 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047 if (!vma->anon_vma)
1048 return 0;
1051 if (is_vm_hugetlb_page(vma))
1052 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1054 if (unlikely(is_pfn_mapping(vma))) {
1056 * We do not free on error cases below as remove_vma
1057 * gets called on error from higher level routine
1059 ret = track_pfn_vma_copy(vma);
1060 if (ret)
1061 return ret;
1065 * We need to invalidate the secondary MMU mappings only when
1066 * there could be a permission downgrade on the ptes of the
1067 * parent mm. And a permission downgrade will only happen if
1068 * is_cow_mapping() returns true.
1070 if (is_cow_mapping(vma->vm_flags))
1071 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1073 ret = 0;
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1087 if (is_cow_mapping(vma->vm_flags))
1088 mmu_notifier_invalidate_range_end(src_mm,
1089 vma->vm_start, end);
1090 return ret;
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094 struct vm_area_struct *vma, pmd_t *pmd,
1095 unsigned long addr, unsigned long end,
1096 struct zap_details *details)
1098 struct mm_struct *mm = tlb->mm;
1099 int force_flush = 0;
1100 int rss[NR_MM_COUNTERS];
1101 spinlock_t *ptl;
1102 pte_t *start_pte;
1103 pte_t *pte;
1105 again:
1106 init_rss_vec(rss);
1107 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108 pte = start_pte;
1109 arch_enter_lazy_mmu_mode();
1110 do {
1111 pte_t ptent = *pte;
1112 if (pte_none(ptent)) {
1113 continue;
1116 if (pte_present(ptent)) {
1117 struct page *page;
1119 page = vm_normal_page(vma, addr, ptent);
1120 if (unlikely(details) && page) {
1122 * unmap_shared_mapping_pages() wants to
1123 * invalidate cache without truncating:
1124 * unmap shared but keep private pages.
1126 if (details->check_mapping &&
1127 details->check_mapping != page->mapping)
1128 continue;
1130 * Each page->index must be checked when
1131 * invalidating or truncating nonlinear.
1133 if (details->nonlinear_vma &&
1134 (page->index < details->first_index ||
1135 page->index > details->last_index))
1136 continue;
1138 ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 tlb->fullmm);
1140 tlb_remove_tlb_entry(tlb, pte, addr);
1141 if (unlikely(!page))
1142 continue;
1143 if (unlikely(details) && details->nonlinear_vma
1144 && linear_page_index(details->nonlinear_vma,
1145 addr) != page->index)
1146 set_pte_at(mm, addr, pte,
1147 pgoff_to_pte(page->index));
1148 if (PageAnon(page))
1149 rss[MM_ANONPAGES]--;
1150 else {
1151 if (pte_dirty(ptent))
1152 set_page_dirty(page);
1153 if (pte_young(ptent) &&
1154 likely(!VM_SequentialReadHint(vma)))
1155 mark_page_accessed(page);
1156 rss[MM_FILEPAGES]--;
1158 page_remove_rmap(page);
1159 if (unlikely(page_mapcount(page) < 0))
1160 print_bad_pte(vma, addr, ptent, page);
1161 force_flush = !__tlb_remove_page(tlb, page);
1162 if (force_flush)
1163 break;
1164 continue;
1167 * If details->check_mapping, we leave swap entries;
1168 * if details->nonlinear_vma, we leave file entries.
1170 if (unlikely(details))
1171 continue;
1172 if (pte_file(ptent)) {
1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 print_bad_pte(vma, addr, ptent, NULL);
1175 } else {
1176 swp_entry_t entry = pte_to_swp_entry(ptent);
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
1183 page = migration_entry_to_page(entry);
1185 if (PageAnon(page))
1186 rss[MM_ANONPAGES]--;
1187 else
1188 rss[MM_FILEPAGES]--;
1190 if (unlikely(!free_swap_and_cache(entry)))
1191 print_bad_pte(vma, addr, ptent, NULL);
1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 } while (pte++, addr += PAGE_SIZE, addr != end);
1196 add_mm_rss_vec(mm, rss);
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(start_pte, ptl);
1201 * mmu_gather ran out of room to batch pages, we break out of
1202 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 * and page-free while holding it.
1205 if (force_flush) {
1206 force_flush = 0;
1207 tlb_flush_mmu(tlb);
1208 if (addr != end)
1209 goto again;
1212 return addr;
1215 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216 struct vm_area_struct *vma, pud_t *pud,
1217 unsigned long addr, unsigned long end,
1218 struct zap_details *details)
1220 pmd_t *pmd;
1221 unsigned long next;
1223 pmd = pmd_offset(pud, addr);
1224 do {
1225 next = pmd_addr_end(addr, end);
1226 if (pmd_trans_huge(*pmd)) {
1227 if (next - addr != HPAGE_PMD_SIZE) {
1228 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1229 split_huge_page_pmd(vma->vm_mm, pmd);
1230 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1231 goto next;
1232 /* fall through */
1235 * Here there can be other concurrent MADV_DONTNEED or
1236 * trans huge page faults running, and if the pmd is
1237 * none or trans huge it can change under us. This is
1238 * because MADV_DONTNEED holds the mmap_sem in read
1239 * mode.
1241 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242 goto next;
1243 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1244 next:
1245 cond_resched();
1246 } while (pmd++, addr = next, addr != end);
1248 return addr;
1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1252 struct vm_area_struct *vma, pgd_t *pgd,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1256 pud_t *pud;
1257 unsigned long next;
1259 pud = pud_offset(pgd, addr);
1260 do {
1261 next = pud_addr_end(addr, end);
1262 if (pud_none_or_clear_bad(pud))
1263 continue;
1264 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265 } while (pud++, addr = next, addr != end);
1267 return addr;
1270 static void unmap_page_range(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma,
1272 unsigned long addr, unsigned long end,
1273 struct zap_details *details)
1275 pgd_t *pgd;
1276 unsigned long next;
1278 if (details && !details->check_mapping && !details->nonlinear_vma)
1279 details = NULL;
1281 BUG_ON(addr >= end);
1282 mem_cgroup_uncharge_start();
1283 tlb_start_vma(tlb, vma);
1284 pgd = pgd_offset(vma->vm_mm, addr);
1285 do {
1286 next = pgd_addr_end(addr, end);
1287 if (pgd_none_or_clear_bad(pgd))
1288 continue;
1289 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 } while (pgd++, addr = next, addr != end);
1291 tlb_end_vma(tlb, vma);
1292 mem_cgroup_uncharge_end();
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 struct vm_area_struct *vma, unsigned long start_addr,
1298 unsigned long end_addr,
1299 struct zap_details *details)
1301 unsigned long start = max(vma->vm_start, start_addr);
1302 unsigned long end;
1304 if (start >= vma->vm_end)
1305 return;
1306 end = min(vma->vm_end, end_addr);
1307 if (end <= vma->vm_start)
1308 return;
1310 if (unlikely(is_pfn_mapping(vma)))
1311 untrack_pfn_vma(vma, 0, 0);
1313 if (start != end) {
1314 if (unlikely(is_vm_hugetlb_page(vma))) {
1316 * It is undesirable to test vma->vm_file as it
1317 * should be non-null for valid hugetlb area.
1318 * However, vm_file will be NULL in the error
1319 * cleanup path of do_mmap_pgoff. When
1320 * hugetlbfs ->mmap method fails,
1321 * do_mmap_pgoff() nullifies vma->vm_file
1322 * before calling this function to clean up.
1323 * Since no pte has actually been setup, it is
1324 * safe to do nothing in this case.
1326 if (vma->vm_file)
1327 unmap_hugepage_range(vma, start, end, NULL);
1328 } else
1329 unmap_page_range(tlb, vma, start, end, details);
1334 * unmap_vmas - unmap a range of memory covered by a list of vma's
1335 * @tlb: address of the caller's struct mmu_gather
1336 * @vma: the starting vma
1337 * @start_addr: virtual address at which to start unmapping
1338 * @end_addr: virtual address at which to end unmapping
1340 * Unmap all pages in the vma list.
1342 * Only addresses between `start' and `end' will be unmapped.
1344 * The VMA list must be sorted in ascending virtual address order.
1346 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1347 * range after unmap_vmas() returns. So the only responsibility here is to
1348 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1349 * drops the lock and schedules.
1351 void unmap_vmas(struct mmu_gather *tlb,
1352 struct vm_area_struct *vma, unsigned long start_addr,
1353 unsigned long end_addr)
1355 struct mm_struct *mm = vma->vm_mm;
1357 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1358 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1359 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1360 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1364 * zap_page_range - remove user pages in a given range
1365 * @vma: vm_area_struct holding the applicable pages
1366 * @address: starting address of pages to zap
1367 * @size: number of bytes to zap
1368 * @details: details of nonlinear truncation or shared cache invalidation
1370 * Caller must protect the VMA list
1372 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1373 unsigned long size, struct zap_details *details)
1375 struct mm_struct *mm = vma->vm_mm;
1376 struct mmu_gather tlb;
1377 unsigned long end = start + size;
1379 lru_add_drain();
1380 tlb_gather_mmu(&tlb, mm, 0);
1381 update_hiwater_rss(mm);
1382 mmu_notifier_invalidate_range_start(mm, start, end);
1383 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1384 unmap_single_vma(&tlb, vma, start, end, details);
1385 mmu_notifier_invalidate_range_end(mm, start, end);
1386 tlb_finish_mmu(&tlb, start, end);
1390 * zap_page_range_single - remove user pages in a given range
1391 * @vma: vm_area_struct holding the applicable pages
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 * @details: details of nonlinear truncation or shared cache invalidation
1396 * The range must fit into one VMA.
1398 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1399 unsigned long size, struct zap_details *details)
1401 struct mm_struct *mm = vma->vm_mm;
1402 struct mmu_gather tlb;
1403 unsigned long end = address + size;
1405 lru_add_drain();
1406 tlb_gather_mmu(&tlb, mm, 0);
1407 update_hiwater_rss(mm);
1408 mmu_notifier_invalidate_range_start(mm, address, end);
1409 unmap_single_vma(&tlb, vma, address, end, details);
1410 mmu_notifier_invalidate_range_end(mm, address, end);
1411 tlb_finish_mmu(&tlb, address, end);
1415 * zap_vma_ptes - remove ptes mapping the vma
1416 * @vma: vm_area_struct holding ptes to be zapped
1417 * @address: starting address of pages to zap
1418 * @size: number of bytes to zap
1420 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1422 * The entire address range must be fully contained within the vma.
1424 * Returns 0 if successful.
1426 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1427 unsigned long size)
1429 if (address < vma->vm_start || address + size > vma->vm_end ||
1430 !(vma->vm_flags & VM_PFNMAP))
1431 return -1;
1432 zap_page_range_single(vma, address, size, NULL);
1433 return 0;
1435 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1438 * follow_page - look up a page descriptor from a user-virtual address
1439 * @vma: vm_area_struct mapping @address
1440 * @address: virtual address to look up
1441 * @flags: flags modifying lookup behaviour
1443 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1445 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1446 * an error pointer if there is a mapping to something not represented
1447 * by a page descriptor (see also vm_normal_page()).
1449 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1450 unsigned int flags)
1452 pgd_t *pgd;
1453 pud_t *pud;
1454 pmd_t *pmd;
1455 pte_t *ptep, pte;
1456 spinlock_t *ptl;
1457 struct page *page;
1458 struct mm_struct *mm = vma->vm_mm;
1460 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1461 if (!IS_ERR(page)) {
1462 BUG_ON(flags & FOLL_GET);
1463 goto out;
1466 page = NULL;
1467 pgd = pgd_offset(mm, address);
1468 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1469 goto no_page_table;
1471 pud = pud_offset(pgd, address);
1472 if (pud_none(*pud))
1473 goto no_page_table;
1474 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1475 BUG_ON(flags & FOLL_GET);
1476 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1477 goto out;
1479 if (unlikely(pud_bad(*pud)))
1480 goto no_page_table;
1482 pmd = pmd_offset(pud, address);
1483 if (pmd_none(*pmd))
1484 goto no_page_table;
1485 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1486 BUG_ON(flags & FOLL_GET);
1487 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1488 goto out;
1490 if (pmd_trans_huge(*pmd)) {
1491 if (flags & FOLL_SPLIT) {
1492 split_huge_page_pmd(mm, pmd);
1493 goto split_fallthrough;
1495 spin_lock(&mm->page_table_lock);
1496 if (likely(pmd_trans_huge(*pmd))) {
1497 if (unlikely(pmd_trans_splitting(*pmd))) {
1498 spin_unlock(&mm->page_table_lock);
1499 wait_split_huge_page(vma->anon_vma, pmd);
1500 } else {
1501 page = follow_trans_huge_pmd(mm, address,
1502 pmd, flags);
1503 spin_unlock(&mm->page_table_lock);
1504 goto out;
1506 } else
1507 spin_unlock(&mm->page_table_lock);
1508 /* fall through */
1510 split_fallthrough:
1511 if (unlikely(pmd_bad(*pmd)))
1512 goto no_page_table;
1514 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1516 pte = *ptep;
1517 if (!pte_present(pte))
1518 goto no_page;
1519 if ((flags & FOLL_WRITE) && !pte_write(pte))
1520 goto unlock;
1522 page = vm_normal_page(vma, address, pte);
1523 if (unlikely(!page)) {
1524 if ((flags & FOLL_DUMP) ||
1525 !is_zero_pfn(pte_pfn(pte)))
1526 goto bad_page;
1527 page = pte_page(pte);
1530 if (flags & FOLL_GET)
1531 get_page_foll(page);
1532 if (flags & FOLL_TOUCH) {
1533 if ((flags & FOLL_WRITE) &&
1534 !pte_dirty(pte) && !PageDirty(page))
1535 set_page_dirty(page);
1537 * pte_mkyoung() would be more correct here, but atomic care
1538 * is needed to avoid losing the dirty bit: it is easier to use
1539 * mark_page_accessed().
1541 mark_page_accessed(page);
1543 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1545 * The preliminary mapping check is mainly to avoid the
1546 * pointless overhead of lock_page on the ZERO_PAGE
1547 * which might bounce very badly if there is contention.
1549 * If the page is already locked, we don't need to
1550 * handle it now - vmscan will handle it later if and
1551 * when it attempts to reclaim the page.
1553 if (page->mapping && trylock_page(page)) {
1554 lru_add_drain(); /* push cached pages to LRU */
1556 * Because we lock page here and migration is
1557 * blocked by the pte's page reference, we need
1558 * only check for file-cache page truncation.
1560 if (page->mapping)
1561 mlock_vma_page(page);
1562 unlock_page(page);
1565 unlock:
1566 pte_unmap_unlock(ptep, ptl);
1567 out:
1568 return page;
1570 bad_page:
1571 pte_unmap_unlock(ptep, ptl);
1572 return ERR_PTR(-EFAULT);
1574 no_page:
1575 pte_unmap_unlock(ptep, ptl);
1576 if (!pte_none(pte))
1577 return page;
1579 no_page_table:
1581 * When core dumping an enormous anonymous area that nobody
1582 * has touched so far, we don't want to allocate unnecessary pages or
1583 * page tables. Return error instead of NULL to skip handle_mm_fault,
1584 * then get_dump_page() will return NULL to leave a hole in the dump.
1585 * But we can only make this optimization where a hole would surely
1586 * be zero-filled if handle_mm_fault() actually did handle it.
1588 if ((flags & FOLL_DUMP) &&
1589 (!vma->vm_ops || !vma->vm_ops->fault))
1590 return ERR_PTR(-EFAULT);
1591 return page;
1594 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1596 return stack_guard_page_start(vma, addr) ||
1597 stack_guard_page_end(vma, addr+PAGE_SIZE);
1601 * __get_user_pages() - pin user pages in memory
1602 * @tsk: task_struct of target task
1603 * @mm: mm_struct of target mm
1604 * @start: starting user address
1605 * @nr_pages: number of pages from start to pin
1606 * @gup_flags: flags modifying pin behaviour
1607 * @pages: array that receives pointers to the pages pinned.
1608 * Should be at least nr_pages long. Or NULL, if caller
1609 * only intends to ensure the pages are faulted in.
1610 * @vmas: array of pointers to vmas corresponding to each page.
1611 * Or NULL if the caller does not require them.
1612 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1614 * Returns number of pages pinned. This may be fewer than the number
1615 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1616 * were pinned, returns -errno. Each page returned must be released
1617 * with a put_page() call when it is finished with. vmas will only
1618 * remain valid while mmap_sem is held.
1620 * Must be called with mmap_sem held for read or write.
1622 * __get_user_pages walks a process's page tables and takes a reference to
1623 * each struct page that each user address corresponds to at a given
1624 * instant. That is, it takes the page that would be accessed if a user
1625 * thread accesses the given user virtual address at that instant.
1627 * This does not guarantee that the page exists in the user mappings when
1628 * __get_user_pages returns, and there may even be a completely different
1629 * page there in some cases (eg. if mmapped pagecache has been invalidated
1630 * and subsequently re faulted). However it does guarantee that the page
1631 * won't be freed completely. And mostly callers simply care that the page
1632 * contains data that was valid *at some point in time*. Typically, an IO
1633 * or similar operation cannot guarantee anything stronger anyway because
1634 * locks can't be held over the syscall boundary.
1636 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1637 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1638 * appropriate) must be called after the page is finished with, and
1639 * before put_page is called.
1641 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1642 * or mmap_sem contention, and if waiting is needed to pin all pages,
1643 * *@nonblocking will be set to 0.
1645 * In most cases, get_user_pages or get_user_pages_fast should be used
1646 * instead of __get_user_pages. __get_user_pages should be used only if
1647 * you need some special @gup_flags.
1649 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1650 unsigned long start, int nr_pages, unsigned int gup_flags,
1651 struct page **pages, struct vm_area_struct **vmas,
1652 int *nonblocking)
1654 int i;
1655 unsigned long vm_flags;
1657 if (nr_pages <= 0)
1658 return 0;
1660 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1663 * Require read or write permissions.
1664 * If FOLL_FORCE is set, we only require the "MAY" flags.
1666 vm_flags = (gup_flags & FOLL_WRITE) ?
1667 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1668 vm_flags &= (gup_flags & FOLL_FORCE) ?
1669 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1670 i = 0;
1672 do {
1673 struct vm_area_struct *vma;
1675 vma = find_extend_vma(mm, start);
1676 if (!vma && in_gate_area(mm, start)) {
1677 unsigned long pg = start & PAGE_MASK;
1678 pgd_t *pgd;
1679 pud_t *pud;
1680 pmd_t *pmd;
1681 pte_t *pte;
1683 /* user gate pages are read-only */
1684 if (gup_flags & FOLL_WRITE)
1685 return i ? : -EFAULT;
1686 if (pg > TASK_SIZE)
1687 pgd = pgd_offset_k(pg);
1688 else
1689 pgd = pgd_offset_gate(mm, pg);
1690 BUG_ON(pgd_none(*pgd));
1691 pud = pud_offset(pgd, pg);
1692 BUG_ON(pud_none(*pud));
1693 pmd = pmd_offset(pud, pg);
1694 if (pmd_none(*pmd))
1695 return i ? : -EFAULT;
1696 VM_BUG_ON(pmd_trans_huge(*pmd));
1697 pte = pte_offset_map(pmd, pg);
1698 if (pte_none(*pte)) {
1699 pte_unmap(pte);
1700 return i ? : -EFAULT;
1702 vma = get_gate_vma(mm);
1703 if (pages) {
1704 struct page *page;
1706 page = vm_normal_page(vma, start, *pte);
1707 if (!page) {
1708 if (!(gup_flags & FOLL_DUMP) &&
1709 is_zero_pfn(pte_pfn(*pte)))
1710 page = pte_page(*pte);
1711 else {
1712 pte_unmap(pte);
1713 return i ? : -EFAULT;
1716 pages[i] = page;
1717 get_page(page);
1719 pte_unmap(pte);
1720 goto next_page;
1723 if (!vma ||
1724 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1725 !(vm_flags & vma->vm_flags))
1726 return i ? : -EFAULT;
1728 if (is_vm_hugetlb_page(vma)) {
1729 i = follow_hugetlb_page(mm, vma, pages, vmas,
1730 &start, &nr_pages, i, gup_flags);
1731 continue;
1734 do {
1735 struct page *page;
1736 unsigned int foll_flags = gup_flags;
1739 * If we have a pending SIGKILL, don't keep faulting
1740 * pages and potentially allocating memory.
1742 if (unlikely(fatal_signal_pending(current)))
1743 return i ? i : -ERESTARTSYS;
1745 cond_resched();
1746 while (!(page = follow_page(vma, start, foll_flags))) {
1747 int ret;
1748 unsigned int fault_flags = 0;
1750 /* For mlock, just skip the stack guard page. */
1751 if (foll_flags & FOLL_MLOCK) {
1752 if (stack_guard_page(vma, start))
1753 goto next_page;
1755 if (foll_flags & FOLL_WRITE)
1756 fault_flags |= FAULT_FLAG_WRITE;
1757 if (nonblocking)
1758 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1759 if (foll_flags & FOLL_NOWAIT)
1760 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1762 ret = handle_mm_fault(mm, vma, start,
1763 fault_flags);
1765 if (ret & VM_FAULT_ERROR) {
1766 if (ret & VM_FAULT_OOM)
1767 return i ? i : -ENOMEM;
1768 if (ret & (VM_FAULT_HWPOISON |
1769 VM_FAULT_HWPOISON_LARGE)) {
1770 if (i)
1771 return i;
1772 else if (gup_flags & FOLL_HWPOISON)
1773 return -EHWPOISON;
1774 else
1775 return -EFAULT;
1777 if (ret & VM_FAULT_SIGBUS)
1778 return i ? i : -EFAULT;
1779 BUG();
1782 if (tsk) {
1783 if (ret & VM_FAULT_MAJOR)
1784 tsk->maj_flt++;
1785 else
1786 tsk->min_flt++;
1789 if (ret & VM_FAULT_RETRY) {
1790 if (nonblocking)
1791 *nonblocking = 0;
1792 return i;
1796 * The VM_FAULT_WRITE bit tells us that
1797 * do_wp_page has broken COW when necessary,
1798 * even if maybe_mkwrite decided not to set
1799 * pte_write. We can thus safely do subsequent
1800 * page lookups as if they were reads. But only
1801 * do so when looping for pte_write is futile:
1802 * in some cases userspace may also be wanting
1803 * to write to the gotten user page, which a
1804 * read fault here might prevent (a readonly
1805 * page might get reCOWed by userspace write).
1807 if ((ret & VM_FAULT_WRITE) &&
1808 !(vma->vm_flags & VM_WRITE))
1809 foll_flags &= ~FOLL_WRITE;
1811 cond_resched();
1813 if (IS_ERR(page))
1814 return i ? i : PTR_ERR(page);
1815 if (pages) {
1816 pages[i] = page;
1818 flush_anon_page(vma, page, start);
1819 flush_dcache_page(page);
1821 next_page:
1822 if (vmas)
1823 vmas[i] = vma;
1824 i++;
1825 start += PAGE_SIZE;
1826 nr_pages--;
1827 } while (nr_pages && start < vma->vm_end);
1828 } while (nr_pages);
1829 return i;
1831 EXPORT_SYMBOL(__get_user_pages);
1834 * fixup_user_fault() - manually resolve a user page fault
1835 * @tsk: the task_struct to use for page fault accounting, or
1836 * NULL if faults are not to be recorded.
1837 * @mm: mm_struct of target mm
1838 * @address: user address
1839 * @fault_flags:flags to pass down to handle_mm_fault()
1841 * This is meant to be called in the specific scenario where for locking reasons
1842 * we try to access user memory in atomic context (within a pagefault_disable()
1843 * section), this returns -EFAULT, and we want to resolve the user fault before
1844 * trying again.
1846 * Typically this is meant to be used by the futex code.
1848 * The main difference with get_user_pages() is that this function will
1849 * unconditionally call handle_mm_fault() which will in turn perform all the
1850 * necessary SW fixup of the dirty and young bits in the PTE, while
1851 * handle_mm_fault() only guarantees to update these in the struct page.
1853 * This is important for some architectures where those bits also gate the
1854 * access permission to the page because they are maintained in software. On
1855 * such architectures, gup() will not be enough to make a subsequent access
1856 * succeed.
1858 * This should be called with the mm_sem held for read.
1860 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1861 unsigned long address, unsigned int fault_flags)
1863 struct vm_area_struct *vma;
1864 int ret;
1866 vma = find_extend_vma(mm, address);
1867 if (!vma || address < vma->vm_start)
1868 return -EFAULT;
1870 ret = handle_mm_fault(mm, vma, address, fault_flags);
1871 if (ret & VM_FAULT_ERROR) {
1872 if (ret & VM_FAULT_OOM)
1873 return -ENOMEM;
1874 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1875 return -EHWPOISON;
1876 if (ret & VM_FAULT_SIGBUS)
1877 return -EFAULT;
1878 BUG();
1880 if (tsk) {
1881 if (ret & VM_FAULT_MAJOR)
1882 tsk->maj_flt++;
1883 else
1884 tsk->min_flt++;
1886 return 0;
1890 * get_user_pages() - pin user pages in memory
1891 * @tsk: the task_struct to use for page fault accounting, or
1892 * NULL if faults are not to be recorded.
1893 * @mm: mm_struct of target mm
1894 * @start: starting user address
1895 * @nr_pages: number of pages from start to pin
1896 * @write: whether pages will be written to by the caller
1897 * @force: whether to force write access even if user mapping is
1898 * readonly. This will result in the page being COWed even
1899 * in MAP_SHARED mappings. You do not want this.
1900 * @pages: array that receives pointers to the pages pinned.
1901 * Should be at least nr_pages long. Or NULL, if caller
1902 * only intends to ensure the pages are faulted in.
1903 * @vmas: array of pointers to vmas corresponding to each page.
1904 * Or NULL if the caller does not require them.
1906 * Returns number of pages pinned. This may be fewer than the number
1907 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1908 * were pinned, returns -errno. Each page returned must be released
1909 * with a put_page() call when it is finished with. vmas will only
1910 * remain valid while mmap_sem is held.
1912 * Must be called with mmap_sem held for read or write.
1914 * get_user_pages walks a process's page tables and takes a reference to
1915 * each struct page that each user address corresponds to at a given
1916 * instant. That is, it takes the page that would be accessed if a user
1917 * thread accesses the given user virtual address at that instant.
1919 * This does not guarantee that the page exists in the user mappings when
1920 * get_user_pages returns, and there may even be a completely different
1921 * page there in some cases (eg. if mmapped pagecache has been invalidated
1922 * and subsequently re faulted). However it does guarantee that the page
1923 * won't be freed completely. And mostly callers simply care that the page
1924 * contains data that was valid *at some point in time*. Typically, an IO
1925 * or similar operation cannot guarantee anything stronger anyway because
1926 * locks can't be held over the syscall boundary.
1928 * If write=0, the page must not be written to. If the page is written to,
1929 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1930 * after the page is finished with, and before put_page is called.
1932 * get_user_pages is typically used for fewer-copy IO operations, to get a
1933 * handle on the memory by some means other than accesses via the user virtual
1934 * addresses. The pages may be submitted for DMA to devices or accessed via
1935 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1936 * use the correct cache flushing APIs.
1938 * See also get_user_pages_fast, for performance critical applications.
1940 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1941 unsigned long start, int nr_pages, int write, int force,
1942 struct page **pages, struct vm_area_struct **vmas)
1944 int flags = FOLL_TOUCH;
1946 if (pages)
1947 flags |= FOLL_GET;
1948 if (write)
1949 flags |= FOLL_WRITE;
1950 if (force)
1951 flags |= FOLL_FORCE;
1953 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1954 NULL);
1956 EXPORT_SYMBOL(get_user_pages);
1959 * get_dump_page() - pin user page in memory while writing it to core dump
1960 * @addr: user address
1962 * Returns struct page pointer of user page pinned for dump,
1963 * to be freed afterwards by page_cache_release() or put_page().
1965 * Returns NULL on any kind of failure - a hole must then be inserted into
1966 * the corefile, to preserve alignment with its headers; and also returns
1967 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1968 * allowing a hole to be left in the corefile to save diskspace.
1970 * Called without mmap_sem, but after all other threads have been killed.
1972 #ifdef CONFIG_ELF_CORE
1973 struct page *get_dump_page(unsigned long addr)
1975 struct vm_area_struct *vma;
1976 struct page *page;
1978 if (__get_user_pages(current, current->mm, addr, 1,
1979 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1980 NULL) < 1)
1981 return NULL;
1982 flush_cache_page(vma, addr, page_to_pfn(page));
1983 return page;
1985 #endif /* CONFIG_ELF_CORE */
1987 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1988 spinlock_t **ptl)
1990 pgd_t * pgd = pgd_offset(mm, addr);
1991 pud_t * pud = pud_alloc(mm, pgd, addr);
1992 if (pud) {
1993 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1994 if (pmd) {
1995 VM_BUG_ON(pmd_trans_huge(*pmd));
1996 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1999 return NULL;
2003 * This is the old fallback for page remapping.
2005 * For historical reasons, it only allows reserved pages. Only
2006 * old drivers should use this, and they needed to mark their
2007 * pages reserved for the old functions anyway.
2009 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2010 struct page *page, pgprot_t prot)
2012 struct mm_struct *mm = vma->vm_mm;
2013 int retval;
2014 pte_t *pte;
2015 spinlock_t *ptl;
2017 retval = -EINVAL;
2018 if (PageAnon(page))
2019 goto out;
2020 retval = -ENOMEM;
2021 flush_dcache_page(page);
2022 pte = get_locked_pte(mm, addr, &ptl);
2023 if (!pte)
2024 goto out;
2025 retval = -EBUSY;
2026 if (!pte_none(*pte))
2027 goto out_unlock;
2029 /* Ok, finally just insert the thing.. */
2030 get_page(page);
2031 inc_mm_counter_fast(mm, MM_FILEPAGES);
2032 page_add_file_rmap(page);
2033 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2035 retval = 0;
2036 pte_unmap_unlock(pte, ptl);
2037 return retval;
2038 out_unlock:
2039 pte_unmap_unlock(pte, ptl);
2040 out:
2041 return retval;
2045 * vm_insert_page - insert single page into user vma
2046 * @vma: user vma to map to
2047 * @addr: target user address of this page
2048 * @page: source kernel page
2050 * This allows drivers to insert individual pages they've allocated
2051 * into a user vma.
2053 * The page has to be a nice clean _individual_ kernel allocation.
2054 * If you allocate a compound page, you need to have marked it as
2055 * such (__GFP_COMP), or manually just split the page up yourself
2056 * (see split_page()).
2058 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2059 * took an arbitrary page protection parameter. This doesn't allow
2060 * that. Your vma protection will have to be set up correctly, which
2061 * means that if you want a shared writable mapping, you'd better
2062 * ask for a shared writable mapping!
2064 * The page does not need to be reserved.
2066 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2067 struct page *page)
2069 if (addr < vma->vm_start || addr >= vma->vm_end)
2070 return -EFAULT;
2071 if (!page_count(page))
2072 return -EINVAL;
2073 vma->vm_flags |= VM_INSERTPAGE;
2074 return insert_page(vma, addr, page, vma->vm_page_prot);
2076 EXPORT_SYMBOL(vm_insert_page);
2078 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2079 unsigned long pfn, pgprot_t prot)
2081 struct mm_struct *mm = vma->vm_mm;
2082 int retval;
2083 pte_t *pte, entry;
2084 spinlock_t *ptl;
2086 retval = -ENOMEM;
2087 pte = get_locked_pte(mm, addr, &ptl);
2088 if (!pte)
2089 goto out;
2090 retval = -EBUSY;
2091 if (!pte_none(*pte))
2092 goto out_unlock;
2094 /* Ok, finally just insert the thing.. */
2095 entry = pte_mkspecial(pfn_pte(pfn, prot));
2096 set_pte_at(mm, addr, pte, entry);
2097 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2099 retval = 0;
2100 out_unlock:
2101 pte_unmap_unlock(pte, ptl);
2102 out:
2103 return retval;
2107 * vm_insert_pfn - insert single pfn into user vma
2108 * @vma: user vma to map to
2109 * @addr: target user address of this page
2110 * @pfn: source kernel pfn
2112 * Similar to vm_inert_page, this allows drivers to insert individual pages
2113 * they've allocated into a user vma. Same comments apply.
2115 * This function should only be called from a vm_ops->fault handler, and
2116 * in that case the handler should return NULL.
2118 * vma cannot be a COW mapping.
2120 * As this is called only for pages that do not currently exist, we
2121 * do not need to flush old virtual caches or the TLB.
2123 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2124 unsigned long pfn)
2126 int ret;
2127 pgprot_t pgprot = vma->vm_page_prot;
2129 * Technically, architectures with pte_special can avoid all these
2130 * restrictions (same for remap_pfn_range). However we would like
2131 * consistency in testing and feature parity among all, so we should
2132 * try to keep these invariants in place for everybody.
2134 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2135 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2136 (VM_PFNMAP|VM_MIXEDMAP));
2137 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2138 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2140 if (addr < vma->vm_start || addr >= vma->vm_end)
2141 return -EFAULT;
2142 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2143 return -EINVAL;
2145 ret = insert_pfn(vma, addr, pfn, pgprot);
2147 if (ret)
2148 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2150 return ret;
2152 EXPORT_SYMBOL(vm_insert_pfn);
2154 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2155 unsigned long pfn)
2157 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2159 if (addr < vma->vm_start || addr >= vma->vm_end)
2160 return -EFAULT;
2163 * If we don't have pte special, then we have to use the pfn_valid()
2164 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2165 * refcount the page if pfn_valid is true (hence insert_page rather
2166 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2167 * without pte special, it would there be refcounted as a normal page.
2169 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2170 struct page *page;
2172 page = pfn_to_page(pfn);
2173 return insert_page(vma, addr, page, vma->vm_page_prot);
2175 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2177 EXPORT_SYMBOL(vm_insert_mixed);
2180 * maps a range of physical memory into the requested pages. the old
2181 * mappings are removed. any references to nonexistent pages results
2182 * in null mappings (currently treated as "copy-on-access")
2184 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2185 unsigned long addr, unsigned long end,
2186 unsigned long pfn, pgprot_t prot)
2188 pte_t *pte;
2189 spinlock_t *ptl;
2191 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2192 if (!pte)
2193 return -ENOMEM;
2194 arch_enter_lazy_mmu_mode();
2195 do {
2196 BUG_ON(!pte_none(*pte));
2197 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2198 pfn++;
2199 } while (pte++, addr += PAGE_SIZE, addr != end);
2200 arch_leave_lazy_mmu_mode();
2201 pte_unmap_unlock(pte - 1, ptl);
2202 return 0;
2205 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2206 unsigned long addr, unsigned long end,
2207 unsigned long pfn, pgprot_t prot)
2209 pmd_t *pmd;
2210 unsigned long next;
2212 pfn -= addr >> PAGE_SHIFT;
2213 pmd = pmd_alloc(mm, pud, addr);
2214 if (!pmd)
2215 return -ENOMEM;
2216 VM_BUG_ON(pmd_trans_huge(*pmd));
2217 do {
2218 next = pmd_addr_end(addr, end);
2219 if (remap_pte_range(mm, pmd, addr, next,
2220 pfn + (addr >> PAGE_SHIFT), prot))
2221 return -ENOMEM;
2222 } while (pmd++, addr = next, addr != end);
2223 return 0;
2226 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2227 unsigned long addr, unsigned long end,
2228 unsigned long pfn, pgprot_t prot)
2230 pud_t *pud;
2231 unsigned long next;
2233 pfn -= addr >> PAGE_SHIFT;
2234 pud = pud_alloc(mm, pgd, addr);
2235 if (!pud)
2236 return -ENOMEM;
2237 do {
2238 next = pud_addr_end(addr, end);
2239 if (remap_pmd_range(mm, pud, addr, next,
2240 pfn + (addr >> PAGE_SHIFT), prot))
2241 return -ENOMEM;
2242 } while (pud++, addr = next, addr != end);
2243 return 0;
2247 * remap_pfn_range - remap kernel memory to userspace
2248 * @vma: user vma to map to
2249 * @addr: target user address to start at
2250 * @pfn: physical address of kernel memory
2251 * @size: size of map area
2252 * @prot: page protection flags for this mapping
2254 * Note: this is only safe if the mm semaphore is held when called.
2256 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2257 unsigned long pfn, unsigned long size, pgprot_t prot)
2259 pgd_t *pgd;
2260 unsigned long next;
2261 unsigned long end = addr + PAGE_ALIGN(size);
2262 struct mm_struct *mm = vma->vm_mm;
2263 int err;
2266 * Physically remapped pages are special. Tell the
2267 * rest of the world about it:
2268 * VM_IO tells people not to look at these pages
2269 * (accesses can have side effects).
2270 * VM_RESERVED is specified all over the place, because
2271 * in 2.4 it kept swapout's vma scan off this vma; but
2272 * in 2.6 the LRU scan won't even find its pages, so this
2273 * flag means no more than count its pages in reserved_vm,
2274 * and omit it from core dump, even when VM_IO turned off.
2275 * VM_PFNMAP tells the core MM that the base pages are just
2276 * raw PFN mappings, and do not have a "struct page" associated
2277 * with them.
2279 * There's a horrible special case to handle copy-on-write
2280 * behaviour that some programs depend on. We mark the "original"
2281 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2283 if (addr == vma->vm_start && end == vma->vm_end) {
2284 vma->vm_pgoff = pfn;
2285 vma->vm_flags |= VM_PFN_AT_MMAP;
2286 } else if (is_cow_mapping(vma->vm_flags))
2287 return -EINVAL;
2289 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2291 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2292 if (err) {
2294 * To indicate that track_pfn related cleanup is not
2295 * needed from higher level routine calling unmap_vmas
2297 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2298 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2299 return -EINVAL;
2302 BUG_ON(addr >= end);
2303 pfn -= addr >> PAGE_SHIFT;
2304 pgd = pgd_offset(mm, addr);
2305 flush_cache_range(vma, addr, end);
2306 do {
2307 next = pgd_addr_end(addr, end);
2308 err = remap_pud_range(mm, pgd, addr, next,
2309 pfn + (addr >> PAGE_SHIFT), prot);
2310 if (err)
2311 break;
2312 } while (pgd++, addr = next, addr != end);
2314 if (err)
2315 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2317 return err;
2319 EXPORT_SYMBOL(remap_pfn_range);
2321 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2322 unsigned long addr, unsigned long end,
2323 pte_fn_t fn, void *data)
2325 pte_t *pte;
2326 int err;
2327 pgtable_t token;
2328 spinlock_t *uninitialized_var(ptl);
2330 pte = (mm == &init_mm) ?
2331 pte_alloc_kernel(pmd, addr) :
2332 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2333 if (!pte)
2334 return -ENOMEM;
2336 BUG_ON(pmd_huge(*pmd));
2338 arch_enter_lazy_mmu_mode();
2340 token = pmd_pgtable(*pmd);
2342 do {
2343 err = fn(pte++, token, addr, data);
2344 if (err)
2345 break;
2346 } while (addr += PAGE_SIZE, addr != end);
2348 arch_leave_lazy_mmu_mode();
2350 if (mm != &init_mm)
2351 pte_unmap_unlock(pte-1, ptl);
2352 return err;
2355 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2356 unsigned long addr, unsigned long end,
2357 pte_fn_t fn, void *data)
2359 pmd_t *pmd;
2360 unsigned long next;
2361 int err;
2363 BUG_ON(pud_huge(*pud));
2365 pmd = pmd_alloc(mm, pud, addr);
2366 if (!pmd)
2367 return -ENOMEM;
2368 do {
2369 next = pmd_addr_end(addr, end);
2370 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2371 if (err)
2372 break;
2373 } while (pmd++, addr = next, addr != end);
2374 return err;
2377 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2378 unsigned long addr, unsigned long end,
2379 pte_fn_t fn, void *data)
2381 pud_t *pud;
2382 unsigned long next;
2383 int err;
2385 pud = pud_alloc(mm, pgd, addr);
2386 if (!pud)
2387 return -ENOMEM;
2388 do {
2389 next = pud_addr_end(addr, end);
2390 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2391 if (err)
2392 break;
2393 } while (pud++, addr = next, addr != end);
2394 return err;
2398 * Scan a region of virtual memory, filling in page tables as necessary
2399 * and calling a provided function on each leaf page table.
2401 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2402 unsigned long size, pte_fn_t fn, void *data)
2404 pgd_t *pgd;
2405 unsigned long next;
2406 unsigned long end = addr + size;
2407 int err;
2409 BUG_ON(addr >= end);
2410 pgd = pgd_offset(mm, addr);
2411 do {
2412 next = pgd_addr_end(addr, end);
2413 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2414 if (err)
2415 break;
2416 } while (pgd++, addr = next, addr != end);
2418 return err;
2420 EXPORT_SYMBOL_GPL(apply_to_page_range);
2423 * handle_pte_fault chooses page fault handler according to an entry
2424 * which was read non-atomically. Before making any commitment, on
2425 * those architectures or configurations (e.g. i386 with PAE) which
2426 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2427 * must check under lock before unmapping the pte and proceeding
2428 * (but do_wp_page is only called after already making such a check;
2429 * and do_anonymous_page can safely check later on).
2431 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2432 pte_t *page_table, pte_t orig_pte)
2434 int same = 1;
2435 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2436 if (sizeof(pte_t) > sizeof(unsigned long)) {
2437 spinlock_t *ptl = pte_lockptr(mm, pmd);
2438 spin_lock(ptl);
2439 same = pte_same(*page_table, orig_pte);
2440 spin_unlock(ptl);
2442 #endif
2443 pte_unmap(page_table);
2444 return same;
2447 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2450 * If the source page was a PFN mapping, we don't have
2451 * a "struct page" for it. We do a best-effort copy by
2452 * just copying from the original user address. If that
2453 * fails, we just zero-fill it. Live with it.
2455 if (unlikely(!src)) {
2456 void *kaddr = kmap_atomic(dst);
2457 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2460 * This really shouldn't fail, because the page is there
2461 * in the page tables. But it might just be unreadable,
2462 * in which case we just give up and fill the result with
2463 * zeroes.
2465 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2466 clear_page(kaddr);
2467 kunmap_atomic(kaddr);
2468 flush_dcache_page(dst);
2469 } else
2470 copy_user_highpage(dst, src, va, vma);
2474 * This routine handles present pages, when users try to write
2475 * to a shared page. It is done by copying the page to a new address
2476 * and decrementing the shared-page counter for the old page.
2478 * Note that this routine assumes that the protection checks have been
2479 * done by the caller (the low-level page fault routine in most cases).
2480 * Thus we can safely just mark it writable once we've done any necessary
2481 * COW.
2483 * We also mark the page dirty at this point even though the page will
2484 * change only once the write actually happens. This avoids a few races,
2485 * and potentially makes it more efficient.
2487 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2488 * but allow concurrent faults), with pte both mapped and locked.
2489 * We return with mmap_sem still held, but pte unmapped and unlocked.
2491 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2492 unsigned long address, pte_t *page_table, pmd_t *pmd,
2493 spinlock_t *ptl, pte_t orig_pte)
2494 __releases(ptl)
2496 struct page *old_page, *new_page;
2497 pte_t entry;
2498 int ret = 0;
2499 int page_mkwrite = 0;
2500 struct page *dirty_page = NULL;
2502 old_page = vm_normal_page(vma, address, orig_pte);
2503 if (!old_page) {
2505 * VM_MIXEDMAP !pfn_valid() case
2507 * We should not cow pages in a shared writeable mapping.
2508 * Just mark the pages writable as we can't do any dirty
2509 * accounting on raw pfn maps.
2511 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2512 (VM_WRITE|VM_SHARED))
2513 goto reuse;
2514 goto gotten;
2518 * Take out anonymous pages first, anonymous shared vmas are
2519 * not dirty accountable.
2521 if (PageAnon(old_page) && !PageKsm(old_page)) {
2522 if (!trylock_page(old_page)) {
2523 page_cache_get(old_page);
2524 pte_unmap_unlock(page_table, ptl);
2525 lock_page(old_page);
2526 page_table = pte_offset_map_lock(mm, pmd, address,
2527 &ptl);
2528 if (!pte_same(*page_table, orig_pte)) {
2529 unlock_page(old_page);
2530 goto unlock;
2532 page_cache_release(old_page);
2534 if (reuse_swap_page(old_page)) {
2536 * The page is all ours. Move it to our anon_vma so
2537 * the rmap code will not search our parent or siblings.
2538 * Protected against the rmap code by the page lock.
2540 page_move_anon_rmap(old_page, vma, address);
2541 unlock_page(old_page);
2542 goto reuse;
2544 unlock_page(old_page);
2545 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2546 (VM_WRITE|VM_SHARED))) {
2548 * Only catch write-faults on shared writable pages,
2549 * read-only shared pages can get COWed by
2550 * get_user_pages(.write=1, .force=1).
2552 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2553 struct vm_fault vmf;
2554 int tmp;
2556 vmf.virtual_address = (void __user *)(address &
2557 PAGE_MASK);
2558 vmf.pgoff = old_page->index;
2559 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2560 vmf.page = old_page;
2563 * Notify the address space that the page is about to
2564 * become writable so that it can prohibit this or wait
2565 * for the page to get into an appropriate state.
2567 * We do this without the lock held, so that it can
2568 * sleep if it needs to.
2570 page_cache_get(old_page);
2571 pte_unmap_unlock(page_table, ptl);
2573 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2574 if (unlikely(tmp &
2575 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2576 ret = tmp;
2577 goto unwritable_page;
2579 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2580 lock_page(old_page);
2581 if (!old_page->mapping) {
2582 ret = 0; /* retry the fault */
2583 unlock_page(old_page);
2584 goto unwritable_page;
2586 } else
2587 VM_BUG_ON(!PageLocked(old_page));
2590 * Since we dropped the lock we need to revalidate
2591 * the PTE as someone else may have changed it. If
2592 * they did, we just return, as we can count on the
2593 * MMU to tell us if they didn't also make it writable.
2595 page_table = pte_offset_map_lock(mm, pmd, address,
2596 &ptl);
2597 if (!pte_same(*page_table, orig_pte)) {
2598 unlock_page(old_page);
2599 goto unlock;
2602 page_mkwrite = 1;
2604 dirty_page = old_page;
2605 get_page(dirty_page);
2607 reuse:
2608 flush_cache_page(vma, address, pte_pfn(orig_pte));
2609 entry = pte_mkyoung(orig_pte);
2610 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2611 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2612 update_mmu_cache(vma, address, page_table);
2613 pte_unmap_unlock(page_table, ptl);
2614 ret |= VM_FAULT_WRITE;
2616 if (!dirty_page)
2617 return ret;
2620 * Yes, Virginia, this is actually required to prevent a race
2621 * with clear_page_dirty_for_io() from clearing the page dirty
2622 * bit after it clear all dirty ptes, but before a racing
2623 * do_wp_page installs a dirty pte.
2625 * __do_fault is protected similarly.
2627 if (!page_mkwrite) {
2628 wait_on_page_locked(dirty_page);
2629 set_page_dirty_balance(dirty_page, page_mkwrite);
2631 put_page(dirty_page);
2632 if (page_mkwrite) {
2633 struct address_space *mapping = dirty_page->mapping;
2635 set_page_dirty(dirty_page);
2636 unlock_page(dirty_page);
2637 page_cache_release(dirty_page);
2638 if (mapping) {
2640 * Some device drivers do not set page.mapping
2641 * but still dirty their pages
2643 balance_dirty_pages_ratelimited(mapping);
2647 /* file_update_time outside page_lock */
2648 if (vma->vm_file)
2649 file_update_time(vma->vm_file);
2651 return ret;
2655 * Ok, we need to copy. Oh, well..
2657 page_cache_get(old_page);
2658 gotten:
2659 pte_unmap_unlock(page_table, ptl);
2661 if (unlikely(anon_vma_prepare(vma)))
2662 goto oom;
2664 if (is_zero_pfn(pte_pfn(orig_pte))) {
2665 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2666 if (!new_page)
2667 goto oom;
2668 } else {
2669 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2670 if (!new_page)
2671 goto oom;
2672 cow_user_page(new_page, old_page, address, vma);
2674 __SetPageUptodate(new_page);
2676 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2677 goto oom_free_new;
2680 * Re-check the pte - we dropped the lock
2682 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2683 if (likely(pte_same(*page_table, orig_pte))) {
2684 if (old_page) {
2685 if (!PageAnon(old_page)) {
2686 dec_mm_counter_fast(mm, MM_FILEPAGES);
2687 inc_mm_counter_fast(mm, MM_ANONPAGES);
2689 } else
2690 inc_mm_counter_fast(mm, MM_ANONPAGES);
2691 flush_cache_page(vma, address, pte_pfn(orig_pte));
2692 entry = mk_pte(new_page, vma->vm_page_prot);
2693 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2695 * Clear the pte entry and flush it first, before updating the
2696 * pte with the new entry. This will avoid a race condition
2697 * seen in the presence of one thread doing SMC and another
2698 * thread doing COW.
2700 ptep_clear_flush(vma, address, page_table);
2701 page_add_new_anon_rmap(new_page, vma, address);
2703 * We call the notify macro here because, when using secondary
2704 * mmu page tables (such as kvm shadow page tables), we want the
2705 * new page to be mapped directly into the secondary page table.
2707 set_pte_at_notify(mm, address, page_table, entry);
2708 update_mmu_cache(vma, address, page_table);
2709 if (old_page) {
2711 * Only after switching the pte to the new page may
2712 * we remove the mapcount here. Otherwise another
2713 * process may come and find the rmap count decremented
2714 * before the pte is switched to the new page, and
2715 * "reuse" the old page writing into it while our pte
2716 * here still points into it and can be read by other
2717 * threads.
2719 * The critical issue is to order this
2720 * page_remove_rmap with the ptp_clear_flush above.
2721 * Those stores are ordered by (if nothing else,)
2722 * the barrier present in the atomic_add_negative
2723 * in page_remove_rmap.
2725 * Then the TLB flush in ptep_clear_flush ensures that
2726 * no process can access the old page before the
2727 * decremented mapcount is visible. And the old page
2728 * cannot be reused until after the decremented
2729 * mapcount is visible. So transitively, TLBs to
2730 * old page will be flushed before it can be reused.
2732 page_remove_rmap(old_page);
2735 /* Free the old page.. */
2736 new_page = old_page;
2737 ret |= VM_FAULT_WRITE;
2738 } else
2739 mem_cgroup_uncharge_page(new_page);
2741 if (new_page)
2742 page_cache_release(new_page);
2743 unlock:
2744 pte_unmap_unlock(page_table, ptl);
2745 if (old_page) {
2747 * Don't let another task, with possibly unlocked vma,
2748 * keep the mlocked page.
2750 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2751 lock_page(old_page); /* LRU manipulation */
2752 munlock_vma_page(old_page);
2753 unlock_page(old_page);
2755 page_cache_release(old_page);
2757 return ret;
2758 oom_free_new:
2759 page_cache_release(new_page);
2760 oom:
2761 if (old_page) {
2762 if (page_mkwrite) {
2763 unlock_page(old_page);
2764 page_cache_release(old_page);
2766 page_cache_release(old_page);
2768 return VM_FAULT_OOM;
2770 unwritable_page:
2771 page_cache_release(old_page);
2772 return ret;
2775 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2776 unsigned long start_addr, unsigned long end_addr,
2777 struct zap_details *details)
2779 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2782 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2783 struct zap_details *details)
2785 struct vm_area_struct *vma;
2786 struct prio_tree_iter iter;
2787 pgoff_t vba, vea, zba, zea;
2789 vma_prio_tree_foreach(vma, &iter, root,
2790 details->first_index, details->last_index) {
2792 vba = vma->vm_pgoff;
2793 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2794 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2795 zba = details->first_index;
2796 if (zba < vba)
2797 zba = vba;
2798 zea = details->last_index;
2799 if (zea > vea)
2800 zea = vea;
2802 unmap_mapping_range_vma(vma,
2803 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2804 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2805 details);
2809 static inline void unmap_mapping_range_list(struct list_head *head,
2810 struct zap_details *details)
2812 struct vm_area_struct *vma;
2815 * In nonlinear VMAs there is no correspondence between virtual address
2816 * offset and file offset. So we must perform an exhaustive search
2817 * across *all* the pages in each nonlinear VMA, not just the pages
2818 * whose virtual address lies outside the file truncation point.
2820 list_for_each_entry(vma, head, shared.vm_set.list) {
2821 details->nonlinear_vma = vma;
2822 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2827 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2828 * @mapping: the address space containing mmaps to be unmapped.
2829 * @holebegin: byte in first page to unmap, relative to the start of
2830 * the underlying file. This will be rounded down to a PAGE_SIZE
2831 * boundary. Note that this is different from truncate_pagecache(), which
2832 * must keep the partial page. In contrast, we must get rid of
2833 * partial pages.
2834 * @holelen: size of prospective hole in bytes. This will be rounded
2835 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2836 * end of the file.
2837 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2838 * but 0 when invalidating pagecache, don't throw away private data.
2840 void unmap_mapping_range(struct address_space *mapping,
2841 loff_t const holebegin, loff_t const holelen, int even_cows)
2843 struct zap_details details;
2844 pgoff_t hba = holebegin >> PAGE_SHIFT;
2845 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2847 /* Check for overflow. */
2848 if (sizeof(holelen) > sizeof(hlen)) {
2849 long long holeend =
2850 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2851 if (holeend & ~(long long)ULONG_MAX)
2852 hlen = ULONG_MAX - hba + 1;
2855 details.check_mapping = even_cows? NULL: mapping;
2856 details.nonlinear_vma = NULL;
2857 details.first_index = hba;
2858 details.last_index = hba + hlen - 1;
2859 if (details.last_index < details.first_index)
2860 details.last_index = ULONG_MAX;
2863 mutex_lock(&mapping->i_mmap_mutex);
2864 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2865 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2866 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2867 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2868 mutex_unlock(&mapping->i_mmap_mutex);
2870 EXPORT_SYMBOL(unmap_mapping_range);
2873 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2874 * but allow concurrent faults), and pte mapped but not yet locked.
2875 * We return with mmap_sem still held, but pte unmapped and unlocked.
2877 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2878 unsigned long address, pte_t *page_table, pmd_t *pmd,
2879 unsigned int flags, pte_t orig_pte)
2881 spinlock_t *ptl;
2882 struct page *page, *swapcache = NULL;
2883 swp_entry_t entry;
2884 pte_t pte;
2885 int locked;
2886 struct mem_cgroup *ptr;
2887 int exclusive = 0;
2888 int ret = 0;
2890 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2891 goto out;
2893 entry = pte_to_swp_entry(orig_pte);
2894 if (unlikely(non_swap_entry(entry))) {
2895 if (is_migration_entry(entry)) {
2896 migration_entry_wait(mm, pmd, address);
2897 } else if (is_hwpoison_entry(entry)) {
2898 ret = VM_FAULT_HWPOISON;
2899 } else {
2900 print_bad_pte(vma, address, orig_pte, NULL);
2901 ret = VM_FAULT_SIGBUS;
2903 goto out;
2905 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2906 page = lookup_swap_cache(entry);
2907 if (!page) {
2908 grab_swap_token(mm); /* Contend for token _before_ read-in */
2909 page = swapin_readahead(entry,
2910 GFP_HIGHUSER_MOVABLE, vma, address);
2911 if (!page) {
2913 * Back out if somebody else faulted in this pte
2914 * while we released the pte lock.
2916 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2917 if (likely(pte_same(*page_table, orig_pte)))
2918 ret = VM_FAULT_OOM;
2919 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2920 goto unlock;
2923 /* Had to read the page from swap area: Major fault */
2924 ret = VM_FAULT_MAJOR;
2925 count_vm_event(PGMAJFAULT);
2926 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2927 } else if (PageHWPoison(page)) {
2929 * hwpoisoned dirty swapcache pages are kept for killing
2930 * owner processes (which may be unknown at hwpoison time)
2932 ret = VM_FAULT_HWPOISON;
2933 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2934 goto out_release;
2937 locked = lock_page_or_retry(page, mm, flags);
2938 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2939 if (!locked) {
2940 ret |= VM_FAULT_RETRY;
2941 goto out_release;
2945 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2946 * release the swapcache from under us. The page pin, and pte_same
2947 * test below, are not enough to exclude that. Even if it is still
2948 * swapcache, we need to check that the page's swap has not changed.
2950 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2951 goto out_page;
2953 if (ksm_might_need_to_copy(page, vma, address)) {
2954 swapcache = page;
2955 page = ksm_does_need_to_copy(page, vma, address);
2957 if (unlikely(!page)) {
2958 ret = VM_FAULT_OOM;
2959 page = swapcache;
2960 swapcache = NULL;
2961 goto out_page;
2965 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2966 ret = VM_FAULT_OOM;
2967 goto out_page;
2971 * Back out if somebody else already faulted in this pte.
2973 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2974 if (unlikely(!pte_same(*page_table, orig_pte)))
2975 goto out_nomap;
2977 if (unlikely(!PageUptodate(page))) {
2978 ret = VM_FAULT_SIGBUS;
2979 goto out_nomap;
2983 * The page isn't present yet, go ahead with the fault.
2985 * Be careful about the sequence of operations here.
2986 * To get its accounting right, reuse_swap_page() must be called
2987 * while the page is counted on swap but not yet in mapcount i.e.
2988 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2989 * must be called after the swap_free(), or it will never succeed.
2990 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2991 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2992 * in page->private. In this case, a record in swap_cgroup is silently
2993 * discarded at swap_free().
2996 inc_mm_counter_fast(mm, MM_ANONPAGES);
2997 dec_mm_counter_fast(mm, MM_SWAPENTS);
2998 pte = mk_pte(page, vma->vm_page_prot);
2999 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3000 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3001 flags &= ~FAULT_FLAG_WRITE;
3002 ret |= VM_FAULT_WRITE;
3003 exclusive = 1;
3005 flush_icache_page(vma, page);
3006 set_pte_at(mm, address, page_table, pte);
3007 do_page_add_anon_rmap(page, vma, address, exclusive);
3008 /* It's better to call commit-charge after rmap is established */
3009 mem_cgroup_commit_charge_swapin(page, ptr);
3011 swap_free(entry);
3012 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3013 try_to_free_swap(page);
3014 unlock_page(page);
3015 if (swapcache) {
3017 * Hold the lock to avoid the swap entry to be reused
3018 * until we take the PT lock for the pte_same() check
3019 * (to avoid false positives from pte_same). For
3020 * further safety release the lock after the swap_free
3021 * so that the swap count won't change under a
3022 * parallel locked swapcache.
3024 unlock_page(swapcache);
3025 page_cache_release(swapcache);
3028 if (flags & FAULT_FLAG_WRITE) {
3029 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3030 if (ret & VM_FAULT_ERROR)
3031 ret &= VM_FAULT_ERROR;
3032 goto out;
3035 /* No need to invalidate - it was non-present before */
3036 update_mmu_cache(vma, address, page_table);
3037 unlock:
3038 pte_unmap_unlock(page_table, ptl);
3039 out:
3040 return ret;
3041 out_nomap:
3042 mem_cgroup_cancel_charge_swapin(ptr);
3043 pte_unmap_unlock(page_table, ptl);
3044 out_page:
3045 unlock_page(page);
3046 out_release:
3047 page_cache_release(page);
3048 if (swapcache) {
3049 unlock_page(swapcache);
3050 page_cache_release(swapcache);
3052 return ret;
3056 * This is like a special single-page "expand_{down|up}wards()",
3057 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3058 * doesn't hit another vma.
3060 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3062 address &= PAGE_MASK;
3063 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3064 struct vm_area_struct *prev = vma->vm_prev;
3067 * Is there a mapping abutting this one below?
3069 * That's only ok if it's the same stack mapping
3070 * that has gotten split..
3072 if (prev && prev->vm_end == address)
3073 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3075 expand_downwards(vma, address - PAGE_SIZE);
3077 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3078 struct vm_area_struct *next = vma->vm_next;
3080 /* As VM_GROWSDOWN but s/below/above/ */
3081 if (next && next->vm_start == address + PAGE_SIZE)
3082 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3084 expand_upwards(vma, address + PAGE_SIZE);
3086 return 0;
3090 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3091 * but allow concurrent faults), and pte mapped but not yet locked.
3092 * We return with mmap_sem still held, but pte unmapped and unlocked.
3094 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3095 unsigned long address, pte_t *page_table, pmd_t *pmd,
3096 unsigned int flags)
3098 struct page *page;
3099 spinlock_t *ptl;
3100 pte_t entry;
3102 pte_unmap(page_table);
3104 /* Check if we need to add a guard page to the stack */
3105 if (check_stack_guard_page(vma, address) < 0)
3106 return VM_FAULT_SIGBUS;
3108 /* Use the zero-page for reads */
3109 if (!(flags & FAULT_FLAG_WRITE)) {
3110 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3111 vma->vm_page_prot));
3112 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3113 if (!pte_none(*page_table))
3114 goto unlock;
3115 goto setpte;
3118 /* Allocate our own private page. */
3119 if (unlikely(anon_vma_prepare(vma)))
3120 goto oom;
3121 page = alloc_zeroed_user_highpage_movable(vma, address);
3122 if (!page)
3123 goto oom;
3124 __SetPageUptodate(page);
3126 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3127 goto oom_free_page;
3129 entry = mk_pte(page, vma->vm_page_prot);
3130 if (vma->vm_flags & VM_WRITE)
3131 entry = pte_mkwrite(pte_mkdirty(entry));
3133 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3134 if (!pte_none(*page_table))
3135 goto release;
3137 inc_mm_counter_fast(mm, MM_ANONPAGES);
3138 page_add_new_anon_rmap(page, vma, address);
3139 setpte:
3140 set_pte_at(mm, address, page_table, entry);
3142 /* No need to invalidate - it was non-present before */
3143 update_mmu_cache(vma, address, page_table);
3144 unlock:
3145 pte_unmap_unlock(page_table, ptl);
3146 return 0;
3147 release:
3148 mem_cgroup_uncharge_page(page);
3149 page_cache_release(page);
3150 goto unlock;
3151 oom_free_page:
3152 page_cache_release(page);
3153 oom:
3154 return VM_FAULT_OOM;
3158 * __do_fault() tries to create a new page mapping. It aggressively
3159 * tries to share with existing pages, but makes a separate copy if
3160 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3161 * the next page fault.
3163 * As this is called only for pages that do not currently exist, we
3164 * do not need to flush old virtual caches or the TLB.
3166 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3167 * but allow concurrent faults), and pte neither mapped nor locked.
3168 * We return with mmap_sem still held, but pte unmapped and unlocked.
3170 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3171 unsigned long address, pmd_t *pmd,
3172 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3174 pte_t *page_table;
3175 spinlock_t *ptl;
3176 struct page *page;
3177 struct page *cow_page;
3178 pte_t entry;
3179 int anon = 0;
3180 struct page *dirty_page = NULL;
3181 struct vm_fault vmf;
3182 int ret;
3183 int page_mkwrite = 0;
3186 * If we do COW later, allocate page befor taking lock_page()
3187 * on the file cache page. This will reduce lock holding time.
3189 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3191 if (unlikely(anon_vma_prepare(vma)))
3192 return VM_FAULT_OOM;
3194 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3195 if (!cow_page)
3196 return VM_FAULT_OOM;
3198 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3199 page_cache_release(cow_page);
3200 return VM_FAULT_OOM;
3202 } else
3203 cow_page = NULL;
3205 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3206 vmf.pgoff = pgoff;
3207 vmf.flags = flags;
3208 vmf.page = NULL;
3210 ret = vma->vm_ops->fault(vma, &vmf);
3211 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3212 VM_FAULT_RETRY)))
3213 goto uncharge_out;
3215 if (unlikely(PageHWPoison(vmf.page))) {
3216 if (ret & VM_FAULT_LOCKED)
3217 unlock_page(vmf.page);
3218 ret = VM_FAULT_HWPOISON;
3219 goto uncharge_out;
3223 * For consistency in subsequent calls, make the faulted page always
3224 * locked.
3226 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3227 lock_page(vmf.page);
3228 else
3229 VM_BUG_ON(!PageLocked(vmf.page));
3232 * Should we do an early C-O-W break?
3234 page = vmf.page;
3235 if (flags & FAULT_FLAG_WRITE) {
3236 if (!(vma->vm_flags & VM_SHARED)) {
3237 page = cow_page;
3238 anon = 1;
3239 copy_user_highpage(page, vmf.page, address, vma);
3240 __SetPageUptodate(page);
3241 } else {
3243 * If the page will be shareable, see if the backing
3244 * address space wants to know that the page is about
3245 * to become writable
3247 if (vma->vm_ops->page_mkwrite) {
3248 int tmp;
3250 unlock_page(page);
3251 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3252 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3253 if (unlikely(tmp &
3254 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3255 ret = tmp;
3256 goto unwritable_page;
3258 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3259 lock_page(page);
3260 if (!page->mapping) {
3261 ret = 0; /* retry the fault */
3262 unlock_page(page);
3263 goto unwritable_page;
3265 } else
3266 VM_BUG_ON(!PageLocked(page));
3267 page_mkwrite = 1;
3273 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3276 * This silly early PAGE_DIRTY setting removes a race
3277 * due to the bad i386 page protection. But it's valid
3278 * for other architectures too.
3280 * Note that if FAULT_FLAG_WRITE is set, we either now have
3281 * an exclusive copy of the page, or this is a shared mapping,
3282 * so we can make it writable and dirty to avoid having to
3283 * handle that later.
3285 /* Only go through if we didn't race with anybody else... */
3286 if (likely(pte_same(*page_table, orig_pte))) {
3287 flush_icache_page(vma, page);
3288 entry = mk_pte(page, vma->vm_page_prot);
3289 if (flags & FAULT_FLAG_WRITE)
3290 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3291 if (anon) {
3292 inc_mm_counter_fast(mm, MM_ANONPAGES);
3293 page_add_new_anon_rmap(page, vma, address);
3294 } else {
3295 inc_mm_counter_fast(mm, MM_FILEPAGES);
3296 page_add_file_rmap(page);
3297 if (flags & FAULT_FLAG_WRITE) {
3298 dirty_page = page;
3299 get_page(dirty_page);
3302 set_pte_at(mm, address, page_table, entry);
3304 /* no need to invalidate: a not-present page won't be cached */
3305 update_mmu_cache(vma, address, page_table);
3306 } else {
3307 if (cow_page)
3308 mem_cgroup_uncharge_page(cow_page);
3309 if (anon)
3310 page_cache_release(page);
3311 else
3312 anon = 1; /* no anon but release faulted_page */
3315 pte_unmap_unlock(page_table, ptl);
3317 if (dirty_page) {
3318 struct address_space *mapping = page->mapping;
3320 if (set_page_dirty(dirty_page))
3321 page_mkwrite = 1;
3322 unlock_page(dirty_page);
3323 put_page(dirty_page);
3324 if (page_mkwrite && mapping) {
3326 * Some device drivers do not set page.mapping but still
3327 * dirty their pages
3329 balance_dirty_pages_ratelimited(mapping);
3332 /* file_update_time outside page_lock */
3333 if (vma->vm_file)
3334 file_update_time(vma->vm_file);
3335 } else {
3336 unlock_page(vmf.page);
3337 if (anon)
3338 page_cache_release(vmf.page);
3341 return ret;
3343 unwritable_page:
3344 page_cache_release(page);
3345 return ret;
3346 uncharge_out:
3347 /* fs's fault handler get error */
3348 if (cow_page) {
3349 mem_cgroup_uncharge_page(cow_page);
3350 page_cache_release(cow_page);
3352 return ret;
3355 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3356 unsigned long address, pte_t *page_table, pmd_t *pmd,
3357 unsigned int flags, pte_t orig_pte)
3359 pgoff_t pgoff = (((address & PAGE_MASK)
3360 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3362 pte_unmap(page_table);
3363 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3367 * Fault of a previously existing named mapping. Repopulate the pte
3368 * from the encoded file_pte if possible. This enables swappable
3369 * nonlinear vmas.
3371 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3372 * but allow concurrent faults), and pte mapped but not yet locked.
3373 * We return with mmap_sem still held, but pte unmapped and unlocked.
3375 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3376 unsigned long address, pte_t *page_table, pmd_t *pmd,
3377 unsigned int flags, pte_t orig_pte)
3379 pgoff_t pgoff;
3381 flags |= FAULT_FLAG_NONLINEAR;
3383 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3384 return 0;
3386 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3388 * Page table corrupted: show pte and kill process.
3390 print_bad_pte(vma, address, orig_pte, NULL);
3391 return VM_FAULT_SIGBUS;
3394 pgoff = pte_to_pgoff(orig_pte);
3395 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3399 * These routines also need to handle stuff like marking pages dirty
3400 * and/or accessed for architectures that don't do it in hardware (most
3401 * RISC architectures). The early dirtying is also good on the i386.
3403 * There is also a hook called "update_mmu_cache()" that architectures
3404 * with external mmu caches can use to update those (ie the Sparc or
3405 * PowerPC hashed page tables that act as extended TLBs).
3407 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3408 * but allow concurrent faults), and pte mapped but not yet locked.
3409 * We return with mmap_sem still held, but pte unmapped and unlocked.
3411 int handle_pte_fault(struct mm_struct *mm,
3412 struct vm_area_struct *vma, unsigned long address,
3413 pte_t *pte, pmd_t *pmd, unsigned int flags)
3415 pte_t entry;
3416 spinlock_t *ptl;
3418 entry = *pte;
3419 if (!pte_present(entry)) {
3420 if (pte_none(entry)) {
3421 if (vma->vm_ops) {
3422 if (likely(vma->vm_ops->fault))
3423 return do_linear_fault(mm, vma, address,
3424 pte, pmd, flags, entry);
3426 return do_anonymous_page(mm, vma, address,
3427 pte, pmd, flags);
3429 if (pte_file(entry))
3430 return do_nonlinear_fault(mm, vma, address,
3431 pte, pmd, flags, entry);
3432 return do_swap_page(mm, vma, address,
3433 pte, pmd, flags, entry);
3436 ptl = pte_lockptr(mm, pmd);
3437 spin_lock(ptl);
3438 if (unlikely(!pte_same(*pte, entry)))
3439 goto unlock;
3440 if (flags & FAULT_FLAG_WRITE) {
3441 if (!pte_write(entry))
3442 return do_wp_page(mm, vma, address,
3443 pte, pmd, ptl, entry);
3444 entry = pte_mkdirty(entry);
3446 entry = pte_mkyoung(entry);
3447 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3448 update_mmu_cache(vma, address, pte);
3449 } else {
3451 * This is needed only for protection faults but the arch code
3452 * is not yet telling us if this is a protection fault or not.
3453 * This still avoids useless tlb flushes for .text page faults
3454 * with threads.
3456 if (flags & FAULT_FLAG_WRITE)
3457 flush_tlb_fix_spurious_fault(vma, address);
3459 unlock:
3460 pte_unmap_unlock(pte, ptl);
3461 return 0;
3465 * By the time we get here, we already hold the mm semaphore
3467 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3468 unsigned long address, unsigned int flags)
3470 pgd_t *pgd;
3471 pud_t *pud;
3472 pmd_t *pmd;
3473 pte_t *pte;
3475 __set_current_state(TASK_RUNNING);
3477 count_vm_event(PGFAULT);
3478 mem_cgroup_count_vm_event(mm, PGFAULT);
3480 /* do counter updates before entering really critical section. */
3481 check_sync_rss_stat(current);
3483 if (unlikely(is_vm_hugetlb_page(vma)))
3484 return hugetlb_fault(mm, vma, address, flags);
3486 pgd = pgd_offset(mm, address);
3487 pud = pud_alloc(mm, pgd, address);
3488 if (!pud)
3489 return VM_FAULT_OOM;
3490 pmd = pmd_alloc(mm, pud, address);
3491 if (!pmd)
3492 return VM_FAULT_OOM;
3493 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3494 if (!vma->vm_ops)
3495 return do_huge_pmd_anonymous_page(mm, vma, address,
3496 pmd, flags);
3497 } else {
3498 pmd_t orig_pmd = *pmd;
3499 barrier();
3500 if (pmd_trans_huge(orig_pmd)) {
3501 if (flags & FAULT_FLAG_WRITE &&
3502 !pmd_write(orig_pmd) &&
3503 !pmd_trans_splitting(orig_pmd))
3504 return do_huge_pmd_wp_page(mm, vma, address,
3505 pmd, orig_pmd);
3506 return 0;
3511 * Use __pte_alloc instead of pte_alloc_map, because we can't
3512 * run pte_offset_map on the pmd, if an huge pmd could
3513 * materialize from under us from a different thread.
3515 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3516 return VM_FAULT_OOM;
3517 /* if an huge pmd materialized from under us just retry later */
3518 if (unlikely(pmd_trans_huge(*pmd)))
3519 return 0;
3521 * A regular pmd is established and it can't morph into a huge pmd
3522 * from under us anymore at this point because we hold the mmap_sem
3523 * read mode and khugepaged takes it in write mode. So now it's
3524 * safe to run pte_offset_map().
3526 pte = pte_offset_map(pmd, address);
3528 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3531 #ifndef __PAGETABLE_PUD_FOLDED
3533 * Allocate page upper directory.
3534 * We've already handled the fast-path in-line.
3536 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3538 pud_t *new = pud_alloc_one(mm, address);
3539 if (!new)
3540 return -ENOMEM;
3542 smp_wmb(); /* See comment in __pte_alloc */
3544 spin_lock(&mm->page_table_lock);
3545 if (pgd_present(*pgd)) /* Another has populated it */
3546 pud_free(mm, new);
3547 else
3548 pgd_populate(mm, pgd, new);
3549 spin_unlock(&mm->page_table_lock);
3550 return 0;
3552 #endif /* __PAGETABLE_PUD_FOLDED */
3554 #ifndef __PAGETABLE_PMD_FOLDED
3556 * Allocate page middle directory.
3557 * We've already handled the fast-path in-line.
3559 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3561 pmd_t *new = pmd_alloc_one(mm, address);
3562 if (!new)
3563 return -ENOMEM;
3565 smp_wmb(); /* See comment in __pte_alloc */
3567 spin_lock(&mm->page_table_lock);
3568 #ifndef __ARCH_HAS_4LEVEL_HACK
3569 if (pud_present(*pud)) /* Another has populated it */
3570 pmd_free(mm, new);
3571 else
3572 pud_populate(mm, pud, new);
3573 #else
3574 if (pgd_present(*pud)) /* Another has populated it */
3575 pmd_free(mm, new);
3576 else
3577 pgd_populate(mm, pud, new);
3578 #endif /* __ARCH_HAS_4LEVEL_HACK */
3579 spin_unlock(&mm->page_table_lock);
3580 return 0;
3582 #endif /* __PAGETABLE_PMD_FOLDED */
3584 int make_pages_present(unsigned long addr, unsigned long end)
3586 int ret, len, write;
3587 struct vm_area_struct * vma;
3589 vma = find_vma(current->mm, addr);
3590 if (!vma)
3591 return -ENOMEM;
3593 * We want to touch writable mappings with a write fault in order
3594 * to break COW, except for shared mappings because these don't COW
3595 * and we would not want to dirty them for nothing.
3597 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3598 BUG_ON(addr >= end);
3599 BUG_ON(end > vma->vm_end);
3600 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3601 ret = get_user_pages(current, current->mm, addr,
3602 len, write, 0, NULL, NULL);
3603 if (ret < 0)
3604 return ret;
3605 return ret == len ? 0 : -EFAULT;
3608 #if !defined(__HAVE_ARCH_GATE_AREA)
3610 #if defined(AT_SYSINFO_EHDR)
3611 static struct vm_area_struct gate_vma;
3613 static int __init gate_vma_init(void)
3615 gate_vma.vm_mm = NULL;
3616 gate_vma.vm_start = FIXADDR_USER_START;
3617 gate_vma.vm_end = FIXADDR_USER_END;
3618 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3619 gate_vma.vm_page_prot = __P101;
3621 return 0;
3623 __initcall(gate_vma_init);
3624 #endif
3626 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3628 #ifdef AT_SYSINFO_EHDR
3629 return &gate_vma;
3630 #else
3631 return NULL;
3632 #endif
3635 int in_gate_area_no_mm(unsigned long addr)
3637 #ifdef AT_SYSINFO_EHDR
3638 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3639 return 1;
3640 #endif
3641 return 0;
3644 #endif /* __HAVE_ARCH_GATE_AREA */
3646 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3647 pte_t **ptepp, spinlock_t **ptlp)
3649 pgd_t *pgd;
3650 pud_t *pud;
3651 pmd_t *pmd;
3652 pte_t *ptep;
3654 pgd = pgd_offset(mm, address);
3655 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3656 goto out;
3658 pud = pud_offset(pgd, address);
3659 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3660 goto out;
3662 pmd = pmd_offset(pud, address);
3663 VM_BUG_ON(pmd_trans_huge(*pmd));
3664 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3665 goto out;
3667 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3668 if (pmd_huge(*pmd))
3669 goto out;
3671 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3672 if (!ptep)
3673 goto out;
3674 if (!pte_present(*ptep))
3675 goto unlock;
3676 *ptepp = ptep;
3677 return 0;
3678 unlock:
3679 pte_unmap_unlock(ptep, *ptlp);
3680 out:
3681 return -EINVAL;
3684 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3685 pte_t **ptepp, spinlock_t **ptlp)
3687 int res;
3689 /* (void) is needed to make gcc happy */
3690 (void) __cond_lock(*ptlp,
3691 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3692 return res;
3696 * follow_pfn - look up PFN at a user virtual address
3697 * @vma: memory mapping
3698 * @address: user virtual address
3699 * @pfn: location to store found PFN
3701 * Only IO mappings and raw PFN mappings are allowed.
3703 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3705 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3706 unsigned long *pfn)
3708 int ret = -EINVAL;
3709 spinlock_t *ptl;
3710 pte_t *ptep;
3712 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3713 return ret;
3715 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3716 if (ret)
3717 return ret;
3718 *pfn = pte_pfn(*ptep);
3719 pte_unmap_unlock(ptep, ptl);
3720 return 0;
3722 EXPORT_SYMBOL(follow_pfn);
3724 #ifdef CONFIG_HAVE_IOREMAP_PROT
3725 int follow_phys(struct vm_area_struct *vma,
3726 unsigned long address, unsigned int flags,
3727 unsigned long *prot, resource_size_t *phys)
3729 int ret = -EINVAL;
3730 pte_t *ptep, pte;
3731 spinlock_t *ptl;
3733 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3734 goto out;
3736 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3737 goto out;
3738 pte = *ptep;
3740 if ((flags & FOLL_WRITE) && !pte_write(pte))
3741 goto unlock;
3743 *prot = pgprot_val(pte_pgprot(pte));
3744 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3746 ret = 0;
3747 unlock:
3748 pte_unmap_unlock(ptep, ptl);
3749 out:
3750 return ret;
3753 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3754 void *buf, int len, int write)
3756 resource_size_t phys_addr;
3757 unsigned long prot = 0;
3758 void __iomem *maddr;
3759 int offset = addr & (PAGE_SIZE-1);
3761 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3762 return -EINVAL;
3764 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3765 if (write)
3766 memcpy_toio(maddr + offset, buf, len);
3767 else
3768 memcpy_fromio(buf, maddr + offset, len);
3769 iounmap(maddr);
3771 return len;
3773 #endif
3776 * Access another process' address space as given in mm. If non-NULL, use the
3777 * given task for page fault accounting.
3779 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3780 unsigned long addr, void *buf, int len, int write)
3782 struct vm_area_struct *vma;
3783 void *old_buf = buf;
3785 down_read(&mm->mmap_sem);
3786 /* ignore errors, just check how much was successfully transferred */
3787 while (len) {
3788 int bytes, ret, offset;
3789 void *maddr;
3790 struct page *page = NULL;
3792 ret = get_user_pages(tsk, mm, addr, 1,
3793 write, 1, &page, &vma);
3794 if (ret <= 0) {
3796 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3797 * we can access using slightly different code.
3799 #ifdef CONFIG_HAVE_IOREMAP_PROT
3800 vma = find_vma(mm, addr);
3801 if (!vma || vma->vm_start > addr)
3802 break;
3803 if (vma->vm_ops && vma->vm_ops->access)
3804 ret = vma->vm_ops->access(vma, addr, buf,
3805 len, write);
3806 if (ret <= 0)
3807 #endif
3808 break;
3809 bytes = ret;
3810 } else {
3811 bytes = len;
3812 offset = addr & (PAGE_SIZE-1);
3813 if (bytes > PAGE_SIZE-offset)
3814 bytes = PAGE_SIZE-offset;
3816 maddr = kmap(page);
3817 if (write) {
3818 copy_to_user_page(vma, page, addr,
3819 maddr + offset, buf, bytes);
3820 set_page_dirty_lock(page);
3821 } else {
3822 copy_from_user_page(vma, page, addr,
3823 buf, maddr + offset, bytes);
3825 kunmap(page);
3826 page_cache_release(page);
3828 len -= bytes;
3829 buf += bytes;
3830 addr += bytes;
3832 up_read(&mm->mmap_sem);
3834 return buf - old_buf;
3838 * access_remote_vm - access another process' address space
3839 * @mm: the mm_struct of the target address space
3840 * @addr: start address to access
3841 * @buf: source or destination buffer
3842 * @len: number of bytes to transfer
3843 * @write: whether the access is a write
3845 * The caller must hold a reference on @mm.
3847 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3848 void *buf, int len, int write)
3850 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3854 * Access another process' address space.
3855 * Source/target buffer must be kernel space,
3856 * Do not walk the page table directly, use get_user_pages
3858 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3859 void *buf, int len, int write)
3861 struct mm_struct *mm;
3862 int ret;
3864 mm = get_task_mm(tsk);
3865 if (!mm)
3866 return 0;
3868 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3869 mmput(mm);
3871 return ret;
3875 * Print the name of a VMA.
3877 void print_vma_addr(char *prefix, unsigned long ip)
3879 struct mm_struct *mm = current->mm;
3880 struct vm_area_struct *vma;
3883 * Do not print if we are in atomic
3884 * contexts (in exception stacks, etc.):
3886 if (preempt_count())
3887 return;
3889 down_read(&mm->mmap_sem);
3890 vma = find_vma(mm, ip);
3891 if (vma && vma->vm_file) {
3892 struct file *f = vma->vm_file;
3893 char *buf = (char *)__get_free_page(GFP_KERNEL);
3894 if (buf) {
3895 char *p, *s;
3897 p = d_path(&f->f_path, buf, PAGE_SIZE);
3898 if (IS_ERR(p))
3899 p = "?";
3900 s = strrchr(p, '/');
3901 if (s)
3902 p = s+1;
3903 printk("%s%s[%lx+%lx]", prefix, p,
3904 vma->vm_start,
3905 vma->vm_end - vma->vm_start);
3906 free_page((unsigned long)buf);
3909 up_read(&current->mm->mmap_sem);
3912 #ifdef CONFIG_PROVE_LOCKING
3913 void might_fault(void)
3916 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3917 * holding the mmap_sem, this is safe because kernel memory doesn't
3918 * get paged out, therefore we'll never actually fault, and the
3919 * below annotations will generate false positives.
3921 if (segment_eq(get_fs(), KERNEL_DS))
3922 return;
3924 might_sleep();
3926 * it would be nicer only to annotate paths which are not under
3927 * pagefault_disable, however that requires a larger audit and
3928 * providing helpers like get_user_atomic.
3930 if (!in_atomic() && current->mm)
3931 might_lock_read(&current->mm->mmap_sem);
3933 EXPORT_SYMBOL(might_fault);
3934 #endif
3936 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3937 static void clear_gigantic_page(struct page *page,
3938 unsigned long addr,
3939 unsigned int pages_per_huge_page)
3941 int i;
3942 struct page *p = page;
3944 might_sleep();
3945 for (i = 0; i < pages_per_huge_page;
3946 i++, p = mem_map_next(p, page, i)) {
3947 cond_resched();
3948 clear_user_highpage(p, addr + i * PAGE_SIZE);
3951 void clear_huge_page(struct page *page,
3952 unsigned long addr, unsigned int pages_per_huge_page)
3954 int i;
3956 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3957 clear_gigantic_page(page, addr, pages_per_huge_page);
3958 return;
3961 might_sleep();
3962 for (i = 0; i < pages_per_huge_page; i++) {
3963 cond_resched();
3964 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3968 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3969 unsigned long addr,
3970 struct vm_area_struct *vma,
3971 unsigned int pages_per_huge_page)
3973 int i;
3974 struct page *dst_base = dst;
3975 struct page *src_base = src;
3977 for (i = 0; i < pages_per_huge_page; ) {
3978 cond_resched();
3979 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3981 i++;
3982 dst = mem_map_next(dst, dst_base, i);
3983 src = mem_map_next(src, src_base, i);
3987 void copy_user_huge_page(struct page *dst, struct page *src,
3988 unsigned long addr, struct vm_area_struct *vma,
3989 unsigned int pages_per_huge_page)
3991 int i;
3993 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3994 copy_user_gigantic_page(dst, src, addr, vma,
3995 pages_per_huge_page);
3996 return;
3999 might_sleep();
4000 for (i = 0; i < pages_per_huge_page; i++) {
4001 cond_resched();
4002 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4005 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */