mm: export lru_cache_add_*() to modules
[linux-2.6.git] / kernel / cpu.c
blob545777574779da71ef8e3fcc3935e0e41fa266ca
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/kthread.h>
15 #include <linux/stop_machine.h>
16 #include <linux/mutex.h>
17 #include <linux/gfp.h>
19 #ifdef CONFIG_SMP
20 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
21 static DEFINE_MUTEX(cpu_add_remove_lock);
23 static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain);
25 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
26 * Should always be manipulated under cpu_add_remove_lock
28 static int cpu_hotplug_disabled;
30 static struct {
31 struct task_struct *active_writer;
32 struct mutex lock; /* Synchronizes accesses to refcount, */
34 * Also blocks the new readers during
35 * an ongoing cpu hotplug operation.
37 int refcount;
38 } cpu_hotplug = {
39 .active_writer = NULL,
40 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
41 .refcount = 0,
44 #ifdef CONFIG_HOTPLUG_CPU
46 void get_online_cpus(void)
48 might_sleep();
49 if (cpu_hotplug.active_writer == current)
50 return;
51 mutex_lock(&cpu_hotplug.lock);
52 cpu_hotplug.refcount++;
53 mutex_unlock(&cpu_hotplug.lock);
56 EXPORT_SYMBOL_GPL(get_online_cpus);
58 void put_online_cpus(void)
60 if (cpu_hotplug.active_writer == current)
61 return;
62 mutex_lock(&cpu_hotplug.lock);
63 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
64 wake_up_process(cpu_hotplug.active_writer);
65 mutex_unlock(&cpu_hotplug.lock);
68 EXPORT_SYMBOL_GPL(put_online_cpus);
70 #endif /* CONFIG_HOTPLUG_CPU */
73 * The following two API's must be used when attempting
74 * to serialize the updates to cpu_online_mask, cpu_present_mask.
76 void cpu_maps_update_begin(void)
78 mutex_lock(&cpu_add_remove_lock);
81 void cpu_maps_update_done(void)
83 mutex_unlock(&cpu_add_remove_lock);
87 * This ensures that the hotplug operation can begin only when the
88 * refcount goes to zero.
90 * Note that during a cpu-hotplug operation, the new readers, if any,
91 * will be blocked by the cpu_hotplug.lock
93 * Since cpu_hotplug_begin() is always called after invoking
94 * cpu_maps_update_begin(), we can be sure that only one writer is active.
96 * Note that theoretically, there is a possibility of a livelock:
97 * - Refcount goes to zero, last reader wakes up the sleeping
98 * writer.
99 * - Last reader unlocks the cpu_hotplug.lock.
100 * - A new reader arrives at this moment, bumps up the refcount.
101 * - The writer acquires the cpu_hotplug.lock finds the refcount
102 * non zero and goes to sleep again.
104 * However, this is very difficult to achieve in practice since
105 * get_online_cpus() not an api which is called all that often.
108 static void cpu_hotplug_begin(void)
110 cpu_hotplug.active_writer = current;
112 for (;;) {
113 mutex_lock(&cpu_hotplug.lock);
114 if (likely(!cpu_hotplug.refcount))
115 break;
116 __set_current_state(TASK_UNINTERRUPTIBLE);
117 mutex_unlock(&cpu_hotplug.lock);
118 schedule();
122 static void cpu_hotplug_done(void)
124 cpu_hotplug.active_writer = NULL;
125 mutex_unlock(&cpu_hotplug.lock);
127 /* Need to know about CPUs going up/down? */
128 int __ref register_cpu_notifier(struct notifier_block *nb)
130 int ret;
131 cpu_maps_update_begin();
132 ret = raw_notifier_chain_register(&cpu_chain, nb);
133 cpu_maps_update_done();
134 return ret;
137 #ifdef CONFIG_HOTPLUG_CPU
139 EXPORT_SYMBOL(register_cpu_notifier);
141 void __ref unregister_cpu_notifier(struct notifier_block *nb)
143 cpu_maps_update_begin();
144 raw_notifier_chain_unregister(&cpu_chain, nb);
145 cpu_maps_update_done();
147 EXPORT_SYMBOL(unregister_cpu_notifier);
149 static inline void check_for_tasks(int cpu)
151 struct task_struct *p;
153 write_lock_irq(&tasklist_lock);
154 for_each_process(p) {
155 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
156 (!cputime_eq(p->utime, cputime_zero) ||
157 !cputime_eq(p->stime, cputime_zero)))
158 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
159 "(state = %ld, flags = %x)\n",
160 p->comm, task_pid_nr(p), cpu,
161 p->state, p->flags);
163 write_unlock_irq(&tasklist_lock);
166 struct take_cpu_down_param {
167 struct task_struct *caller;
168 unsigned long mod;
169 void *hcpu;
172 /* Take this CPU down. */
173 static int __ref take_cpu_down(void *_param)
175 struct take_cpu_down_param *param = _param;
176 unsigned int cpu = (unsigned long)param->hcpu;
177 int err;
179 /* Ensure this CPU doesn't handle any more interrupts. */
180 err = __cpu_disable();
181 if (err < 0)
182 return err;
184 raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
185 param->hcpu);
187 if (task_cpu(param->caller) == cpu)
188 move_task_off_dead_cpu(cpu, param->caller);
189 /* Force idle task to run as soon as we yield: it should
190 immediately notice cpu is offline and die quickly. */
191 sched_idle_next();
192 return 0;
195 /* Requires cpu_add_remove_lock to be held */
196 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
198 int err, nr_calls = 0;
199 void *hcpu = (void *)(long)cpu;
200 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
201 struct take_cpu_down_param tcd_param = {
202 .caller = current,
203 .mod = mod,
204 .hcpu = hcpu,
207 if (num_online_cpus() == 1)
208 return -EBUSY;
210 if (!cpu_online(cpu))
211 return -EINVAL;
213 cpu_hotplug_begin();
214 set_cpu_active(cpu, false);
215 err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod,
216 hcpu, -1, &nr_calls);
217 if (err == NOTIFY_BAD) {
218 set_cpu_active(cpu, true);
220 nr_calls--;
221 __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
222 hcpu, nr_calls, NULL);
223 printk("%s: attempt to take down CPU %u failed\n",
224 __func__, cpu);
225 err = -EINVAL;
226 goto out_release;
229 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
230 if (err) {
231 set_cpu_active(cpu, true);
232 /* CPU didn't die: tell everyone. Can't complain. */
233 if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
234 hcpu) == NOTIFY_BAD)
235 BUG();
237 goto out_release;
239 BUG_ON(cpu_online(cpu));
241 /* Wait for it to sleep (leaving idle task). */
242 while (!idle_cpu(cpu))
243 yield();
245 /* This actually kills the CPU. */
246 __cpu_die(cpu);
248 /* CPU is completely dead: tell everyone. Too late to complain. */
249 if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod,
250 hcpu) == NOTIFY_BAD)
251 BUG();
253 check_for_tasks(cpu);
255 out_release:
256 cpu_hotplug_done();
257 if (!err) {
258 if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod,
259 hcpu) == NOTIFY_BAD)
260 BUG();
262 return err;
265 int __ref cpu_down(unsigned int cpu)
267 int err;
269 cpu_maps_update_begin();
271 if (cpu_hotplug_disabled) {
272 err = -EBUSY;
273 goto out;
276 err = _cpu_down(cpu, 0);
278 out:
279 cpu_maps_update_done();
280 return err;
282 EXPORT_SYMBOL(cpu_down);
283 #endif /*CONFIG_HOTPLUG_CPU*/
285 /* Requires cpu_add_remove_lock to be held */
286 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
288 int ret, nr_calls = 0;
289 void *hcpu = (void *)(long)cpu;
290 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
292 if (cpu_online(cpu) || !cpu_present(cpu))
293 return -EINVAL;
295 cpu_hotplug_begin();
296 ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu,
297 -1, &nr_calls);
298 if (ret == NOTIFY_BAD) {
299 nr_calls--;
300 printk("%s: attempt to bring up CPU %u failed\n",
301 __func__, cpu);
302 ret = -EINVAL;
303 goto out_notify;
306 /* Arch-specific enabling code. */
307 ret = __cpu_up(cpu);
308 if (ret != 0)
309 goto out_notify;
310 BUG_ON(!cpu_online(cpu));
312 set_cpu_active(cpu, true);
314 /* Now call notifier in preparation. */
315 raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu);
317 out_notify:
318 if (ret != 0)
319 __raw_notifier_call_chain(&cpu_chain,
320 CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
321 cpu_hotplug_done();
323 return ret;
326 int __cpuinit cpu_up(unsigned int cpu)
328 int err = 0;
329 if (!cpu_possible(cpu)) {
330 printk(KERN_ERR "can't online cpu %d because it is not "
331 "configured as may-hotadd at boot time\n", cpu);
332 #if defined(CONFIG_IA64)
333 printk(KERN_ERR "please check additional_cpus= boot "
334 "parameter\n");
335 #endif
336 return -EINVAL;
339 cpu_maps_update_begin();
341 if (cpu_hotplug_disabled) {
342 err = -EBUSY;
343 goto out;
346 err = _cpu_up(cpu, 0);
348 out:
349 cpu_maps_update_done();
350 return err;
353 #ifdef CONFIG_PM_SLEEP_SMP
354 static cpumask_var_t frozen_cpus;
356 int disable_nonboot_cpus(void)
358 int cpu, first_cpu, error;
360 cpu_maps_update_begin();
361 first_cpu = cpumask_first(cpu_online_mask);
363 * We take down all of the non-boot CPUs in one shot to avoid races
364 * with the userspace trying to use the CPU hotplug at the same time
366 cpumask_clear(frozen_cpus);
368 printk("Disabling non-boot CPUs ...\n");
369 for_each_online_cpu(cpu) {
370 if (cpu == first_cpu)
371 continue;
372 error = _cpu_down(cpu, 1);
373 if (!error)
374 cpumask_set_cpu(cpu, frozen_cpus);
375 else {
376 printk(KERN_ERR "Error taking CPU%d down: %d\n",
377 cpu, error);
378 break;
382 if (!error) {
383 BUG_ON(num_online_cpus() > 1);
384 /* Make sure the CPUs won't be enabled by someone else */
385 cpu_hotplug_disabled = 1;
386 } else {
387 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
389 cpu_maps_update_done();
390 return error;
393 void __weak arch_enable_nonboot_cpus_begin(void)
397 void __weak arch_enable_nonboot_cpus_end(void)
401 void __ref enable_nonboot_cpus(void)
403 int cpu, error;
405 /* Allow everyone to use the CPU hotplug again */
406 cpu_maps_update_begin();
407 cpu_hotplug_disabled = 0;
408 if (cpumask_empty(frozen_cpus))
409 goto out;
411 printk("Enabling non-boot CPUs ...\n");
413 arch_enable_nonboot_cpus_begin();
415 for_each_cpu(cpu, frozen_cpus) {
416 error = _cpu_up(cpu, 1);
417 if (!error) {
418 printk("CPU%d is up\n", cpu);
419 continue;
421 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
424 arch_enable_nonboot_cpus_end();
426 cpumask_clear(frozen_cpus);
427 out:
428 cpu_maps_update_done();
431 static int alloc_frozen_cpus(void)
433 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
434 return -ENOMEM;
435 return 0;
437 core_initcall(alloc_frozen_cpus);
438 #endif /* CONFIG_PM_SLEEP_SMP */
441 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
442 * @cpu: cpu that just started
444 * This function calls the cpu_chain notifiers with CPU_STARTING.
445 * It must be called by the arch code on the new cpu, before the new cpu
446 * enables interrupts and before the "boot" cpu returns from __cpu_up().
448 void __cpuinit notify_cpu_starting(unsigned int cpu)
450 unsigned long val = CPU_STARTING;
452 #ifdef CONFIG_PM_SLEEP_SMP
453 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
454 val = CPU_STARTING_FROZEN;
455 #endif /* CONFIG_PM_SLEEP_SMP */
456 raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu);
459 #endif /* CONFIG_SMP */
462 * cpu_bit_bitmap[] is a special, "compressed" data structure that
463 * represents all NR_CPUS bits binary values of 1<<nr.
465 * It is used by cpumask_of() to get a constant address to a CPU
466 * mask value that has a single bit set only.
469 /* cpu_bit_bitmap[0] is empty - so we can back into it */
470 #define MASK_DECLARE_1(x) [x+1][0] = 1UL << (x)
471 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
472 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
473 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
475 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
477 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
478 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
479 #if BITS_PER_LONG > 32
480 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
481 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
482 #endif
484 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
486 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
487 EXPORT_SYMBOL(cpu_all_bits);
489 #ifdef CONFIG_INIT_ALL_POSSIBLE
490 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
491 = CPU_BITS_ALL;
492 #else
493 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
494 #endif
495 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
496 EXPORT_SYMBOL(cpu_possible_mask);
498 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
499 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
500 EXPORT_SYMBOL(cpu_online_mask);
502 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
503 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
504 EXPORT_SYMBOL(cpu_present_mask);
506 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
507 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
508 EXPORT_SYMBOL(cpu_active_mask);
510 void set_cpu_possible(unsigned int cpu, bool possible)
512 if (possible)
513 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
514 else
515 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
518 void set_cpu_present(unsigned int cpu, bool present)
520 if (present)
521 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
522 else
523 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
526 void set_cpu_online(unsigned int cpu, bool online)
528 if (online)
529 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
530 else
531 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
534 void set_cpu_active(unsigned int cpu, bool active)
536 if (active)
537 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
538 else
539 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
542 void init_cpu_present(const struct cpumask *src)
544 cpumask_copy(to_cpumask(cpu_present_bits), src);
547 void init_cpu_possible(const struct cpumask *src)
549 cpumask_copy(to_cpumask(cpu_possible_bits), src);
552 void init_cpu_online(const struct cpumask *src)
554 cpumask_copy(to_cpumask(cpu_online_bits), src);