USB: ueagle: fix Coding Styles
[linux-2.6.git] / sound / pci / ctxfi / ctvmem.c
blob65da6e466f80bb27af0d466239a473436e8f40ac
1 /**
2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
4 * This source file is released under GPL v2 license (no other versions).
5 * See the COPYING file included in the main directory of this source
6 * distribution for the license terms and conditions.
8 * @File ctvmem.c
10 * @Brief
11 * This file contains the implementation of virtual memory management object
12 * for card device.
14 * @Author Liu Chun
15 * @Date Apr 1 2008
18 #include "ctvmem.h"
19 #include <linux/slab.h>
20 #include <linux/mm.h>
21 #include <linux/io.h>
22 #include <sound/pcm.h>
24 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
25 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
27 /* *
28 * Find or create vm block based on requested @size.
29 * @size must be page aligned.
30 * */
31 static struct ct_vm_block *
32 get_vm_block(struct ct_vm *vm, unsigned int size)
34 struct ct_vm_block *block = NULL, *entry;
35 struct list_head *pos;
37 size = CT_PAGE_ALIGN(size);
38 if (size > vm->size) {
39 printk(KERN_ERR "ctxfi: Fail! No sufficient device virtural "
40 "memory space available!\n");
41 return NULL;
44 mutex_lock(&vm->lock);
45 list_for_each(pos, &vm->unused) {
46 entry = list_entry(pos, struct ct_vm_block, list);
47 if (entry->size >= size)
48 break; /* found a block that is big enough */
50 if (pos == &vm->unused)
51 goto out;
53 if (entry->size == size) {
54 /* Move the vm node from unused list to used list directly */
55 list_del(&entry->list);
56 list_add(&entry->list, &vm->used);
57 vm->size -= size;
58 block = entry;
59 goto out;
62 block = kzalloc(sizeof(*block), GFP_KERNEL);
63 if (!block)
64 goto out;
66 block->addr = entry->addr;
67 block->size = size;
68 list_add(&block->list, &vm->used);
69 entry->addr += size;
70 entry->size -= size;
71 vm->size -= size;
73 out:
74 mutex_unlock(&vm->lock);
75 return block;
78 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
80 struct ct_vm_block *entry, *pre_ent;
81 struct list_head *pos, *pre;
83 block->size = CT_PAGE_ALIGN(block->size);
85 mutex_lock(&vm->lock);
86 list_del(&block->list);
87 vm->size += block->size;
89 list_for_each(pos, &vm->unused) {
90 entry = list_entry(pos, struct ct_vm_block, list);
91 if (entry->addr >= (block->addr + block->size))
92 break; /* found a position */
94 if (pos == &vm->unused) {
95 list_add_tail(&block->list, &vm->unused);
96 entry = block;
97 } else {
98 if ((block->addr + block->size) == entry->addr) {
99 entry->addr = block->addr;
100 entry->size += block->size;
101 kfree(block);
102 } else {
103 __list_add(&block->list, pos->prev, pos);
104 entry = block;
108 pos = &entry->list;
109 pre = pos->prev;
110 while (pre != &vm->unused) {
111 entry = list_entry(pos, struct ct_vm_block, list);
112 pre_ent = list_entry(pre, struct ct_vm_block, list);
113 if ((pre_ent->addr + pre_ent->size) > entry->addr)
114 break;
116 pre_ent->size += entry->size;
117 list_del(pos);
118 kfree(entry);
119 pos = pre;
120 pre = pos->prev;
122 mutex_unlock(&vm->lock);
125 /* Map host addr (kmalloced/vmalloced) to device logical addr. */
126 static struct ct_vm_block *
127 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
129 struct ct_vm_block *block;
130 unsigned int pte_start;
131 unsigned i, pages;
132 unsigned long *ptp;
134 block = get_vm_block(vm, size);
135 if (block == NULL) {
136 printk(KERN_ERR "ctxfi: No virtual memory block that is big "
137 "enough to allocate!\n");
138 return NULL;
141 ptp = (unsigned long *)vm->ptp[0].area;
142 pte_start = (block->addr >> CT_PAGE_SHIFT);
143 pages = block->size >> CT_PAGE_SHIFT;
144 for (i = 0; i < pages; i++) {
145 unsigned long addr;
146 addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
147 ptp[pte_start + i] = addr;
150 block->size = size;
151 return block;
154 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
156 /* do unmapping */
157 put_vm_block(vm, block);
160 /* *
161 * return the host physical addr of the @index-th device
162 * page table page on success, or ~0UL on failure.
163 * The first returned ~0UL indicates the termination.
164 * */
165 static dma_addr_t
166 ct_get_ptp_phys(struct ct_vm *vm, int index)
168 dma_addr_t addr;
170 addr = (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
172 return addr;
175 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
177 struct ct_vm *vm;
178 struct ct_vm_block *block;
179 int i, err = 0;
181 *rvm = NULL;
183 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
184 if (!vm)
185 return -ENOMEM;
187 mutex_init(&vm->lock);
189 /* Allocate page table pages */
190 for (i = 0; i < CT_PTP_NUM; i++) {
191 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
192 snd_dma_pci_data(pci),
193 PAGE_SIZE, &vm->ptp[i]);
194 if (err < 0)
195 break;
197 if (err < 0) {
198 /* no page table pages are allocated */
199 ct_vm_destroy(vm);
200 return -ENOMEM;
202 vm->size = CT_ADDRS_PER_PAGE * i;
203 vm->map = ct_vm_map;
204 vm->unmap = ct_vm_unmap;
205 vm->get_ptp_phys = ct_get_ptp_phys;
206 INIT_LIST_HEAD(&vm->unused);
207 INIT_LIST_HEAD(&vm->used);
208 block = kzalloc(sizeof(*block), GFP_KERNEL);
209 if (NULL != block) {
210 block->addr = 0;
211 block->size = vm->size;
212 list_add(&block->list, &vm->unused);
215 *rvm = vm;
216 return 0;
219 /* The caller must ensure no mapping pages are being used
220 * by hardware before calling this function */
221 void ct_vm_destroy(struct ct_vm *vm)
223 int i;
224 struct list_head *pos;
225 struct ct_vm_block *entry;
227 /* free used and unused list nodes */
228 while (!list_empty(&vm->used)) {
229 pos = vm->used.next;
230 list_del(pos);
231 entry = list_entry(pos, struct ct_vm_block, list);
232 kfree(entry);
234 while (!list_empty(&vm->unused)) {
235 pos = vm->unused.next;
236 list_del(pos);
237 entry = list_entry(pos, struct ct_vm_block, list);
238 kfree(entry);
241 /* free allocated page table pages */
242 for (i = 0; i < CT_PTP_NUM; i++)
243 snd_dma_free_pages(&vm->ptp[i]);
245 vm->size = 0;
247 kfree(vm);