2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements the LEB properties tree (LPT) area. The LPT area
25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27 * between the log and the orphan area.
29 * The LPT area is like a miniature self-contained file system. It is required
30 * that it never runs out of space, is fast to access and update, and scales
31 * logarithmically. The LEB properties tree is implemented as a wandering tree
32 * much like the TNC, and the LPT area has its own garbage collection.
34 * The LPT has two slightly different forms called the "small model" and the
35 * "big model". The small model is used when the entire LEB properties table
36 * can be written into a single eraseblock. In that case, garbage collection
37 * consists of just writing the whole table, which therefore makes all other
38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39 * selected for garbage collection, which consists of marking the clean nodes in
40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41 * the case of the big model, a table of LEB numbers is saved so that the entire
42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 #include <linux/slab.h>
52 * do_calc_lpt_geom - calculate sizes for the LPT area.
53 * @c: the UBIFS file-system description object
55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56 * properties of the flash and whether LPT is "big" (c->big_lpt).
58 static void do_calc_lpt_geom(struct ubifs_info
*c
)
60 int i
, n
, bits
, per_leb_wastage
, max_pnode_cnt
;
61 long long sz
, tot_wastage
;
63 n
= c
->main_lebs
+ c
->max_leb_cnt
- c
->leb_cnt
;
64 max_pnode_cnt
= DIV_ROUND_UP(n
, UBIFS_LPT_FANOUT
);
68 while (n
< max_pnode_cnt
) {
70 n
<<= UBIFS_LPT_FANOUT_SHIFT
;
73 c
->pnode_cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
75 n
= DIV_ROUND_UP(c
->pnode_cnt
, UBIFS_LPT_FANOUT
);
77 for (i
= 1; i
< c
->lpt_hght
; i
++) {
78 n
= DIV_ROUND_UP(n
, UBIFS_LPT_FANOUT
);
82 c
->space_bits
= fls(c
->leb_size
) - 3;
83 c
->lpt_lnum_bits
= fls(c
->lpt_lebs
);
84 c
->lpt_offs_bits
= fls(c
->leb_size
- 1);
85 c
->lpt_spc_bits
= fls(c
->leb_size
);
87 n
= DIV_ROUND_UP(c
->max_leb_cnt
, UBIFS_LPT_FANOUT
);
88 c
->pcnt_bits
= fls(n
- 1);
90 c
->lnum_bits
= fls(c
->max_leb_cnt
- 1);
92 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
93 (c
->big_lpt
? c
->pcnt_bits
: 0) +
94 (c
->space_bits
* 2 + 1) * UBIFS_LPT_FANOUT
;
95 c
->pnode_sz
= (bits
+ 7) / 8;
97 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
98 (c
->big_lpt
? c
->pcnt_bits
: 0) +
99 (c
->lpt_lnum_bits
+ c
->lpt_offs_bits
) * UBIFS_LPT_FANOUT
;
100 c
->nnode_sz
= (bits
+ 7) / 8;
102 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
103 c
->lpt_lebs
* c
->lpt_spc_bits
* 2;
104 c
->ltab_sz
= (bits
+ 7) / 8;
106 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
107 c
->lnum_bits
* c
->lsave_cnt
;
108 c
->lsave_sz
= (bits
+ 7) / 8;
110 /* Calculate the minimum LPT size */
111 c
->lpt_sz
= (long long)c
->pnode_cnt
* c
->pnode_sz
;
112 c
->lpt_sz
+= (long long)c
->nnode_cnt
* c
->nnode_sz
;
113 c
->lpt_sz
+= c
->ltab_sz
;
115 c
->lpt_sz
+= c
->lsave_sz
;
119 per_leb_wastage
= max_t(int, c
->pnode_sz
, c
->nnode_sz
);
120 sz
+= per_leb_wastage
;
121 tot_wastage
= per_leb_wastage
;
122 while (sz
> c
->leb_size
) {
123 sz
+= per_leb_wastage
;
125 tot_wastage
+= per_leb_wastage
;
127 tot_wastage
+= ALIGN(sz
, c
->min_io_size
) - sz
;
128 c
->lpt_sz
+= tot_wastage
;
132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133 * @c: the UBIFS file-system description object
135 * This function returns %0 on success and a negative error code on failure.
137 int ubifs_calc_lpt_geom(struct ubifs_info
*c
)
144 /* Verify that lpt_lebs is big enough */
145 sz
= c
->lpt_sz
* 2; /* Must have at least 2 times the size */
146 lebs_needed
= div_u64(sz
+ c
->leb_size
- 1, c
->leb_size
);
147 if (lebs_needed
> c
->lpt_lebs
) {
148 ubifs_err("too few LPT LEBs");
152 /* Verify that ltab fits in a single LEB (since ltab is a single node */
153 if (c
->ltab_sz
> c
->leb_size
) {
154 ubifs_err("LPT ltab too big");
158 c
->check_lpt_free
= c
->big_lpt
;
163 * calc_dflt_lpt_geom - calculate default LPT geometry.
164 * @c: the UBIFS file-system description object
165 * @main_lebs: number of main area LEBs is passed and returned here
166 * @big_lpt: whether the LPT area is "big" is returned here
168 * The size of the LPT area depends on parameters that themselves are dependent
169 * on the size of the LPT area. This function, successively recalculates the LPT
170 * area geometry until the parameters and resultant geometry are consistent.
172 * This function returns %0 on success and a negative error code on failure.
174 static int calc_dflt_lpt_geom(struct ubifs_info
*c
, int *main_lebs
,
180 /* Start by assuming the minimum number of LPT LEBs */
181 c
->lpt_lebs
= UBIFS_MIN_LPT_LEBS
;
182 c
->main_lebs
= *main_lebs
- c
->lpt_lebs
;
183 if (c
->main_lebs
<= 0)
186 /* And assume we will use the small LPT model */
190 * Calculate the geometry based on assumptions above and then see if it
195 /* Small LPT model must have lpt_sz < leb_size */
196 if (c
->lpt_sz
> c
->leb_size
) {
197 /* Nope, so try again using big LPT model */
202 /* Now check there are enough LPT LEBs */
203 for (i
= 0; i
< 64 ; i
++) {
204 sz
= c
->lpt_sz
* 4; /* Allow 4 times the size */
205 lebs_needed
= div_u64(sz
+ c
->leb_size
- 1, c
->leb_size
);
206 if (lebs_needed
> c
->lpt_lebs
) {
207 /* Not enough LPT LEBs so try again with more */
208 c
->lpt_lebs
= lebs_needed
;
209 c
->main_lebs
= *main_lebs
- c
->lpt_lebs
;
210 if (c
->main_lebs
<= 0)
215 if (c
->ltab_sz
> c
->leb_size
) {
216 ubifs_err("LPT ltab too big");
219 *main_lebs
= c
->main_lebs
;
220 *big_lpt
= c
->big_lpt
;
227 * pack_bits - pack bit fields end-to-end.
228 * @addr: address at which to pack (passed and next address returned)
229 * @pos: bit position at which to pack (passed and next position returned)
230 * @val: value to pack
231 * @nrbits: number of bits of value to pack (1-32)
233 static void pack_bits(uint8_t **addr
, int *pos
, uint32_t val
, int nrbits
)
238 ubifs_assert(nrbits
> 0);
239 ubifs_assert(nrbits
<= 32);
240 ubifs_assert(*pos
>= 0);
241 ubifs_assert(*pos
< 8);
242 ubifs_assert((val
>> nrbits
) == 0 || nrbits
== 32);
244 *p
|= ((uint8_t)val
) << b
;
247 *++p
= (uint8_t)(val
>>= (8 - b
));
249 *++p
= (uint8_t)(val
>>= 8);
251 *++p
= (uint8_t)(val
>>= 8);
253 *++p
= (uint8_t)(val
>>= 8);
260 *++p
= (uint8_t)(val
>>= 8);
262 *++p
= (uint8_t)(val
>>= 8);
264 *++p
= (uint8_t)(val
>>= 8);
276 * ubifs_unpack_bits - unpack bit fields.
277 * @addr: address at which to unpack (passed and next address returned)
278 * @pos: bit position at which to unpack (passed and next position returned)
279 * @nrbits: number of bits of value to unpack (1-32)
281 * This functions returns the value unpacked.
283 uint32_t ubifs_unpack_bits(uint8_t **addr
, int *pos
, int nrbits
)
285 const int k
= 32 - nrbits
;
288 uint32_t uninitialized_var(val
);
289 const int bytes
= (nrbits
+ b
+ 7) >> 3;
291 ubifs_assert(nrbits
> 0);
292 ubifs_assert(nrbits
<= 32);
293 ubifs_assert(*pos
>= 0);
294 ubifs_assert(*pos
< 8);
301 val
= p
[1] | ((uint32_t)p
[2] << 8);
304 val
= p
[1] | ((uint32_t)p
[2] << 8) |
305 ((uint32_t)p
[3] << 16);
308 val
= p
[1] | ((uint32_t)p
[2] << 8) |
309 ((uint32_t)p
[3] << 16) |
310 ((uint32_t)p
[4] << 24);
321 val
= p
[0] | ((uint32_t)p
[1] << 8);
324 val
= p
[0] | ((uint32_t)p
[1] << 8) |
325 ((uint32_t)p
[2] << 16);
328 val
= p
[0] | ((uint32_t)p
[1] << 8) |
329 ((uint32_t)p
[2] << 16) |
330 ((uint32_t)p
[3] << 24);
340 ubifs_assert((val
>> nrbits
) == 0 || nrbits
- b
== 32);
345 * ubifs_pack_pnode - pack all the bit fields of a pnode.
346 * @c: UBIFS file-system description object
347 * @buf: buffer into which to pack
348 * @pnode: pnode to pack
350 void ubifs_pack_pnode(struct ubifs_info
*c
, void *buf
,
351 struct ubifs_pnode
*pnode
)
353 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
357 pack_bits(&addr
, &pos
, UBIFS_LPT_PNODE
, UBIFS_LPT_TYPE_BITS
);
359 pack_bits(&addr
, &pos
, pnode
->num
, c
->pcnt_bits
);
360 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
361 pack_bits(&addr
, &pos
, pnode
->lprops
[i
].free
>> 3,
363 pack_bits(&addr
, &pos
, pnode
->lprops
[i
].dirty
>> 3,
365 if (pnode
->lprops
[i
].flags
& LPROPS_INDEX
)
366 pack_bits(&addr
, &pos
, 1, 1);
368 pack_bits(&addr
, &pos
, 0, 1);
370 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
371 c
->pnode_sz
- UBIFS_LPT_CRC_BYTES
);
374 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
378 * ubifs_pack_nnode - pack all the bit fields of a nnode.
379 * @c: UBIFS file-system description object
380 * @buf: buffer into which to pack
381 * @nnode: nnode to pack
383 void ubifs_pack_nnode(struct ubifs_info
*c
, void *buf
,
384 struct ubifs_nnode
*nnode
)
386 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
390 pack_bits(&addr
, &pos
, UBIFS_LPT_NNODE
, UBIFS_LPT_TYPE_BITS
);
392 pack_bits(&addr
, &pos
, nnode
->num
, c
->pcnt_bits
);
393 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
394 int lnum
= nnode
->nbranch
[i
].lnum
;
397 lnum
= c
->lpt_last
+ 1;
398 pack_bits(&addr
, &pos
, lnum
- c
->lpt_first
, c
->lpt_lnum_bits
);
399 pack_bits(&addr
, &pos
, nnode
->nbranch
[i
].offs
,
402 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
403 c
->nnode_sz
- UBIFS_LPT_CRC_BYTES
);
406 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
410 * ubifs_pack_ltab - pack the LPT's own lprops table.
411 * @c: UBIFS file-system description object
412 * @buf: buffer into which to pack
413 * @ltab: LPT's own lprops table to pack
415 void ubifs_pack_ltab(struct ubifs_info
*c
, void *buf
,
416 struct ubifs_lpt_lprops
*ltab
)
418 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
422 pack_bits(&addr
, &pos
, UBIFS_LPT_LTAB
, UBIFS_LPT_TYPE_BITS
);
423 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
424 pack_bits(&addr
, &pos
, ltab
[i
].free
, c
->lpt_spc_bits
);
425 pack_bits(&addr
, &pos
, ltab
[i
].dirty
, c
->lpt_spc_bits
);
427 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
428 c
->ltab_sz
- UBIFS_LPT_CRC_BYTES
);
431 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
435 * ubifs_pack_lsave - pack the LPT's save table.
436 * @c: UBIFS file-system description object
437 * @buf: buffer into which to pack
438 * @lsave: LPT's save table to pack
440 void ubifs_pack_lsave(struct ubifs_info
*c
, void *buf
, int *lsave
)
442 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
446 pack_bits(&addr
, &pos
, UBIFS_LPT_LSAVE
, UBIFS_LPT_TYPE_BITS
);
447 for (i
= 0; i
< c
->lsave_cnt
; i
++)
448 pack_bits(&addr
, &pos
, lsave
[i
], c
->lnum_bits
);
449 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
450 c
->lsave_sz
- UBIFS_LPT_CRC_BYTES
);
453 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
457 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458 * @c: UBIFS file-system description object
459 * @lnum: LEB number to which to add dirty space
460 * @dirty: amount of dirty space to add
462 void ubifs_add_lpt_dirt(struct ubifs_info
*c
, int lnum
, int dirty
)
466 dbg_lp("LEB %d add %d to %d",
467 lnum
, dirty
, c
->ltab
[lnum
- c
->lpt_first
].dirty
);
468 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
469 c
->ltab
[lnum
- c
->lpt_first
].dirty
+= dirty
;
473 * set_ltab - set LPT LEB properties.
474 * @c: UBIFS file-system description object
476 * @free: amount of free space
477 * @dirty: amount of dirty space
479 static void set_ltab(struct ubifs_info
*c
, int lnum
, int free
, int dirty
)
481 dbg_lp("LEB %d free %d dirty %d to %d %d",
482 lnum
, c
->ltab
[lnum
- c
->lpt_first
].free
,
483 c
->ltab
[lnum
- c
->lpt_first
].dirty
, free
, dirty
);
484 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
485 c
->ltab
[lnum
- c
->lpt_first
].free
= free
;
486 c
->ltab
[lnum
- c
->lpt_first
].dirty
= dirty
;
490 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491 * @c: UBIFS file-system description object
492 * @nnode: nnode for which to add dirt
494 void ubifs_add_nnode_dirt(struct ubifs_info
*c
, struct ubifs_nnode
*nnode
)
496 struct ubifs_nnode
*np
= nnode
->parent
;
499 ubifs_add_lpt_dirt(c
, np
->nbranch
[nnode
->iip
].lnum
,
502 ubifs_add_lpt_dirt(c
, c
->lpt_lnum
, c
->nnode_sz
);
503 if (!(c
->lpt_drty_flgs
& LTAB_DIRTY
)) {
504 c
->lpt_drty_flgs
|= LTAB_DIRTY
;
505 ubifs_add_lpt_dirt(c
, c
->ltab_lnum
, c
->ltab_sz
);
511 * add_pnode_dirt - add dirty space to LPT LEB properties.
512 * @c: UBIFS file-system description object
513 * @pnode: pnode for which to add dirt
515 static void add_pnode_dirt(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
517 ubifs_add_lpt_dirt(c
, pnode
->parent
->nbranch
[pnode
->iip
].lnum
,
522 * calc_nnode_num - calculate nnode number.
523 * @row: the row in the tree (root is zero)
524 * @col: the column in the row (leftmost is zero)
526 * The nnode number is a number that uniquely identifies a nnode and can be used
527 * easily to traverse the tree from the root to that nnode.
529 * This function calculates and returns the nnode number for the nnode at @row
532 static int calc_nnode_num(int row
, int col
)
538 bits
= (col
& (UBIFS_LPT_FANOUT
- 1));
539 col
>>= UBIFS_LPT_FANOUT_SHIFT
;
540 num
<<= UBIFS_LPT_FANOUT_SHIFT
;
547 * calc_nnode_num_from_parent - calculate nnode number.
548 * @c: UBIFS file-system description object
549 * @parent: parent nnode
550 * @iip: index in parent
552 * The nnode number is a number that uniquely identifies a nnode and can be used
553 * easily to traverse the tree from the root to that nnode.
555 * This function calculates and returns the nnode number based on the parent's
556 * nnode number and the index in parent.
558 static int calc_nnode_num_from_parent(const struct ubifs_info
*c
,
559 struct ubifs_nnode
*parent
, int iip
)
565 shft
= (c
->lpt_hght
- parent
->level
) * UBIFS_LPT_FANOUT_SHIFT
;
566 num
= parent
->num
^ (1 << shft
);
567 num
|= (UBIFS_LPT_FANOUT
+ iip
) << shft
;
572 * calc_pnode_num_from_parent - calculate pnode number.
573 * @c: UBIFS file-system description object
574 * @parent: parent nnode
575 * @iip: index in parent
577 * The pnode number is a number that uniquely identifies a pnode and can be used
578 * easily to traverse the tree from the root to that pnode.
580 * This function calculates and returns the pnode number based on the parent's
581 * nnode number and the index in parent.
583 static int calc_pnode_num_from_parent(const struct ubifs_info
*c
,
584 struct ubifs_nnode
*parent
, int iip
)
586 int i
, n
= c
->lpt_hght
- 1, pnum
= parent
->num
, num
= 0;
588 for (i
= 0; i
< n
; i
++) {
589 num
<<= UBIFS_LPT_FANOUT_SHIFT
;
590 num
|= pnum
& (UBIFS_LPT_FANOUT
- 1);
591 pnum
>>= UBIFS_LPT_FANOUT_SHIFT
;
593 num
<<= UBIFS_LPT_FANOUT_SHIFT
;
599 * ubifs_create_dflt_lpt - create default LPT.
600 * @c: UBIFS file-system description object
601 * @main_lebs: number of main area LEBs is passed and returned here
602 * @lpt_first: LEB number of first LPT LEB
603 * @lpt_lebs: number of LEBs for LPT is passed and returned here
604 * @big_lpt: use big LPT model is passed and returned here
606 * This function returns %0 on success and a negative error code on failure.
608 int ubifs_create_dflt_lpt(struct ubifs_info
*c
, int *main_lebs
, int lpt_first
,
609 int *lpt_lebs
, int *big_lpt
)
611 int lnum
, err
= 0, node_sz
, iopos
, i
, j
, cnt
, len
, alen
, row
;
612 int blnum
, boffs
, bsz
, bcnt
;
613 struct ubifs_pnode
*pnode
= NULL
;
614 struct ubifs_nnode
*nnode
= NULL
;
615 void *buf
= NULL
, *p
;
616 struct ubifs_lpt_lprops
*ltab
= NULL
;
619 err
= calc_dflt_lpt_geom(c
, main_lebs
, big_lpt
);
622 *lpt_lebs
= c
->lpt_lebs
;
624 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625 c
->lpt_first
= lpt_first
;
626 /* Needed by 'set_ltab()' */
627 c
->lpt_last
= lpt_first
+ c
->lpt_lebs
- 1;
628 /* Needed by 'ubifs_pack_lsave()' */
629 c
->main_first
= c
->leb_cnt
- *main_lebs
;
631 lsave
= kmalloc(sizeof(int) * c
->lsave_cnt
, GFP_KERNEL
);
632 pnode
= kzalloc(sizeof(struct ubifs_pnode
), GFP_KERNEL
);
633 nnode
= kzalloc(sizeof(struct ubifs_nnode
), GFP_KERNEL
);
634 buf
= vmalloc(c
->leb_size
);
635 ltab
= vmalloc(sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
636 if (!pnode
|| !nnode
|| !buf
|| !ltab
|| !lsave
) {
641 ubifs_assert(!c
->ltab
);
642 c
->ltab
= ltab
; /* Needed by set_ltab */
644 /* Initialize LPT's own lprops */
645 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
646 ltab
[i
].free
= c
->leb_size
;
654 /* Number of leaf nodes (pnodes) */
658 * The first pnode contains the LEB properties for the LEBs that contain
659 * the root inode node and the root index node of the index tree.
661 node_sz
= ALIGN(ubifs_idx_node_sz(c
, 1), 8);
662 iopos
= ALIGN(node_sz
, c
->min_io_size
);
663 pnode
->lprops
[0].free
= c
->leb_size
- iopos
;
664 pnode
->lprops
[0].dirty
= iopos
- node_sz
;
665 pnode
->lprops
[0].flags
= LPROPS_INDEX
;
667 node_sz
= UBIFS_INO_NODE_SZ
;
668 iopos
= ALIGN(node_sz
, c
->min_io_size
);
669 pnode
->lprops
[1].free
= c
->leb_size
- iopos
;
670 pnode
->lprops
[1].dirty
= iopos
- node_sz
;
672 for (i
= 2; i
< UBIFS_LPT_FANOUT
; i
++)
673 pnode
->lprops
[i
].free
= c
->leb_size
;
675 /* Add first pnode */
676 ubifs_pack_pnode(c
, p
, pnode
);
681 /* Reset pnode values for remaining pnodes */
682 pnode
->lprops
[0].free
= c
->leb_size
;
683 pnode
->lprops
[0].dirty
= 0;
684 pnode
->lprops
[0].flags
= 0;
686 pnode
->lprops
[1].free
= c
->leb_size
;
687 pnode
->lprops
[1].dirty
= 0;
690 * To calculate the internal node branches, we keep information about
693 blnum
= lnum
; /* LEB number of level below */
694 boffs
= 0; /* Offset of level below */
695 bcnt
= cnt
; /* Number of nodes in level below */
696 bsz
= c
->pnode_sz
; /* Size of nodes in level below */
698 /* Add all remaining pnodes */
699 for (i
= 1; i
< cnt
; i
++) {
700 if (len
+ c
->pnode_sz
> c
->leb_size
) {
701 alen
= ALIGN(len
, c
->min_io_size
);
702 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
703 memset(p
, 0xff, alen
- len
);
704 err
= ubifs_leb_change(c
, lnum
++, buf
, alen
);
710 ubifs_pack_pnode(c
, p
, pnode
);
714 * pnodes are simply numbered left to right starting at zero,
715 * which means the pnode number can be used easily to traverse
716 * down the tree to the corresponding pnode.
722 for (i
= UBIFS_LPT_FANOUT
; cnt
> i
; i
<<= UBIFS_LPT_FANOUT_SHIFT
)
724 /* Add all nnodes, one level at a time */
726 /* Number of internal nodes (nnodes) at next level */
727 cnt
= DIV_ROUND_UP(cnt
, UBIFS_LPT_FANOUT
);
728 for (i
= 0; i
< cnt
; i
++) {
729 if (len
+ c
->nnode_sz
> c
->leb_size
) {
730 alen
= ALIGN(len
, c
->min_io_size
);
731 set_ltab(c
, lnum
, c
->leb_size
- alen
,
733 memset(p
, 0xff, alen
- len
);
734 err
= ubifs_leb_change(c
, lnum
++, buf
, alen
);
740 /* Only 1 nnode at this level, so it is the root */
745 /* Set branches to the level below */
746 for (j
= 0; j
< UBIFS_LPT_FANOUT
; j
++) {
748 if (boffs
+ bsz
> c
->leb_size
) {
752 nnode
->nbranch
[j
].lnum
= blnum
;
753 nnode
->nbranch
[j
].offs
= boffs
;
757 nnode
->nbranch
[j
].lnum
= 0;
758 nnode
->nbranch
[j
].offs
= 0;
761 nnode
->num
= calc_nnode_num(row
, i
);
762 ubifs_pack_nnode(c
, p
, nnode
);
766 /* Only 1 nnode at this level, so it is the root */
769 /* Update the information about the level below */
776 /* Need to add LPT's save table */
777 if (len
+ c
->lsave_sz
> c
->leb_size
) {
778 alen
= ALIGN(len
, c
->min_io_size
);
779 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
780 memset(p
, 0xff, alen
- len
);
781 err
= ubifs_leb_change(c
, lnum
++, buf
, alen
);
788 c
->lsave_lnum
= lnum
;
791 for (i
= 0; i
< c
->lsave_cnt
&& i
< *main_lebs
; i
++)
792 lsave
[i
] = c
->main_first
+ i
;
793 for (; i
< c
->lsave_cnt
; i
++)
794 lsave
[i
] = c
->main_first
;
796 ubifs_pack_lsave(c
, p
, lsave
);
801 /* Need to add LPT's own LEB properties table */
802 if (len
+ c
->ltab_sz
> c
->leb_size
) {
803 alen
= ALIGN(len
, c
->min_io_size
);
804 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
805 memset(p
, 0xff, alen
- len
);
806 err
= ubifs_leb_change(c
, lnum
++, buf
, alen
);
816 /* Update ltab before packing it */
818 alen
= ALIGN(len
, c
->min_io_size
);
819 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
821 ubifs_pack_ltab(c
, p
, ltab
);
824 /* Write remaining buffer */
825 memset(p
, 0xff, alen
- len
);
826 err
= ubifs_leb_change(c
, lnum
, buf
, alen
);
830 c
->nhead_lnum
= lnum
;
831 c
->nhead_offs
= ALIGN(len
, c
->min_io_size
);
833 dbg_lp("space_bits %d", c
->space_bits
);
834 dbg_lp("lpt_lnum_bits %d", c
->lpt_lnum_bits
);
835 dbg_lp("lpt_offs_bits %d", c
->lpt_offs_bits
);
836 dbg_lp("lpt_spc_bits %d", c
->lpt_spc_bits
);
837 dbg_lp("pcnt_bits %d", c
->pcnt_bits
);
838 dbg_lp("lnum_bits %d", c
->lnum_bits
);
839 dbg_lp("pnode_sz %d", c
->pnode_sz
);
840 dbg_lp("nnode_sz %d", c
->nnode_sz
);
841 dbg_lp("ltab_sz %d", c
->ltab_sz
);
842 dbg_lp("lsave_sz %d", c
->lsave_sz
);
843 dbg_lp("lsave_cnt %d", c
->lsave_cnt
);
844 dbg_lp("lpt_hght %d", c
->lpt_hght
);
845 dbg_lp("big_lpt %d", c
->big_lpt
);
846 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
847 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
848 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
850 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
862 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
863 * @c: UBIFS file-system description object
866 * When a pnode is loaded into memory, the LEB properties it contains are added,
867 * by this function, to the LEB category lists and heaps.
869 static void update_cats(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
873 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
874 int cat
= pnode
->lprops
[i
].flags
& LPROPS_CAT_MASK
;
875 int lnum
= pnode
->lprops
[i
].lnum
;
879 ubifs_add_to_cat(c
, &pnode
->lprops
[i
], cat
);
884 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
885 * @c: UBIFS file-system description object
886 * @old_pnode: pnode copied
887 * @new_pnode: pnode copy
889 * During commit it is sometimes necessary to copy a pnode
890 * (see dirty_cow_pnode). When that happens, references in
891 * category lists and heaps must be replaced. This function does that.
893 static void replace_cats(struct ubifs_info
*c
, struct ubifs_pnode
*old_pnode
,
894 struct ubifs_pnode
*new_pnode
)
898 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
899 if (!new_pnode
->lprops
[i
].lnum
)
901 ubifs_replace_cat(c
, &old_pnode
->lprops
[i
],
902 &new_pnode
->lprops
[i
]);
907 * check_lpt_crc - check LPT node crc is correct.
908 * @c: UBIFS file-system description object
909 * @buf: buffer containing node
910 * @len: length of node
912 * This function returns %0 on success and a negative error code on failure.
914 static int check_lpt_crc(void *buf
, int len
)
918 uint16_t crc
, calc_crc
;
920 crc
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_CRC_BITS
);
921 calc_crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
922 len
- UBIFS_LPT_CRC_BYTES
);
923 if (crc
!= calc_crc
) {
924 ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc
,
933 * check_lpt_type - check LPT node type is correct.
934 * @c: UBIFS file-system description object
935 * @addr: address of type bit field is passed and returned updated here
936 * @pos: position of type bit field is passed and returned updated here
937 * @type: expected type
939 * This function returns %0 on success and a negative error code on failure.
941 static int check_lpt_type(uint8_t **addr
, int *pos
, int type
)
945 node_type
= ubifs_unpack_bits(addr
, pos
, UBIFS_LPT_TYPE_BITS
);
946 if (node_type
!= type
) {
947 ubifs_err("invalid type (%d) in LPT node type %d", node_type
,
956 * unpack_pnode - unpack a pnode.
957 * @c: UBIFS file-system description object
958 * @buf: buffer containing packed pnode to unpack
959 * @pnode: pnode structure to fill
961 * This function returns %0 on success and a negative error code on failure.
963 static int unpack_pnode(const struct ubifs_info
*c
, void *buf
,
964 struct ubifs_pnode
*pnode
)
966 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
969 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_PNODE
);
973 pnode
->num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
974 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
975 struct ubifs_lprops
* const lprops
= &pnode
->lprops
[i
];
977 lprops
->free
= ubifs_unpack_bits(&addr
, &pos
, c
->space_bits
);
979 lprops
->dirty
= ubifs_unpack_bits(&addr
, &pos
, c
->space_bits
);
982 if (ubifs_unpack_bits(&addr
, &pos
, 1))
983 lprops
->flags
= LPROPS_INDEX
;
986 lprops
->flags
|= ubifs_categorize_lprops(c
, lprops
);
988 err
= check_lpt_crc(buf
, c
->pnode_sz
);
993 * ubifs_unpack_nnode - unpack a nnode.
994 * @c: UBIFS file-system description object
995 * @buf: buffer containing packed nnode to unpack
996 * @nnode: nnode structure to fill
998 * This function returns %0 on success and a negative error code on failure.
1000 int ubifs_unpack_nnode(const struct ubifs_info
*c
, void *buf
,
1001 struct ubifs_nnode
*nnode
)
1003 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1004 int i
, pos
= 0, err
;
1006 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_NNODE
);
1010 nnode
->num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
1011 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1014 lnum
= ubifs_unpack_bits(&addr
, &pos
, c
->lpt_lnum_bits
) +
1016 if (lnum
== c
->lpt_last
+ 1)
1018 nnode
->nbranch
[i
].lnum
= lnum
;
1019 nnode
->nbranch
[i
].offs
= ubifs_unpack_bits(&addr
, &pos
,
1022 err
= check_lpt_crc(buf
, c
->nnode_sz
);
1027 * unpack_ltab - unpack the LPT's own lprops table.
1028 * @c: UBIFS file-system description object
1029 * @buf: buffer from which to unpack
1031 * This function returns %0 on success and a negative error code on failure.
1033 static int unpack_ltab(const struct ubifs_info
*c
, void *buf
)
1035 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1036 int i
, pos
= 0, err
;
1038 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_LTAB
);
1041 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1042 int free
= ubifs_unpack_bits(&addr
, &pos
, c
->lpt_spc_bits
);
1043 int dirty
= ubifs_unpack_bits(&addr
, &pos
, c
->lpt_spc_bits
);
1045 if (free
< 0 || free
> c
->leb_size
|| dirty
< 0 ||
1046 dirty
> c
->leb_size
|| free
+ dirty
> c
->leb_size
)
1049 c
->ltab
[i
].free
= free
;
1050 c
->ltab
[i
].dirty
= dirty
;
1054 err
= check_lpt_crc(buf
, c
->ltab_sz
);
1059 * unpack_lsave - unpack the LPT's save table.
1060 * @c: UBIFS file-system description object
1061 * @buf: buffer from which to unpack
1063 * This function returns %0 on success and a negative error code on failure.
1065 static int unpack_lsave(const struct ubifs_info
*c
, void *buf
)
1067 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1068 int i
, pos
= 0, err
;
1070 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_LSAVE
);
1073 for (i
= 0; i
< c
->lsave_cnt
; i
++) {
1074 int lnum
= ubifs_unpack_bits(&addr
, &pos
, c
->lnum_bits
);
1076 if (lnum
< c
->main_first
|| lnum
>= c
->leb_cnt
)
1080 err
= check_lpt_crc(buf
, c
->lsave_sz
);
1085 * validate_nnode - validate a nnode.
1086 * @c: UBIFS file-system description object
1087 * @nnode: nnode to validate
1088 * @parent: parent nnode (or NULL for the root nnode)
1089 * @iip: index in parent
1091 * This function returns %0 on success and a negative error code on failure.
1093 static int validate_nnode(const struct ubifs_info
*c
, struct ubifs_nnode
*nnode
,
1094 struct ubifs_nnode
*parent
, int iip
)
1096 int i
, lvl
, max_offs
;
1099 int num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1101 if (nnode
->num
!= num
)
1104 lvl
= parent
? parent
->level
- 1 : c
->lpt_hght
;
1108 max_offs
= c
->leb_size
- c
->pnode_sz
;
1110 max_offs
= c
->leb_size
- c
->nnode_sz
;
1111 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1112 int lnum
= nnode
->nbranch
[i
].lnum
;
1113 int offs
= nnode
->nbranch
[i
].offs
;
1120 if (lnum
< c
->lpt_first
|| lnum
> c
->lpt_last
)
1122 if (offs
< 0 || offs
> max_offs
)
1129 * validate_pnode - validate a pnode.
1130 * @c: UBIFS file-system description object
1131 * @pnode: pnode to validate
1132 * @parent: parent nnode
1133 * @iip: index in parent
1135 * This function returns %0 on success and a negative error code on failure.
1137 static int validate_pnode(const struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
1138 struct ubifs_nnode
*parent
, int iip
)
1143 int num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1145 if (pnode
->num
!= num
)
1148 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1149 int free
= pnode
->lprops
[i
].free
;
1150 int dirty
= pnode
->lprops
[i
].dirty
;
1152 if (free
< 0 || free
> c
->leb_size
|| free
% c
->min_io_size
||
1155 if (dirty
< 0 || dirty
> c
->leb_size
|| (dirty
& 7))
1157 if (dirty
+ free
> c
->leb_size
)
1164 * set_pnode_lnum - set LEB numbers on a pnode.
1165 * @c: UBIFS file-system description object
1166 * @pnode: pnode to update
1168 * This function calculates the LEB numbers for the LEB properties it contains
1169 * based on the pnode number.
1171 static void set_pnode_lnum(const struct ubifs_info
*c
,
1172 struct ubifs_pnode
*pnode
)
1176 lnum
= (pnode
->num
<< UBIFS_LPT_FANOUT_SHIFT
) + c
->main_first
;
1177 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1178 if (lnum
>= c
->leb_cnt
)
1180 pnode
->lprops
[i
].lnum
= lnum
++;
1185 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1186 * @c: UBIFS file-system description object
1187 * @parent: parent nnode (or NULL for the root)
1188 * @iip: index in parent
1190 * This function returns %0 on success and a negative error code on failure.
1192 int ubifs_read_nnode(struct ubifs_info
*c
, struct ubifs_nnode
*parent
, int iip
)
1194 struct ubifs_nbranch
*branch
= NULL
;
1195 struct ubifs_nnode
*nnode
= NULL
;
1196 void *buf
= c
->lpt_nod_buf
;
1197 int err
, lnum
, offs
;
1200 branch
= &parent
->nbranch
[iip
];
1201 lnum
= branch
->lnum
;
1202 offs
= branch
->offs
;
1207 nnode
= kzalloc(sizeof(struct ubifs_nnode
), GFP_NOFS
);
1214 * This nnode was not written which just means that the LEB
1215 * properties in the subtree below it describe empty LEBs. We
1216 * make the nnode as though we had read it, which in fact means
1217 * doing almost nothing.
1220 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1222 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, c
->nnode_sz
, 1);
1225 err
= ubifs_unpack_nnode(c
, buf
, nnode
);
1229 err
= validate_nnode(c
, nnode
, parent
, iip
);
1233 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1235 branch
->nnode
= nnode
;
1236 nnode
->level
= parent
->level
- 1;
1239 nnode
->level
= c
->lpt_hght
;
1241 nnode
->parent
= parent
;
1246 ubifs_err("error %d reading nnode at %d:%d", err
, lnum
, offs
);
1253 * read_pnode - read a pnode from flash and link it to the tree in memory.
1254 * @c: UBIFS file-system description object
1255 * @parent: parent nnode
1256 * @iip: index in parent
1258 * This function returns %0 on success and a negative error code on failure.
1260 static int read_pnode(struct ubifs_info
*c
, struct ubifs_nnode
*parent
, int iip
)
1262 struct ubifs_nbranch
*branch
;
1263 struct ubifs_pnode
*pnode
= NULL
;
1264 void *buf
= c
->lpt_nod_buf
;
1265 int err
, lnum
, offs
;
1267 branch
= &parent
->nbranch
[iip
];
1268 lnum
= branch
->lnum
;
1269 offs
= branch
->offs
;
1270 pnode
= kzalloc(sizeof(struct ubifs_pnode
), GFP_NOFS
);
1276 * This pnode was not written which just means that the LEB
1277 * properties in it describe empty LEBs. We make the pnode as
1278 * though we had read it.
1283 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1284 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1285 struct ubifs_lprops
* const lprops
= &pnode
->lprops
[i
];
1287 lprops
->free
= c
->leb_size
;
1288 lprops
->flags
= ubifs_categorize_lprops(c
, lprops
);
1291 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, c
->pnode_sz
, 1);
1294 err
= unpack_pnode(c
, buf
, pnode
);
1298 err
= validate_pnode(c
, pnode
, parent
, iip
);
1302 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1303 branch
->pnode
= pnode
;
1304 pnode
->parent
= parent
;
1306 set_pnode_lnum(c
, pnode
);
1307 c
->pnodes_have
+= 1;
1311 ubifs_err("error %d reading pnode at %d:%d", err
, lnum
, offs
);
1312 ubifs_dump_pnode(c
, pnode
, parent
, iip
);
1314 dbg_msg("calc num: %d", calc_pnode_num_from_parent(c
, parent
, iip
));
1320 * read_ltab - read LPT's own lprops table.
1321 * @c: UBIFS file-system description object
1323 * This function returns %0 on success and a negative error code on failure.
1325 static int read_ltab(struct ubifs_info
*c
)
1330 buf
= vmalloc(c
->ltab_sz
);
1333 err
= ubifs_leb_read(c
, c
->ltab_lnum
, buf
, c
->ltab_offs
, c
->ltab_sz
, 1);
1336 err
= unpack_ltab(c
, buf
);
1343 * read_lsave - read LPT's save table.
1344 * @c: UBIFS file-system description object
1346 * This function returns %0 on success and a negative error code on failure.
1348 static int read_lsave(struct ubifs_info
*c
)
1353 buf
= vmalloc(c
->lsave_sz
);
1356 err
= ubifs_leb_read(c
, c
->lsave_lnum
, buf
, c
->lsave_offs
,
1360 err
= unpack_lsave(c
, buf
);
1363 for (i
= 0; i
< c
->lsave_cnt
; i
++) {
1364 int lnum
= c
->lsave
[i
];
1365 struct ubifs_lprops
*lprops
;
1368 * Due to automatic resizing, the values in the lsave table
1369 * could be beyond the volume size - just ignore them.
1371 if (lnum
>= c
->leb_cnt
)
1373 lprops
= ubifs_lpt_lookup(c
, lnum
);
1374 if (IS_ERR(lprops
)) {
1375 err
= PTR_ERR(lprops
);
1385 * ubifs_get_nnode - get a nnode.
1386 * @c: UBIFS file-system description object
1387 * @parent: parent nnode (or NULL for the root)
1388 * @iip: index in parent
1390 * This function returns a pointer to the nnode on success or a negative error
1393 struct ubifs_nnode
*ubifs_get_nnode(struct ubifs_info
*c
,
1394 struct ubifs_nnode
*parent
, int iip
)
1396 struct ubifs_nbranch
*branch
;
1397 struct ubifs_nnode
*nnode
;
1400 branch
= &parent
->nbranch
[iip
];
1401 nnode
= branch
->nnode
;
1404 err
= ubifs_read_nnode(c
, parent
, iip
);
1406 return ERR_PTR(err
);
1407 return branch
->nnode
;
1411 * ubifs_get_pnode - get a pnode.
1412 * @c: UBIFS file-system description object
1413 * @parent: parent nnode
1414 * @iip: index in parent
1416 * This function returns a pointer to the pnode on success or a negative error
1419 struct ubifs_pnode
*ubifs_get_pnode(struct ubifs_info
*c
,
1420 struct ubifs_nnode
*parent
, int iip
)
1422 struct ubifs_nbranch
*branch
;
1423 struct ubifs_pnode
*pnode
;
1426 branch
= &parent
->nbranch
[iip
];
1427 pnode
= branch
->pnode
;
1430 err
= read_pnode(c
, parent
, iip
);
1432 return ERR_PTR(err
);
1433 update_cats(c
, branch
->pnode
);
1434 return branch
->pnode
;
1438 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1439 * @c: UBIFS file-system description object
1440 * @lnum: LEB number to lookup
1442 * This function returns a pointer to the LEB properties on success or a
1443 * negative error code on failure.
1445 struct ubifs_lprops
*ubifs_lpt_lookup(struct ubifs_info
*c
, int lnum
)
1447 int err
, i
, h
, iip
, shft
;
1448 struct ubifs_nnode
*nnode
;
1449 struct ubifs_pnode
*pnode
;
1452 err
= ubifs_read_nnode(c
, NULL
, 0);
1454 return ERR_PTR(err
);
1457 i
= lnum
- c
->main_first
;
1458 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
1459 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1460 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1461 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1462 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
1464 return ERR_CAST(nnode
);
1466 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1467 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1468 pnode
= ubifs_get_pnode(c
, nnode
, iip
);
1470 return ERR_CAST(pnode
);
1471 iip
= (i
& (UBIFS_LPT_FANOUT
- 1));
1472 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum
,
1473 pnode
->lprops
[iip
].free
, pnode
->lprops
[iip
].dirty
,
1474 pnode
->lprops
[iip
].flags
);
1475 return &pnode
->lprops
[iip
];
1479 * dirty_cow_nnode - ensure a nnode is not being committed.
1480 * @c: UBIFS file-system description object
1481 * @nnode: nnode to check
1483 * Returns dirtied nnode on success or negative error code on failure.
1485 static struct ubifs_nnode
*dirty_cow_nnode(struct ubifs_info
*c
,
1486 struct ubifs_nnode
*nnode
)
1488 struct ubifs_nnode
*n
;
1491 if (!test_bit(COW_CNODE
, &nnode
->flags
)) {
1492 /* nnode is not being committed */
1493 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
1494 c
->dirty_nn_cnt
+= 1;
1495 ubifs_add_nnode_dirt(c
, nnode
);
1500 /* nnode is being committed, so copy it */
1501 n
= kmalloc(sizeof(struct ubifs_nnode
), GFP_NOFS
);
1503 return ERR_PTR(-ENOMEM
);
1505 memcpy(n
, nnode
, sizeof(struct ubifs_nnode
));
1507 __set_bit(DIRTY_CNODE
, &n
->flags
);
1508 __clear_bit(COW_CNODE
, &n
->flags
);
1510 /* The children now have new parent */
1511 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1512 struct ubifs_nbranch
*branch
= &n
->nbranch
[i
];
1515 branch
->cnode
->parent
= n
;
1518 ubifs_assert(!test_bit(OBSOLETE_CNODE
, &nnode
->flags
));
1519 __set_bit(OBSOLETE_CNODE
, &nnode
->flags
);
1521 c
->dirty_nn_cnt
+= 1;
1522 ubifs_add_nnode_dirt(c
, nnode
);
1524 nnode
->parent
->nbranch
[n
->iip
].nnode
= n
;
1531 * dirty_cow_pnode - ensure a pnode is not being committed.
1532 * @c: UBIFS file-system description object
1533 * @pnode: pnode to check
1535 * Returns dirtied pnode on success or negative error code on failure.
1537 static struct ubifs_pnode
*dirty_cow_pnode(struct ubifs_info
*c
,
1538 struct ubifs_pnode
*pnode
)
1540 struct ubifs_pnode
*p
;
1542 if (!test_bit(COW_CNODE
, &pnode
->flags
)) {
1543 /* pnode is not being committed */
1544 if (!test_and_set_bit(DIRTY_CNODE
, &pnode
->flags
)) {
1545 c
->dirty_pn_cnt
+= 1;
1546 add_pnode_dirt(c
, pnode
);
1551 /* pnode is being committed, so copy it */
1552 p
= kmalloc(sizeof(struct ubifs_pnode
), GFP_NOFS
);
1554 return ERR_PTR(-ENOMEM
);
1556 memcpy(p
, pnode
, sizeof(struct ubifs_pnode
));
1558 __set_bit(DIRTY_CNODE
, &p
->flags
);
1559 __clear_bit(COW_CNODE
, &p
->flags
);
1560 replace_cats(c
, pnode
, p
);
1562 ubifs_assert(!test_bit(OBSOLETE_CNODE
, &pnode
->flags
));
1563 __set_bit(OBSOLETE_CNODE
, &pnode
->flags
);
1565 c
->dirty_pn_cnt
+= 1;
1566 add_pnode_dirt(c
, pnode
);
1567 pnode
->parent
->nbranch
[p
->iip
].pnode
= p
;
1572 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1573 * @c: UBIFS file-system description object
1574 * @lnum: LEB number to lookup
1576 * This function returns a pointer to the LEB properties on success or a
1577 * negative error code on failure.
1579 struct ubifs_lprops
*ubifs_lpt_lookup_dirty(struct ubifs_info
*c
, int lnum
)
1581 int err
, i
, h
, iip
, shft
;
1582 struct ubifs_nnode
*nnode
;
1583 struct ubifs_pnode
*pnode
;
1586 err
= ubifs_read_nnode(c
, NULL
, 0);
1588 return ERR_PTR(err
);
1591 nnode
= dirty_cow_nnode(c
, nnode
);
1593 return ERR_CAST(nnode
);
1594 i
= lnum
- c
->main_first
;
1595 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
1596 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1597 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1598 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1599 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
1601 return ERR_CAST(nnode
);
1602 nnode
= dirty_cow_nnode(c
, nnode
);
1604 return ERR_CAST(nnode
);
1606 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1607 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1608 pnode
= ubifs_get_pnode(c
, nnode
, iip
);
1610 return ERR_CAST(pnode
);
1611 pnode
= dirty_cow_pnode(c
, pnode
);
1613 return ERR_CAST(pnode
);
1614 iip
= (i
& (UBIFS_LPT_FANOUT
- 1));
1615 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum
,
1616 pnode
->lprops
[iip
].free
, pnode
->lprops
[iip
].dirty
,
1617 pnode
->lprops
[iip
].flags
);
1618 ubifs_assert(test_bit(DIRTY_CNODE
, &pnode
->flags
));
1619 return &pnode
->lprops
[iip
];
1623 * lpt_init_rd - initialize the LPT for reading.
1624 * @c: UBIFS file-system description object
1626 * This function returns %0 on success and a negative error code on failure.
1628 static int lpt_init_rd(struct ubifs_info
*c
)
1632 c
->ltab
= vmalloc(sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1636 i
= max_t(int, c
->nnode_sz
, c
->pnode_sz
);
1637 c
->lpt_nod_buf
= kmalloc(i
, GFP_KERNEL
);
1638 if (!c
->lpt_nod_buf
)
1641 for (i
= 0; i
< LPROPS_HEAP_CNT
; i
++) {
1642 c
->lpt_heap
[i
].arr
= kmalloc(sizeof(void *) * LPT_HEAP_SZ
,
1644 if (!c
->lpt_heap
[i
].arr
)
1646 c
->lpt_heap
[i
].cnt
= 0;
1647 c
->lpt_heap
[i
].max_cnt
= LPT_HEAP_SZ
;
1650 c
->dirty_idx
.arr
= kmalloc(sizeof(void *) * LPT_HEAP_SZ
, GFP_KERNEL
);
1651 if (!c
->dirty_idx
.arr
)
1653 c
->dirty_idx
.cnt
= 0;
1654 c
->dirty_idx
.max_cnt
= LPT_HEAP_SZ
;
1660 dbg_lp("space_bits %d", c
->space_bits
);
1661 dbg_lp("lpt_lnum_bits %d", c
->lpt_lnum_bits
);
1662 dbg_lp("lpt_offs_bits %d", c
->lpt_offs_bits
);
1663 dbg_lp("lpt_spc_bits %d", c
->lpt_spc_bits
);
1664 dbg_lp("pcnt_bits %d", c
->pcnt_bits
);
1665 dbg_lp("lnum_bits %d", c
->lnum_bits
);
1666 dbg_lp("pnode_sz %d", c
->pnode_sz
);
1667 dbg_lp("nnode_sz %d", c
->nnode_sz
);
1668 dbg_lp("ltab_sz %d", c
->ltab_sz
);
1669 dbg_lp("lsave_sz %d", c
->lsave_sz
);
1670 dbg_lp("lsave_cnt %d", c
->lsave_cnt
);
1671 dbg_lp("lpt_hght %d", c
->lpt_hght
);
1672 dbg_lp("big_lpt %d", c
->big_lpt
);
1673 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
1674 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
1675 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
1677 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
1683 * lpt_init_wr - initialize the LPT for writing.
1684 * @c: UBIFS file-system description object
1686 * 'lpt_init_rd()' must have been called already.
1688 * This function returns %0 on success and a negative error code on failure.
1690 static int lpt_init_wr(struct ubifs_info
*c
)
1694 c
->ltab_cmt
= vmalloc(sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1698 c
->lpt_buf
= vmalloc(c
->leb_size
);
1703 c
->lsave
= kmalloc(sizeof(int) * c
->lsave_cnt
, GFP_NOFS
);
1706 err
= read_lsave(c
);
1711 for (i
= 0; i
< c
->lpt_lebs
; i
++)
1712 if (c
->ltab
[i
].free
== c
->leb_size
) {
1713 err
= ubifs_leb_unmap(c
, i
+ c
->lpt_first
);
1722 * ubifs_lpt_init - initialize the LPT.
1723 * @c: UBIFS file-system description object
1724 * @rd: whether to initialize lpt for reading
1725 * @wr: whether to initialize lpt for writing
1727 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1728 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1731 * This function returns %0 on success and a negative error code on failure.
1733 int ubifs_lpt_init(struct ubifs_info
*c
, int rd
, int wr
)
1738 err
= lpt_init_rd(c
);
1744 err
= lpt_init_wr(c
);
1752 ubifs_lpt_free(c
, 0);
1757 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1758 * @nnode: where to keep a nnode
1759 * @pnode: where to keep a pnode
1760 * @cnode: where to keep a cnode
1761 * @in_tree: is the node in the tree in memory
1762 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1764 * @ptr.pnode: ditto for pnode
1765 * @ptr.cnode: ditto for cnode
1767 struct lpt_scan_node
{
1769 struct ubifs_nnode nnode
;
1770 struct ubifs_pnode pnode
;
1771 struct ubifs_cnode cnode
;
1775 struct ubifs_nnode
*nnode
;
1776 struct ubifs_pnode
*pnode
;
1777 struct ubifs_cnode
*cnode
;
1782 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1783 * @c: the UBIFS file-system description object
1784 * @path: where to put the nnode
1785 * @parent: parent of the nnode
1786 * @iip: index in parent of the nnode
1788 * This function returns a pointer to the nnode on success or a negative error
1791 static struct ubifs_nnode
*scan_get_nnode(struct ubifs_info
*c
,
1792 struct lpt_scan_node
*path
,
1793 struct ubifs_nnode
*parent
, int iip
)
1795 struct ubifs_nbranch
*branch
;
1796 struct ubifs_nnode
*nnode
;
1797 void *buf
= c
->lpt_nod_buf
;
1800 branch
= &parent
->nbranch
[iip
];
1801 nnode
= branch
->nnode
;
1804 path
->ptr
.nnode
= nnode
;
1807 nnode
= &path
->nnode
;
1809 path
->ptr
.nnode
= nnode
;
1810 memset(nnode
, 0, sizeof(struct ubifs_nnode
));
1811 if (branch
->lnum
== 0) {
1813 * This nnode was not written which just means that the LEB
1814 * properties in the subtree below it describe empty LEBs. We
1815 * make the nnode as though we had read it, which in fact means
1816 * doing almost nothing.
1819 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1821 err
= ubifs_leb_read(c
, branch
->lnum
, buf
, branch
->offs
,
1824 return ERR_PTR(err
);
1825 err
= ubifs_unpack_nnode(c
, buf
, nnode
);
1827 return ERR_PTR(err
);
1829 err
= validate_nnode(c
, nnode
, parent
, iip
);
1831 return ERR_PTR(err
);
1833 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1834 nnode
->level
= parent
->level
- 1;
1835 nnode
->parent
= parent
;
1841 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1842 * @c: the UBIFS file-system description object
1843 * @path: where to put the pnode
1844 * @parent: parent of the pnode
1845 * @iip: index in parent of the pnode
1847 * This function returns a pointer to the pnode on success or a negative error
1850 static struct ubifs_pnode
*scan_get_pnode(struct ubifs_info
*c
,
1851 struct lpt_scan_node
*path
,
1852 struct ubifs_nnode
*parent
, int iip
)
1854 struct ubifs_nbranch
*branch
;
1855 struct ubifs_pnode
*pnode
;
1856 void *buf
= c
->lpt_nod_buf
;
1859 branch
= &parent
->nbranch
[iip
];
1860 pnode
= branch
->pnode
;
1863 path
->ptr
.pnode
= pnode
;
1866 pnode
= &path
->pnode
;
1868 path
->ptr
.pnode
= pnode
;
1869 memset(pnode
, 0, sizeof(struct ubifs_pnode
));
1870 if (branch
->lnum
== 0) {
1872 * This pnode was not written which just means that the LEB
1873 * properties in it describe empty LEBs. We make the pnode as
1874 * though we had read it.
1879 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1880 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1881 struct ubifs_lprops
* const lprops
= &pnode
->lprops
[i
];
1883 lprops
->free
= c
->leb_size
;
1884 lprops
->flags
= ubifs_categorize_lprops(c
, lprops
);
1887 ubifs_assert(branch
->lnum
>= c
->lpt_first
&&
1888 branch
->lnum
<= c
->lpt_last
);
1889 ubifs_assert(branch
->offs
>= 0 && branch
->offs
< c
->leb_size
);
1890 err
= ubifs_leb_read(c
, branch
->lnum
, buf
, branch
->offs
,
1893 return ERR_PTR(err
);
1894 err
= unpack_pnode(c
, buf
, pnode
);
1896 return ERR_PTR(err
);
1898 err
= validate_pnode(c
, pnode
, parent
, iip
);
1900 return ERR_PTR(err
);
1902 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1903 pnode
->parent
= parent
;
1905 set_pnode_lnum(c
, pnode
);
1910 * ubifs_lpt_scan_nolock - scan the LPT.
1911 * @c: the UBIFS file-system description object
1912 * @start_lnum: LEB number from which to start scanning
1913 * @end_lnum: LEB number at which to stop scanning
1914 * @scan_cb: callback function called for each lprops
1915 * @data: data to be passed to the callback function
1917 * This function returns %0 on success and a negative error code on failure.
1919 int ubifs_lpt_scan_nolock(struct ubifs_info
*c
, int start_lnum
, int end_lnum
,
1920 ubifs_lpt_scan_callback scan_cb
, void *data
)
1922 int err
= 0, i
, h
, iip
, shft
;
1923 struct ubifs_nnode
*nnode
;
1924 struct ubifs_pnode
*pnode
;
1925 struct lpt_scan_node
*path
;
1927 if (start_lnum
== -1) {
1928 start_lnum
= end_lnum
+ 1;
1929 if (start_lnum
>= c
->leb_cnt
)
1930 start_lnum
= c
->main_first
;
1933 ubifs_assert(start_lnum
>= c
->main_first
&& start_lnum
< c
->leb_cnt
);
1934 ubifs_assert(end_lnum
>= c
->main_first
&& end_lnum
< c
->leb_cnt
);
1937 err
= ubifs_read_nnode(c
, NULL
, 0);
1942 path
= kmalloc(sizeof(struct lpt_scan_node
) * (c
->lpt_hght
+ 1),
1947 path
[0].ptr
.nnode
= c
->nroot
;
1948 path
[0].in_tree
= 1;
1950 /* Descend to the pnode containing start_lnum */
1952 i
= start_lnum
- c
->main_first
;
1953 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
1954 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1955 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1956 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1957 nnode
= scan_get_nnode(c
, path
+ h
, nnode
, iip
);
1958 if (IS_ERR(nnode
)) {
1959 err
= PTR_ERR(nnode
);
1963 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1964 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1965 pnode
= scan_get_pnode(c
, path
+ h
, nnode
, iip
);
1966 if (IS_ERR(pnode
)) {
1967 err
= PTR_ERR(pnode
);
1970 iip
= (i
& (UBIFS_LPT_FANOUT
- 1));
1972 /* Loop for each lprops */
1974 struct ubifs_lprops
*lprops
= &pnode
->lprops
[iip
];
1975 int ret
, lnum
= lprops
->lnum
;
1977 ret
= scan_cb(c
, lprops
, path
[h
].in_tree
, data
);
1982 if (ret
& LPT_SCAN_ADD
) {
1983 /* Add all the nodes in path to the tree in memory */
1984 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1985 const size_t sz
= sizeof(struct ubifs_nnode
);
1986 struct ubifs_nnode
*parent
;
1988 if (path
[h
].in_tree
)
1990 nnode
= kmemdup(&path
[h
].nnode
, sz
, GFP_NOFS
);
1995 parent
= nnode
->parent
;
1996 parent
->nbranch
[nnode
->iip
].nnode
= nnode
;
1997 path
[h
].ptr
.nnode
= nnode
;
1998 path
[h
].in_tree
= 1;
1999 path
[h
+ 1].cnode
.parent
= nnode
;
2001 if (path
[h
].in_tree
)
2002 ubifs_ensure_cat(c
, lprops
);
2004 const size_t sz
= sizeof(struct ubifs_pnode
);
2005 struct ubifs_nnode
*parent
;
2007 pnode
= kmemdup(&path
[h
].pnode
, sz
, GFP_NOFS
);
2012 parent
= pnode
->parent
;
2013 parent
->nbranch
[pnode
->iip
].pnode
= pnode
;
2014 path
[h
].ptr
.pnode
= pnode
;
2015 path
[h
].in_tree
= 1;
2016 update_cats(c
, pnode
);
2017 c
->pnodes_have
+= 1;
2019 err
= dbg_check_lpt_nodes(c
, (struct ubifs_cnode
*)
2023 err
= dbg_check_cats(c
);
2027 if (ret
& LPT_SCAN_STOP
) {
2031 /* Get the next lprops */
2032 if (lnum
== end_lnum
) {
2034 * We got to the end without finding what we were
2040 if (lnum
+ 1 >= c
->leb_cnt
) {
2041 /* Wrap-around to the beginning */
2042 start_lnum
= c
->main_first
;
2045 if (iip
+ 1 < UBIFS_LPT_FANOUT
) {
2046 /* Next lprops is in the same pnode */
2050 /* We need to get the next pnode. Go up until we can go right */
2054 ubifs_assert(h
>= 0);
2055 nnode
= path
[h
].ptr
.nnode
;
2056 if (iip
+ 1 < UBIFS_LPT_FANOUT
)
2062 /* Descend to the pnode */
2064 for (; h
< c
->lpt_hght
; h
++) {
2065 nnode
= scan_get_nnode(c
, path
+ h
, nnode
, iip
);
2066 if (IS_ERR(nnode
)) {
2067 err
= PTR_ERR(nnode
);
2072 pnode
= scan_get_pnode(c
, path
+ h
, nnode
, iip
);
2073 if (IS_ERR(pnode
)) {
2074 err
= PTR_ERR(pnode
);
2085 * dbg_chk_pnode - check a pnode.
2086 * @c: the UBIFS file-system description object
2087 * @pnode: pnode to check
2088 * @col: pnode column
2090 * This function returns %0 on success and a negative error code on failure.
2092 static int dbg_chk_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
2097 if (pnode
->num
!= col
) {
2098 ubifs_err("pnode num %d expected %d parent num %d iip %d",
2099 pnode
->num
, col
, pnode
->parent
->num
, pnode
->iip
);
2102 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
2103 struct ubifs_lprops
*lp
, *lprops
= &pnode
->lprops
[i
];
2104 int lnum
= (pnode
->num
<< UBIFS_LPT_FANOUT_SHIFT
) + i
+
2106 int found
, cat
= lprops
->flags
& LPROPS_CAT_MASK
;
2107 struct ubifs_lpt_heap
*heap
;
2108 struct list_head
*list
= NULL
;
2110 if (lnum
>= c
->leb_cnt
)
2112 if (lprops
->lnum
!= lnum
) {
2113 ubifs_err("bad LEB number %d expected %d",
2114 lprops
->lnum
, lnum
);
2117 if (lprops
->flags
& LPROPS_TAKEN
) {
2118 if (cat
!= LPROPS_UNCAT
) {
2119 ubifs_err("LEB %d taken but not uncat %d",
2125 if (lprops
->flags
& LPROPS_INDEX
) {
2128 case LPROPS_DIRTY_IDX
:
2129 case LPROPS_FRDI_IDX
:
2132 ubifs_err("LEB %d index but cat %d",
2142 case LPROPS_FREEABLE
:
2145 ubifs_err("LEB %d not index but cat %d",
2152 list
= &c
->uncat_list
;
2155 list
= &c
->empty_list
;
2157 case LPROPS_FREEABLE
:
2158 list
= &c
->freeable_list
;
2160 case LPROPS_FRDI_IDX
:
2161 list
= &c
->frdi_idx_list
;
2167 case LPROPS_DIRTY_IDX
:
2169 heap
= &c
->lpt_heap
[cat
- 1];
2170 if (lprops
->hpos
< heap
->cnt
&&
2171 heap
->arr
[lprops
->hpos
] == lprops
)
2176 case LPROPS_FREEABLE
:
2177 case LPROPS_FRDI_IDX
:
2178 list_for_each_entry(lp
, list
, list
)
2186 ubifs_err("LEB %d cat %d not found in cat heap/list",
2192 if (lprops
->free
!= c
->leb_size
) {
2193 ubifs_err("LEB %d cat %d free %d dirty %d",
2194 lprops
->lnum
, cat
, lprops
->free
,
2198 case LPROPS_FREEABLE
:
2199 case LPROPS_FRDI_IDX
:
2200 if (lprops
->free
+ lprops
->dirty
!= c
->leb_size
) {
2201 ubifs_err("LEB %d cat %d free %d dirty %d",
2202 lprops
->lnum
, cat
, lprops
->free
,
2212 * dbg_check_lpt_nodes - check nnodes and pnodes.
2213 * @c: the UBIFS file-system description object
2214 * @cnode: next cnode (nnode or pnode) to check
2215 * @row: row of cnode (root is zero)
2216 * @col: column of cnode (leftmost is zero)
2218 * This function returns %0 on success and a negative error code on failure.
2220 int dbg_check_lpt_nodes(struct ubifs_info
*c
, struct ubifs_cnode
*cnode
,
2223 struct ubifs_nnode
*nnode
, *nn
;
2224 struct ubifs_cnode
*cn
;
2225 int num
, iip
= 0, err
;
2227 if (!dbg_is_chk_lprops(c
))
2231 ubifs_assert(row
>= 0);
2232 nnode
= cnode
->parent
;
2234 /* cnode is a nnode */
2235 num
= calc_nnode_num(row
, col
);
2236 if (cnode
->num
!= num
) {
2237 ubifs_err("nnode num %d expected %d "
2238 "parent num %d iip %d",
2240 (nnode
? nnode
->num
: 0), cnode
->iip
);
2243 nn
= (struct ubifs_nnode
*)cnode
;
2244 while (iip
< UBIFS_LPT_FANOUT
) {
2245 cn
= nn
->nbranch
[iip
].cnode
;
2249 col
<<= UBIFS_LPT_FANOUT_SHIFT
;
2258 if (iip
< UBIFS_LPT_FANOUT
)
2261 struct ubifs_pnode
*pnode
;
2263 /* cnode is a pnode */
2264 pnode
= (struct ubifs_pnode
*)cnode
;
2265 err
= dbg_chk_pnode(c
, pnode
, col
);
2269 /* Go up and to the right */
2271 col
>>= UBIFS_LPT_FANOUT_SHIFT
;
2272 iip
= cnode
->iip
+ 1;
2273 cnode
= (struct ubifs_cnode
*)nnode
;