[PATCH] dvb: bt8xx: endianness fix
[linux-2.6.git] / fs / aio.c
blob201c1847fa07b694601a652e0e68db5f802eb042
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
19 #define DEBUG 0
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
37 #if DEBUG > 1
38 #define dprintk printk
39 #else
40 #define dprintk(x...) do { ; } while (0)
41 #endif
43 /*------ sysctl variables----*/
44 atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */
45 unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
46 /*----end sysctl variables---*/
48 static kmem_cache_t *kiocb_cachep;
49 static kmem_cache_t *kioctx_cachep;
51 static struct workqueue_struct *aio_wq;
53 /* Used for rare fput completion. */
54 static void aio_fput_routine(void *);
55 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
57 static DEFINE_SPINLOCK(fput_lock);
58 static LIST_HEAD(fput_head);
60 static void aio_kick_handler(void *);
61 static void aio_queue_work(struct kioctx *);
63 /* aio_setup
64 * Creates the slab caches used by the aio routines, panic on
65 * failure as this is done early during the boot sequence.
67 static int __init aio_setup(void)
69 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
70 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
71 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
72 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
74 aio_wq = create_workqueue("aio");
76 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 return 0;
81 static void aio_free_ring(struct kioctx *ctx)
83 struct aio_ring_info *info = &ctx->ring_info;
84 long i;
86 for (i=0; i<info->nr_pages; i++)
87 put_page(info->ring_pages[i]);
89 if (info->mmap_size) {
90 down_write(&ctx->mm->mmap_sem);
91 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
92 up_write(&ctx->mm->mmap_sem);
95 if (info->ring_pages && info->ring_pages != info->internal_pages)
96 kfree(info->ring_pages);
97 info->ring_pages = NULL;
98 info->nr = 0;
101 static int aio_setup_ring(struct kioctx *ctx)
103 struct aio_ring *ring;
104 struct aio_ring_info *info = &ctx->ring_info;
105 unsigned nr_events = ctx->max_reqs;
106 unsigned long size;
107 int nr_pages;
109 /* Compensate for the ring buffer's head/tail overlap entry */
110 nr_events += 2; /* 1 is required, 2 for good luck */
112 size = sizeof(struct aio_ring);
113 size += sizeof(struct io_event) * nr_events;
114 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 if (nr_pages < 0)
117 return -EINVAL;
119 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 info->nr = 0;
122 info->ring_pages = info->internal_pages;
123 if (nr_pages > AIO_RING_PAGES) {
124 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
125 if (!info->ring_pages)
126 return -ENOMEM;
127 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem);
138 printk("mmap err: %ld\n", -info->mmap_base);
139 info->mmap_size = 0;
140 aio_free_ring(ctx);
141 return -EAGAIN;
144 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
145 info->nr_pages = get_user_pages(current, ctx->mm,
146 info->mmap_base, nr_pages,
147 1, 0, info->ring_pages, NULL);
148 up_write(&ctx->mm->mmap_sem);
150 if (unlikely(info->nr_pages != nr_pages)) {
151 aio_free_ring(ctx);
152 return -EAGAIN;
155 ctx->user_id = info->mmap_base;
157 info->nr = nr_events; /* trusted copy */
159 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
160 ring->nr = nr_events; /* user copy */
161 ring->id = ctx->user_id;
162 ring->head = ring->tail = 0;
163 ring->magic = AIO_RING_MAGIC;
164 ring->compat_features = AIO_RING_COMPAT_FEATURES;
165 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
166 ring->header_length = sizeof(struct aio_ring);
167 kunmap_atomic(ring, KM_USER0);
169 return 0;
173 /* aio_ring_event: returns a pointer to the event at the given index from
174 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
176 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 #define aio_ring_event(info, nr, km) ({ \
181 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
182 struct io_event *__event; \
183 __event = kmap_atomic( \
184 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 __event += pos % AIO_EVENTS_PER_PAGE; \
186 __event; \
189 #define put_aio_ring_event(event, km) do { \
190 struct io_event *__event = (event); \
191 (void)__event; \
192 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
193 } while(0)
195 /* ioctx_alloc
196 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
198 static struct kioctx *ioctx_alloc(unsigned nr_events)
200 struct mm_struct *mm;
201 struct kioctx *ctx;
203 /* Prevent overflows */
204 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
205 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
206 pr_debug("ENOMEM: nr_events too high\n");
207 return ERR_PTR(-EINVAL);
210 if (nr_events > aio_max_nr)
211 return ERR_PTR(-EAGAIN);
213 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
214 if (!ctx)
215 return ERR_PTR(-ENOMEM);
217 memset(ctx, 0, sizeof(*ctx));
218 ctx->max_reqs = nr_events;
219 mm = ctx->mm = current->mm;
220 atomic_inc(&mm->mm_count);
222 atomic_set(&ctx->users, 1);
223 spin_lock_init(&ctx->ctx_lock);
224 spin_lock_init(&ctx->ring_info.ring_lock);
225 init_waitqueue_head(&ctx->wait);
227 INIT_LIST_HEAD(&ctx->active_reqs);
228 INIT_LIST_HEAD(&ctx->run_list);
229 INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
231 if (aio_setup_ring(ctx) < 0)
232 goto out_freectx;
234 /* limit the number of system wide aios */
235 atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */
236 if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
237 goto out_cleanup;
239 /* now link into global list. kludge. FIXME */
240 write_lock(&mm->ioctx_list_lock);
241 ctx->next = mm->ioctx_list;
242 mm->ioctx_list = ctx;
243 write_unlock(&mm->ioctx_list_lock);
245 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
246 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
247 return ctx;
249 out_cleanup:
250 atomic_sub(ctx->max_reqs, &aio_nr);
251 ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */
252 __put_ioctx(ctx);
253 return ERR_PTR(-EAGAIN);
255 out_freectx:
256 mmdrop(mm);
257 kmem_cache_free(kioctx_cachep, ctx);
258 ctx = ERR_PTR(-ENOMEM);
260 dprintk("aio: error allocating ioctx %p\n", ctx);
261 return ctx;
264 /* aio_cancel_all
265 * Cancels all outstanding aio requests on an aio context. Used
266 * when the processes owning a context have all exited to encourage
267 * the rapid destruction of the kioctx.
269 static void aio_cancel_all(struct kioctx *ctx)
271 int (*cancel)(struct kiocb *, struct io_event *);
272 struct io_event res;
273 spin_lock_irq(&ctx->ctx_lock);
274 ctx->dead = 1;
275 while (!list_empty(&ctx->active_reqs)) {
276 struct list_head *pos = ctx->active_reqs.next;
277 struct kiocb *iocb = list_kiocb(pos);
278 list_del_init(&iocb->ki_list);
279 cancel = iocb->ki_cancel;
280 kiocbSetCancelled(iocb);
281 if (cancel) {
282 iocb->ki_users++;
283 spin_unlock_irq(&ctx->ctx_lock);
284 cancel(iocb, &res);
285 spin_lock_irq(&ctx->ctx_lock);
288 spin_unlock_irq(&ctx->ctx_lock);
291 static void wait_for_all_aios(struct kioctx *ctx)
293 struct task_struct *tsk = current;
294 DECLARE_WAITQUEUE(wait, tsk);
296 if (!ctx->reqs_active)
297 return;
299 add_wait_queue(&ctx->wait, &wait);
300 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
301 while (ctx->reqs_active) {
302 schedule();
303 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
305 __set_task_state(tsk, TASK_RUNNING);
306 remove_wait_queue(&ctx->wait, &wait);
309 /* wait_on_sync_kiocb:
310 * Waits on the given sync kiocb to complete.
312 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
314 while (iocb->ki_users) {
315 set_current_state(TASK_UNINTERRUPTIBLE);
316 if (!iocb->ki_users)
317 break;
318 schedule();
320 __set_current_state(TASK_RUNNING);
321 return iocb->ki_user_data;
324 /* exit_aio: called when the last user of mm goes away. At this point,
325 * there is no way for any new requests to be submited or any of the
326 * io_* syscalls to be called on the context. However, there may be
327 * outstanding requests which hold references to the context; as they
328 * go away, they will call put_ioctx and release any pinned memory
329 * associated with the request (held via struct page * references).
331 void fastcall exit_aio(struct mm_struct *mm)
333 struct kioctx *ctx = mm->ioctx_list;
334 mm->ioctx_list = NULL;
335 while (ctx) {
336 struct kioctx *next = ctx->next;
337 ctx->next = NULL;
338 aio_cancel_all(ctx);
340 wait_for_all_aios(ctx);
342 * this is an overkill, but ensures we don't leave
343 * the ctx on the aio_wq
345 flush_workqueue(aio_wq);
347 if (1 != atomic_read(&ctx->users))
348 printk(KERN_DEBUG
349 "exit_aio:ioctx still alive: %d %d %d\n",
350 atomic_read(&ctx->users), ctx->dead,
351 ctx->reqs_active);
352 put_ioctx(ctx);
353 ctx = next;
357 /* __put_ioctx
358 * Called when the last user of an aio context has gone away,
359 * and the struct needs to be freed.
361 void fastcall __put_ioctx(struct kioctx *ctx)
363 unsigned nr_events = ctx->max_reqs;
365 if (unlikely(ctx->reqs_active))
366 BUG();
368 cancel_delayed_work(&ctx->wq);
369 flush_workqueue(aio_wq);
370 aio_free_ring(ctx);
371 mmdrop(ctx->mm);
372 ctx->mm = NULL;
373 pr_debug("__put_ioctx: freeing %p\n", ctx);
374 kmem_cache_free(kioctx_cachep, ctx);
376 atomic_sub(nr_events, &aio_nr);
379 /* aio_get_req
380 * Allocate a slot for an aio request. Increments the users count
381 * of the kioctx so that the kioctx stays around until all requests are
382 * complete. Returns NULL if no requests are free.
384 * Returns with kiocb->users set to 2. The io submit code path holds
385 * an extra reference while submitting the i/o.
386 * This prevents races between the aio code path referencing the
387 * req (after submitting it) and aio_complete() freeing the req.
389 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
390 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
392 struct kiocb *req = NULL;
393 struct aio_ring *ring;
394 int okay = 0;
396 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
397 if (unlikely(!req))
398 return NULL;
400 req->ki_flags = 1 << KIF_LOCKED;
401 req->ki_users = 2;
402 req->ki_key = 0;
403 req->ki_ctx = ctx;
404 req->ki_cancel = NULL;
405 req->ki_retry = NULL;
406 req->ki_dtor = NULL;
407 req->private = NULL;
408 INIT_LIST_HEAD(&req->ki_run_list);
410 /* Check if the completion queue has enough free space to
411 * accept an event from this io.
413 spin_lock_irq(&ctx->ctx_lock);
414 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
415 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
416 list_add(&req->ki_list, &ctx->active_reqs);
417 get_ioctx(ctx);
418 ctx->reqs_active++;
419 okay = 1;
421 kunmap_atomic(ring, KM_USER0);
422 spin_unlock_irq(&ctx->ctx_lock);
424 if (!okay) {
425 kmem_cache_free(kiocb_cachep, req);
426 req = NULL;
429 return req;
432 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
434 struct kiocb *req;
435 /* Handle a potential starvation case -- should be exceedingly rare as
436 * requests will be stuck on fput_head only if the aio_fput_routine is
437 * delayed and the requests were the last user of the struct file.
439 req = __aio_get_req(ctx);
440 if (unlikely(NULL == req)) {
441 aio_fput_routine(NULL);
442 req = __aio_get_req(ctx);
444 return req;
447 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
449 if (req->ki_dtor)
450 req->ki_dtor(req);
451 kmem_cache_free(kiocb_cachep, req);
452 ctx->reqs_active--;
454 if (unlikely(!ctx->reqs_active && ctx->dead))
455 wake_up(&ctx->wait);
458 static void aio_fput_routine(void *data)
460 spin_lock_irq(&fput_lock);
461 while (likely(!list_empty(&fput_head))) {
462 struct kiocb *req = list_kiocb(fput_head.next);
463 struct kioctx *ctx = req->ki_ctx;
465 list_del(&req->ki_list);
466 spin_unlock_irq(&fput_lock);
468 /* Complete the fput */
469 __fput(req->ki_filp);
471 /* Link the iocb into the context's free list */
472 spin_lock_irq(&ctx->ctx_lock);
473 really_put_req(ctx, req);
474 spin_unlock_irq(&ctx->ctx_lock);
476 put_ioctx(ctx);
477 spin_lock_irq(&fput_lock);
479 spin_unlock_irq(&fput_lock);
482 /* __aio_put_req
483 * Returns true if this put was the last user of the request.
485 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
487 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
488 req, atomic_read(&req->ki_filp->f_count));
490 req->ki_users --;
491 if (unlikely(req->ki_users < 0))
492 BUG();
493 if (likely(req->ki_users))
494 return 0;
495 list_del(&req->ki_list); /* remove from active_reqs */
496 req->ki_cancel = NULL;
497 req->ki_retry = NULL;
499 /* Must be done under the lock to serialise against cancellation.
500 * Call this aio_fput as it duplicates fput via the fput_work.
502 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
503 get_ioctx(ctx);
504 spin_lock(&fput_lock);
505 list_add(&req->ki_list, &fput_head);
506 spin_unlock(&fput_lock);
507 queue_work(aio_wq, &fput_work);
508 } else
509 really_put_req(ctx, req);
510 return 1;
513 /* aio_put_req
514 * Returns true if this put was the last user of the kiocb,
515 * false if the request is still in use.
517 int fastcall aio_put_req(struct kiocb *req)
519 struct kioctx *ctx = req->ki_ctx;
520 int ret;
521 spin_lock_irq(&ctx->ctx_lock);
522 ret = __aio_put_req(ctx, req);
523 spin_unlock_irq(&ctx->ctx_lock);
524 if (ret)
525 put_ioctx(ctx);
526 return ret;
529 /* Lookup an ioctx id. ioctx_list is lockless for reads.
530 * FIXME: this is O(n) and is only suitable for development.
532 struct kioctx *lookup_ioctx(unsigned long ctx_id)
534 struct kioctx *ioctx;
535 struct mm_struct *mm;
537 mm = current->mm;
538 read_lock(&mm->ioctx_list_lock);
539 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
540 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
541 get_ioctx(ioctx);
542 break;
544 read_unlock(&mm->ioctx_list_lock);
546 return ioctx;
549 static int lock_kiocb_action(void *param)
551 schedule();
552 return 0;
555 static inline void lock_kiocb(struct kiocb *iocb)
557 wait_on_bit_lock(&iocb->ki_flags, KIF_LOCKED, lock_kiocb_action,
558 TASK_UNINTERRUPTIBLE);
561 static inline void unlock_kiocb(struct kiocb *iocb)
563 kiocbClearLocked(iocb);
564 wake_up_bit(&iocb->ki_flags, KIF_LOCKED);
568 * use_mm
569 * Makes the calling kernel thread take on the specified
570 * mm context.
571 * Called by the retry thread execute retries within the
572 * iocb issuer's mm context, so that copy_from/to_user
573 * operations work seamlessly for aio.
574 * (Note: this routine is intended to be called only
575 * from a kernel thread context)
577 static void use_mm(struct mm_struct *mm)
579 struct mm_struct *active_mm;
580 struct task_struct *tsk = current;
582 task_lock(tsk);
583 tsk->flags |= PF_BORROWED_MM;
584 active_mm = tsk->active_mm;
585 atomic_inc(&mm->mm_count);
586 tsk->mm = mm;
587 tsk->active_mm = mm;
589 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
590 * it won't work. Update it accordingly if you change it here
592 activate_mm(active_mm, mm);
593 task_unlock(tsk);
595 mmdrop(active_mm);
599 * unuse_mm
600 * Reverses the effect of use_mm, i.e. releases the
601 * specified mm context which was earlier taken on
602 * by the calling kernel thread
603 * (Note: this routine is intended to be called only
604 * from a kernel thread context)
606 * Comments: Called with ctx->ctx_lock held. This nests
607 * task_lock instead ctx_lock.
609 static void unuse_mm(struct mm_struct *mm)
611 struct task_struct *tsk = current;
613 task_lock(tsk);
614 tsk->flags &= ~PF_BORROWED_MM;
615 tsk->mm = NULL;
616 /* active_mm is still 'mm' */
617 enter_lazy_tlb(mm, tsk);
618 task_unlock(tsk);
622 * Queue up a kiocb to be retried. Assumes that the kiocb
623 * has already been marked as kicked, and places it on
624 * the retry run list for the corresponding ioctx, if it
625 * isn't already queued. Returns 1 if it actually queued
626 * the kiocb (to tell the caller to activate the work
627 * queue to process it), or 0, if it found that it was
628 * already queued.
630 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
631 * held
633 static inline int __queue_kicked_iocb(struct kiocb *iocb)
635 struct kioctx *ctx = iocb->ki_ctx;
637 if (list_empty(&iocb->ki_run_list)) {
638 list_add_tail(&iocb->ki_run_list,
639 &ctx->run_list);
640 return 1;
642 return 0;
645 /* aio_run_iocb
646 * This is the core aio execution routine. It is
647 * invoked both for initial i/o submission and
648 * subsequent retries via the aio_kick_handler.
649 * Expects to be invoked with iocb->ki_ctx->lock
650 * already held. The lock is released and reaquired
651 * as needed during processing.
653 * Calls the iocb retry method (already setup for the
654 * iocb on initial submission) for operation specific
655 * handling, but takes care of most of common retry
656 * execution details for a given iocb. The retry method
657 * needs to be non-blocking as far as possible, to avoid
658 * holding up other iocbs waiting to be serviced by the
659 * retry kernel thread.
661 * The trickier parts in this code have to do with
662 * ensuring that only one retry instance is in progress
663 * for a given iocb at any time. Providing that guarantee
664 * simplifies the coding of individual aio operations as
665 * it avoids various potential races.
667 static ssize_t aio_run_iocb(struct kiocb *iocb)
669 struct kioctx *ctx = iocb->ki_ctx;
670 ssize_t (*retry)(struct kiocb *);
671 ssize_t ret;
673 if (iocb->ki_retried++ > 1024*1024) {
674 printk("Maximal retry count. Bytes done %Zd\n",
675 iocb->ki_nbytes - iocb->ki_left);
676 return -EAGAIN;
679 if (!(iocb->ki_retried & 0xff)) {
680 pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
681 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
684 if (!(retry = iocb->ki_retry)) {
685 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
686 return 0;
690 * We don't want the next retry iteration for this
691 * operation to start until this one has returned and
692 * updated the iocb state. However, wait_queue functions
693 * can trigger a kick_iocb from interrupt context in the
694 * meantime, indicating that data is available for the next
695 * iteration. We want to remember that and enable the
696 * next retry iteration _after_ we are through with
697 * this one.
699 * So, in order to be able to register a "kick", but
700 * prevent it from being queued now, we clear the kick
701 * flag, but make the kick code *think* that the iocb is
702 * still on the run list until we are actually done.
703 * When we are done with this iteration, we check if
704 * the iocb was kicked in the meantime and if so, queue
705 * it up afresh.
708 kiocbClearKicked(iocb);
711 * This is so that aio_complete knows it doesn't need to
712 * pull the iocb off the run list (We can't just call
713 * INIT_LIST_HEAD because we don't want a kick_iocb to
714 * queue this on the run list yet)
716 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
717 spin_unlock_irq(&ctx->ctx_lock);
719 /* Quit retrying if the i/o has been cancelled */
720 if (kiocbIsCancelled(iocb)) {
721 ret = -EINTR;
722 aio_complete(iocb, ret, 0);
723 /* must not access the iocb after this */
724 goto out;
728 * Now we are all set to call the retry method in async
729 * context. By setting this thread's io_wait context
730 * to point to the wait queue entry inside the currently
731 * running iocb for the duration of the retry, we ensure
732 * that async notification wakeups are queued by the
733 * operation instead of blocking waits, and when notified,
734 * cause the iocb to be kicked for continuation (through
735 * the aio_wake_function callback).
737 BUG_ON(current->io_wait != NULL);
738 current->io_wait = &iocb->ki_wait;
739 ret = retry(iocb);
740 current->io_wait = NULL;
742 if (-EIOCBRETRY != ret) {
743 if (-EIOCBQUEUED != ret) {
744 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
745 aio_complete(iocb, ret, 0);
746 /* must not access the iocb after this */
748 } else {
750 * Issue an additional retry to avoid waiting forever if
751 * no waits were queued (e.g. in case of a short read).
753 if (list_empty(&iocb->ki_wait.task_list))
754 kiocbSetKicked(iocb);
756 out:
757 spin_lock_irq(&ctx->ctx_lock);
759 if (-EIOCBRETRY == ret) {
761 * OK, now that we are done with this iteration
762 * and know that there is more left to go,
763 * this is where we let go so that a subsequent
764 * "kick" can start the next iteration
767 /* will make __queue_kicked_iocb succeed from here on */
768 INIT_LIST_HEAD(&iocb->ki_run_list);
769 /* we must queue the next iteration ourselves, if it
770 * has already been kicked */
771 if (kiocbIsKicked(iocb)) {
772 __queue_kicked_iocb(iocb);
775 * __queue_kicked_iocb will always return 1 here, because
776 * iocb->ki_run_list is empty at this point so it should
777 * be safe to unconditionally queue the context into the
778 * work queue.
780 aio_queue_work(ctx);
783 return ret;
787 * __aio_run_iocbs:
788 * Process all pending retries queued on the ioctx
789 * run list.
790 * Assumes it is operating within the aio issuer's mm
791 * context. Expects to be called with ctx->ctx_lock held
793 static int __aio_run_iocbs(struct kioctx *ctx)
795 struct kiocb *iocb;
796 LIST_HEAD(run_list);
798 list_splice_init(&ctx->run_list, &run_list);
799 while (!list_empty(&run_list)) {
800 iocb = list_entry(run_list.next, struct kiocb,
801 ki_run_list);
802 list_del(&iocb->ki_run_list);
804 * Hold an extra reference while retrying i/o.
806 iocb->ki_users++; /* grab extra reference */
807 lock_kiocb(iocb);
808 aio_run_iocb(iocb);
809 unlock_kiocb(iocb);
810 if (__aio_put_req(ctx, iocb)) /* drop extra ref */
811 put_ioctx(ctx);
813 if (!list_empty(&ctx->run_list))
814 return 1;
815 return 0;
818 static void aio_queue_work(struct kioctx * ctx)
820 unsigned long timeout;
822 * if someone is waiting, get the work started right
823 * away, otherwise, use a longer delay
825 smp_mb();
826 if (waitqueue_active(&ctx->wait))
827 timeout = 1;
828 else
829 timeout = HZ/10;
830 queue_delayed_work(aio_wq, &ctx->wq, timeout);
835 * aio_run_iocbs:
836 * Process all pending retries queued on the ioctx
837 * run list.
838 * Assumes it is operating within the aio issuer's mm
839 * context.
841 static inline void aio_run_iocbs(struct kioctx *ctx)
843 int requeue;
845 spin_lock_irq(&ctx->ctx_lock);
847 requeue = __aio_run_iocbs(ctx);
848 spin_unlock_irq(&ctx->ctx_lock);
849 if (requeue)
850 aio_queue_work(ctx);
854 * just like aio_run_iocbs, but keeps running them until
855 * the list stays empty
857 static inline void aio_run_all_iocbs(struct kioctx *ctx)
859 spin_lock_irq(&ctx->ctx_lock);
860 while (__aio_run_iocbs(ctx))
862 spin_unlock_irq(&ctx->ctx_lock);
866 * aio_kick_handler:
867 * Work queue handler triggered to process pending
868 * retries on an ioctx. Takes on the aio issuer's
869 * mm context before running the iocbs, so that
870 * copy_xxx_user operates on the issuer's address
871 * space.
872 * Run on aiod's context.
874 static void aio_kick_handler(void *data)
876 struct kioctx *ctx = data;
877 mm_segment_t oldfs = get_fs();
878 int requeue;
880 set_fs(USER_DS);
881 use_mm(ctx->mm);
882 spin_lock_irq(&ctx->ctx_lock);
883 requeue =__aio_run_iocbs(ctx);
884 unuse_mm(ctx->mm);
885 spin_unlock_irq(&ctx->ctx_lock);
886 set_fs(oldfs);
888 * we're in a worker thread already, don't use queue_delayed_work,
890 if (requeue)
891 queue_work(aio_wq, &ctx->wq);
896 * Called by kick_iocb to queue the kiocb for retry
897 * and if required activate the aio work queue to process
898 * it
900 static void queue_kicked_iocb(struct kiocb *iocb)
902 struct kioctx *ctx = iocb->ki_ctx;
903 unsigned long flags;
904 int run = 0;
906 WARN_ON((!list_empty(&iocb->ki_wait.task_list)));
908 spin_lock_irqsave(&ctx->ctx_lock, flags);
909 run = __queue_kicked_iocb(iocb);
910 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
911 if (run)
912 aio_queue_work(ctx);
916 * kick_iocb:
917 * Called typically from a wait queue callback context
918 * (aio_wake_function) to trigger a retry of the iocb.
919 * The retry is usually executed by aio workqueue
920 * threads (See aio_kick_handler).
922 void fastcall kick_iocb(struct kiocb *iocb)
924 /* sync iocbs are easy: they can only ever be executing from a
925 * single context. */
926 if (is_sync_kiocb(iocb)) {
927 kiocbSetKicked(iocb);
928 wake_up_process(iocb->ki_obj.tsk);
929 return;
932 /* If its already kicked we shouldn't queue it again */
933 if (!kiocbTryKick(iocb)) {
934 queue_kicked_iocb(iocb);
937 EXPORT_SYMBOL(kick_iocb);
939 /* aio_complete
940 * Called when the io request on the given iocb is complete.
941 * Returns true if this is the last user of the request. The
942 * only other user of the request can be the cancellation code.
944 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
946 struct kioctx *ctx = iocb->ki_ctx;
947 struct aio_ring_info *info;
948 struct aio_ring *ring;
949 struct io_event *event;
950 unsigned long flags;
951 unsigned long tail;
952 int ret;
954 /* Special case handling for sync iocbs: events go directly
955 * into the iocb for fast handling. Note that this will not
956 * work if we allow sync kiocbs to be cancelled. in which
957 * case the usage count checks will have to move under ctx_lock
958 * for all cases.
960 if (is_sync_kiocb(iocb)) {
961 int ret;
963 iocb->ki_user_data = res;
964 if (iocb->ki_users == 1) {
965 iocb->ki_users = 0;
966 ret = 1;
967 } else {
968 spin_lock_irq(&ctx->ctx_lock);
969 iocb->ki_users--;
970 ret = (0 == iocb->ki_users);
971 spin_unlock_irq(&ctx->ctx_lock);
973 /* sync iocbs put the task here for us */
974 wake_up_process(iocb->ki_obj.tsk);
975 return ret;
978 info = &ctx->ring_info;
980 /* add a completion event to the ring buffer.
981 * must be done holding ctx->ctx_lock to prevent
982 * other code from messing with the tail
983 * pointer since we might be called from irq
984 * context.
986 spin_lock_irqsave(&ctx->ctx_lock, flags);
988 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
989 list_del_init(&iocb->ki_run_list);
992 * cancelled requests don't get events, userland was given one
993 * when the event got cancelled.
995 if (kiocbIsCancelled(iocb))
996 goto put_rq;
998 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
1000 tail = info->tail;
1001 event = aio_ring_event(info, tail, KM_IRQ0);
1002 if (++tail >= info->nr)
1003 tail = 0;
1005 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1006 event->data = iocb->ki_user_data;
1007 event->res = res;
1008 event->res2 = res2;
1010 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1011 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1012 res, res2);
1014 /* after flagging the request as done, we
1015 * must never even look at it again
1017 smp_wmb(); /* make event visible before updating tail */
1019 info->tail = tail;
1020 ring->tail = tail;
1022 put_aio_ring_event(event, KM_IRQ0);
1023 kunmap_atomic(ring, KM_IRQ1);
1025 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1027 pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
1028 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
1029 put_rq:
1030 /* everything turned out well, dispose of the aiocb. */
1031 ret = __aio_put_req(ctx, iocb);
1033 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1035 if (waitqueue_active(&ctx->wait))
1036 wake_up(&ctx->wait);
1038 if (ret)
1039 put_ioctx(ctx);
1041 return ret;
1044 /* aio_read_evt
1045 * Pull an event off of the ioctx's event ring. Returns the number of
1046 * events fetched (0 or 1 ;-)
1047 * FIXME: make this use cmpxchg.
1048 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1050 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1052 struct aio_ring_info *info = &ioctx->ring_info;
1053 struct aio_ring *ring;
1054 unsigned long head;
1055 int ret = 0;
1057 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1058 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1059 (unsigned long)ring->head, (unsigned long)ring->tail,
1060 (unsigned long)ring->nr);
1062 if (ring->head == ring->tail)
1063 goto out;
1065 spin_lock(&info->ring_lock);
1067 head = ring->head % info->nr;
1068 if (head != ring->tail) {
1069 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1070 *ent = *evp;
1071 head = (head + 1) % info->nr;
1072 smp_mb(); /* finish reading the event before updatng the head */
1073 ring->head = head;
1074 ret = 1;
1075 put_aio_ring_event(evp, KM_USER1);
1077 spin_unlock(&info->ring_lock);
1079 out:
1080 kunmap_atomic(ring, KM_USER0);
1081 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1082 (unsigned long)ring->head, (unsigned long)ring->tail);
1083 return ret;
1086 struct aio_timeout {
1087 struct timer_list timer;
1088 int timed_out;
1089 struct task_struct *p;
1092 static void timeout_func(unsigned long data)
1094 struct aio_timeout *to = (struct aio_timeout *)data;
1096 to->timed_out = 1;
1097 wake_up_process(to->p);
1100 static inline void init_timeout(struct aio_timeout *to)
1102 init_timer(&to->timer);
1103 to->timer.data = (unsigned long)to;
1104 to->timer.function = timeout_func;
1105 to->timed_out = 0;
1106 to->p = current;
1109 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1110 const struct timespec *ts)
1112 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1113 if (time_after(to->timer.expires, jiffies))
1114 add_timer(&to->timer);
1115 else
1116 to->timed_out = 1;
1119 static inline void clear_timeout(struct aio_timeout *to)
1121 del_singleshot_timer_sync(&to->timer);
1124 static int read_events(struct kioctx *ctx,
1125 long min_nr, long nr,
1126 struct io_event __user *event,
1127 struct timespec __user *timeout)
1129 long start_jiffies = jiffies;
1130 struct task_struct *tsk = current;
1131 DECLARE_WAITQUEUE(wait, tsk);
1132 int ret;
1133 int i = 0;
1134 struct io_event ent;
1135 struct aio_timeout to;
1136 int retry = 0;
1138 /* needed to zero any padding within an entry (there shouldn't be
1139 * any, but C is fun!
1141 memset(&ent, 0, sizeof(ent));
1142 retry:
1143 ret = 0;
1144 while (likely(i < nr)) {
1145 ret = aio_read_evt(ctx, &ent);
1146 if (unlikely(ret <= 0))
1147 break;
1149 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1150 ent.data, ent.obj, ent.res, ent.res2);
1152 /* Could we split the check in two? */
1153 ret = -EFAULT;
1154 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1155 dprintk("aio: lost an event due to EFAULT.\n");
1156 break;
1158 ret = 0;
1160 /* Good, event copied to userland, update counts. */
1161 event ++;
1162 i ++;
1165 if (min_nr <= i)
1166 return i;
1167 if (ret)
1168 return ret;
1170 /* End fast path */
1172 /* racey check, but it gets redone */
1173 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1174 retry = 1;
1175 aio_run_all_iocbs(ctx);
1176 goto retry;
1179 init_timeout(&to);
1180 if (timeout) {
1181 struct timespec ts;
1182 ret = -EFAULT;
1183 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1184 goto out;
1186 set_timeout(start_jiffies, &to, &ts);
1189 while (likely(i < nr)) {
1190 add_wait_queue_exclusive(&ctx->wait, &wait);
1191 do {
1192 set_task_state(tsk, TASK_INTERRUPTIBLE);
1193 ret = aio_read_evt(ctx, &ent);
1194 if (ret)
1195 break;
1196 if (min_nr <= i)
1197 break;
1198 ret = 0;
1199 if (to.timed_out) /* Only check after read evt */
1200 break;
1201 schedule();
1202 if (signal_pending(tsk)) {
1203 ret = -EINTR;
1204 break;
1206 /*ret = aio_read_evt(ctx, &ent);*/
1207 } while (1) ;
1209 set_task_state(tsk, TASK_RUNNING);
1210 remove_wait_queue(&ctx->wait, &wait);
1212 if (unlikely(ret <= 0))
1213 break;
1215 ret = -EFAULT;
1216 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1217 dprintk("aio: lost an event due to EFAULT.\n");
1218 break;
1221 /* Good, event copied to userland, update counts. */
1222 event ++;
1223 i ++;
1226 if (timeout)
1227 clear_timeout(&to);
1228 out:
1229 return i ? i : ret;
1232 /* Take an ioctx and remove it from the list of ioctx's. Protects
1233 * against races with itself via ->dead.
1235 static void io_destroy(struct kioctx *ioctx)
1237 struct mm_struct *mm = current->mm;
1238 struct kioctx **tmp;
1239 int was_dead;
1241 /* delete the entry from the list is someone else hasn't already */
1242 write_lock(&mm->ioctx_list_lock);
1243 was_dead = ioctx->dead;
1244 ioctx->dead = 1;
1245 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1246 tmp = &(*tmp)->next)
1248 if (*tmp)
1249 *tmp = ioctx->next;
1250 write_unlock(&mm->ioctx_list_lock);
1252 dprintk("aio_release(%p)\n", ioctx);
1253 if (likely(!was_dead))
1254 put_ioctx(ioctx); /* twice for the list */
1256 aio_cancel_all(ioctx);
1257 wait_for_all_aios(ioctx);
1258 put_ioctx(ioctx); /* once for the lookup */
1261 /* sys_io_setup:
1262 * Create an aio_context capable of receiving at least nr_events.
1263 * ctxp must not point to an aio_context that already exists, and
1264 * must be initialized to 0 prior to the call. On successful
1265 * creation of the aio_context, *ctxp is filled in with the resulting
1266 * handle. May fail with -EINVAL if *ctxp is not initialized,
1267 * if the specified nr_events exceeds internal limits. May fail
1268 * with -EAGAIN if the specified nr_events exceeds the user's limit
1269 * of available events. May fail with -ENOMEM if insufficient kernel
1270 * resources are available. May fail with -EFAULT if an invalid
1271 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1272 * implemented.
1274 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1276 struct kioctx *ioctx = NULL;
1277 unsigned long ctx;
1278 long ret;
1280 ret = get_user(ctx, ctxp);
1281 if (unlikely(ret))
1282 goto out;
1284 ret = -EINVAL;
1285 if (unlikely(ctx || (int)nr_events <= 0)) {
1286 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1287 goto out;
1290 ioctx = ioctx_alloc(nr_events);
1291 ret = PTR_ERR(ioctx);
1292 if (!IS_ERR(ioctx)) {
1293 ret = put_user(ioctx->user_id, ctxp);
1294 if (!ret)
1295 return 0;
1297 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1298 io_destroy(ioctx);
1301 out:
1302 return ret;
1305 /* sys_io_destroy:
1306 * Destroy the aio_context specified. May cancel any outstanding
1307 * AIOs and block on completion. Will fail with -ENOSYS if not
1308 * implemented. May fail with -EFAULT if the context pointed to
1309 * is invalid.
1311 asmlinkage long sys_io_destroy(aio_context_t ctx)
1313 struct kioctx *ioctx = lookup_ioctx(ctx);
1314 if (likely(NULL != ioctx)) {
1315 io_destroy(ioctx);
1316 return 0;
1318 pr_debug("EINVAL: io_destroy: invalid context id\n");
1319 return -EINVAL;
1323 * Default retry method for aio_read (also used for first time submit)
1324 * Responsible for updating iocb state as retries progress
1326 static ssize_t aio_pread(struct kiocb *iocb)
1328 struct file *file = iocb->ki_filp;
1329 struct address_space *mapping = file->f_mapping;
1330 struct inode *inode = mapping->host;
1331 ssize_t ret = 0;
1333 ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1334 iocb->ki_left, iocb->ki_pos);
1337 * Can't just depend on iocb->ki_left to determine
1338 * whether we are done. This may have been a short read.
1340 if (ret > 0) {
1341 iocb->ki_buf += ret;
1342 iocb->ki_left -= ret;
1344 * For pipes and sockets we return once we have
1345 * some data; for regular files we retry till we
1346 * complete the entire read or find that we can't
1347 * read any more data (e.g short reads).
1349 if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))
1350 ret = -EIOCBRETRY;
1353 /* This means we must have transferred all that we could */
1354 /* No need to retry anymore */
1355 if ((ret == 0) || (iocb->ki_left == 0))
1356 ret = iocb->ki_nbytes - iocb->ki_left;
1358 return ret;
1362 * Default retry method for aio_write (also used for first time submit)
1363 * Responsible for updating iocb state as retries progress
1365 static ssize_t aio_pwrite(struct kiocb *iocb)
1367 struct file *file = iocb->ki_filp;
1368 ssize_t ret = 0;
1370 ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1371 iocb->ki_left, iocb->ki_pos);
1373 if (ret > 0) {
1374 iocb->ki_buf += ret;
1375 iocb->ki_left -= ret;
1377 ret = -EIOCBRETRY;
1380 /* This means we must have transferred all that we could */
1381 /* No need to retry anymore */
1382 if ((ret == 0) || (iocb->ki_left == 0))
1383 ret = iocb->ki_nbytes - iocb->ki_left;
1385 return ret;
1388 static ssize_t aio_fdsync(struct kiocb *iocb)
1390 struct file *file = iocb->ki_filp;
1391 ssize_t ret = -EINVAL;
1393 if (file->f_op->aio_fsync)
1394 ret = file->f_op->aio_fsync(iocb, 1);
1395 return ret;
1398 static ssize_t aio_fsync(struct kiocb *iocb)
1400 struct file *file = iocb->ki_filp;
1401 ssize_t ret = -EINVAL;
1403 if (file->f_op->aio_fsync)
1404 ret = file->f_op->aio_fsync(iocb, 0);
1405 return ret;
1409 * aio_setup_iocb:
1410 * Performs the initial checks and aio retry method
1411 * setup for the kiocb at the time of io submission.
1413 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1415 struct file *file = kiocb->ki_filp;
1416 ssize_t ret = 0;
1418 switch (kiocb->ki_opcode) {
1419 case IOCB_CMD_PREAD:
1420 ret = -EBADF;
1421 if (unlikely(!(file->f_mode & FMODE_READ)))
1422 break;
1423 ret = -EFAULT;
1424 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1425 kiocb->ki_left)))
1426 break;
1427 ret = -EINVAL;
1428 if (file->f_op->aio_read)
1429 kiocb->ki_retry = aio_pread;
1430 break;
1431 case IOCB_CMD_PWRITE:
1432 ret = -EBADF;
1433 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1434 break;
1435 ret = -EFAULT;
1436 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1437 kiocb->ki_left)))
1438 break;
1439 ret = -EINVAL;
1440 if (file->f_op->aio_write)
1441 kiocb->ki_retry = aio_pwrite;
1442 break;
1443 case IOCB_CMD_FDSYNC:
1444 ret = -EINVAL;
1445 if (file->f_op->aio_fsync)
1446 kiocb->ki_retry = aio_fdsync;
1447 break;
1448 case IOCB_CMD_FSYNC:
1449 ret = -EINVAL;
1450 if (file->f_op->aio_fsync)
1451 kiocb->ki_retry = aio_fsync;
1452 break;
1453 default:
1454 dprintk("EINVAL: io_submit: no operation provided\n");
1455 ret = -EINVAL;
1458 if (!kiocb->ki_retry)
1459 return ret;
1461 return 0;
1465 * aio_wake_function:
1466 * wait queue callback function for aio notification,
1467 * Simply triggers a retry of the operation via kick_iocb.
1469 * This callback is specified in the wait queue entry in
1470 * a kiocb (current->io_wait points to this wait queue
1471 * entry when an aio operation executes; it is used
1472 * instead of a synchronous wait when an i/o blocking
1473 * condition is encountered during aio).
1475 * Note:
1476 * This routine is executed with the wait queue lock held.
1477 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1478 * the ioctx lock inside the wait queue lock. This is safe
1479 * because this callback isn't used for wait queues which
1480 * are nested inside ioctx lock (i.e. ctx->wait)
1482 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1483 int sync, void *key)
1485 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1487 list_del_init(&wait->task_list);
1488 kick_iocb(iocb);
1489 return 1;
1492 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1493 struct iocb *iocb)
1495 struct kiocb *req;
1496 struct file *file;
1497 ssize_t ret;
1499 /* enforce forwards compatibility on users */
1500 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1501 iocb->aio_reserved3)) {
1502 pr_debug("EINVAL: io_submit: reserve field set\n");
1503 return -EINVAL;
1506 /* prevent overflows */
1507 if (unlikely(
1508 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1509 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1510 ((ssize_t)iocb->aio_nbytes < 0)
1511 )) {
1512 pr_debug("EINVAL: io_submit: overflow check\n");
1513 return -EINVAL;
1516 file = fget(iocb->aio_fildes);
1517 if (unlikely(!file))
1518 return -EBADF;
1520 req = aio_get_req(ctx); /* returns with 2 references to req */
1521 if (unlikely(!req)) {
1522 fput(file);
1523 return -EAGAIN;
1526 req->ki_filp = file;
1527 ret = put_user(req->ki_key, &user_iocb->aio_key);
1528 if (unlikely(ret)) {
1529 dprintk("EFAULT: aio_key\n");
1530 goto out_put_req;
1533 req->ki_obj.user = user_iocb;
1534 req->ki_user_data = iocb->aio_data;
1535 req->ki_pos = iocb->aio_offset;
1537 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1538 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1539 req->ki_opcode = iocb->aio_lio_opcode;
1540 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1541 INIT_LIST_HEAD(&req->ki_wait.task_list);
1542 req->ki_retried = 0;
1544 ret = aio_setup_iocb(req);
1546 if (ret)
1547 goto out_put_req;
1549 spin_lock_irq(&ctx->ctx_lock);
1550 aio_run_iocb(req);
1551 unlock_kiocb(req);
1552 if (!list_empty(&ctx->run_list)) {
1553 /* drain the run list */
1554 while (__aio_run_iocbs(ctx))
1557 spin_unlock_irq(&ctx->ctx_lock);
1558 aio_put_req(req); /* drop extra ref to req */
1559 return 0;
1561 out_put_req:
1562 aio_put_req(req); /* drop extra ref to req */
1563 aio_put_req(req); /* drop i/o ref to req */
1564 return ret;
1567 /* sys_io_submit:
1568 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1569 * the number of iocbs queued. May return -EINVAL if the aio_context
1570 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1571 * *iocbpp[0] is not properly initialized, if the operation specified
1572 * is invalid for the file descriptor in the iocb. May fail with
1573 * -EFAULT if any of the data structures point to invalid data. May
1574 * fail with -EBADF if the file descriptor specified in the first
1575 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1576 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1577 * fail with -ENOSYS if not implemented.
1579 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1580 struct iocb __user * __user *iocbpp)
1582 struct kioctx *ctx;
1583 long ret = 0;
1584 int i;
1586 if (unlikely(nr < 0))
1587 return -EINVAL;
1589 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1590 return -EFAULT;
1592 ctx = lookup_ioctx(ctx_id);
1593 if (unlikely(!ctx)) {
1594 pr_debug("EINVAL: io_submit: invalid context id\n");
1595 return -EINVAL;
1599 * AKPM: should this return a partial result if some of the IOs were
1600 * successfully submitted?
1602 for (i=0; i<nr; i++) {
1603 struct iocb __user *user_iocb;
1604 struct iocb tmp;
1606 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1607 ret = -EFAULT;
1608 break;
1611 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1612 ret = -EFAULT;
1613 break;
1616 ret = io_submit_one(ctx, user_iocb, &tmp);
1617 if (ret)
1618 break;
1621 put_ioctx(ctx);
1622 return i ? i : ret;
1625 /* lookup_kiocb
1626 * Finds a given iocb for cancellation.
1627 * MUST be called with ctx->ctx_lock held.
1629 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1630 u32 key)
1632 struct list_head *pos;
1633 /* TODO: use a hash or array, this sucks. */
1634 list_for_each(pos, &ctx->active_reqs) {
1635 struct kiocb *kiocb = list_kiocb(pos);
1636 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1637 return kiocb;
1639 return NULL;
1642 /* sys_io_cancel:
1643 * Attempts to cancel an iocb previously passed to io_submit. If
1644 * the operation is successfully cancelled, the resulting event is
1645 * copied into the memory pointed to by result without being placed
1646 * into the completion queue and 0 is returned. May fail with
1647 * -EFAULT if any of the data structures pointed to are invalid.
1648 * May fail with -EINVAL if aio_context specified by ctx_id is
1649 * invalid. May fail with -EAGAIN if the iocb specified was not
1650 * cancelled. Will fail with -ENOSYS if not implemented.
1652 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1653 struct io_event __user *result)
1655 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1656 struct kioctx *ctx;
1657 struct kiocb *kiocb;
1658 u32 key;
1659 int ret;
1661 ret = get_user(key, &iocb->aio_key);
1662 if (unlikely(ret))
1663 return -EFAULT;
1665 ctx = lookup_ioctx(ctx_id);
1666 if (unlikely(!ctx))
1667 return -EINVAL;
1669 spin_lock_irq(&ctx->ctx_lock);
1670 ret = -EAGAIN;
1671 kiocb = lookup_kiocb(ctx, iocb, key);
1672 if (kiocb && kiocb->ki_cancel) {
1673 cancel = kiocb->ki_cancel;
1674 kiocb->ki_users ++;
1675 kiocbSetCancelled(kiocb);
1676 } else
1677 cancel = NULL;
1678 spin_unlock_irq(&ctx->ctx_lock);
1680 if (NULL != cancel) {
1681 struct io_event tmp;
1682 pr_debug("calling cancel\n");
1683 lock_kiocb(kiocb);
1684 memset(&tmp, 0, sizeof(tmp));
1685 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1686 tmp.data = kiocb->ki_user_data;
1687 ret = cancel(kiocb, &tmp);
1688 if (!ret) {
1689 /* Cancellation succeeded -- copy the result
1690 * into the user's buffer.
1692 if (copy_to_user(result, &tmp, sizeof(tmp)))
1693 ret = -EFAULT;
1695 unlock_kiocb(kiocb);
1696 } else
1697 ret = -EINVAL;
1699 put_ioctx(ctx);
1701 return ret;
1704 /* io_getevents:
1705 * Attempts to read at least min_nr events and up to nr events from
1706 * the completion queue for the aio_context specified by ctx_id. May
1707 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1708 * if nr is out of range, if when is out of range. May fail with
1709 * -EFAULT if any of the memory specified to is invalid. May return
1710 * 0 or < min_nr if no events are available and the timeout specified
1711 * by when has elapsed, where when == NULL specifies an infinite
1712 * timeout. Note that the timeout pointed to by when is relative and
1713 * will be updated if not NULL and the operation blocks. Will fail
1714 * with -ENOSYS if not implemented.
1716 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1717 long min_nr,
1718 long nr,
1719 struct io_event __user *events,
1720 struct timespec __user *timeout)
1722 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1723 long ret = -EINVAL;
1725 if (likely(ioctx)) {
1726 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1727 ret = read_events(ioctx, min_nr, nr, events, timeout);
1728 put_ioctx(ioctx);
1731 return ret;
1734 __initcall(aio_setup);
1736 EXPORT_SYMBOL(aio_complete);
1737 EXPORT_SYMBOL(aio_put_req);
1738 EXPORT_SYMBOL(wait_on_sync_kiocb);