Merge tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd
[linux-2.6.git] / drivers / mtd / nand / nand_base.c
blob43214151b882bcf4d2717eb48f20b1b2e0fd9a46
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * Credits:
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ECC support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
60 .length = 2} }
63 static struct nand_ecclayout nand_oob_16 = {
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
66 .oobfree = {
67 {.offset = 8,
68 . length = 8} }
71 static struct nand_ecclayout nand_oob_64 = {
72 .eccbytes = 24,
73 .eccpos = {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
77 .oobfree = {
78 {.offset = 2,
79 .length = 38} }
82 static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
93 .length = 78} }
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
102 * For devices which display every fart in the system on a separate LED. Is
103 * compiled away when LED support is disabled.
105 DEFINE_LED_TRIGGER(nand_led_trigger);
107 static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
110 struct nand_chip *chip = mtd->priv;
111 int ret = 0;
113 /* Start address must align on block boundary */
114 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
115 pr_debug("%s: unaligned address\n", __func__);
116 ret = -EINVAL;
119 /* Length must align on block boundary */
120 if (len & ((1 << chip->phys_erase_shift) - 1)) {
121 pr_debug("%s: length not block aligned\n", __func__);
122 ret = -EINVAL;
125 return ret;
129 * nand_release_device - [GENERIC] release chip
130 * @mtd: MTD device structure
132 * Release chip lock and wake up anyone waiting on the device.
134 static void nand_release_device(struct mtd_info *mtd)
136 struct nand_chip *chip = mtd->priv;
138 /* Release the controller and the chip */
139 spin_lock(&chip->controller->lock);
140 chip->controller->active = NULL;
141 chip->state = FL_READY;
142 wake_up(&chip->controller->wq);
143 spin_unlock(&chip->controller->lock);
147 * nand_read_byte - [DEFAULT] read one byte from the chip
148 * @mtd: MTD device structure
150 * Default read function for 8bit buswidth
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
154 struct nand_chip *chip = mtd->priv;
155 return readb(chip->IO_ADDR_R);
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161 * @mtd: MTD device structure
163 * Default read function for 16bit buswidth with endianness conversion.
166 static uint8_t nand_read_byte16(struct mtd_info *mtd)
168 struct nand_chip *chip = mtd->priv;
169 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
173 * nand_read_word - [DEFAULT] read one word from the chip
174 * @mtd: MTD device structure
176 * Default read function for 16bit buswidth without endianness conversion.
178 static u16 nand_read_word(struct mtd_info *mtd)
180 struct nand_chip *chip = mtd->priv;
181 return readw(chip->IO_ADDR_R);
185 * nand_select_chip - [DEFAULT] control CE line
186 * @mtd: MTD device structure
187 * @chipnr: chipnumber to select, -1 for deselect
189 * Default select function for 1 chip devices.
191 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
193 struct nand_chip *chip = mtd->priv;
195 switch (chipnr) {
196 case -1:
197 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
198 break;
199 case 0:
200 break;
202 default:
203 BUG();
208 * nand_write_buf - [DEFAULT] write buffer to chip
209 * @mtd: MTD device structure
210 * @buf: data buffer
211 * @len: number of bytes to write
213 * Default write function for 8bit buswidth.
215 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
217 int i;
218 struct nand_chip *chip = mtd->priv;
220 for (i = 0; i < len; i++)
221 writeb(buf[i], chip->IO_ADDR_W);
225 * nand_read_buf - [DEFAULT] read chip data into buffer
226 * @mtd: MTD device structure
227 * @buf: buffer to store date
228 * @len: number of bytes to read
230 * Default read function for 8bit buswidth.
232 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
234 int i;
235 struct nand_chip *chip = mtd->priv;
237 for (i = 0; i < len; i++)
238 buf[i] = readb(chip->IO_ADDR_R);
242 * nand_write_buf16 - [DEFAULT] write buffer to chip
243 * @mtd: MTD device structure
244 * @buf: data buffer
245 * @len: number of bytes to write
247 * Default write function for 16bit buswidth.
249 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
251 int i;
252 struct nand_chip *chip = mtd->priv;
253 u16 *p = (u16 *) buf;
254 len >>= 1;
256 for (i = 0; i < len; i++)
257 writew(p[i], chip->IO_ADDR_W);
262 * nand_read_buf16 - [DEFAULT] read chip data into buffer
263 * @mtd: MTD device structure
264 * @buf: buffer to store date
265 * @len: number of bytes to read
267 * Default read function for 16bit buswidth.
269 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
271 int i;
272 struct nand_chip *chip = mtd->priv;
273 u16 *p = (u16 *) buf;
274 len >>= 1;
276 for (i = 0; i < len; i++)
277 p[i] = readw(chip->IO_ADDR_R);
281 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
282 * @mtd: MTD device structure
283 * @ofs: offset from device start
284 * @getchip: 0, if the chip is already selected
286 * Check, if the block is bad.
288 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
290 int page, chipnr, res = 0, i = 0;
291 struct nand_chip *chip = mtd->priv;
292 u16 bad;
294 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
295 ofs += mtd->erasesize - mtd->writesize;
297 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
299 if (getchip) {
300 chipnr = (int)(ofs >> chip->chip_shift);
302 nand_get_device(mtd, FL_READING);
304 /* Select the NAND device */
305 chip->select_chip(mtd, chipnr);
308 do {
309 if (chip->options & NAND_BUSWIDTH_16) {
310 chip->cmdfunc(mtd, NAND_CMD_READOOB,
311 chip->badblockpos & 0xFE, page);
312 bad = cpu_to_le16(chip->read_word(mtd));
313 if (chip->badblockpos & 0x1)
314 bad >>= 8;
315 else
316 bad &= 0xFF;
317 } else {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
319 page);
320 bad = chip->read_byte(mtd);
323 if (likely(chip->badblockbits == 8))
324 res = bad != 0xFF;
325 else
326 res = hweight8(bad) < chip->badblockbits;
327 ofs += mtd->writesize;
328 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
329 i++;
330 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
332 if (getchip) {
333 chip->select_chip(mtd, -1);
334 nand_release_device(mtd);
337 return res;
341 * nand_default_block_markbad - [DEFAULT] mark a block bad
342 * @mtd: MTD device structure
343 * @ofs: offset from device start
345 * This is the default implementation, which can be overridden by a hardware
346 * specific driver. We try operations in the following order, according to our
347 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
348 * (1) erase the affected block, to allow OOB marker to be written cleanly
349 * (2) update in-memory BBT
350 * (3) write bad block marker to OOB area of affected block
351 * (4) update flash-based BBT
352 * Note that we retain the first error encountered in (3) or (4), finish the
353 * procedures, and dump the error in the end.
355 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
357 struct nand_chip *chip = mtd->priv;
358 uint8_t buf[2] = { 0, 0 };
359 int block, res, ret = 0, i = 0;
360 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
362 if (write_oob) {
363 struct erase_info einfo;
365 /* Attempt erase before marking OOB */
366 memset(&einfo, 0, sizeof(einfo));
367 einfo.mtd = mtd;
368 einfo.addr = ofs;
369 einfo.len = 1 << chip->phys_erase_shift;
370 nand_erase_nand(mtd, &einfo, 0);
373 /* Get block number */
374 block = (int)(ofs >> chip->bbt_erase_shift);
375 /* Mark block bad in memory-based BBT */
376 if (chip->bbt)
377 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
379 /* Write bad block marker to OOB */
380 if (write_oob) {
381 struct mtd_oob_ops ops;
382 loff_t wr_ofs = ofs;
384 nand_get_device(mtd, FL_WRITING);
386 ops.datbuf = NULL;
387 ops.oobbuf = buf;
388 ops.ooboffs = chip->badblockpos;
389 if (chip->options & NAND_BUSWIDTH_16) {
390 ops.ooboffs &= ~0x01;
391 ops.len = ops.ooblen = 2;
392 } else {
393 ops.len = ops.ooblen = 1;
395 ops.mode = MTD_OPS_PLACE_OOB;
397 /* Write to first/last page(s) if necessary */
398 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
399 wr_ofs += mtd->erasesize - mtd->writesize;
400 do {
401 res = nand_do_write_oob(mtd, wr_ofs, &ops);
402 if (!ret)
403 ret = res;
405 i++;
406 wr_ofs += mtd->writesize;
407 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
409 nand_release_device(mtd);
412 /* Update flash-based bad block table */
413 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
414 res = nand_update_bbt(mtd, ofs);
415 if (!ret)
416 ret = res;
419 if (!ret)
420 mtd->ecc_stats.badblocks++;
422 return ret;
426 * nand_check_wp - [GENERIC] check if the chip is write protected
427 * @mtd: MTD device structure
429 * Check, if the device is write protected. The function expects, that the
430 * device is already selected.
432 static int nand_check_wp(struct mtd_info *mtd)
434 struct nand_chip *chip = mtd->priv;
436 /* Broken xD cards report WP despite being writable */
437 if (chip->options & NAND_BROKEN_XD)
438 return 0;
440 /* Check the WP bit */
441 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
442 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
446 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
447 * @mtd: MTD device structure
448 * @ofs: offset from device start
449 * @getchip: 0, if the chip is already selected
450 * @allowbbt: 1, if its allowed to access the bbt area
452 * Check, if the block is bad. Either by reading the bad block table or
453 * calling of the scan function.
455 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
456 int allowbbt)
458 struct nand_chip *chip = mtd->priv;
460 if (!chip->bbt)
461 return chip->block_bad(mtd, ofs, getchip);
463 /* Return info from the table */
464 return nand_isbad_bbt(mtd, ofs, allowbbt);
468 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
469 * @mtd: MTD device structure
470 * @timeo: Timeout
472 * Helper function for nand_wait_ready used when needing to wait in interrupt
473 * context.
475 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
477 struct nand_chip *chip = mtd->priv;
478 int i;
480 /* Wait for the device to get ready */
481 for (i = 0; i < timeo; i++) {
482 if (chip->dev_ready(mtd))
483 break;
484 touch_softlockup_watchdog();
485 mdelay(1);
489 /* Wait for the ready pin, after a command. The timeout is caught later. */
490 void nand_wait_ready(struct mtd_info *mtd)
492 struct nand_chip *chip = mtd->priv;
493 unsigned long timeo = jiffies + msecs_to_jiffies(20);
495 /* 400ms timeout */
496 if (in_interrupt() || oops_in_progress)
497 return panic_nand_wait_ready(mtd, 400);
499 led_trigger_event(nand_led_trigger, LED_FULL);
500 /* Wait until command is processed or timeout occurs */
501 do {
502 if (chip->dev_ready(mtd))
503 break;
504 touch_softlockup_watchdog();
505 } while (time_before(jiffies, timeo));
506 led_trigger_event(nand_led_trigger, LED_OFF);
508 EXPORT_SYMBOL_GPL(nand_wait_ready);
511 * nand_command - [DEFAULT] Send command to NAND device
512 * @mtd: MTD device structure
513 * @command: the command to be sent
514 * @column: the column address for this command, -1 if none
515 * @page_addr: the page address for this command, -1 if none
517 * Send command to NAND device. This function is used for small page devices
518 * (256/512 Bytes per page).
520 static void nand_command(struct mtd_info *mtd, unsigned int command,
521 int column, int page_addr)
523 register struct nand_chip *chip = mtd->priv;
524 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
526 /* Write out the command to the device */
527 if (command == NAND_CMD_SEQIN) {
528 int readcmd;
530 if (column >= mtd->writesize) {
531 /* OOB area */
532 column -= mtd->writesize;
533 readcmd = NAND_CMD_READOOB;
534 } else if (column < 256) {
535 /* First 256 bytes --> READ0 */
536 readcmd = NAND_CMD_READ0;
537 } else {
538 column -= 256;
539 readcmd = NAND_CMD_READ1;
541 chip->cmd_ctrl(mtd, readcmd, ctrl);
542 ctrl &= ~NAND_CTRL_CHANGE;
544 chip->cmd_ctrl(mtd, command, ctrl);
546 /* Address cycle, when necessary */
547 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
548 /* Serially input address */
549 if (column != -1) {
550 /* Adjust columns for 16 bit buswidth */
551 if (chip->options & NAND_BUSWIDTH_16)
552 column >>= 1;
553 chip->cmd_ctrl(mtd, column, ctrl);
554 ctrl &= ~NAND_CTRL_CHANGE;
556 if (page_addr != -1) {
557 chip->cmd_ctrl(mtd, page_addr, ctrl);
558 ctrl &= ~NAND_CTRL_CHANGE;
559 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
560 /* One more address cycle for devices > 32MiB */
561 if (chip->chipsize > (32 << 20))
562 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
564 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
567 * Program and erase have their own busy handlers status and sequential
568 * in needs no delay
570 switch (command) {
572 case NAND_CMD_PAGEPROG:
573 case NAND_CMD_ERASE1:
574 case NAND_CMD_ERASE2:
575 case NAND_CMD_SEQIN:
576 case NAND_CMD_STATUS:
577 return;
579 case NAND_CMD_RESET:
580 if (chip->dev_ready)
581 break;
582 udelay(chip->chip_delay);
583 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
584 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
585 chip->cmd_ctrl(mtd,
586 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
589 return;
591 /* This applies to read commands */
592 default:
594 * If we don't have access to the busy pin, we apply the given
595 * command delay
597 if (!chip->dev_ready) {
598 udelay(chip->chip_delay);
599 return;
603 * Apply this short delay always to ensure that we do wait tWB in
604 * any case on any machine.
606 ndelay(100);
608 nand_wait_ready(mtd);
612 * nand_command_lp - [DEFAULT] Send command to NAND large page device
613 * @mtd: MTD device structure
614 * @command: the command to be sent
615 * @column: the column address for this command, -1 if none
616 * @page_addr: the page address for this command, -1 if none
618 * Send command to NAND device. This is the version for the new large page
619 * devices. We don't have the separate regions as we have in the small page
620 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
622 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
623 int column, int page_addr)
625 register struct nand_chip *chip = mtd->priv;
627 /* Emulate NAND_CMD_READOOB */
628 if (command == NAND_CMD_READOOB) {
629 column += mtd->writesize;
630 command = NAND_CMD_READ0;
633 /* Command latch cycle */
634 chip->cmd_ctrl(mtd, command & 0xff,
635 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
637 if (column != -1 || page_addr != -1) {
638 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
640 /* Serially input address */
641 if (column != -1) {
642 /* Adjust columns for 16 bit buswidth */
643 if (chip->options & NAND_BUSWIDTH_16)
644 column >>= 1;
645 chip->cmd_ctrl(mtd, column, ctrl);
646 ctrl &= ~NAND_CTRL_CHANGE;
647 chip->cmd_ctrl(mtd, column >> 8, ctrl);
649 if (page_addr != -1) {
650 chip->cmd_ctrl(mtd, page_addr, ctrl);
651 chip->cmd_ctrl(mtd, page_addr >> 8,
652 NAND_NCE | NAND_ALE);
653 /* One more address cycle for devices > 128MiB */
654 if (chip->chipsize > (128 << 20))
655 chip->cmd_ctrl(mtd, page_addr >> 16,
656 NAND_NCE | NAND_ALE);
659 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
662 * Program and erase have their own busy handlers status, sequential
663 * in, and deplete1 need no delay.
665 switch (command) {
667 case NAND_CMD_CACHEDPROG:
668 case NAND_CMD_PAGEPROG:
669 case NAND_CMD_ERASE1:
670 case NAND_CMD_ERASE2:
671 case NAND_CMD_SEQIN:
672 case NAND_CMD_RNDIN:
673 case NAND_CMD_STATUS:
674 case NAND_CMD_DEPLETE1:
675 return;
677 case NAND_CMD_STATUS_ERROR:
678 case NAND_CMD_STATUS_ERROR0:
679 case NAND_CMD_STATUS_ERROR1:
680 case NAND_CMD_STATUS_ERROR2:
681 case NAND_CMD_STATUS_ERROR3:
682 /* Read error status commands require only a short delay */
683 udelay(chip->chip_delay);
684 return;
686 case NAND_CMD_RESET:
687 if (chip->dev_ready)
688 break;
689 udelay(chip->chip_delay);
690 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
691 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
692 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
693 NAND_NCE | NAND_CTRL_CHANGE);
694 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
696 return;
698 case NAND_CMD_RNDOUT:
699 /* No ready / busy check necessary */
700 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
701 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
702 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
703 NAND_NCE | NAND_CTRL_CHANGE);
704 return;
706 case NAND_CMD_READ0:
707 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
708 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
709 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
710 NAND_NCE | NAND_CTRL_CHANGE);
712 /* This applies to read commands */
713 default:
715 * If we don't have access to the busy pin, we apply the given
716 * command delay.
718 if (!chip->dev_ready) {
719 udelay(chip->chip_delay);
720 return;
725 * Apply this short delay always to ensure that we do wait tWB in
726 * any case on any machine.
728 ndelay(100);
730 nand_wait_ready(mtd);
734 * panic_nand_get_device - [GENERIC] Get chip for selected access
735 * @chip: the nand chip descriptor
736 * @mtd: MTD device structure
737 * @new_state: the state which is requested
739 * Used when in panic, no locks are taken.
741 static void panic_nand_get_device(struct nand_chip *chip,
742 struct mtd_info *mtd, int new_state)
744 /* Hardware controller shared among independent devices */
745 chip->controller->active = chip;
746 chip->state = new_state;
750 * nand_get_device - [GENERIC] Get chip for selected access
751 * @mtd: MTD device structure
752 * @new_state: the state which is requested
754 * Get the device and lock it for exclusive access
756 static int
757 nand_get_device(struct mtd_info *mtd, int new_state)
759 struct nand_chip *chip = mtd->priv;
760 spinlock_t *lock = &chip->controller->lock;
761 wait_queue_head_t *wq = &chip->controller->wq;
762 DECLARE_WAITQUEUE(wait, current);
763 retry:
764 spin_lock(lock);
766 /* Hardware controller shared among independent devices */
767 if (!chip->controller->active)
768 chip->controller->active = chip;
770 if (chip->controller->active == chip && chip->state == FL_READY) {
771 chip->state = new_state;
772 spin_unlock(lock);
773 return 0;
775 if (new_state == FL_PM_SUSPENDED) {
776 if (chip->controller->active->state == FL_PM_SUSPENDED) {
777 chip->state = FL_PM_SUSPENDED;
778 spin_unlock(lock);
779 return 0;
782 set_current_state(TASK_UNINTERRUPTIBLE);
783 add_wait_queue(wq, &wait);
784 spin_unlock(lock);
785 schedule();
786 remove_wait_queue(wq, &wait);
787 goto retry;
791 * panic_nand_wait - [GENERIC] wait until the command is done
792 * @mtd: MTD device structure
793 * @chip: NAND chip structure
794 * @timeo: timeout
796 * Wait for command done. This is a helper function for nand_wait used when
797 * we are in interrupt context. May happen when in panic and trying to write
798 * an oops through mtdoops.
800 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
801 unsigned long timeo)
803 int i;
804 for (i = 0; i < timeo; i++) {
805 if (chip->dev_ready) {
806 if (chip->dev_ready(mtd))
807 break;
808 } else {
809 if (chip->read_byte(mtd) & NAND_STATUS_READY)
810 break;
812 mdelay(1);
817 * nand_wait - [DEFAULT] wait until the command is done
818 * @mtd: MTD device structure
819 * @chip: NAND chip structure
821 * Wait for command done. This applies to erase and program only. Erase can
822 * take up to 400ms and program up to 20ms according to general NAND and
823 * SmartMedia specs.
825 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
828 int status, state = chip->state;
829 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
831 led_trigger_event(nand_led_trigger, LED_FULL);
834 * Apply this short delay always to ensure that we do wait tWB in any
835 * case on any machine.
837 ndelay(100);
839 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
840 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
841 else
842 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
844 if (in_interrupt() || oops_in_progress)
845 panic_nand_wait(mtd, chip, timeo);
846 else {
847 timeo = jiffies + msecs_to_jiffies(timeo);
848 while (time_before(jiffies, timeo)) {
849 if (chip->dev_ready) {
850 if (chip->dev_ready(mtd))
851 break;
852 } else {
853 if (chip->read_byte(mtd) & NAND_STATUS_READY)
854 break;
856 cond_resched();
859 led_trigger_event(nand_led_trigger, LED_OFF);
861 status = (int)chip->read_byte(mtd);
862 /* This can happen if in case of timeout or buggy dev_ready */
863 WARN_ON(!(status & NAND_STATUS_READY));
864 return status;
868 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
869 * @mtd: mtd info
870 * @ofs: offset to start unlock from
871 * @len: length to unlock
872 * @invert: when = 0, unlock the range of blocks within the lower and
873 * upper boundary address
874 * when = 1, unlock the range of blocks outside the boundaries
875 * of the lower and upper boundary address
877 * Returs unlock status.
879 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
880 uint64_t len, int invert)
882 int ret = 0;
883 int status, page;
884 struct nand_chip *chip = mtd->priv;
886 /* Submit address of first page to unlock */
887 page = ofs >> chip->page_shift;
888 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
890 /* Submit address of last page to unlock */
891 page = (ofs + len) >> chip->page_shift;
892 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
893 (page | invert) & chip->pagemask);
895 /* Call wait ready function */
896 status = chip->waitfunc(mtd, chip);
897 /* See if device thinks it succeeded */
898 if (status & NAND_STATUS_FAIL) {
899 pr_debug("%s: error status = 0x%08x\n",
900 __func__, status);
901 ret = -EIO;
904 return ret;
908 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
909 * @mtd: mtd info
910 * @ofs: offset to start unlock from
911 * @len: length to unlock
913 * Returns unlock status.
915 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
917 int ret = 0;
918 int chipnr;
919 struct nand_chip *chip = mtd->priv;
921 pr_debug("%s: start = 0x%012llx, len = %llu\n",
922 __func__, (unsigned long long)ofs, len);
924 if (check_offs_len(mtd, ofs, len))
925 ret = -EINVAL;
927 /* Align to last block address if size addresses end of the device */
928 if (ofs + len == mtd->size)
929 len -= mtd->erasesize;
931 nand_get_device(mtd, FL_UNLOCKING);
933 /* Shift to get chip number */
934 chipnr = ofs >> chip->chip_shift;
936 chip->select_chip(mtd, chipnr);
938 /* Check, if it is write protected */
939 if (nand_check_wp(mtd)) {
940 pr_debug("%s: device is write protected!\n",
941 __func__);
942 ret = -EIO;
943 goto out;
946 ret = __nand_unlock(mtd, ofs, len, 0);
948 out:
949 chip->select_chip(mtd, -1);
950 nand_release_device(mtd);
952 return ret;
954 EXPORT_SYMBOL(nand_unlock);
957 * nand_lock - [REPLACEABLE] locks all blocks present in the device
958 * @mtd: mtd info
959 * @ofs: offset to start unlock from
960 * @len: length to unlock
962 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
963 * have this feature, but it allows only to lock all blocks, not for specified
964 * range for block. Implementing 'lock' feature by making use of 'unlock', for
965 * now.
967 * Returns lock status.
969 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
971 int ret = 0;
972 int chipnr, status, page;
973 struct nand_chip *chip = mtd->priv;
975 pr_debug("%s: start = 0x%012llx, len = %llu\n",
976 __func__, (unsigned long long)ofs, len);
978 if (check_offs_len(mtd, ofs, len))
979 ret = -EINVAL;
981 nand_get_device(mtd, FL_LOCKING);
983 /* Shift to get chip number */
984 chipnr = ofs >> chip->chip_shift;
986 chip->select_chip(mtd, chipnr);
988 /* Check, if it is write protected */
989 if (nand_check_wp(mtd)) {
990 pr_debug("%s: device is write protected!\n",
991 __func__);
992 status = MTD_ERASE_FAILED;
993 ret = -EIO;
994 goto out;
997 /* Submit address of first page to lock */
998 page = ofs >> chip->page_shift;
999 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1001 /* Call wait ready function */
1002 status = chip->waitfunc(mtd, chip);
1003 /* See if device thinks it succeeded */
1004 if (status & NAND_STATUS_FAIL) {
1005 pr_debug("%s: error status = 0x%08x\n",
1006 __func__, status);
1007 ret = -EIO;
1008 goto out;
1011 ret = __nand_unlock(mtd, ofs, len, 0x1);
1013 out:
1014 chip->select_chip(mtd, -1);
1015 nand_release_device(mtd);
1017 return ret;
1019 EXPORT_SYMBOL(nand_lock);
1022 * nand_read_page_raw - [INTERN] read raw page data without ecc
1023 * @mtd: mtd info structure
1024 * @chip: nand chip info structure
1025 * @buf: buffer to store read data
1026 * @oob_required: caller requires OOB data read to chip->oob_poi
1027 * @page: page number to read
1029 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1031 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1032 uint8_t *buf, int oob_required, int page)
1034 chip->read_buf(mtd, buf, mtd->writesize);
1035 if (oob_required)
1036 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1037 return 0;
1041 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1042 * @mtd: mtd info structure
1043 * @chip: nand chip info structure
1044 * @buf: buffer to store read data
1045 * @oob_required: caller requires OOB data read to chip->oob_poi
1046 * @page: page number to read
1048 * We need a special oob layout and handling even when OOB isn't used.
1050 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1051 struct nand_chip *chip, uint8_t *buf,
1052 int oob_required, int page)
1054 int eccsize = chip->ecc.size;
1055 int eccbytes = chip->ecc.bytes;
1056 uint8_t *oob = chip->oob_poi;
1057 int steps, size;
1059 for (steps = chip->ecc.steps; steps > 0; steps--) {
1060 chip->read_buf(mtd, buf, eccsize);
1061 buf += eccsize;
1063 if (chip->ecc.prepad) {
1064 chip->read_buf(mtd, oob, chip->ecc.prepad);
1065 oob += chip->ecc.prepad;
1068 chip->read_buf(mtd, oob, eccbytes);
1069 oob += eccbytes;
1071 if (chip->ecc.postpad) {
1072 chip->read_buf(mtd, oob, chip->ecc.postpad);
1073 oob += chip->ecc.postpad;
1077 size = mtd->oobsize - (oob - chip->oob_poi);
1078 if (size)
1079 chip->read_buf(mtd, oob, size);
1081 return 0;
1085 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1086 * @mtd: mtd info structure
1087 * @chip: nand chip info structure
1088 * @buf: buffer to store read data
1089 * @oob_required: caller requires OOB data read to chip->oob_poi
1090 * @page: page number to read
1092 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1093 uint8_t *buf, int oob_required, int page)
1095 int i, eccsize = chip->ecc.size;
1096 int eccbytes = chip->ecc.bytes;
1097 int eccsteps = chip->ecc.steps;
1098 uint8_t *p = buf;
1099 uint8_t *ecc_calc = chip->buffers->ecccalc;
1100 uint8_t *ecc_code = chip->buffers->ecccode;
1101 uint32_t *eccpos = chip->ecc.layout->eccpos;
1102 unsigned int max_bitflips = 0;
1104 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1106 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1107 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1109 for (i = 0; i < chip->ecc.total; i++)
1110 ecc_code[i] = chip->oob_poi[eccpos[i]];
1112 eccsteps = chip->ecc.steps;
1113 p = buf;
1115 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1116 int stat;
1118 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1119 if (stat < 0) {
1120 mtd->ecc_stats.failed++;
1121 } else {
1122 mtd->ecc_stats.corrected += stat;
1123 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1126 return max_bitflips;
1130 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1131 * @mtd: mtd info structure
1132 * @chip: nand chip info structure
1133 * @data_offs: offset of requested data within the page
1134 * @readlen: data length
1135 * @bufpoi: buffer to store read data
1137 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1138 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1140 int start_step, end_step, num_steps;
1141 uint32_t *eccpos = chip->ecc.layout->eccpos;
1142 uint8_t *p;
1143 int data_col_addr, i, gaps = 0;
1144 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1145 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1146 int index = 0;
1147 unsigned int max_bitflips = 0;
1149 /* Column address within the page aligned to ECC size (256bytes) */
1150 start_step = data_offs / chip->ecc.size;
1151 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1152 num_steps = end_step - start_step + 1;
1154 /* Data size aligned to ECC ecc.size */
1155 datafrag_len = num_steps * chip->ecc.size;
1156 eccfrag_len = num_steps * chip->ecc.bytes;
1158 data_col_addr = start_step * chip->ecc.size;
1159 /* If we read not a page aligned data */
1160 if (data_col_addr != 0)
1161 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1163 p = bufpoi + data_col_addr;
1164 chip->read_buf(mtd, p, datafrag_len);
1166 /* Calculate ECC */
1167 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1168 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1171 * The performance is faster if we position offsets according to
1172 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1174 for (i = 0; i < eccfrag_len - 1; i++) {
1175 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1176 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1177 gaps = 1;
1178 break;
1181 if (gaps) {
1182 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1183 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1184 } else {
1186 * Send the command to read the particular ECC bytes take care
1187 * about buswidth alignment in read_buf.
1189 index = start_step * chip->ecc.bytes;
1191 aligned_pos = eccpos[index] & ~(busw - 1);
1192 aligned_len = eccfrag_len;
1193 if (eccpos[index] & (busw - 1))
1194 aligned_len++;
1195 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1196 aligned_len++;
1198 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1199 mtd->writesize + aligned_pos, -1);
1200 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1203 for (i = 0; i < eccfrag_len; i++)
1204 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1206 p = bufpoi + data_col_addr;
1207 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1208 int stat;
1210 stat = chip->ecc.correct(mtd, p,
1211 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1212 if (stat < 0) {
1213 mtd->ecc_stats.failed++;
1214 } else {
1215 mtd->ecc_stats.corrected += stat;
1216 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1219 return max_bitflips;
1223 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1224 * @mtd: mtd info structure
1225 * @chip: nand chip info structure
1226 * @buf: buffer to store read data
1227 * @oob_required: caller requires OOB data read to chip->oob_poi
1228 * @page: page number to read
1230 * Not for syndrome calculating ECC controllers which need a special oob layout.
1232 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1233 uint8_t *buf, int oob_required, int page)
1235 int i, eccsize = chip->ecc.size;
1236 int eccbytes = chip->ecc.bytes;
1237 int eccsteps = chip->ecc.steps;
1238 uint8_t *p = buf;
1239 uint8_t *ecc_calc = chip->buffers->ecccalc;
1240 uint8_t *ecc_code = chip->buffers->ecccode;
1241 uint32_t *eccpos = chip->ecc.layout->eccpos;
1242 unsigned int max_bitflips = 0;
1244 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1245 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1246 chip->read_buf(mtd, p, eccsize);
1247 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1249 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1251 for (i = 0; i < chip->ecc.total; i++)
1252 ecc_code[i] = chip->oob_poi[eccpos[i]];
1254 eccsteps = chip->ecc.steps;
1255 p = buf;
1257 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1258 int stat;
1260 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1261 if (stat < 0) {
1262 mtd->ecc_stats.failed++;
1263 } else {
1264 mtd->ecc_stats.corrected += stat;
1265 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1268 return max_bitflips;
1272 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1273 * @mtd: mtd info structure
1274 * @chip: nand chip info structure
1275 * @buf: buffer to store read data
1276 * @oob_required: caller requires OOB data read to chip->oob_poi
1277 * @page: page number to read
1279 * Hardware ECC for large page chips, require OOB to be read first. For this
1280 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283 * the data area, by overwriting the NAND manufacturer bad block markings.
1285 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1286 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1288 int i, eccsize = chip->ecc.size;
1289 int eccbytes = chip->ecc.bytes;
1290 int eccsteps = chip->ecc.steps;
1291 uint8_t *p = buf;
1292 uint8_t *ecc_code = chip->buffers->ecccode;
1293 uint32_t *eccpos = chip->ecc.layout->eccpos;
1294 uint8_t *ecc_calc = chip->buffers->ecccalc;
1295 unsigned int max_bitflips = 0;
1297 /* Read the OOB area first */
1298 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1299 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1300 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1302 for (i = 0; i < chip->ecc.total; i++)
1303 ecc_code[i] = chip->oob_poi[eccpos[i]];
1305 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1306 int stat;
1308 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1309 chip->read_buf(mtd, p, eccsize);
1310 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1312 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1313 if (stat < 0) {
1314 mtd->ecc_stats.failed++;
1315 } else {
1316 mtd->ecc_stats.corrected += stat;
1317 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1320 return max_bitflips;
1324 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1325 * @mtd: mtd info structure
1326 * @chip: nand chip info structure
1327 * @buf: buffer to store read data
1328 * @oob_required: caller requires OOB data read to chip->oob_poi
1329 * @page: page number to read
1331 * The hw generator calculates the error syndrome automatically. Therefore we
1332 * need a special oob layout and handling.
1334 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1335 uint8_t *buf, int oob_required, int page)
1337 int i, eccsize = chip->ecc.size;
1338 int eccbytes = chip->ecc.bytes;
1339 int eccsteps = chip->ecc.steps;
1340 uint8_t *p = buf;
1341 uint8_t *oob = chip->oob_poi;
1342 unsigned int max_bitflips = 0;
1344 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1345 int stat;
1347 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1348 chip->read_buf(mtd, p, eccsize);
1350 if (chip->ecc.prepad) {
1351 chip->read_buf(mtd, oob, chip->ecc.prepad);
1352 oob += chip->ecc.prepad;
1355 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1356 chip->read_buf(mtd, oob, eccbytes);
1357 stat = chip->ecc.correct(mtd, p, oob, NULL);
1359 if (stat < 0) {
1360 mtd->ecc_stats.failed++;
1361 } else {
1362 mtd->ecc_stats.corrected += stat;
1363 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1366 oob += eccbytes;
1368 if (chip->ecc.postpad) {
1369 chip->read_buf(mtd, oob, chip->ecc.postpad);
1370 oob += chip->ecc.postpad;
1374 /* Calculate remaining oob bytes */
1375 i = mtd->oobsize - (oob - chip->oob_poi);
1376 if (i)
1377 chip->read_buf(mtd, oob, i);
1379 return max_bitflips;
1383 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1384 * @chip: nand chip structure
1385 * @oob: oob destination address
1386 * @ops: oob ops structure
1387 * @len: size of oob to transfer
1389 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1390 struct mtd_oob_ops *ops, size_t len)
1392 switch (ops->mode) {
1394 case MTD_OPS_PLACE_OOB:
1395 case MTD_OPS_RAW:
1396 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1397 return oob + len;
1399 case MTD_OPS_AUTO_OOB: {
1400 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1401 uint32_t boffs = 0, roffs = ops->ooboffs;
1402 size_t bytes = 0;
1404 for (; free->length && len; free++, len -= bytes) {
1405 /* Read request not from offset 0? */
1406 if (unlikely(roffs)) {
1407 if (roffs >= free->length) {
1408 roffs -= free->length;
1409 continue;
1411 boffs = free->offset + roffs;
1412 bytes = min_t(size_t, len,
1413 (free->length - roffs));
1414 roffs = 0;
1415 } else {
1416 bytes = min_t(size_t, len, free->length);
1417 boffs = free->offset;
1419 memcpy(oob, chip->oob_poi + boffs, bytes);
1420 oob += bytes;
1422 return oob;
1424 default:
1425 BUG();
1427 return NULL;
1431 * nand_do_read_ops - [INTERN] Read data with ECC
1432 * @mtd: MTD device structure
1433 * @from: offset to read from
1434 * @ops: oob ops structure
1436 * Internal function. Called with chip held.
1438 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1439 struct mtd_oob_ops *ops)
1441 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1442 struct nand_chip *chip = mtd->priv;
1443 struct mtd_ecc_stats stats;
1444 int ret = 0;
1445 uint32_t readlen = ops->len;
1446 uint32_t oobreadlen = ops->ooblen;
1447 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1448 mtd->oobavail : mtd->oobsize;
1450 uint8_t *bufpoi, *oob, *buf;
1451 unsigned int max_bitflips = 0;
1453 stats = mtd->ecc_stats;
1455 chipnr = (int)(from >> chip->chip_shift);
1456 chip->select_chip(mtd, chipnr);
1458 realpage = (int)(from >> chip->page_shift);
1459 page = realpage & chip->pagemask;
1461 col = (int)(from & (mtd->writesize - 1));
1463 buf = ops->datbuf;
1464 oob = ops->oobbuf;
1465 oob_required = oob ? 1 : 0;
1467 while (1) {
1468 bytes = min(mtd->writesize - col, readlen);
1469 aligned = (bytes == mtd->writesize);
1471 /* Is the current page in the buffer? */
1472 if (realpage != chip->pagebuf || oob) {
1473 bufpoi = aligned ? buf : chip->buffers->databuf;
1475 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1478 * Now read the page into the buffer. Absent an error,
1479 * the read methods return max bitflips per ecc step.
1481 if (unlikely(ops->mode == MTD_OPS_RAW))
1482 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1483 oob_required,
1484 page);
1485 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1486 !oob)
1487 ret = chip->ecc.read_subpage(mtd, chip,
1488 col, bytes, bufpoi);
1489 else
1490 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1491 oob_required, page);
1492 if (ret < 0) {
1493 if (!aligned)
1494 /* Invalidate page cache */
1495 chip->pagebuf = -1;
1496 break;
1499 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1501 /* Transfer not aligned data */
1502 if (!aligned) {
1503 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1504 !(mtd->ecc_stats.failed - stats.failed) &&
1505 (ops->mode != MTD_OPS_RAW)) {
1506 chip->pagebuf = realpage;
1507 chip->pagebuf_bitflips = ret;
1508 } else {
1509 /* Invalidate page cache */
1510 chip->pagebuf = -1;
1512 memcpy(buf, chip->buffers->databuf + col, bytes);
1515 buf += bytes;
1517 if (unlikely(oob)) {
1518 int toread = min(oobreadlen, max_oobsize);
1520 if (toread) {
1521 oob = nand_transfer_oob(chip,
1522 oob, ops, toread);
1523 oobreadlen -= toread;
1526 } else {
1527 memcpy(buf, chip->buffers->databuf + col, bytes);
1528 buf += bytes;
1529 max_bitflips = max_t(unsigned int, max_bitflips,
1530 chip->pagebuf_bitflips);
1533 readlen -= bytes;
1535 if (!readlen)
1536 break;
1538 /* For subsequent reads align to page boundary */
1539 col = 0;
1540 /* Increment page address */
1541 realpage++;
1543 page = realpage & chip->pagemask;
1544 /* Check, if we cross a chip boundary */
1545 if (!page) {
1546 chipnr++;
1547 chip->select_chip(mtd, -1);
1548 chip->select_chip(mtd, chipnr);
1551 chip->select_chip(mtd, -1);
1553 ops->retlen = ops->len - (size_t) readlen;
1554 if (oob)
1555 ops->oobretlen = ops->ooblen - oobreadlen;
1557 if (ret < 0)
1558 return ret;
1560 if (mtd->ecc_stats.failed - stats.failed)
1561 return -EBADMSG;
1563 return max_bitflips;
1567 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1568 * @mtd: MTD device structure
1569 * @from: offset to read from
1570 * @len: number of bytes to read
1571 * @retlen: pointer to variable to store the number of read bytes
1572 * @buf: the databuffer to put data
1574 * Get hold of the chip and call nand_do_read.
1576 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1577 size_t *retlen, uint8_t *buf)
1579 struct mtd_oob_ops ops;
1580 int ret;
1582 nand_get_device(mtd, FL_READING);
1583 ops.len = len;
1584 ops.datbuf = buf;
1585 ops.oobbuf = NULL;
1586 ops.mode = MTD_OPS_PLACE_OOB;
1587 ret = nand_do_read_ops(mtd, from, &ops);
1588 *retlen = ops.retlen;
1589 nand_release_device(mtd);
1590 return ret;
1594 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1595 * @mtd: mtd info structure
1596 * @chip: nand chip info structure
1597 * @page: page number to read
1599 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1600 int page)
1602 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1603 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1604 return 0;
1608 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1609 * with syndromes
1610 * @mtd: mtd info structure
1611 * @chip: nand chip info structure
1612 * @page: page number to read
1614 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1615 int page)
1617 uint8_t *buf = chip->oob_poi;
1618 int length = mtd->oobsize;
1619 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1620 int eccsize = chip->ecc.size;
1621 uint8_t *bufpoi = buf;
1622 int i, toread, sndrnd = 0, pos;
1624 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1625 for (i = 0; i < chip->ecc.steps; i++) {
1626 if (sndrnd) {
1627 pos = eccsize + i * (eccsize + chunk);
1628 if (mtd->writesize > 512)
1629 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1630 else
1631 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1632 } else
1633 sndrnd = 1;
1634 toread = min_t(int, length, chunk);
1635 chip->read_buf(mtd, bufpoi, toread);
1636 bufpoi += toread;
1637 length -= toread;
1639 if (length > 0)
1640 chip->read_buf(mtd, bufpoi, length);
1642 return 0;
1646 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1647 * @mtd: mtd info structure
1648 * @chip: nand chip info structure
1649 * @page: page number to write
1651 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1652 int page)
1654 int status = 0;
1655 const uint8_t *buf = chip->oob_poi;
1656 int length = mtd->oobsize;
1658 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1659 chip->write_buf(mtd, buf, length);
1660 /* Send command to program the OOB data */
1661 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1663 status = chip->waitfunc(mtd, chip);
1665 return status & NAND_STATUS_FAIL ? -EIO : 0;
1669 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1670 * with syndrome - only for large page flash
1671 * @mtd: mtd info structure
1672 * @chip: nand chip info structure
1673 * @page: page number to write
1675 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1676 struct nand_chip *chip, int page)
1678 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1679 int eccsize = chip->ecc.size, length = mtd->oobsize;
1680 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1681 const uint8_t *bufpoi = chip->oob_poi;
1684 * data-ecc-data-ecc ... ecc-oob
1685 * or
1686 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1688 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1689 pos = steps * (eccsize + chunk);
1690 steps = 0;
1691 } else
1692 pos = eccsize;
1694 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1695 for (i = 0; i < steps; i++) {
1696 if (sndcmd) {
1697 if (mtd->writesize <= 512) {
1698 uint32_t fill = 0xFFFFFFFF;
1700 len = eccsize;
1701 while (len > 0) {
1702 int num = min_t(int, len, 4);
1703 chip->write_buf(mtd, (uint8_t *)&fill,
1704 num);
1705 len -= num;
1707 } else {
1708 pos = eccsize + i * (eccsize + chunk);
1709 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1711 } else
1712 sndcmd = 1;
1713 len = min_t(int, length, chunk);
1714 chip->write_buf(mtd, bufpoi, len);
1715 bufpoi += len;
1716 length -= len;
1718 if (length > 0)
1719 chip->write_buf(mtd, bufpoi, length);
1721 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1722 status = chip->waitfunc(mtd, chip);
1724 return status & NAND_STATUS_FAIL ? -EIO : 0;
1728 * nand_do_read_oob - [INTERN] NAND read out-of-band
1729 * @mtd: MTD device structure
1730 * @from: offset to read from
1731 * @ops: oob operations description structure
1733 * NAND read out-of-band data from the spare area.
1735 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1736 struct mtd_oob_ops *ops)
1738 int page, realpage, chipnr;
1739 struct nand_chip *chip = mtd->priv;
1740 struct mtd_ecc_stats stats;
1741 int readlen = ops->ooblen;
1742 int len;
1743 uint8_t *buf = ops->oobbuf;
1744 int ret = 0;
1746 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1747 __func__, (unsigned long long)from, readlen);
1749 stats = mtd->ecc_stats;
1751 if (ops->mode == MTD_OPS_AUTO_OOB)
1752 len = chip->ecc.layout->oobavail;
1753 else
1754 len = mtd->oobsize;
1756 if (unlikely(ops->ooboffs >= len)) {
1757 pr_debug("%s: attempt to start read outside oob\n",
1758 __func__);
1759 return -EINVAL;
1762 /* Do not allow reads past end of device */
1763 if (unlikely(from >= mtd->size ||
1764 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1765 (from >> chip->page_shift)) * len)) {
1766 pr_debug("%s: attempt to read beyond end of device\n",
1767 __func__);
1768 return -EINVAL;
1771 chipnr = (int)(from >> chip->chip_shift);
1772 chip->select_chip(mtd, chipnr);
1774 /* Shift to get page */
1775 realpage = (int)(from >> chip->page_shift);
1776 page = realpage & chip->pagemask;
1778 while (1) {
1779 if (ops->mode == MTD_OPS_RAW)
1780 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1781 else
1782 ret = chip->ecc.read_oob(mtd, chip, page);
1784 if (ret < 0)
1785 break;
1787 len = min(len, readlen);
1788 buf = nand_transfer_oob(chip, buf, ops, len);
1790 readlen -= len;
1791 if (!readlen)
1792 break;
1794 /* Increment page address */
1795 realpage++;
1797 page = realpage & chip->pagemask;
1798 /* Check, if we cross a chip boundary */
1799 if (!page) {
1800 chipnr++;
1801 chip->select_chip(mtd, -1);
1802 chip->select_chip(mtd, chipnr);
1805 chip->select_chip(mtd, -1);
1807 ops->oobretlen = ops->ooblen - readlen;
1809 if (ret < 0)
1810 return ret;
1812 if (mtd->ecc_stats.failed - stats.failed)
1813 return -EBADMSG;
1815 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1819 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1820 * @mtd: MTD device structure
1821 * @from: offset to read from
1822 * @ops: oob operation description structure
1824 * NAND read data and/or out-of-band data.
1826 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1827 struct mtd_oob_ops *ops)
1829 int ret = -ENOTSUPP;
1831 ops->retlen = 0;
1833 /* Do not allow reads past end of device */
1834 if (ops->datbuf && (from + ops->len) > mtd->size) {
1835 pr_debug("%s: attempt to read beyond end of device\n",
1836 __func__);
1837 return -EINVAL;
1840 nand_get_device(mtd, FL_READING);
1842 switch (ops->mode) {
1843 case MTD_OPS_PLACE_OOB:
1844 case MTD_OPS_AUTO_OOB:
1845 case MTD_OPS_RAW:
1846 break;
1848 default:
1849 goto out;
1852 if (!ops->datbuf)
1853 ret = nand_do_read_oob(mtd, from, ops);
1854 else
1855 ret = nand_do_read_ops(mtd, from, ops);
1857 out:
1858 nand_release_device(mtd);
1859 return ret;
1864 * nand_write_page_raw - [INTERN] raw page write function
1865 * @mtd: mtd info structure
1866 * @chip: nand chip info structure
1867 * @buf: data buffer
1868 * @oob_required: must write chip->oob_poi to OOB
1870 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1872 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1873 const uint8_t *buf, int oob_required)
1875 chip->write_buf(mtd, buf, mtd->writesize);
1876 if (oob_required)
1877 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1879 return 0;
1883 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1884 * @mtd: mtd info structure
1885 * @chip: nand chip info structure
1886 * @buf: data buffer
1887 * @oob_required: must write chip->oob_poi to OOB
1889 * We need a special oob layout and handling even when ECC isn't checked.
1891 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1892 struct nand_chip *chip,
1893 const uint8_t *buf, int oob_required)
1895 int eccsize = chip->ecc.size;
1896 int eccbytes = chip->ecc.bytes;
1897 uint8_t *oob = chip->oob_poi;
1898 int steps, size;
1900 for (steps = chip->ecc.steps; steps > 0; steps--) {
1901 chip->write_buf(mtd, buf, eccsize);
1902 buf += eccsize;
1904 if (chip->ecc.prepad) {
1905 chip->write_buf(mtd, oob, chip->ecc.prepad);
1906 oob += chip->ecc.prepad;
1909 chip->read_buf(mtd, oob, eccbytes);
1910 oob += eccbytes;
1912 if (chip->ecc.postpad) {
1913 chip->write_buf(mtd, oob, chip->ecc.postpad);
1914 oob += chip->ecc.postpad;
1918 size = mtd->oobsize - (oob - chip->oob_poi);
1919 if (size)
1920 chip->write_buf(mtd, oob, size);
1922 return 0;
1925 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1926 * @mtd: mtd info structure
1927 * @chip: nand chip info structure
1928 * @buf: data buffer
1929 * @oob_required: must write chip->oob_poi to OOB
1931 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1932 const uint8_t *buf, int oob_required)
1934 int i, eccsize = chip->ecc.size;
1935 int eccbytes = chip->ecc.bytes;
1936 int eccsteps = chip->ecc.steps;
1937 uint8_t *ecc_calc = chip->buffers->ecccalc;
1938 const uint8_t *p = buf;
1939 uint32_t *eccpos = chip->ecc.layout->eccpos;
1941 /* Software ECC calculation */
1942 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1943 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1945 for (i = 0; i < chip->ecc.total; i++)
1946 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1948 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1952 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1953 * @mtd: mtd info structure
1954 * @chip: nand chip info structure
1955 * @buf: data buffer
1956 * @oob_required: must write chip->oob_poi to OOB
1958 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1959 const uint8_t *buf, int oob_required)
1961 int i, eccsize = chip->ecc.size;
1962 int eccbytes = chip->ecc.bytes;
1963 int eccsteps = chip->ecc.steps;
1964 uint8_t *ecc_calc = chip->buffers->ecccalc;
1965 const uint8_t *p = buf;
1966 uint32_t *eccpos = chip->ecc.layout->eccpos;
1968 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1969 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1970 chip->write_buf(mtd, p, eccsize);
1971 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1974 for (i = 0; i < chip->ecc.total; i++)
1975 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1977 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1979 return 0;
1983 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
1984 * @mtd: mtd info structure
1985 * @chip: nand chip info structure
1986 * @buf: data buffer
1987 * @oob_required: must write chip->oob_poi to OOB
1989 * The hw generator calculates the error syndrome automatically. Therefore we
1990 * need a special oob layout and handling.
1992 static int nand_write_page_syndrome(struct mtd_info *mtd,
1993 struct nand_chip *chip,
1994 const uint8_t *buf, int oob_required)
1996 int i, eccsize = chip->ecc.size;
1997 int eccbytes = chip->ecc.bytes;
1998 int eccsteps = chip->ecc.steps;
1999 const uint8_t *p = buf;
2000 uint8_t *oob = chip->oob_poi;
2002 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2004 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2005 chip->write_buf(mtd, p, eccsize);
2007 if (chip->ecc.prepad) {
2008 chip->write_buf(mtd, oob, chip->ecc.prepad);
2009 oob += chip->ecc.prepad;
2012 chip->ecc.calculate(mtd, p, oob);
2013 chip->write_buf(mtd, oob, eccbytes);
2014 oob += eccbytes;
2016 if (chip->ecc.postpad) {
2017 chip->write_buf(mtd, oob, chip->ecc.postpad);
2018 oob += chip->ecc.postpad;
2022 /* Calculate remaining oob bytes */
2023 i = mtd->oobsize - (oob - chip->oob_poi);
2024 if (i)
2025 chip->write_buf(mtd, oob, i);
2027 return 0;
2031 * nand_write_page - [REPLACEABLE] write one page
2032 * @mtd: MTD device structure
2033 * @chip: NAND chip descriptor
2034 * @buf: the data to write
2035 * @oob_required: must write chip->oob_poi to OOB
2036 * @page: page number to write
2037 * @cached: cached programming
2038 * @raw: use _raw version of write_page
2040 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2041 const uint8_t *buf, int oob_required, int page,
2042 int cached, int raw)
2044 int status;
2046 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2048 if (unlikely(raw))
2049 status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
2050 else
2051 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2053 if (status < 0)
2054 return status;
2057 * Cached progamming disabled for now. Not sure if it's worth the
2058 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2060 cached = 0;
2062 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2064 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2065 status = chip->waitfunc(mtd, chip);
2067 * See if operation failed and additional status checks are
2068 * available.
2070 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2071 status = chip->errstat(mtd, chip, FL_WRITING, status,
2072 page);
2074 if (status & NAND_STATUS_FAIL)
2075 return -EIO;
2076 } else {
2077 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2078 status = chip->waitfunc(mtd, chip);
2081 return 0;
2085 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2086 * @mtd: MTD device structure
2087 * @oob: oob data buffer
2088 * @len: oob data write length
2089 * @ops: oob ops structure
2091 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2092 struct mtd_oob_ops *ops)
2094 struct nand_chip *chip = mtd->priv;
2097 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2098 * data from a previous OOB read.
2100 memset(chip->oob_poi, 0xff, mtd->oobsize);
2102 switch (ops->mode) {
2104 case MTD_OPS_PLACE_OOB:
2105 case MTD_OPS_RAW:
2106 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2107 return oob + len;
2109 case MTD_OPS_AUTO_OOB: {
2110 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2111 uint32_t boffs = 0, woffs = ops->ooboffs;
2112 size_t bytes = 0;
2114 for (; free->length && len; free++, len -= bytes) {
2115 /* Write request not from offset 0? */
2116 if (unlikely(woffs)) {
2117 if (woffs >= free->length) {
2118 woffs -= free->length;
2119 continue;
2121 boffs = free->offset + woffs;
2122 bytes = min_t(size_t, len,
2123 (free->length - woffs));
2124 woffs = 0;
2125 } else {
2126 bytes = min_t(size_t, len, free->length);
2127 boffs = free->offset;
2129 memcpy(chip->oob_poi + boffs, oob, bytes);
2130 oob += bytes;
2132 return oob;
2134 default:
2135 BUG();
2137 return NULL;
2140 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2143 * nand_do_write_ops - [INTERN] NAND write with ECC
2144 * @mtd: MTD device structure
2145 * @to: offset to write to
2146 * @ops: oob operations description structure
2148 * NAND write with ECC.
2150 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2151 struct mtd_oob_ops *ops)
2153 int chipnr, realpage, page, blockmask, column;
2154 struct nand_chip *chip = mtd->priv;
2155 uint32_t writelen = ops->len;
2157 uint32_t oobwritelen = ops->ooblen;
2158 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2159 mtd->oobavail : mtd->oobsize;
2161 uint8_t *oob = ops->oobbuf;
2162 uint8_t *buf = ops->datbuf;
2163 int ret, subpage;
2164 int oob_required = oob ? 1 : 0;
2166 ops->retlen = 0;
2167 if (!writelen)
2168 return 0;
2170 /* Reject writes, which are not page aligned */
2171 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2172 pr_notice("%s: attempt to write non page aligned data\n",
2173 __func__);
2174 return -EINVAL;
2177 column = to & (mtd->writesize - 1);
2178 subpage = column || (writelen & (mtd->writesize - 1));
2180 if (subpage && oob)
2181 return -EINVAL;
2183 chipnr = (int)(to >> chip->chip_shift);
2184 chip->select_chip(mtd, chipnr);
2186 /* Check, if it is write protected */
2187 if (nand_check_wp(mtd)) {
2188 ret = -EIO;
2189 goto err_out;
2192 realpage = (int)(to >> chip->page_shift);
2193 page = realpage & chip->pagemask;
2194 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2196 /* Invalidate the page cache, when we write to the cached page */
2197 if (to <= (chip->pagebuf << chip->page_shift) &&
2198 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2199 chip->pagebuf = -1;
2201 /* Don't allow multipage oob writes with offset */
2202 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2203 ret = -EINVAL;
2204 goto err_out;
2207 while (1) {
2208 int bytes = mtd->writesize;
2209 int cached = writelen > bytes && page != blockmask;
2210 uint8_t *wbuf = buf;
2212 /* Partial page write? */
2213 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2214 cached = 0;
2215 bytes = min_t(int, bytes - column, (int) writelen);
2216 chip->pagebuf = -1;
2217 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2218 memcpy(&chip->buffers->databuf[column], buf, bytes);
2219 wbuf = chip->buffers->databuf;
2222 if (unlikely(oob)) {
2223 size_t len = min(oobwritelen, oobmaxlen);
2224 oob = nand_fill_oob(mtd, oob, len, ops);
2225 oobwritelen -= len;
2226 } else {
2227 /* We still need to erase leftover OOB data */
2228 memset(chip->oob_poi, 0xff, mtd->oobsize);
2231 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2232 cached, (ops->mode == MTD_OPS_RAW));
2233 if (ret)
2234 break;
2236 writelen -= bytes;
2237 if (!writelen)
2238 break;
2240 column = 0;
2241 buf += bytes;
2242 realpage++;
2244 page = realpage & chip->pagemask;
2245 /* Check, if we cross a chip boundary */
2246 if (!page) {
2247 chipnr++;
2248 chip->select_chip(mtd, -1);
2249 chip->select_chip(mtd, chipnr);
2253 ops->retlen = ops->len - writelen;
2254 if (unlikely(oob))
2255 ops->oobretlen = ops->ooblen;
2257 err_out:
2258 chip->select_chip(mtd, -1);
2259 return ret;
2263 * panic_nand_write - [MTD Interface] NAND write with ECC
2264 * @mtd: MTD device structure
2265 * @to: offset to write to
2266 * @len: number of bytes to write
2267 * @retlen: pointer to variable to store the number of written bytes
2268 * @buf: the data to write
2270 * NAND write with ECC. Used when performing writes in interrupt context, this
2271 * may for example be called by mtdoops when writing an oops while in panic.
2273 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2274 size_t *retlen, const uint8_t *buf)
2276 struct nand_chip *chip = mtd->priv;
2277 struct mtd_oob_ops ops;
2278 int ret;
2280 /* Wait for the device to get ready */
2281 panic_nand_wait(mtd, chip, 400);
2283 /* Grab the device */
2284 panic_nand_get_device(chip, mtd, FL_WRITING);
2286 ops.len = len;
2287 ops.datbuf = (uint8_t *)buf;
2288 ops.oobbuf = NULL;
2289 ops.mode = MTD_OPS_PLACE_OOB;
2291 ret = nand_do_write_ops(mtd, to, &ops);
2293 *retlen = ops.retlen;
2294 return ret;
2298 * nand_write - [MTD Interface] NAND write with ECC
2299 * @mtd: MTD device structure
2300 * @to: offset to write to
2301 * @len: number of bytes to write
2302 * @retlen: pointer to variable to store the number of written bytes
2303 * @buf: the data to write
2305 * NAND write with ECC.
2307 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2308 size_t *retlen, const uint8_t *buf)
2310 struct mtd_oob_ops ops;
2311 int ret;
2313 nand_get_device(mtd, FL_WRITING);
2314 ops.len = len;
2315 ops.datbuf = (uint8_t *)buf;
2316 ops.oobbuf = NULL;
2317 ops.mode = MTD_OPS_PLACE_OOB;
2318 ret = nand_do_write_ops(mtd, to, &ops);
2319 *retlen = ops.retlen;
2320 nand_release_device(mtd);
2321 return ret;
2325 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2326 * @mtd: MTD device structure
2327 * @to: offset to write to
2328 * @ops: oob operation description structure
2330 * NAND write out-of-band.
2332 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2333 struct mtd_oob_ops *ops)
2335 int chipnr, page, status, len;
2336 struct nand_chip *chip = mtd->priv;
2338 pr_debug("%s: to = 0x%08x, len = %i\n",
2339 __func__, (unsigned int)to, (int)ops->ooblen);
2341 if (ops->mode == MTD_OPS_AUTO_OOB)
2342 len = chip->ecc.layout->oobavail;
2343 else
2344 len = mtd->oobsize;
2346 /* Do not allow write past end of page */
2347 if ((ops->ooboffs + ops->ooblen) > len) {
2348 pr_debug("%s: attempt to write past end of page\n",
2349 __func__);
2350 return -EINVAL;
2353 if (unlikely(ops->ooboffs >= len)) {
2354 pr_debug("%s: attempt to start write outside oob\n",
2355 __func__);
2356 return -EINVAL;
2359 /* Do not allow write past end of device */
2360 if (unlikely(to >= mtd->size ||
2361 ops->ooboffs + ops->ooblen >
2362 ((mtd->size >> chip->page_shift) -
2363 (to >> chip->page_shift)) * len)) {
2364 pr_debug("%s: attempt to write beyond end of device\n",
2365 __func__);
2366 return -EINVAL;
2369 chipnr = (int)(to >> chip->chip_shift);
2370 chip->select_chip(mtd, chipnr);
2372 /* Shift to get page */
2373 page = (int)(to >> chip->page_shift);
2376 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2377 * of my DiskOnChip 2000 test units) will clear the whole data page too
2378 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2379 * it in the doc2000 driver in August 1999. dwmw2.
2381 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2383 /* Check, if it is write protected */
2384 if (nand_check_wp(mtd)) {
2385 chip->select_chip(mtd, -1);
2386 return -EROFS;
2389 /* Invalidate the page cache, if we write to the cached page */
2390 if (page == chip->pagebuf)
2391 chip->pagebuf = -1;
2393 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2395 if (ops->mode == MTD_OPS_RAW)
2396 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2397 else
2398 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2400 chip->select_chip(mtd, -1);
2402 if (status)
2403 return status;
2405 ops->oobretlen = ops->ooblen;
2407 return 0;
2411 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2412 * @mtd: MTD device structure
2413 * @to: offset to write to
2414 * @ops: oob operation description structure
2416 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2417 struct mtd_oob_ops *ops)
2419 int ret = -ENOTSUPP;
2421 ops->retlen = 0;
2423 /* Do not allow writes past end of device */
2424 if (ops->datbuf && (to + ops->len) > mtd->size) {
2425 pr_debug("%s: attempt to write beyond end of device\n",
2426 __func__);
2427 return -EINVAL;
2430 nand_get_device(mtd, FL_WRITING);
2432 switch (ops->mode) {
2433 case MTD_OPS_PLACE_OOB:
2434 case MTD_OPS_AUTO_OOB:
2435 case MTD_OPS_RAW:
2436 break;
2438 default:
2439 goto out;
2442 if (!ops->datbuf)
2443 ret = nand_do_write_oob(mtd, to, ops);
2444 else
2445 ret = nand_do_write_ops(mtd, to, ops);
2447 out:
2448 nand_release_device(mtd);
2449 return ret;
2453 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2454 * @mtd: MTD device structure
2455 * @page: the page address of the block which will be erased
2457 * Standard erase command for NAND chips.
2459 static void single_erase_cmd(struct mtd_info *mtd, int page)
2461 struct nand_chip *chip = mtd->priv;
2462 /* Send commands to erase a block */
2463 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2464 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2468 * multi_erase_cmd - [GENERIC] AND specific block erase command function
2469 * @mtd: MTD device structure
2470 * @page: the page address of the block which will be erased
2472 * AND multi block erase command function. Erase 4 consecutive blocks.
2474 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2476 struct nand_chip *chip = mtd->priv;
2477 /* Send commands to erase a block */
2478 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2479 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2480 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2481 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2482 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2486 * nand_erase - [MTD Interface] erase block(s)
2487 * @mtd: MTD device structure
2488 * @instr: erase instruction
2490 * Erase one ore more blocks.
2492 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2494 return nand_erase_nand(mtd, instr, 0);
2497 #define BBT_PAGE_MASK 0xffffff3f
2499 * nand_erase_nand - [INTERN] erase block(s)
2500 * @mtd: MTD device structure
2501 * @instr: erase instruction
2502 * @allowbbt: allow erasing the bbt area
2504 * Erase one ore more blocks.
2506 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2507 int allowbbt)
2509 int page, status, pages_per_block, ret, chipnr;
2510 struct nand_chip *chip = mtd->priv;
2511 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2512 unsigned int bbt_masked_page = 0xffffffff;
2513 loff_t len;
2515 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2516 __func__, (unsigned long long)instr->addr,
2517 (unsigned long long)instr->len);
2519 if (check_offs_len(mtd, instr->addr, instr->len))
2520 return -EINVAL;
2522 /* Grab the lock and see if the device is available */
2523 nand_get_device(mtd, FL_ERASING);
2525 /* Shift to get first page */
2526 page = (int)(instr->addr >> chip->page_shift);
2527 chipnr = (int)(instr->addr >> chip->chip_shift);
2529 /* Calculate pages in each block */
2530 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2532 /* Select the NAND device */
2533 chip->select_chip(mtd, chipnr);
2535 /* Check, if it is write protected */
2536 if (nand_check_wp(mtd)) {
2537 pr_debug("%s: device is write protected!\n",
2538 __func__);
2539 instr->state = MTD_ERASE_FAILED;
2540 goto erase_exit;
2544 * If BBT requires refresh, set the BBT page mask to see if the BBT
2545 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2546 * can not be matched. This is also done when the bbt is actually
2547 * erased to avoid recursive updates.
2549 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2550 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2552 /* Loop through the pages */
2553 len = instr->len;
2555 instr->state = MTD_ERASING;
2557 while (len) {
2558 /* Check if we have a bad block, we do not erase bad blocks! */
2559 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2560 chip->page_shift, 0, allowbbt)) {
2561 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2562 __func__, page);
2563 instr->state = MTD_ERASE_FAILED;
2564 goto erase_exit;
2568 * Invalidate the page cache, if we erase the block which
2569 * contains the current cached page.
2571 if (page <= chip->pagebuf && chip->pagebuf <
2572 (page + pages_per_block))
2573 chip->pagebuf = -1;
2575 chip->erase_cmd(mtd, page & chip->pagemask);
2577 status = chip->waitfunc(mtd, chip);
2580 * See if operation failed and additional status checks are
2581 * available
2583 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2584 status = chip->errstat(mtd, chip, FL_ERASING,
2585 status, page);
2587 /* See if block erase succeeded */
2588 if (status & NAND_STATUS_FAIL) {
2589 pr_debug("%s: failed erase, page 0x%08x\n",
2590 __func__, page);
2591 instr->state = MTD_ERASE_FAILED;
2592 instr->fail_addr =
2593 ((loff_t)page << chip->page_shift);
2594 goto erase_exit;
2598 * If BBT requires refresh, set the BBT rewrite flag to the
2599 * page being erased.
2601 if (bbt_masked_page != 0xffffffff &&
2602 (page & BBT_PAGE_MASK) == bbt_masked_page)
2603 rewrite_bbt[chipnr] =
2604 ((loff_t)page << chip->page_shift);
2606 /* Increment page address and decrement length */
2607 len -= (1 << chip->phys_erase_shift);
2608 page += pages_per_block;
2610 /* Check, if we cross a chip boundary */
2611 if (len && !(page & chip->pagemask)) {
2612 chipnr++;
2613 chip->select_chip(mtd, -1);
2614 chip->select_chip(mtd, chipnr);
2617 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2618 * page mask to see if this BBT should be rewritten.
2620 if (bbt_masked_page != 0xffffffff &&
2621 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2622 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2623 BBT_PAGE_MASK;
2626 instr->state = MTD_ERASE_DONE;
2628 erase_exit:
2630 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2632 /* Deselect and wake up anyone waiting on the device */
2633 chip->select_chip(mtd, -1);
2634 nand_release_device(mtd);
2636 /* Do call back function */
2637 if (!ret)
2638 mtd_erase_callback(instr);
2641 * If BBT requires refresh and erase was successful, rewrite any
2642 * selected bad block tables.
2644 if (bbt_masked_page == 0xffffffff || ret)
2645 return ret;
2647 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2648 if (!rewrite_bbt[chipnr])
2649 continue;
2650 /* Update the BBT for chip */
2651 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2652 __func__, chipnr, rewrite_bbt[chipnr],
2653 chip->bbt_td->pages[chipnr]);
2654 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2657 /* Return more or less happy */
2658 return ret;
2662 * nand_sync - [MTD Interface] sync
2663 * @mtd: MTD device structure
2665 * Sync is actually a wait for chip ready function.
2667 static void nand_sync(struct mtd_info *mtd)
2669 pr_debug("%s: called\n", __func__);
2671 /* Grab the lock and see if the device is available */
2672 nand_get_device(mtd, FL_SYNCING);
2673 /* Release it and go back */
2674 nand_release_device(mtd);
2678 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2679 * @mtd: MTD device structure
2680 * @offs: offset relative to mtd start
2682 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2684 return nand_block_checkbad(mtd, offs, 1, 0);
2688 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2689 * @mtd: MTD device structure
2690 * @ofs: offset relative to mtd start
2692 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2694 struct nand_chip *chip = mtd->priv;
2695 int ret;
2697 ret = nand_block_isbad(mtd, ofs);
2698 if (ret) {
2699 /* If it was bad already, return success and do nothing */
2700 if (ret > 0)
2701 return 0;
2702 return ret;
2705 return chip->block_markbad(mtd, ofs);
2709 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2710 * @mtd: MTD device structure
2711 * @chip: nand chip info structure
2712 * @addr: feature address.
2713 * @subfeature_param: the subfeature parameters, a four bytes array.
2715 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2716 int addr, uint8_t *subfeature_param)
2718 int status;
2720 if (!chip->onfi_version)
2721 return -EINVAL;
2723 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2724 chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2725 status = chip->waitfunc(mtd, chip);
2726 if (status & NAND_STATUS_FAIL)
2727 return -EIO;
2728 return 0;
2732 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2733 * @mtd: MTD device structure
2734 * @chip: nand chip info structure
2735 * @addr: feature address.
2736 * @subfeature_param: the subfeature parameters, a four bytes array.
2738 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2739 int addr, uint8_t *subfeature_param)
2741 if (!chip->onfi_version)
2742 return -EINVAL;
2744 /* clear the sub feature parameters */
2745 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2747 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2748 chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2749 return 0;
2753 * nand_suspend - [MTD Interface] Suspend the NAND flash
2754 * @mtd: MTD device structure
2756 static int nand_suspend(struct mtd_info *mtd)
2758 return nand_get_device(mtd, FL_PM_SUSPENDED);
2762 * nand_resume - [MTD Interface] Resume the NAND flash
2763 * @mtd: MTD device structure
2765 static void nand_resume(struct mtd_info *mtd)
2767 struct nand_chip *chip = mtd->priv;
2769 if (chip->state == FL_PM_SUSPENDED)
2770 nand_release_device(mtd);
2771 else
2772 pr_err("%s called for a chip which is not in suspended state\n",
2773 __func__);
2776 /* Set default functions */
2777 static void nand_set_defaults(struct nand_chip *chip, int busw)
2779 /* check for proper chip_delay setup, set 20us if not */
2780 if (!chip->chip_delay)
2781 chip->chip_delay = 20;
2783 /* check, if a user supplied command function given */
2784 if (chip->cmdfunc == NULL)
2785 chip->cmdfunc = nand_command;
2787 /* check, if a user supplied wait function given */
2788 if (chip->waitfunc == NULL)
2789 chip->waitfunc = nand_wait;
2791 if (!chip->select_chip)
2792 chip->select_chip = nand_select_chip;
2793 if (!chip->read_byte)
2794 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2795 if (!chip->read_word)
2796 chip->read_word = nand_read_word;
2797 if (!chip->block_bad)
2798 chip->block_bad = nand_block_bad;
2799 if (!chip->block_markbad)
2800 chip->block_markbad = nand_default_block_markbad;
2801 if (!chip->write_buf)
2802 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2803 if (!chip->read_buf)
2804 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2805 if (!chip->scan_bbt)
2806 chip->scan_bbt = nand_default_bbt;
2808 if (!chip->controller) {
2809 chip->controller = &chip->hwcontrol;
2810 spin_lock_init(&chip->controller->lock);
2811 init_waitqueue_head(&chip->controller->wq);
2816 /* Sanitize ONFI strings so we can safely print them */
2817 static void sanitize_string(uint8_t *s, size_t len)
2819 ssize_t i;
2821 /* Null terminate */
2822 s[len - 1] = 0;
2824 /* Remove non printable chars */
2825 for (i = 0; i < len - 1; i++) {
2826 if (s[i] < ' ' || s[i] > 127)
2827 s[i] = '?';
2830 /* Remove trailing spaces */
2831 strim(s);
2834 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2836 int i;
2837 while (len--) {
2838 crc ^= *p++ << 8;
2839 for (i = 0; i < 8; i++)
2840 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2843 return crc;
2847 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2849 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2850 int *busw)
2852 struct nand_onfi_params *p = &chip->onfi_params;
2853 int i;
2854 int val;
2856 /* ONFI need to be probed in 8 bits mode, and 16 bits should be selected with NAND_BUSWIDTH_AUTO */
2857 if (chip->options & NAND_BUSWIDTH_16) {
2858 pr_err("Trying ONFI probe in 16 bits mode, aborting !\n");
2859 return 0;
2861 /* Try ONFI for unknown chip or LP */
2862 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2863 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2864 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2865 return 0;
2867 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2868 for (i = 0; i < 3; i++) {
2869 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2870 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2871 le16_to_cpu(p->crc)) {
2872 pr_info("ONFI param page %d valid\n", i);
2873 break;
2877 if (i == 3)
2878 return 0;
2880 /* Check version */
2881 val = le16_to_cpu(p->revision);
2882 if (val & (1 << 5))
2883 chip->onfi_version = 23;
2884 else if (val & (1 << 4))
2885 chip->onfi_version = 22;
2886 else if (val & (1 << 3))
2887 chip->onfi_version = 21;
2888 else if (val & (1 << 2))
2889 chip->onfi_version = 20;
2890 else if (val & (1 << 1))
2891 chip->onfi_version = 10;
2892 else
2893 chip->onfi_version = 0;
2895 if (!chip->onfi_version) {
2896 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2897 return 0;
2900 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2901 sanitize_string(p->model, sizeof(p->model));
2902 if (!mtd->name)
2903 mtd->name = p->model;
2904 mtd->writesize = le32_to_cpu(p->byte_per_page);
2905 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2906 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2907 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2908 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2909 *busw = 0;
2910 if (le16_to_cpu(p->features) & 1)
2911 *busw = NAND_BUSWIDTH_16;
2913 pr_info("ONFI flash detected\n");
2914 return 1;
2918 * nand_id_has_period - Check if an ID string has a given wraparound period
2919 * @id_data: the ID string
2920 * @arrlen: the length of the @id_data array
2921 * @period: the period of repitition
2923 * Check if an ID string is repeated within a given sequence of bytes at
2924 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2925 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
2926 * if the repetition has a period of @period; otherwise, returns zero.
2928 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2930 int i, j;
2931 for (i = 0; i < period; i++)
2932 for (j = i + period; j < arrlen; j += period)
2933 if (id_data[i] != id_data[j])
2934 return 0;
2935 return 1;
2939 * nand_id_len - Get the length of an ID string returned by CMD_READID
2940 * @id_data: the ID string
2941 * @arrlen: the length of the @id_data array
2943 * Returns the length of the ID string, according to known wraparound/trailing
2944 * zero patterns. If no pattern exists, returns the length of the array.
2946 static int nand_id_len(u8 *id_data, int arrlen)
2948 int last_nonzero, period;
2950 /* Find last non-zero byte */
2951 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2952 if (id_data[last_nonzero])
2953 break;
2955 /* All zeros */
2956 if (last_nonzero < 0)
2957 return 0;
2959 /* Calculate wraparound period */
2960 for (period = 1; period < arrlen; period++)
2961 if (nand_id_has_period(id_data, arrlen, period))
2962 break;
2964 /* There's a repeated pattern */
2965 if (period < arrlen)
2966 return period;
2968 /* There are trailing zeros */
2969 if (last_nonzero < arrlen - 1)
2970 return last_nonzero + 1;
2972 /* No pattern detected */
2973 return arrlen;
2977 * Many new NAND share similar device ID codes, which represent the size of the
2978 * chip. The rest of the parameters must be decoded according to generic or
2979 * manufacturer-specific "extended ID" decoding patterns.
2981 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2982 u8 id_data[8], int *busw)
2984 int extid, id_len;
2985 /* The 3rd id byte holds MLC / multichip data */
2986 chip->cellinfo = id_data[2];
2987 /* The 4th id byte is the important one */
2988 extid = id_data[3];
2990 id_len = nand_id_len(id_data, 8);
2993 * Field definitions are in the following datasheets:
2994 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2995 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
2996 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
2998 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
2999 * ID to decide what to do.
3001 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3002 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3003 id_data[5] != 0x00) {
3004 /* Calc pagesize */
3005 mtd->writesize = 2048 << (extid & 0x03);
3006 extid >>= 2;
3007 /* Calc oobsize */
3008 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3009 case 1:
3010 mtd->oobsize = 128;
3011 break;
3012 case 2:
3013 mtd->oobsize = 218;
3014 break;
3015 case 3:
3016 mtd->oobsize = 400;
3017 break;
3018 case 4:
3019 mtd->oobsize = 436;
3020 break;
3021 case 5:
3022 mtd->oobsize = 512;
3023 break;
3024 case 6:
3025 default: /* Other cases are "reserved" (unknown) */
3026 mtd->oobsize = 640;
3027 break;
3029 extid >>= 2;
3030 /* Calc blocksize */
3031 mtd->erasesize = (128 * 1024) <<
3032 (((extid >> 1) & 0x04) | (extid & 0x03));
3033 *busw = 0;
3034 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3035 (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3036 unsigned int tmp;
3038 /* Calc pagesize */
3039 mtd->writesize = 2048 << (extid & 0x03);
3040 extid >>= 2;
3041 /* Calc oobsize */
3042 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3043 case 0:
3044 mtd->oobsize = 128;
3045 break;
3046 case 1:
3047 mtd->oobsize = 224;
3048 break;
3049 case 2:
3050 mtd->oobsize = 448;
3051 break;
3052 case 3:
3053 mtd->oobsize = 64;
3054 break;
3055 case 4:
3056 mtd->oobsize = 32;
3057 break;
3058 case 5:
3059 mtd->oobsize = 16;
3060 break;
3061 default:
3062 mtd->oobsize = 640;
3063 break;
3065 extid >>= 2;
3066 /* Calc blocksize */
3067 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3068 if (tmp < 0x03)
3069 mtd->erasesize = (128 * 1024) << tmp;
3070 else if (tmp == 0x03)
3071 mtd->erasesize = 768 * 1024;
3072 else
3073 mtd->erasesize = (64 * 1024) << tmp;
3074 *busw = 0;
3075 } else {
3076 /* Calc pagesize */
3077 mtd->writesize = 1024 << (extid & 0x03);
3078 extid >>= 2;
3079 /* Calc oobsize */
3080 mtd->oobsize = (8 << (extid & 0x01)) *
3081 (mtd->writesize >> 9);
3082 extid >>= 2;
3083 /* Calc blocksize. Blocksize is multiples of 64KiB */
3084 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3085 extid >>= 2;
3086 /* Get buswidth information */
3087 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3092 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3093 * decodes a matching ID table entry and assigns the MTD size parameters for
3094 * the chip.
3096 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3097 struct nand_flash_dev *type, u8 id_data[8],
3098 int *busw)
3100 int maf_id = id_data[0];
3102 mtd->erasesize = type->erasesize;
3103 mtd->writesize = type->pagesize;
3104 mtd->oobsize = mtd->writesize / 32;
3105 *busw = type->options & NAND_BUSWIDTH_16;
3108 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3109 * some Spansion chips have erasesize that conflicts with size
3110 * listed in nand_ids table.
3111 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3113 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3114 && id_data[6] == 0x00 && id_data[7] == 0x00
3115 && mtd->writesize == 512) {
3116 mtd->erasesize = 128 * 1024;
3117 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3122 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3123 * heuristic patterns using various detected parameters (e.g., manufacturer,
3124 * page size, cell-type information).
3126 static void nand_decode_bbm_options(struct mtd_info *mtd,
3127 struct nand_chip *chip, u8 id_data[8])
3129 int maf_id = id_data[0];
3131 /* Set the bad block position */
3132 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3133 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3134 else
3135 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3138 * Bad block marker is stored in the last page of each block on Samsung
3139 * and Hynix MLC devices; stored in first two pages of each block on
3140 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3141 * AMD/Spansion, and Macronix. All others scan only the first page.
3143 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3144 (maf_id == NAND_MFR_SAMSUNG ||
3145 maf_id == NAND_MFR_HYNIX))
3146 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3147 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3148 (maf_id == NAND_MFR_SAMSUNG ||
3149 maf_id == NAND_MFR_HYNIX ||
3150 maf_id == NAND_MFR_TOSHIBA ||
3151 maf_id == NAND_MFR_AMD ||
3152 maf_id == NAND_MFR_MACRONIX)) ||
3153 (mtd->writesize == 2048 &&
3154 maf_id == NAND_MFR_MICRON))
3155 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3159 * Get the flash and manufacturer id and lookup if the type is supported.
3161 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3162 struct nand_chip *chip,
3163 int busw,
3164 int *maf_id, int *dev_id,
3165 struct nand_flash_dev *type)
3167 int i, maf_idx;
3168 u8 id_data[8];
3170 /* Select the device */
3171 chip->select_chip(mtd, 0);
3174 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3175 * after power-up.
3177 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3179 /* Send the command for reading device ID */
3180 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3182 /* Read manufacturer and device IDs */
3183 *maf_id = chip->read_byte(mtd);
3184 *dev_id = chip->read_byte(mtd);
3187 * Try again to make sure, as some systems the bus-hold or other
3188 * interface concerns can cause random data which looks like a
3189 * possibly credible NAND flash to appear. If the two results do
3190 * not match, ignore the device completely.
3193 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3195 /* Read entire ID string */
3196 for (i = 0; i < 8; i++)
3197 id_data[i] = chip->read_byte(mtd);
3199 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3200 pr_info("%s: second ID read did not match "
3201 "%02x,%02x against %02x,%02x\n", __func__,
3202 *maf_id, *dev_id, id_data[0], id_data[1]);
3203 return ERR_PTR(-ENODEV);
3206 if (!type)
3207 type = nand_flash_ids;
3209 for (; type->name != NULL; type++)
3210 if (*dev_id == type->id)
3211 break;
3213 chip->onfi_version = 0;
3214 if (!type->name || !type->pagesize) {
3215 /* Check is chip is ONFI compliant */
3216 if (nand_flash_detect_onfi(mtd, chip, &busw))
3217 goto ident_done;
3220 if (!type->name)
3221 return ERR_PTR(-ENODEV);
3223 if (!mtd->name)
3224 mtd->name = type->name;
3226 chip->chipsize = (uint64_t)type->chipsize << 20;
3228 if (!type->pagesize && chip->init_size) {
3229 /* Set the pagesize, oobsize, erasesize by the driver */
3230 busw = chip->init_size(mtd, chip, id_data);
3231 } else if (!type->pagesize) {
3232 /* Decode parameters from extended ID */
3233 nand_decode_ext_id(mtd, chip, id_data, &busw);
3234 } else {
3235 nand_decode_id(mtd, chip, type, id_data, &busw);
3237 /* Get chip options */
3238 chip->options |= type->options;
3241 * Check if chip is not a Samsung device. Do not clear the
3242 * options for chips which do not have an extended id.
3244 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3245 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3246 ident_done:
3248 /* Try to identify manufacturer */
3249 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3250 if (nand_manuf_ids[maf_idx].id == *maf_id)
3251 break;
3254 if (chip->options & NAND_BUSWIDTH_AUTO) {
3255 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3256 chip->options |= busw;
3257 nand_set_defaults(chip, busw);
3258 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3260 * Check, if buswidth is correct. Hardware drivers should set
3261 * chip correct!
3263 pr_info("NAND device: Manufacturer ID:"
3264 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3265 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3266 pr_warn("NAND bus width %d instead %d bit\n",
3267 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3268 busw ? 16 : 8);
3269 return ERR_PTR(-EINVAL);
3272 nand_decode_bbm_options(mtd, chip, id_data);
3274 /* Calculate the address shift from the page size */
3275 chip->page_shift = ffs(mtd->writesize) - 1;
3276 /* Convert chipsize to number of pages per chip -1 */
3277 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3279 chip->bbt_erase_shift = chip->phys_erase_shift =
3280 ffs(mtd->erasesize) - 1;
3281 if (chip->chipsize & 0xffffffff)
3282 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3283 else {
3284 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3285 chip->chip_shift += 32 - 1;
3288 chip->badblockbits = 8;
3290 /* Check for AND chips with 4 page planes */
3291 if (chip->options & NAND_4PAGE_ARRAY)
3292 chip->erase_cmd = multi_erase_cmd;
3293 else
3294 chip->erase_cmd = single_erase_cmd;
3296 /* Do not replace user supplied command function! */
3297 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3298 chip->cmdfunc = nand_command_lp;
3300 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3301 " %dMiB, page size: %d, OOB size: %d\n",
3302 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3303 chip->onfi_version ? chip->onfi_params.model : type->name,
3304 (int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
3306 return type;
3310 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3311 * @mtd: MTD device structure
3312 * @maxchips: number of chips to scan for
3313 * @table: alternative NAND ID table
3315 * This is the first phase of the normal nand_scan() function. It reads the
3316 * flash ID and sets up MTD fields accordingly.
3318 * The mtd->owner field must be set to the module of the caller.
3320 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3321 struct nand_flash_dev *table)
3323 int i, busw, nand_maf_id, nand_dev_id;
3324 struct nand_chip *chip = mtd->priv;
3325 struct nand_flash_dev *type;
3327 /* Get buswidth to select the correct functions */
3328 busw = chip->options & NAND_BUSWIDTH_16;
3329 /* Set the default functions */
3330 nand_set_defaults(chip, busw);
3332 /* Read the flash type */
3333 type = nand_get_flash_type(mtd, chip, busw,
3334 &nand_maf_id, &nand_dev_id, table);
3336 if (IS_ERR(type)) {
3337 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3338 pr_warn("No NAND device found\n");
3339 chip->select_chip(mtd, -1);
3340 return PTR_ERR(type);
3343 chip->select_chip(mtd, -1);
3345 /* Check for a chip array */
3346 for (i = 1; i < maxchips; i++) {
3347 chip->select_chip(mtd, i);
3348 /* See comment in nand_get_flash_type for reset */
3349 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3350 /* Send the command for reading device ID */
3351 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3352 /* Read manufacturer and device IDs */
3353 if (nand_maf_id != chip->read_byte(mtd) ||
3354 nand_dev_id != chip->read_byte(mtd)) {
3355 chip->select_chip(mtd, -1);
3356 break;
3358 chip->select_chip(mtd, -1);
3360 if (i > 1)
3361 pr_info("%d NAND chips detected\n", i);
3363 /* Store the number of chips and calc total size for mtd */
3364 chip->numchips = i;
3365 mtd->size = i * chip->chipsize;
3367 return 0;
3369 EXPORT_SYMBOL(nand_scan_ident);
3373 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3374 * @mtd: MTD device structure
3376 * This is the second phase of the normal nand_scan() function. It fills out
3377 * all the uninitialized function pointers with the defaults and scans for a
3378 * bad block table if appropriate.
3380 int nand_scan_tail(struct mtd_info *mtd)
3382 int i;
3383 struct nand_chip *chip = mtd->priv;
3385 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3386 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3387 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3389 if (!(chip->options & NAND_OWN_BUFFERS))
3390 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3391 if (!chip->buffers)
3392 return -ENOMEM;
3394 /* Set the internal oob buffer location, just after the page data */
3395 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3398 * If no default placement scheme is given, select an appropriate one.
3400 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3401 switch (mtd->oobsize) {
3402 case 8:
3403 chip->ecc.layout = &nand_oob_8;
3404 break;
3405 case 16:
3406 chip->ecc.layout = &nand_oob_16;
3407 break;
3408 case 64:
3409 chip->ecc.layout = &nand_oob_64;
3410 break;
3411 case 128:
3412 chip->ecc.layout = &nand_oob_128;
3413 break;
3414 default:
3415 pr_warn("No oob scheme defined for oobsize %d\n",
3416 mtd->oobsize);
3417 BUG();
3421 if (!chip->write_page)
3422 chip->write_page = nand_write_page;
3424 /* set for ONFI nand */
3425 if (!chip->onfi_set_features)
3426 chip->onfi_set_features = nand_onfi_set_features;
3427 if (!chip->onfi_get_features)
3428 chip->onfi_get_features = nand_onfi_get_features;
3431 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3432 * selected and we have 256 byte pagesize fallback to software ECC
3435 switch (chip->ecc.mode) {
3436 case NAND_ECC_HW_OOB_FIRST:
3437 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3438 if (!chip->ecc.calculate || !chip->ecc.correct ||
3439 !chip->ecc.hwctl) {
3440 pr_warn("No ECC functions supplied; "
3441 "hardware ECC not possible\n");
3442 BUG();
3444 if (!chip->ecc.read_page)
3445 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3447 case NAND_ECC_HW:
3448 /* Use standard hwecc read page function? */
3449 if (!chip->ecc.read_page)
3450 chip->ecc.read_page = nand_read_page_hwecc;
3451 if (!chip->ecc.write_page)
3452 chip->ecc.write_page = nand_write_page_hwecc;
3453 if (!chip->ecc.read_page_raw)
3454 chip->ecc.read_page_raw = nand_read_page_raw;
3455 if (!chip->ecc.write_page_raw)
3456 chip->ecc.write_page_raw = nand_write_page_raw;
3457 if (!chip->ecc.read_oob)
3458 chip->ecc.read_oob = nand_read_oob_std;
3459 if (!chip->ecc.write_oob)
3460 chip->ecc.write_oob = nand_write_oob_std;
3462 case NAND_ECC_HW_SYNDROME:
3463 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3464 !chip->ecc.hwctl) &&
3465 (!chip->ecc.read_page ||
3466 chip->ecc.read_page == nand_read_page_hwecc ||
3467 !chip->ecc.write_page ||
3468 chip->ecc.write_page == nand_write_page_hwecc)) {
3469 pr_warn("No ECC functions supplied; "
3470 "hardware ECC not possible\n");
3471 BUG();
3473 /* Use standard syndrome read/write page function? */
3474 if (!chip->ecc.read_page)
3475 chip->ecc.read_page = nand_read_page_syndrome;
3476 if (!chip->ecc.write_page)
3477 chip->ecc.write_page = nand_write_page_syndrome;
3478 if (!chip->ecc.read_page_raw)
3479 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3480 if (!chip->ecc.write_page_raw)
3481 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3482 if (!chip->ecc.read_oob)
3483 chip->ecc.read_oob = nand_read_oob_syndrome;
3484 if (!chip->ecc.write_oob)
3485 chip->ecc.write_oob = nand_write_oob_syndrome;
3487 if (mtd->writesize >= chip->ecc.size) {
3488 if (!chip->ecc.strength) {
3489 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3490 BUG();
3492 break;
3494 pr_warn("%d byte HW ECC not possible on "
3495 "%d byte page size, fallback to SW ECC\n",
3496 chip->ecc.size, mtd->writesize);
3497 chip->ecc.mode = NAND_ECC_SOFT;
3499 case NAND_ECC_SOFT:
3500 chip->ecc.calculate = nand_calculate_ecc;
3501 chip->ecc.correct = nand_correct_data;
3502 chip->ecc.read_page = nand_read_page_swecc;
3503 chip->ecc.read_subpage = nand_read_subpage;
3504 chip->ecc.write_page = nand_write_page_swecc;
3505 chip->ecc.read_page_raw = nand_read_page_raw;
3506 chip->ecc.write_page_raw = nand_write_page_raw;
3507 chip->ecc.read_oob = nand_read_oob_std;
3508 chip->ecc.write_oob = nand_write_oob_std;
3509 if (!chip->ecc.size)
3510 chip->ecc.size = 256;
3511 chip->ecc.bytes = 3;
3512 chip->ecc.strength = 1;
3513 break;
3515 case NAND_ECC_SOFT_BCH:
3516 if (!mtd_nand_has_bch()) {
3517 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3518 BUG();
3520 chip->ecc.calculate = nand_bch_calculate_ecc;
3521 chip->ecc.correct = nand_bch_correct_data;
3522 chip->ecc.read_page = nand_read_page_swecc;
3523 chip->ecc.read_subpage = nand_read_subpage;
3524 chip->ecc.write_page = nand_write_page_swecc;
3525 chip->ecc.read_page_raw = nand_read_page_raw;
3526 chip->ecc.write_page_raw = nand_write_page_raw;
3527 chip->ecc.read_oob = nand_read_oob_std;
3528 chip->ecc.write_oob = nand_write_oob_std;
3530 * Board driver should supply ecc.size and ecc.bytes values to
3531 * select how many bits are correctable; see nand_bch_init()
3532 * for details. Otherwise, default to 4 bits for large page
3533 * devices.
3535 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3536 chip->ecc.size = 512;
3537 chip->ecc.bytes = 7;
3539 chip->ecc.priv = nand_bch_init(mtd,
3540 chip->ecc.size,
3541 chip->ecc.bytes,
3542 &chip->ecc.layout);
3543 if (!chip->ecc.priv) {
3544 pr_warn("BCH ECC initialization failed!\n");
3545 BUG();
3547 chip->ecc.strength =
3548 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3549 break;
3551 case NAND_ECC_NONE:
3552 pr_warn("NAND_ECC_NONE selected by board driver. "
3553 "This is not recommended!\n");
3554 chip->ecc.read_page = nand_read_page_raw;
3555 chip->ecc.write_page = nand_write_page_raw;
3556 chip->ecc.read_oob = nand_read_oob_std;
3557 chip->ecc.read_page_raw = nand_read_page_raw;
3558 chip->ecc.write_page_raw = nand_write_page_raw;
3559 chip->ecc.write_oob = nand_write_oob_std;
3560 chip->ecc.size = mtd->writesize;
3561 chip->ecc.bytes = 0;
3562 chip->ecc.strength = 0;
3563 break;
3565 default:
3566 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3567 BUG();
3570 /* For many systems, the standard OOB write also works for raw */
3571 if (!chip->ecc.read_oob_raw)
3572 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3573 if (!chip->ecc.write_oob_raw)
3574 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3577 * The number of bytes available for a client to place data into
3578 * the out of band area.
3580 chip->ecc.layout->oobavail = 0;
3581 for (i = 0; chip->ecc.layout->oobfree[i].length
3582 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3583 chip->ecc.layout->oobavail +=
3584 chip->ecc.layout->oobfree[i].length;
3585 mtd->oobavail = chip->ecc.layout->oobavail;
3588 * Set the number of read / write steps for one page depending on ECC
3589 * mode.
3591 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3592 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3593 pr_warn("Invalid ECC parameters\n");
3594 BUG();
3596 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3598 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3599 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3600 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3601 switch (chip->ecc.steps) {
3602 case 2:
3603 mtd->subpage_sft = 1;
3604 break;
3605 case 4:
3606 case 8:
3607 case 16:
3608 mtd->subpage_sft = 2;
3609 break;
3612 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3614 /* Initialize state */
3615 chip->state = FL_READY;
3617 /* Invalidate the pagebuffer reference */
3618 chip->pagebuf = -1;
3620 /* Large page NAND with SOFT_ECC should support subpage reads */
3621 if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3622 chip->options |= NAND_SUBPAGE_READ;
3624 /* Fill in remaining MTD driver data */
3625 mtd->type = MTD_NANDFLASH;
3626 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3627 MTD_CAP_NANDFLASH;
3628 mtd->_erase = nand_erase;
3629 mtd->_point = NULL;
3630 mtd->_unpoint = NULL;
3631 mtd->_read = nand_read;
3632 mtd->_write = nand_write;
3633 mtd->_panic_write = panic_nand_write;
3634 mtd->_read_oob = nand_read_oob;
3635 mtd->_write_oob = nand_write_oob;
3636 mtd->_sync = nand_sync;
3637 mtd->_lock = NULL;
3638 mtd->_unlock = NULL;
3639 mtd->_suspend = nand_suspend;
3640 mtd->_resume = nand_resume;
3641 mtd->_block_isbad = nand_block_isbad;
3642 mtd->_block_markbad = nand_block_markbad;
3643 mtd->writebufsize = mtd->writesize;
3645 /* propagate ecc info to mtd_info */
3646 mtd->ecclayout = chip->ecc.layout;
3647 mtd->ecc_strength = chip->ecc.strength;
3649 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3650 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3651 * properly set.
3653 if (!mtd->bitflip_threshold)
3654 mtd->bitflip_threshold = mtd->ecc_strength;
3656 /* Check, if we should skip the bad block table scan */
3657 if (chip->options & NAND_SKIP_BBTSCAN)
3658 return 0;
3660 /* Build bad block table */
3661 return chip->scan_bbt(mtd);
3663 EXPORT_SYMBOL(nand_scan_tail);
3666 * is_module_text_address() isn't exported, and it's mostly a pointless
3667 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3668 * to call us from in-kernel code if the core NAND support is modular.
3670 #ifdef MODULE
3671 #define caller_is_module() (1)
3672 #else
3673 #define caller_is_module() \
3674 is_module_text_address((unsigned long)__builtin_return_address(0))
3675 #endif
3678 * nand_scan - [NAND Interface] Scan for the NAND device
3679 * @mtd: MTD device structure
3680 * @maxchips: number of chips to scan for
3682 * This fills out all the uninitialized function pointers with the defaults.
3683 * The flash ID is read and the mtd/chip structures are filled with the
3684 * appropriate values. The mtd->owner field must be set to the module of the
3685 * caller.
3687 int nand_scan(struct mtd_info *mtd, int maxchips)
3689 int ret;
3691 /* Many callers got this wrong, so check for it for a while... */
3692 if (!mtd->owner && caller_is_module()) {
3693 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3694 BUG();
3697 ret = nand_scan_ident(mtd, maxchips, NULL);
3698 if (!ret)
3699 ret = nand_scan_tail(mtd);
3700 return ret;
3702 EXPORT_SYMBOL(nand_scan);
3705 * nand_release - [NAND Interface] Free resources held by the NAND device
3706 * @mtd: MTD device structure
3708 void nand_release(struct mtd_info *mtd)
3710 struct nand_chip *chip = mtd->priv;
3712 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3713 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3715 mtd_device_unregister(mtd);
3717 /* Free bad block table memory */
3718 kfree(chip->bbt);
3719 if (!(chip->options & NAND_OWN_BUFFERS))
3720 kfree(chip->buffers);
3722 /* Free bad block descriptor memory */
3723 if (chip->badblock_pattern && chip->badblock_pattern->options
3724 & NAND_BBT_DYNAMICSTRUCT)
3725 kfree(chip->badblock_pattern);
3727 EXPORT_SYMBOL_GPL(nand_release);
3729 static int __init nand_base_init(void)
3731 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3732 return 0;
3735 static void __exit nand_base_exit(void)
3737 led_trigger_unregister_simple(nand_led_trigger);
3740 module_init(nand_base_init);
3741 module_exit(nand_base_exit);
3743 MODULE_LICENSE("GPL");
3744 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3745 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3746 MODULE_DESCRIPTION("Generic NAND flash driver code");