2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
74 q
->merge_bvec_fn
= mbfn
;
76 EXPORT_SYMBOL(blk_queue_merge_bvec
);
78 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
80 q
->softirq_done_fn
= fn
;
82 EXPORT_SYMBOL(blk_queue_softirq_done
);
84 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
86 q
->rq_timeout
= timeout
;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
90 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
92 q
->rq_timed_out_fn
= fn
;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
96 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state.
109 void blk_set_default_limits(struct queue_limits
*lim
)
111 lim
->max_segments
= BLK_MAX_SEGMENTS
;
112 lim
->max_integrity_segments
= 0;
113 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
114 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
115 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
116 lim
->max_discard_sectors
= 0;
117 lim
->discard_granularity
= 0;
118 lim
->discard_alignment
= 0;
119 lim
->discard_misaligned
= 0;
120 lim
->discard_zeroes_data
= 0;
121 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
122 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
123 lim
->alignment_offset
= 0;
128 EXPORT_SYMBOL(blk_set_default_limits
);
131 * blk_set_stacking_limits - set default limits for stacking devices
132 * @lim: the queue_limits structure to reset
135 * Returns a queue_limit struct to its default state. Should be used
136 * by stacking drivers like DM that have no internal limits.
138 void blk_set_stacking_limits(struct queue_limits
*lim
)
140 blk_set_default_limits(lim
);
142 /* Inherit limits from component devices */
143 lim
->discard_zeroes_data
= 1;
144 lim
->max_segments
= USHRT_MAX
;
145 lim
->max_hw_sectors
= UINT_MAX
;
146 lim
->max_sectors
= UINT_MAX
;
148 EXPORT_SYMBOL(blk_set_stacking_limits
);
151 * blk_queue_make_request - define an alternate make_request function for a device
152 * @q: the request queue for the device to be affected
153 * @mfn: the alternate make_request function
156 * The normal way for &struct bios to be passed to a device
157 * driver is for them to be collected into requests on a request
158 * queue, and then to allow the device driver to select requests
159 * off that queue when it is ready. This works well for many block
160 * devices. However some block devices (typically virtual devices
161 * such as md or lvm) do not benefit from the processing on the
162 * request queue, and are served best by having the requests passed
163 * directly to them. This can be achieved by providing a function
164 * to blk_queue_make_request().
167 * The driver that does this *must* be able to deal appropriately
168 * with buffers in "highmemory". This can be accomplished by either calling
169 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
170 * blk_queue_bounce() to create a buffer in normal memory.
172 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
177 q
->nr_requests
= BLKDEV_MAX_RQ
;
179 q
->make_request_fn
= mfn
;
180 blk_queue_dma_alignment(q
, 511);
181 blk_queue_congestion_threshold(q
);
182 q
->nr_batching
= BLK_BATCH_REQ
;
184 blk_set_default_limits(&q
->limits
);
187 * by default assume old behaviour and bounce for any highmem page
189 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
191 EXPORT_SYMBOL(blk_queue_make_request
);
194 * blk_queue_bounce_limit - set bounce buffer limit for queue
195 * @q: the request queue for the device
196 * @dma_mask: the maximum address the device can handle
199 * Different hardware can have different requirements as to what pages
200 * it can do I/O directly to. A low level driver can call
201 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
202 * buffers for doing I/O to pages residing above @dma_mask.
204 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_mask
)
206 unsigned long b_pfn
= dma_mask
>> PAGE_SHIFT
;
209 q
->bounce_gfp
= GFP_NOIO
;
210 #if BITS_PER_LONG == 64
212 * Assume anything <= 4GB can be handled by IOMMU. Actually
213 * some IOMMUs can handle everything, but I don't know of a
214 * way to test this here.
216 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
218 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
220 if (b_pfn
< blk_max_low_pfn
)
222 q
->limits
.bounce_pfn
= b_pfn
;
225 init_emergency_isa_pool();
226 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
227 q
->limits
.bounce_pfn
= b_pfn
;
230 EXPORT_SYMBOL(blk_queue_bounce_limit
);
233 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
234 * @limits: the queue limits
235 * @max_hw_sectors: max hardware sectors in the usual 512b unit
238 * Enables a low level driver to set a hard upper limit,
239 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
240 * the device driver based upon the combined capabilities of I/O
241 * controller and storage device.
243 * max_sectors is a soft limit imposed by the block layer for
244 * filesystem type requests. This value can be overridden on a
245 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
246 * The soft limit can not exceed max_hw_sectors.
248 void blk_limits_max_hw_sectors(struct queue_limits
*limits
, unsigned int max_hw_sectors
)
250 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
251 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
252 printk(KERN_INFO
"%s: set to minimum %d\n",
253 __func__
, max_hw_sectors
);
256 limits
->max_hw_sectors
= max_hw_sectors
;
257 limits
->max_sectors
= min_t(unsigned int, max_hw_sectors
,
258 BLK_DEF_MAX_SECTORS
);
260 EXPORT_SYMBOL(blk_limits_max_hw_sectors
);
263 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
264 * @q: the request queue for the device
265 * @max_hw_sectors: max hardware sectors in the usual 512b unit
268 * See description for blk_limits_max_hw_sectors().
270 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
272 blk_limits_max_hw_sectors(&q
->limits
, max_hw_sectors
);
274 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
277 * blk_queue_max_discard_sectors - set max sectors for a single discard
278 * @q: the request queue for the device
279 * @max_discard_sectors: maximum number of sectors to discard
281 void blk_queue_max_discard_sectors(struct request_queue
*q
,
282 unsigned int max_discard_sectors
)
284 q
->limits
.max_discard_sectors
= max_discard_sectors
;
286 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
289 * blk_queue_max_segments - set max hw segments for a request for this queue
290 * @q: the request queue for the device
291 * @max_segments: max number of segments
294 * Enables a low level driver to set an upper limit on the number of
295 * hw data segments in a request.
297 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
301 printk(KERN_INFO
"%s: set to minimum %d\n",
302 __func__
, max_segments
);
305 q
->limits
.max_segments
= max_segments
;
307 EXPORT_SYMBOL(blk_queue_max_segments
);
310 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
311 * @q: the request queue for the device
312 * @max_size: max size of segment in bytes
315 * Enables a low level driver to set an upper limit on the size of a
318 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
320 if (max_size
< PAGE_CACHE_SIZE
) {
321 max_size
= PAGE_CACHE_SIZE
;
322 printk(KERN_INFO
"%s: set to minimum %d\n",
326 q
->limits
.max_segment_size
= max_size
;
328 EXPORT_SYMBOL(blk_queue_max_segment_size
);
331 * blk_queue_logical_block_size - set logical block size for the queue
332 * @q: the request queue for the device
333 * @size: the logical block size, in bytes
336 * This should be set to the lowest possible block size that the
337 * storage device can address. The default of 512 covers most
340 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
342 q
->limits
.logical_block_size
= size
;
344 if (q
->limits
.physical_block_size
< size
)
345 q
->limits
.physical_block_size
= size
;
347 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
348 q
->limits
.io_min
= q
->limits
.physical_block_size
;
350 EXPORT_SYMBOL(blk_queue_logical_block_size
);
353 * blk_queue_physical_block_size - set physical block size for the queue
354 * @q: the request queue for the device
355 * @size: the physical block size, in bytes
358 * This should be set to the lowest possible sector size that the
359 * hardware can operate on without reverting to read-modify-write
362 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
364 q
->limits
.physical_block_size
= size
;
366 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
367 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
369 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
370 q
->limits
.io_min
= q
->limits
.physical_block_size
;
372 EXPORT_SYMBOL(blk_queue_physical_block_size
);
375 * blk_queue_alignment_offset - set physical block alignment offset
376 * @q: the request queue for the device
377 * @offset: alignment offset in bytes
380 * Some devices are naturally misaligned to compensate for things like
381 * the legacy DOS partition table 63-sector offset. Low-level drivers
382 * should call this function for devices whose first sector is not
385 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
387 q
->limits
.alignment_offset
=
388 offset
& (q
->limits
.physical_block_size
- 1);
389 q
->limits
.misaligned
= 0;
391 EXPORT_SYMBOL(blk_queue_alignment_offset
);
394 * blk_limits_io_min - set minimum request size for a device
395 * @limits: the queue limits
396 * @min: smallest I/O size in bytes
399 * Some devices have an internal block size bigger than the reported
400 * hardware sector size. This function can be used to signal the
401 * smallest I/O the device can perform without incurring a performance
404 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
406 limits
->io_min
= min
;
408 if (limits
->io_min
< limits
->logical_block_size
)
409 limits
->io_min
= limits
->logical_block_size
;
411 if (limits
->io_min
< limits
->physical_block_size
)
412 limits
->io_min
= limits
->physical_block_size
;
414 EXPORT_SYMBOL(blk_limits_io_min
);
417 * blk_queue_io_min - set minimum request size for the queue
418 * @q: the request queue for the device
419 * @min: smallest I/O size in bytes
422 * Storage devices may report a granularity or preferred minimum I/O
423 * size which is the smallest request the device can perform without
424 * incurring a performance penalty. For disk drives this is often the
425 * physical block size. For RAID arrays it is often the stripe chunk
426 * size. A properly aligned multiple of minimum_io_size is the
427 * preferred request size for workloads where a high number of I/O
428 * operations is desired.
430 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
432 blk_limits_io_min(&q
->limits
, min
);
434 EXPORT_SYMBOL(blk_queue_io_min
);
437 * blk_limits_io_opt - set optimal request size for a device
438 * @limits: the queue limits
439 * @opt: smallest I/O size in bytes
442 * Storage devices may report an optimal I/O size, which is the
443 * device's preferred unit for sustained I/O. This is rarely reported
444 * for disk drives. For RAID arrays it is usually the stripe width or
445 * the internal track size. A properly aligned multiple of
446 * optimal_io_size is the preferred request size for workloads where
447 * sustained throughput is desired.
449 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
451 limits
->io_opt
= opt
;
453 EXPORT_SYMBOL(blk_limits_io_opt
);
456 * blk_queue_io_opt - set optimal request size for the queue
457 * @q: the request queue for the device
458 * @opt: optimal request size in bytes
461 * Storage devices may report an optimal I/O size, which is the
462 * device's preferred unit for sustained I/O. This is rarely reported
463 * for disk drives. For RAID arrays it is usually the stripe width or
464 * the internal track size. A properly aligned multiple of
465 * optimal_io_size is the preferred request size for workloads where
466 * sustained throughput is desired.
468 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
470 blk_limits_io_opt(&q
->limits
, opt
);
472 EXPORT_SYMBOL(blk_queue_io_opt
);
475 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
476 * @t: the stacking driver (top)
477 * @b: the underlying device (bottom)
479 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
481 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
483 EXPORT_SYMBOL(blk_queue_stack_limits
);
486 * blk_stack_limits - adjust queue_limits for stacked devices
487 * @t: the stacking driver limits (top device)
488 * @b: the underlying queue limits (bottom, component device)
489 * @start: first data sector within component device
492 * This function is used by stacking drivers like MD and DM to ensure
493 * that all component devices have compatible block sizes and
494 * alignments. The stacking driver must provide a queue_limits
495 * struct (top) and then iteratively call the stacking function for
496 * all component (bottom) devices. The stacking function will
497 * attempt to combine the values and ensure proper alignment.
499 * Returns 0 if the top and bottom queue_limits are compatible. The
500 * top device's block sizes and alignment offsets may be adjusted to
501 * ensure alignment with the bottom device. If no compatible sizes
502 * and alignments exist, -1 is returned and the resulting top
503 * queue_limits will have the misaligned flag set to indicate that
504 * the alignment_offset is undefined.
506 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
509 unsigned int top
, bottom
, alignment
, ret
= 0;
511 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
512 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
513 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
515 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
516 b
->seg_boundary_mask
);
518 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
519 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
520 b
->max_integrity_segments
);
522 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
523 b
->max_segment_size
);
525 t
->misaligned
|= b
->misaligned
;
527 alignment
= queue_limit_alignment_offset(b
, start
);
529 /* Bottom device has different alignment. Check that it is
530 * compatible with the current top alignment.
532 if (t
->alignment_offset
!= alignment
) {
534 top
= max(t
->physical_block_size
, t
->io_min
)
535 + t
->alignment_offset
;
536 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
538 /* Verify that top and bottom intervals line up */
539 if (max(top
, bottom
) & (min(top
, bottom
) - 1)) {
545 t
->logical_block_size
= max(t
->logical_block_size
,
546 b
->logical_block_size
);
548 t
->physical_block_size
= max(t
->physical_block_size
,
549 b
->physical_block_size
);
551 t
->io_min
= max(t
->io_min
, b
->io_min
);
552 t
->io_opt
= lcm(t
->io_opt
, b
->io_opt
);
554 t
->cluster
&= b
->cluster
;
555 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
557 /* Physical block size a multiple of the logical block size? */
558 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
559 t
->physical_block_size
= t
->logical_block_size
;
564 /* Minimum I/O a multiple of the physical block size? */
565 if (t
->io_min
& (t
->physical_block_size
- 1)) {
566 t
->io_min
= t
->physical_block_size
;
571 /* Optimal I/O a multiple of the physical block size? */
572 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
578 /* Find lowest common alignment_offset */
579 t
->alignment_offset
= lcm(t
->alignment_offset
, alignment
)
580 & (max(t
->physical_block_size
, t
->io_min
) - 1);
582 /* Verify that new alignment_offset is on a logical block boundary */
583 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
588 /* Discard alignment and granularity */
589 if (b
->discard_granularity
) {
590 alignment
= queue_limit_discard_alignment(b
, start
);
592 if (t
->discard_granularity
!= 0 &&
593 t
->discard_alignment
!= alignment
) {
594 top
= t
->discard_granularity
+ t
->discard_alignment
;
595 bottom
= b
->discard_granularity
+ alignment
;
597 /* Verify that top and bottom intervals line up */
598 if (max(top
, bottom
) & (min(top
, bottom
) - 1))
599 t
->discard_misaligned
= 1;
602 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
603 b
->max_discard_sectors
);
604 t
->discard_granularity
= max(t
->discard_granularity
,
605 b
->discard_granularity
);
606 t
->discard_alignment
= lcm(t
->discard_alignment
, alignment
) &
607 (t
->discard_granularity
- 1);
612 EXPORT_SYMBOL(blk_stack_limits
);
615 * bdev_stack_limits - adjust queue limits for stacked drivers
616 * @t: the stacking driver limits (top device)
617 * @bdev: the component block_device (bottom)
618 * @start: first data sector within component device
621 * Merges queue limits for a top device and a block_device. Returns
622 * 0 if alignment didn't change. Returns -1 if adding the bottom
623 * device caused misalignment.
625 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
628 struct request_queue
*bq
= bdev_get_queue(bdev
);
630 start
+= get_start_sect(bdev
);
632 return blk_stack_limits(t
, &bq
->limits
, start
);
634 EXPORT_SYMBOL(bdev_stack_limits
);
637 * disk_stack_limits - adjust queue limits for stacked drivers
638 * @disk: MD/DM gendisk (top)
639 * @bdev: the underlying block device (bottom)
640 * @offset: offset to beginning of data within component device
643 * Merges the limits for a top level gendisk and a bottom level
646 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
649 struct request_queue
*t
= disk
->queue
;
651 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
652 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
654 disk_name(disk
, 0, top
);
655 bdevname(bdev
, bottom
);
657 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
661 EXPORT_SYMBOL(disk_stack_limits
);
664 * blk_queue_dma_pad - set pad mask
665 * @q: the request queue for the device
670 * Appending pad buffer to a request modifies the last entry of a
671 * scatter list such that it includes the pad buffer.
673 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
675 q
->dma_pad_mask
= mask
;
677 EXPORT_SYMBOL(blk_queue_dma_pad
);
680 * blk_queue_update_dma_pad - update pad mask
681 * @q: the request queue for the device
684 * Update dma pad mask.
686 * Appending pad buffer to a request modifies the last entry of a
687 * scatter list such that it includes the pad buffer.
689 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
691 if (mask
> q
->dma_pad_mask
)
692 q
->dma_pad_mask
= mask
;
694 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
697 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
698 * @q: the request queue for the device
699 * @dma_drain_needed: fn which returns non-zero if drain is necessary
700 * @buf: physically contiguous buffer
701 * @size: size of the buffer in bytes
703 * Some devices have excess DMA problems and can't simply discard (or
704 * zero fill) the unwanted piece of the transfer. They have to have a
705 * real area of memory to transfer it into. The use case for this is
706 * ATAPI devices in DMA mode. If the packet command causes a transfer
707 * bigger than the transfer size some HBAs will lock up if there
708 * aren't DMA elements to contain the excess transfer. What this API
709 * does is adjust the queue so that the buf is always appended
710 * silently to the scatterlist.
712 * Note: This routine adjusts max_hw_segments to make room for appending
713 * the drain buffer. If you call blk_queue_max_segments() after calling
714 * this routine, you must set the limit to one fewer than your device
715 * can support otherwise there won't be room for the drain buffer.
717 int blk_queue_dma_drain(struct request_queue
*q
,
718 dma_drain_needed_fn
*dma_drain_needed
,
719 void *buf
, unsigned int size
)
721 if (queue_max_segments(q
) < 2)
723 /* make room for appending the drain */
724 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
725 q
->dma_drain_needed
= dma_drain_needed
;
726 q
->dma_drain_buffer
= buf
;
727 q
->dma_drain_size
= size
;
731 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
734 * blk_queue_segment_boundary - set boundary rules for segment merging
735 * @q: the request queue for the device
736 * @mask: the memory boundary mask
738 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
740 if (mask
< PAGE_CACHE_SIZE
- 1) {
741 mask
= PAGE_CACHE_SIZE
- 1;
742 printk(KERN_INFO
"%s: set to minimum %lx\n",
746 q
->limits
.seg_boundary_mask
= mask
;
748 EXPORT_SYMBOL(blk_queue_segment_boundary
);
751 * blk_queue_dma_alignment - set dma length and memory alignment
752 * @q: the request queue for the device
753 * @mask: alignment mask
756 * set required memory and length alignment for direct dma transactions.
757 * this is used when building direct io requests for the queue.
760 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
762 q
->dma_alignment
= mask
;
764 EXPORT_SYMBOL(blk_queue_dma_alignment
);
767 * blk_queue_update_dma_alignment - update dma length and memory alignment
768 * @q: the request queue for the device
769 * @mask: alignment mask
772 * update required memory and length alignment for direct dma transactions.
773 * If the requested alignment is larger than the current alignment, then
774 * the current queue alignment is updated to the new value, otherwise it
775 * is left alone. The design of this is to allow multiple objects
776 * (driver, device, transport etc) to set their respective
777 * alignments without having them interfere.
780 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
782 BUG_ON(mask
> PAGE_SIZE
);
784 if (mask
> q
->dma_alignment
)
785 q
->dma_alignment
= mask
;
787 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
790 * blk_queue_flush - configure queue's cache flush capability
791 * @q: the request queue for the device
792 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
794 * Tell block layer cache flush capability of @q. If it supports
795 * flushing, REQ_FLUSH should be set. If it supports bypassing
796 * write cache for individual writes, REQ_FUA should be set.
798 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
800 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
802 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
805 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
807 EXPORT_SYMBOL_GPL(blk_queue_flush
);
809 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
811 q
->flush_not_queueable
= !queueable
;
813 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
815 static int __init
blk_settings_init(void)
817 blk_max_low_pfn
= max_low_pfn
- 1;
818 blk_max_pfn
= max_pfn
- 1;
821 subsys_initcall(blk_settings_init
);