2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
9 * Modified by Nadia Derbey to make it RCU safe.
11 * Small id to pointer translation service.
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
50 static struct kmem_cache
*idr_layer_cache
;
51 static DEFINE_PER_CPU(struct idr_layer
*, idr_preload_head
);
52 static DEFINE_PER_CPU(int, idr_preload_cnt
);
53 static DEFINE_SPINLOCK(simple_ida_lock
);
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers
)
58 int bits
= min_t(int, layers
* IDR_BITS
, MAX_IDR_SHIFT
);
60 return (1 << bits
) - 1;
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
68 static int idr_layer_prefix_mask(int layer
)
70 return ~idr_max(layer
+ 1);
73 static struct idr_layer
*get_from_free_list(struct idr
*idp
)
78 spin_lock_irqsave(&idp
->lock
, flags
);
79 if ((p
= idp
->id_free
)) {
80 idp
->id_free
= p
->ary
[0];
84 spin_unlock_irqrestore(&idp
->lock
, flags
);
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
101 static struct idr_layer
*idr_layer_alloc(gfp_t gfp_mask
, struct idr
*layer_idr
)
103 struct idr_layer
*new;
105 /* this is the old path, bypass to get_from_free_list() */
107 return get_from_free_list(layer_idr
);
109 /* try to allocate directly from kmem_cache */
110 new = kmem_cache_zalloc(idr_layer_cache
, gfp_mask
);
115 * Try to fetch one from the per-cpu preload buffer if in process
116 * context. See idr_preload() for details.
122 new = __this_cpu_read(idr_preload_head
);
124 __this_cpu_write(idr_preload_head
, new->ary
[0]);
125 __this_cpu_dec(idr_preload_cnt
);
132 static void idr_layer_rcu_free(struct rcu_head
*head
)
134 struct idr_layer
*layer
;
136 layer
= container_of(head
, struct idr_layer
, rcu_head
);
137 kmem_cache_free(idr_layer_cache
, layer
);
140 static inline void free_layer(struct idr
*idr
, struct idr_layer
*p
)
142 if (idr
->hint
&& idr
->hint
== p
)
143 RCU_INIT_POINTER(idr
->hint
, NULL
);
144 call_rcu(&p
->rcu_head
, idr_layer_rcu_free
);
147 /* only called when idp->lock is held */
148 static void __move_to_free_list(struct idr
*idp
, struct idr_layer
*p
)
150 p
->ary
[0] = idp
->id_free
;
155 static void move_to_free_list(struct idr
*idp
, struct idr_layer
*p
)
160 * Depends on the return element being zeroed.
162 spin_lock_irqsave(&idp
->lock
, flags
);
163 __move_to_free_list(idp
, p
);
164 spin_unlock_irqrestore(&idp
->lock
, flags
);
167 static void idr_mark_full(struct idr_layer
**pa
, int id
)
169 struct idr_layer
*p
= pa
[0];
172 __set_bit(id
& IDR_MASK
, p
->bitmap
);
174 * If this layer is full mark the bit in the layer above to
175 * show that this part of the radix tree is full. This may
176 * complete the layer above and require walking up the radix
179 while (bitmap_full(p
->bitmap
, IDR_SIZE
)) {
183 __set_bit((id
& IDR_MASK
), p
->bitmap
);
188 * idr_pre_get - reserve resources for idr allocation
190 * @gfp_mask: memory allocation flags
192 * This function should be called prior to calling the idr_get_new* functions.
193 * It preallocates enough memory to satisfy the worst possible allocation. The
194 * caller should pass in GFP_KERNEL if possible. This of course requires that
195 * no spinning locks be held.
197 * If the system is REALLY out of memory this function returns %0,
200 int idr_pre_get(struct idr
*idp
, gfp_t gfp_mask
)
202 while (idp
->id_free_cnt
< MAX_IDR_FREE
) {
203 struct idr_layer
*new;
204 new = kmem_cache_zalloc(idr_layer_cache
, gfp_mask
);
207 move_to_free_list(idp
, new);
211 EXPORT_SYMBOL(idr_pre_get
);
214 * sub_alloc - try to allocate an id without growing the tree depth
216 * @starting_id: id to start search at
217 * @id: pointer to the allocated handle
218 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
219 * @gfp_mask: allocation mask for idr_layer_alloc()
220 * @layer_idr: optional idr passed to idr_layer_alloc()
222 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
223 * growing its depth. Returns
225 * the allocated id >= 0 if successful,
226 * -EAGAIN if the tree needs to grow for allocation to succeed,
227 * -ENOSPC if the id space is exhausted,
228 * -ENOMEM if more idr_layers need to be allocated.
230 static int sub_alloc(struct idr
*idp
, int *starting_id
, struct idr_layer
**pa
,
231 gfp_t gfp_mask
, struct idr
*layer_idr
)
234 struct idr_layer
*p
, *new;
244 * We run around this while until we reach the leaf node...
246 n
= (id
>> (IDR_BITS
*l
)) & IDR_MASK
;
247 m
= find_next_zero_bit(p
->bitmap
, IDR_SIZE
, n
);
249 /* no space available go back to previous layer. */
252 id
= (id
| ((1 << (IDR_BITS
* l
)) - 1)) + 1;
254 /* if already at the top layer, we need to grow */
255 if (id
>= 1 << (idp
->layers
* IDR_BITS
)) {
262 /* If we need to go up one layer, continue the
263 * loop; otherwise, restart from the top.
265 sh
= IDR_BITS
* (l
+ 1);
266 if (oid
>> sh
== id
>> sh
)
273 id
= ((id
>> sh
) ^ n
^ m
) << sh
;
275 if ((id
>= MAX_IDR_BIT
) || (id
< 0))
280 * Create the layer below if it is missing.
283 new = idr_layer_alloc(gfp_mask
, layer_idr
);
287 new->prefix
= id
& idr_layer_prefix_mask(new->layer
);
288 rcu_assign_pointer(p
->ary
[m
], new);
299 static int idr_get_empty_slot(struct idr
*idp
, int starting_id
,
300 struct idr_layer
**pa
, gfp_t gfp_mask
,
301 struct idr
*layer_idr
)
303 struct idr_layer
*p
, *new;
310 layers
= idp
->layers
;
312 if (!(p
= idr_layer_alloc(gfp_mask
, layer_idr
)))
318 * Add a new layer to the top of the tree if the requested
319 * id is larger than the currently allocated space.
321 while (id
> idr_max(layers
)) {
324 /* special case: if the tree is currently empty,
325 * then we grow the tree by moving the top node
329 WARN_ON_ONCE(p
->prefix
);
332 if (!(new = idr_layer_alloc(gfp_mask
, layer_idr
))) {
334 * The allocation failed. If we built part of
335 * the structure tear it down.
337 spin_lock_irqsave(&idp
->lock
, flags
);
338 for (new = p
; p
&& p
!= idp
->top
; new = p
) {
342 bitmap_clear(new->bitmap
, 0, IDR_SIZE
);
343 __move_to_free_list(idp
, new);
345 spin_unlock_irqrestore(&idp
->lock
, flags
);
350 new->layer
= layers
-1;
351 new->prefix
= id
& idr_layer_prefix_mask(new->layer
);
352 if (bitmap_full(p
->bitmap
, IDR_SIZE
))
353 __set_bit(0, new->bitmap
);
356 rcu_assign_pointer(idp
->top
, p
);
357 idp
->layers
= layers
;
358 v
= sub_alloc(idp
, &id
, pa
, gfp_mask
, layer_idr
);
365 * @id and @pa are from a successful allocation from idr_get_empty_slot().
366 * Install the user pointer @ptr and mark the slot full.
368 static void idr_fill_slot(struct idr
*idr
, void *ptr
, int id
,
369 struct idr_layer
**pa
)
371 /* update hint used for lookup, cleared from free_layer() */
372 rcu_assign_pointer(idr
->hint
, pa
[0]);
374 rcu_assign_pointer(pa
[0]->ary
[id
& IDR_MASK
], (struct idr_layer
*)ptr
);
376 idr_mark_full(pa
, id
);
380 * idr_get_new_above - allocate new idr entry above or equal to a start id
382 * @ptr: pointer you want associated with the id
383 * @starting_id: id to start search at
384 * @id: pointer to the allocated handle
386 * This is the allocate id function. It should be called with any
389 * If allocation from IDR's private freelist fails, idr_get_new_above() will
390 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
391 * IDR's preallocation and then retry the idr_get_new_above() call.
393 * If the idr is full idr_get_new_above() will return %-ENOSPC.
395 * @id returns a value in the range @starting_id ... %0x7fffffff
397 int idr_get_new_above(struct idr
*idp
, void *ptr
, int starting_id
, int *id
)
399 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
402 rv
= idr_get_empty_slot(idp
, starting_id
, pa
, 0, idp
);
404 return rv
== -ENOMEM
? -EAGAIN
: rv
;
406 idr_fill_slot(idp
, ptr
, rv
, pa
);
410 EXPORT_SYMBOL(idr_get_new_above
);
413 * idr_preload - preload for idr_alloc()
414 * @gfp_mask: allocation mask to use for preloading
416 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
417 * process context and each idr_preload() invocation should be matched with
418 * idr_preload_end(). Note that preemption is disabled while preloaded.
420 * The first idr_alloc() in the preloaded section can be treated as if it
421 * were invoked with @gfp_mask used for preloading. This allows using more
422 * permissive allocation masks for idrs protected by spinlocks.
424 * For example, if idr_alloc() below fails, the failure can be treated as
425 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
427 * idr_preload(GFP_KERNEL);
430 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
437 void idr_preload(gfp_t gfp_mask
)
440 * Consuming preload buffer from non-process context breaks preload
441 * allocation guarantee. Disallow usage from those contexts.
443 WARN_ON_ONCE(in_interrupt());
444 might_sleep_if(gfp_mask
& __GFP_WAIT
);
449 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
450 * return value from idr_alloc() needs to be checked for failure
451 * anyway. Silently give up if allocation fails. The caller can
452 * treat failures from idr_alloc() as if idr_alloc() were called
453 * with @gfp_mask which should be enough.
455 while (__this_cpu_read(idr_preload_cnt
) < MAX_IDR_FREE
) {
456 struct idr_layer
*new;
459 new = kmem_cache_zalloc(idr_layer_cache
, gfp_mask
);
464 /* link the new one to per-cpu preload list */
465 new->ary
[0] = __this_cpu_read(idr_preload_head
);
466 __this_cpu_write(idr_preload_head
, new);
467 __this_cpu_inc(idr_preload_cnt
);
470 EXPORT_SYMBOL(idr_preload
);
473 * idr_alloc - allocate new idr entry
474 * @idr: the (initialized) idr
475 * @ptr: pointer to be associated with the new id
476 * @start: the minimum id (inclusive)
477 * @end: the maximum id (exclusive, <= 0 for max)
478 * @gfp_mask: memory allocation flags
480 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
481 * available in the specified range, returns -ENOSPC. On memory allocation
482 * failure, returns -ENOMEM.
484 * Note that @end is treated as max when <= 0. This is to always allow
485 * using @start + N as @end as long as N is inside integer range.
487 * The user is responsible for exclusively synchronizing all operations
488 * which may modify @idr. However, read-only accesses such as idr_find()
489 * or iteration can be performed under RCU read lock provided the user
490 * destroys @ptr in RCU-safe way after removal from idr.
492 int idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp_mask
)
494 int max
= end
> 0 ? end
- 1 : INT_MAX
; /* inclusive upper limit */
495 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
498 might_sleep_if(gfp_mask
& __GFP_WAIT
);
501 if (WARN_ON_ONCE(start
< 0))
503 if (unlikely(max
< start
))
507 id
= idr_get_empty_slot(idr
, start
, pa
, gfp_mask
, NULL
);
508 if (unlikely(id
< 0))
510 if (unlikely(id
> max
))
513 idr_fill_slot(idr
, ptr
, id
, pa
);
516 EXPORT_SYMBOL_GPL(idr_alloc
);
518 static void idr_remove_warning(int id
)
521 "idr_remove called for id=%d which is not allocated.\n", id
);
525 static void sub_remove(struct idr
*idp
, int shift
, int id
)
527 struct idr_layer
*p
= idp
->top
;
528 struct idr_layer
**pa
[MAX_IDR_LEVEL
+ 1];
529 struct idr_layer
***paa
= &pa
[0];
530 struct idr_layer
*to_free
;
536 while ((shift
> 0) && p
) {
537 n
= (id
>> shift
) & IDR_MASK
;
538 __clear_bit(n
, p
->bitmap
);
544 if (likely(p
!= NULL
&& test_bit(n
, p
->bitmap
))) {
545 __clear_bit(n
, p
->bitmap
);
546 rcu_assign_pointer(p
->ary
[n
], NULL
);
548 while(*paa
&& ! --((**paa
)->count
)){
550 free_layer(idp
, to_free
);
557 free_layer(idp
, to_free
);
559 idr_remove_warning(id
);
563 * idr_remove - remove the given id and free its slot
567 void idr_remove(struct idr
*idp
, int id
)
570 struct idr_layer
*to_free
;
572 /* see comment in idr_find_slowpath() */
573 if (WARN_ON_ONCE(id
< 0))
576 sub_remove(idp
, (idp
->layers
- 1) * IDR_BITS
, id
);
577 if (idp
->top
&& idp
->top
->count
== 1 && (idp
->layers
> 1) &&
580 * Single child at leftmost slot: we can shrink the tree.
581 * This level is not needed anymore since when layers are
582 * inserted, they are inserted at the top of the existing
586 p
= idp
->top
->ary
[0];
587 rcu_assign_pointer(idp
->top
, p
);
590 bitmap_clear(to_free
->bitmap
, 0, IDR_SIZE
);
591 free_layer(idp
, to_free
);
593 while (idp
->id_free_cnt
>= MAX_IDR_FREE
) {
594 p
= get_from_free_list(idp
);
596 * Note: we don't call the rcu callback here, since the only
597 * layers that fall into the freelist are those that have been
600 kmem_cache_free(idr_layer_cache
, p
);
604 EXPORT_SYMBOL(idr_remove
);
606 void __idr_remove_all(struct idr
*idp
)
611 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
612 struct idr_layer
**paa
= &pa
[0];
614 n
= idp
->layers
* IDR_BITS
;
616 rcu_assign_pointer(idp
->top
, NULL
);
617 max
= idr_max(idp
->layers
);
620 while (id
>= 0 && id
<= max
) {
621 while (n
> IDR_BITS
&& p
) {
624 p
= p
->ary
[(id
>> n
) & IDR_MASK
];
629 /* Get the highest bit that the above add changed from 0->1. */
630 while (n
< fls(id
^ bt_mask
)) {
639 EXPORT_SYMBOL(__idr_remove_all
);
642 * idr_destroy - release all cached layers within an idr tree
645 * Free all id mappings and all idp_layers. After this function, @idp is
646 * completely unused and can be freed / recycled. The caller is
647 * responsible for ensuring that no one else accesses @idp during or after
650 * A typical clean-up sequence for objects stored in an idr tree will use
651 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
652 * free up the id mappings and cached idr_layers.
654 void idr_destroy(struct idr
*idp
)
656 __idr_remove_all(idp
);
658 while (idp
->id_free_cnt
) {
659 struct idr_layer
*p
= get_from_free_list(idp
);
660 kmem_cache_free(idr_layer_cache
, p
);
663 EXPORT_SYMBOL(idr_destroy
);
665 void *idr_find_slowpath(struct idr
*idp
, int id
)
671 * If @id is negative, idr_find() used to ignore the sign bit and
672 * performed lookup with the rest of bits, which is weird and can
673 * lead to very obscure bugs. We're now returning NULL for all
674 * negative IDs but just in case somebody was depending on the sign
675 * bit being ignored, let's trigger WARN_ON_ONCE() so that they can
676 * be detected and fixed. WARN_ON_ONCE() can later be removed.
678 if (WARN_ON_ONCE(id
< 0))
681 p
= rcu_dereference_raw(idp
->top
);
684 n
= (p
->layer
+1) * IDR_BITS
;
686 if (id
> idr_max(p
->layer
+ 1))
692 BUG_ON(n
!= p
->layer
*IDR_BITS
);
693 p
= rcu_dereference_raw(p
->ary
[(id
>> n
) & IDR_MASK
]);
697 EXPORT_SYMBOL(idr_find_slowpath
);
700 * idr_for_each - iterate through all stored pointers
702 * @fn: function to be called for each pointer
703 * @data: data passed back to callback function
705 * Iterate over the pointers registered with the given idr. The
706 * callback function will be called for each pointer currently
707 * registered, passing the id, the pointer and the data pointer passed
708 * to this function. It is not safe to modify the idr tree while in
709 * the callback, so functions such as idr_get_new and idr_remove are
712 * We check the return of @fn each time. If it returns anything other
713 * than %0, we break out and return that value.
715 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
717 int idr_for_each(struct idr
*idp
,
718 int (*fn
)(int id
, void *p
, void *data
), void *data
)
720 int n
, id
, max
, error
= 0;
722 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
723 struct idr_layer
**paa
= &pa
[0];
725 n
= idp
->layers
* IDR_BITS
;
726 p
= rcu_dereference_raw(idp
->top
);
727 max
= idr_max(idp
->layers
);
730 while (id
>= 0 && id
<= max
) {
734 p
= rcu_dereference_raw(p
->ary
[(id
>> n
) & IDR_MASK
]);
738 error
= fn(id
, (void *)p
, data
);
744 while (n
< fls(id
)) {
752 EXPORT_SYMBOL(idr_for_each
);
755 * idr_get_next - lookup next object of id to given id.
757 * @nextidp: pointer to lookup key
759 * Returns pointer to registered object with id, which is next number to
760 * given id. After being looked up, *@nextidp will be updated for the next
763 * This function can be called under rcu_read_lock(), given that the leaf
764 * pointers lifetimes are correctly managed.
766 void *idr_get_next(struct idr
*idp
, int *nextidp
)
768 struct idr_layer
*p
, *pa
[MAX_IDR_LEVEL
+ 1];
769 struct idr_layer
**paa
= &pa
[0];
774 p
= rcu_dereference_raw(idp
->top
);
777 n
= (p
->layer
+ 1) * IDR_BITS
;
778 max
= idr_max(p
->layer
+ 1);
780 while (id
>= 0 && id
<= max
) {
784 p
= rcu_dereference_raw(p
->ary
[(id
>> n
) & IDR_MASK
]);
793 * Proceed to the next layer at the current level. Unlike
794 * idr_for_each(), @id isn't guaranteed to be aligned to
795 * layer boundary at this point and adding 1 << n may
796 * incorrectly skip IDs. Make sure we jump to the
797 * beginning of the next layer using round_up().
799 id
= round_up(id
+ 1, 1 << n
);
800 while (n
< fls(id
)) {
807 EXPORT_SYMBOL(idr_get_next
);
811 * idr_replace - replace pointer for given id
813 * @ptr: pointer you want associated with the id
816 * Replace the pointer registered with an id and return the old value.
817 * A %-ENOENT return indicates that @id was not found.
818 * A %-EINVAL return indicates that @id was not within valid constraints.
820 * The caller must serialize with writers.
822 void *idr_replace(struct idr
*idp
, void *ptr
, int id
)
825 struct idr_layer
*p
, *old_p
;
827 /* see comment in idr_find_slowpath() */
828 if (WARN_ON_ONCE(id
< 0))
829 return ERR_PTR(-EINVAL
);
833 return ERR_PTR(-EINVAL
);
835 n
= (p
->layer
+1) * IDR_BITS
;
838 return ERR_PTR(-EINVAL
);
841 while ((n
> 0) && p
) {
842 p
= p
->ary
[(id
>> n
) & IDR_MASK
];
847 if (unlikely(p
== NULL
|| !test_bit(n
, p
->bitmap
)))
848 return ERR_PTR(-ENOENT
);
851 rcu_assign_pointer(p
->ary
[n
], ptr
);
855 EXPORT_SYMBOL(idr_replace
);
857 void __init
idr_init_cache(void)
859 idr_layer_cache
= kmem_cache_create("idr_layer_cache",
860 sizeof(struct idr_layer
), 0, SLAB_PANIC
, NULL
);
864 * idr_init - initialize idr handle
867 * This function is use to set up the handle (@idp) that you will pass
868 * to the rest of the functions.
870 void idr_init(struct idr
*idp
)
872 memset(idp
, 0, sizeof(struct idr
));
873 spin_lock_init(&idp
->lock
);
875 EXPORT_SYMBOL(idr_init
);
879 * DOC: IDA description
880 * IDA - IDR based ID allocator
882 * This is id allocator without id -> pointer translation. Memory
883 * usage is much lower than full blown idr because each id only
884 * occupies a bit. ida uses a custom leaf node which contains
885 * IDA_BITMAP_BITS slots.
887 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
890 static void free_bitmap(struct ida
*ida
, struct ida_bitmap
*bitmap
)
894 if (!ida
->free_bitmap
) {
895 spin_lock_irqsave(&ida
->idr
.lock
, flags
);
896 if (!ida
->free_bitmap
) {
897 ida
->free_bitmap
= bitmap
;
900 spin_unlock_irqrestore(&ida
->idr
.lock
, flags
);
907 * ida_pre_get - reserve resources for ida allocation
909 * @gfp_mask: memory allocation flag
911 * This function should be called prior to locking and calling the
912 * following function. It preallocates enough memory to satisfy the
913 * worst possible allocation.
915 * If the system is REALLY out of memory this function returns %0,
918 int ida_pre_get(struct ida
*ida
, gfp_t gfp_mask
)
920 /* allocate idr_layers */
921 if (!idr_pre_get(&ida
->idr
, gfp_mask
))
924 /* allocate free_bitmap */
925 if (!ida
->free_bitmap
) {
926 struct ida_bitmap
*bitmap
;
928 bitmap
= kmalloc(sizeof(struct ida_bitmap
), gfp_mask
);
932 free_bitmap(ida
, bitmap
);
937 EXPORT_SYMBOL(ida_pre_get
);
940 * ida_get_new_above - allocate new ID above or equal to a start id
942 * @starting_id: id to start search at
943 * @p_id: pointer to the allocated handle
945 * Allocate new ID above or equal to @starting_id. It should be called
946 * with any required locks.
948 * If memory is required, it will return %-EAGAIN, you should unlock
949 * and go back to the ida_pre_get() call. If the ida is full, it will
952 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
954 int ida_get_new_above(struct ida
*ida
, int starting_id
, int *p_id
)
956 struct idr_layer
*pa
[MAX_IDR_LEVEL
+ 1];
957 struct ida_bitmap
*bitmap
;
959 int idr_id
= starting_id
/ IDA_BITMAP_BITS
;
960 int offset
= starting_id
% IDA_BITMAP_BITS
;
964 /* get vacant slot */
965 t
= idr_get_empty_slot(&ida
->idr
, idr_id
, pa
, 0, &ida
->idr
);
967 return t
== -ENOMEM
? -EAGAIN
: t
;
969 if (t
* IDA_BITMAP_BITS
>= MAX_IDR_BIT
)
976 /* if bitmap isn't there, create a new one */
977 bitmap
= (void *)pa
[0]->ary
[idr_id
& IDR_MASK
];
979 spin_lock_irqsave(&ida
->idr
.lock
, flags
);
980 bitmap
= ida
->free_bitmap
;
981 ida
->free_bitmap
= NULL
;
982 spin_unlock_irqrestore(&ida
->idr
.lock
, flags
);
987 memset(bitmap
, 0, sizeof(struct ida_bitmap
));
988 rcu_assign_pointer(pa
[0]->ary
[idr_id
& IDR_MASK
],
993 /* lookup for empty slot */
994 t
= find_next_zero_bit(bitmap
->bitmap
, IDA_BITMAP_BITS
, offset
);
995 if (t
== IDA_BITMAP_BITS
) {
996 /* no empty slot after offset, continue to the next chunk */
1002 id
= idr_id
* IDA_BITMAP_BITS
+ t
;
1003 if (id
>= MAX_IDR_BIT
)
1006 __set_bit(t
, bitmap
->bitmap
);
1007 if (++bitmap
->nr_busy
== IDA_BITMAP_BITS
)
1008 idr_mark_full(pa
, idr_id
);
1012 /* Each leaf node can handle nearly a thousand slots and the
1013 * whole idea of ida is to have small memory foot print.
1014 * Throw away extra resources one by one after each successful
1017 if (ida
->idr
.id_free_cnt
|| ida
->free_bitmap
) {
1018 struct idr_layer
*p
= get_from_free_list(&ida
->idr
);
1020 kmem_cache_free(idr_layer_cache
, p
);
1025 EXPORT_SYMBOL(ida_get_new_above
);
1028 * ida_remove - remove the given ID
1032 void ida_remove(struct ida
*ida
, int id
)
1034 struct idr_layer
*p
= ida
->idr
.top
;
1035 int shift
= (ida
->idr
.layers
- 1) * IDR_BITS
;
1036 int idr_id
= id
/ IDA_BITMAP_BITS
;
1037 int offset
= id
% IDA_BITMAP_BITS
;
1039 struct ida_bitmap
*bitmap
;
1041 /* clear full bits while looking up the leaf idr_layer */
1042 while ((shift
> 0) && p
) {
1043 n
= (idr_id
>> shift
) & IDR_MASK
;
1044 __clear_bit(n
, p
->bitmap
);
1052 n
= idr_id
& IDR_MASK
;
1053 __clear_bit(n
, p
->bitmap
);
1055 bitmap
= (void *)p
->ary
[n
];
1056 if (!test_bit(offset
, bitmap
->bitmap
))
1059 /* update bitmap and remove it if empty */
1060 __clear_bit(offset
, bitmap
->bitmap
);
1061 if (--bitmap
->nr_busy
== 0) {
1062 __set_bit(n
, p
->bitmap
); /* to please idr_remove() */
1063 idr_remove(&ida
->idr
, idr_id
);
1064 free_bitmap(ida
, bitmap
);
1071 "ida_remove called for id=%d which is not allocated.\n", id
);
1073 EXPORT_SYMBOL(ida_remove
);
1076 * ida_destroy - release all cached layers within an ida tree
1079 void ida_destroy(struct ida
*ida
)
1081 idr_destroy(&ida
->idr
);
1082 kfree(ida
->free_bitmap
);
1084 EXPORT_SYMBOL(ida_destroy
);
1087 * ida_simple_get - get a new id.
1088 * @ida: the (initialized) ida.
1089 * @start: the minimum id (inclusive, < 0x8000000)
1090 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1091 * @gfp_mask: memory allocation flags
1093 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1094 * On memory allocation failure, returns -ENOMEM.
1096 * Use ida_simple_remove() to get rid of an id.
1098 int ida_simple_get(struct ida
*ida
, unsigned int start
, unsigned int end
,
1103 unsigned long flags
;
1105 BUG_ON((int)start
< 0);
1106 BUG_ON((int)end
< 0);
1111 BUG_ON(end
< start
);
1116 if (!ida_pre_get(ida
, gfp_mask
))
1119 spin_lock_irqsave(&simple_ida_lock
, flags
);
1120 ret
= ida_get_new_above(ida
, start
, &id
);
1123 ida_remove(ida
, id
);
1129 spin_unlock_irqrestore(&simple_ida_lock
, flags
);
1131 if (unlikely(ret
== -EAGAIN
))
1136 EXPORT_SYMBOL(ida_simple_get
);
1139 * ida_simple_remove - remove an allocated id.
1140 * @ida: the (initialized) ida.
1141 * @id: the id returned by ida_simple_get.
1143 void ida_simple_remove(struct ida
*ida
, unsigned int id
)
1145 unsigned long flags
;
1147 BUG_ON((int)id
< 0);
1148 spin_lock_irqsave(&simple_ida_lock
, flags
);
1149 ida_remove(ida
, id
);
1150 spin_unlock_irqrestore(&simple_ida_lock
, flags
);
1152 EXPORT_SYMBOL(ida_simple_remove
);
1155 * ida_init - initialize ida handle
1158 * This function is use to set up the handle (@ida) that you will pass
1159 * to the rest of the functions.
1161 void ida_init(struct ida
*ida
)
1163 memset(ida
, 0, sizeof(struct ida
));
1164 idr_init(&ida
->idr
);
1167 EXPORT_SYMBOL(ida_init
);