2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
33 * typedef dma_cookie_t - an opaque DMA cookie
35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 typedef s32 dma_cookie_t
;
38 #define DMA_MIN_COOKIE 1
39 #define DMA_MAX_COOKIE INT_MAX
41 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
44 * enum dma_status - DMA transaction status
45 * @DMA_SUCCESS: transaction completed successfully
46 * @DMA_IN_PROGRESS: transaction not yet processed
47 * @DMA_PAUSED: transaction is paused
48 * @DMA_ERROR: transaction failed
58 * enum dma_transaction_type - DMA transaction types/indexes
60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
61 * automatically set as dma devices are registered.
63 enum dma_transaction_type
{
76 /* last transaction type for creation of the capabilities mask */
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 enum dma_transfer_direction
{
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
150 struct dma_interleaved_template
{
151 dma_addr_t src_start
;
152 dma_addr_t dst_start
;
153 enum dma_transfer_direction dir
;
160 struct data_chunk sgl
[0];
164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165 * control completion, and communicate status.
166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169 * acknowledges receipt, i.e. has has a chance to establish any dependency
171 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
172 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
173 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
174 * (if not set, do the source dma-unmapping as page)
175 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
176 * (if not set, do the destination dma-unmapping as page)
177 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
178 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
179 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
180 * sources that were the result of a previous operation, in the case of a PQ
181 * operation it continues the calculation with new sources
182 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
183 * on the result of this operation
185 enum dma_ctrl_flags
{
186 DMA_PREP_INTERRUPT
= (1 << 0),
187 DMA_CTRL_ACK
= (1 << 1),
188 DMA_COMPL_SKIP_SRC_UNMAP
= (1 << 2),
189 DMA_COMPL_SKIP_DEST_UNMAP
= (1 << 3),
190 DMA_COMPL_SRC_UNMAP_SINGLE
= (1 << 4),
191 DMA_COMPL_DEST_UNMAP_SINGLE
= (1 << 5),
192 DMA_PREP_PQ_DISABLE_P
= (1 << 6),
193 DMA_PREP_PQ_DISABLE_Q
= (1 << 7),
194 DMA_PREP_CONTINUE
= (1 << 8),
195 DMA_PREP_FENCE
= (1 << 9),
199 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
200 * on a running channel.
201 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
202 * @DMA_PAUSE: pause ongoing transfers
203 * @DMA_RESUME: resume paused transfer
204 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
205 * that need to runtime reconfigure the slave channels (as opposed to passing
206 * configuration data in statically from the platform). An additional
207 * argument of struct dma_slave_config must be passed in with this
209 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
210 * into external start mode.
217 FSLDMA_EXTERNAL_START
,
221 * enum sum_check_bits - bit position of pq_check_flags
223 enum sum_check_bits
{
229 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
230 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
231 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
233 enum sum_check_flags
{
234 SUM_CHECK_P_RESULT
= (1 << SUM_CHECK_P
),
235 SUM_CHECK_Q_RESULT
= (1 << SUM_CHECK_Q
),
240 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
241 * See linux/cpumask.h
243 typedef struct { DECLARE_BITMAP(bits
, DMA_TX_TYPE_END
); } dma_cap_mask_t
;
246 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
247 * @memcpy_count: transaction counter
248 * @bytes_transferred: byte counter
251 struct dma_chan_percpu
{
253 unsigned long memcpy_count
;
254 unsigned long bytes_transferred
;
258 * struct dma_chan - devices supply DMA channels, clients use them
259 * @device: ptr to the dma device who supplies this channel, always !%NULL
260 * @cookie: last cookie value returned to client
261 * @completed_cookie: last completed cookie for this channel
262 * @chan_id: channel ID for sysfs
263 * @dev: class device for sysfs
264 * @device_node: used to add this to the device chan list
265 * @local: per-cpu pointer to a struct dma_chan_percpu
266 * @client-count: how many clients are using this channel
267 * @table_count: number of appearances in the mem-to-mem allocation table
268 * @private: private data for certain client-channel associations
271 struct dma_device
*device
;
273 dma_cookie_t completed_cookie
;
277 struct dma_chan_dev
*dev
;
279 struct list_head device_node
;
280 struct dma_chan_percpu __percpu
*local
;
287 * struct dma_chan_dev - relate sysfs device node to backing channel device
288 * @chan - driver channel device
289 * @device - sysfs device
290 * @dev_id - parent dma_device dev_id
291 * @idr_ref - reference count to gate release of dma_device dev_id
293 struct dma_chan_dev
{
294 struct dma_chan
*chan
;
295 struct device device
;
301 * enum dma_slave_buswidth - defines bus with of the DMA slave
302 * device, source or target buses
304 enum dma_slave_buswidth
{
305 DMA_SLAVE_BUSWIDTH_UNDEFINED
= 0,
306 DMA_SLAVE_BUSWIDTH_1_BYTE
= 1,
307 DMA_SLAVE_BUSWIDTH_2_BYTES
= 2,
308 DMA_SLAVE_BUSWIDTH_4_BYTES
= 4,
309 DMA_SLAVE_BUSWIDTH_8_BYTES
= 8,
313 * struct dma_slave_config - dma slave channel runtime config
314 * @direction: whether the data shall go in or out on this slave
315 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
316 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
317 * need to differentiate source and target addresses.
318 * @src_addr: this is the physical address where DMA slave data
319 * should be read (RX), if the source is memory this argument is
321 * @dst_addr: this is the physical address where DMA slave data
322 * should be written (TX), if the source is memory this argument
324 * @src_addr_width: this is the width in bytes of the source (RX)
325 * register where DMA data shall be read. If the source
326 * is memory this may be ignored depending on architecture.
327 * Legal values: 1, 2, 4, 8.
328 * @dst_addr_width: same as src_addr_width but for destination
329 * target (TX) mutatis mutandis.
330 * @src_maxburst: the maximum number of words (note: words, as in
331 * units of the src_addr_width member, not bytes) that can be sent
332 * in one burst to the device. Typically something like half the
333 * FIFO depth on I/O peripherals so you don't overflow it. This
334 * may or may not be applicable on memory sources.
335 * @dst_maxburst: same as src_maxburst but for destination target
337 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
338 * with 'true' if peripheral should be flow controller. Direction will be
339 * selected at Runtime.
340 * @slave_id: Slave requester id. Only valid for slave channels. The dma
341 * slave peripheral will have unique id as dma requester which need to be
342 * pass as slave config.
344 * This struct is passed in as configuration data to a DMA engine
345 * in order to set up a certain channel for DMA transport at runtime.
346 * The DMA device/engine has to provide support for an additional
347 * command in the channel config interface, DMA_SLAVE_CONFIG
348 * and this struct will then be passed in as an argument to the
349 * DMA engine device_control() function.
351 * The rationale for adding configuration information to this struct
352 * is as follows: if it is likely that most DMA slave controllers in
353 * the world will support the configuration option, then make it
354 * generic. If not: if it is fixed so that it be sent in static from
355 * the platform data, then prefer to do that. Else, if it is neither
356 * fixed at runtime, nor generic enough (such as bus mastership on
357 * some CPU family and whatnot) then create a custom slave config
358 * struct and pass that, then make this config a member of that
359 * struct, if applicable.
361 struct dma_slave_config
{
362 enum dma_transfer_direction direction
;
365 enum dma_slave_buswidth src_addr_width
;
366 enum dma_slave_buswidth dst_addr_width
;
370 unsigned int slave_id
;
373 static inline const char *dma_chan_name(struct dma_chan
*chan
)
375 return dev_name(&chan
->dev
->device
);
378 void dma_chan_cleanup(struct kref
*kref
);
381 * typedef dma_filter_fn - callback filter for dma_request_channel
382 * @chan: channel to be reviewed
383 * @filter_param: opaque parameter passed through dma_request_channel
385 * When this optional parameter is specified in a call to dma_request_channel a
386 * suitable channel is passed to this routine for further dispositioning before
387 * being returned. Where 'suitable' indicates a non-busy channel that
388 * satisfies the given capability mask. It returns 'true' to indicate that the
389 * channel is suitable.
391 typedef bool (*dma_filter_fn
)(struct dma_chan
*chan
, void *filter_param
);
393 typedef void (*dma_async_tx_callback
)(void *dma_async_param
);
395 * struct dma_async_tx_descriptor - async transaction descriptor
396 * ---dma generic offload fields---
397 * @cookie: tracking cookie for this transaction, set to -EBUSY if
398 * this tx is sitting on a dependency list
399 * @flags: flags to augment operation preparation, control completion, and
401 * @phys: physical address of the descriptor
402 * @chan: target channel for this operation
403 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
404 * @callback: routine to call after this operation is complete
405 * @callback_param: general parameter to pass to the callback routine
406 * ---async_tx api specific fields---
407 * @next: at completion submit this descriptor
408 * @parent: pointer to the next level up in the dependency chain
409 * @lock: protect the parent and next pointers
411 struct dma_async_tx_descriptor
{
413 enum dma_ctrl_flags flags
; /* not a 'long' to pack with cookie */
415 struct dma_chan
*chan
;
416 dma_cookie_t (*tx_submit
)(struct dma_async_tx_descriptor
*tx
);
417 dma_async_tx_callback callback
;
418 void *callback_param
;
419 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
420 struct dma_async_tx_descriptor
*next
;
421 struct dma_async_tx_descriptor
*parent
;
426 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
427 static inline void txd_lock(struct dma_async_tx_descriptor
*txd
)
430 static inline void txd_unlock(struct dma_async_tx_descriptor
*txd
)
433 static inline void txd_chain(struct dma_async_tx_descriptor
*txd
, struct dma_async_tx_descriptor
*next
)
437 static inline void txd_clear_parent(struct dma_async_tx_descriptor
*txd
)
440 static inline void txd_clear_next(struct dma_async_tx_descriptor
*txd
)
443 static inline struct dma_async_tx_descriptor
*txd_next(struct dma_async_tx_descriptor
*txd
)
447 static inline struct dma_async_tx_descriptor
*txd_parent(struct dma_async_tx_descriptor
*txd
)
453 static inline void txd_lock(struct dma_async_tx_descriptor
*txd
)
455 spin_lock_bh(&txd
->lock
);
457 static inline void txd_unlock(struct dma_async_tx_descriptor
*txd
)
459 spin_unlock_bh(&txd
->lock
);
461 static inline void txd_chain(struct dma_async_tx_descriptor
*txd
, struct dma_async_tx_descriptor
*next
)
466 static inline void txd_clear_parent(struct dma_async_tx_descriptor
*txd
)
470 static inline void txd_clear_next(struct dma_async_tx_descriptor
*txd
)
474 static inline struct dma_async_tx_descriptor
*txd_parent(struct dma_async_tx_descriptor
*txd
)
478 static inline struct dma_async_tx_descriptor
*txd_next(struct dma_async_tx_descriptor
*txd
)
485 * struct dma_tx_state - filled in to report the status of
487 * @last: last completed DMA cookie
488 * @used: last issued DMA cookie (i.e. the one in progress)
489 * @residue: the remaining number of bytes left to transmit
490 * on the selected transfer for states DMA_IN_PROGRESS and
491 * DMA_PAUSED if this is implemented in the driver, else 0
493 struct dma_tx_state
{
500 * struct dma_device - info on the entity supplying DMA services
501 * @chancnt: how many DMA channels are supported
502 * @privatecnt: how many DMA channels are requested by dma_request_channel
503 * @channels: the list of struct dma_chan
504 * @global_node: list_head for global dma_device_list
505 * @cap_mask: one or more dma_capability flags
506 * @max_xor: maximum number of xor sources, 0 if no capability
507 * @max_pq: maximum number of PQ sources and PQ-continue capability
508 * @copy_align: alignment shift for memcpy operations
509 * @xor_align: alignment shift for xor operations
510 * @pq_align: alignment shift for pq operations
511 * @fill_align: alignment shift for memset operations
512 * @dev_id: unique device ID
513 * @dev: struct device reference for dma mapping api
514 * @device_alloc_chan_resources: allocate resources and return the
515 * number of allocated descriptors
516 * @device_free_chan_resources: release DMA channel's resources
517 * @device_prep_dma_memcpy: prepares a memcpy operation
518 * @device_prep_dma_xor: prepares a xor operation
519 * @device_prep_dma_xor_val: prepares a xor validation operation
520 * @device_prep_dma_pq: prepares a pq operation
521 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
522 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
523 * @device_prep_slave_sg: prepares a slave dma operation
524 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
525 * The function takes a buffer of size buf_len. The callback function will
526 * be called after period_len bytes have been transferred.
527 * @device_prep_interleaved_dma: Transfer expression in a generic way.
528 * @device_control: manipulate all pending operations on a channel, returns
530 * @device_tx_status: poll for transaction completion, the optional
531 * txstate parameter can be supplied with a pointer to get a
532 * struct with auxiliary transfer status information, otherwise the call
533 * will just return a simple status code
534 * @device_issue_pending: push pending transactions to hardware
538 unsigned int chancnt
;
539 unsigned int privatecnt
;
540 struct list_head channels
;
541 struct list_head global_node
;
542 dma_cap_mask_t cap_mask
;
543 unsigned short max_xor
;
544 unsigned short max_pq
;
549 #define DMA_HAS_PQ_CONTINUE (1 << 15)
554 int (*device_alloc_chan_resources
)(struct dma_chan
*chan
);
555 void (*device_free_chan_resources
)(struct dma_chan
*chan
);
557 struct dma_async_tx_descriptor
*(*device_prep_dma_memcpy
)(
558 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
559 size_t len
, unsigned long flags
);
560 struct dma_async_tx_descriptor
*(*device_prep_dma_xor
)(
561 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t
*src
,
562 unsigned int src_cnt
, size_t len
, unsigned long flags
);
563 struct dma_async_tx_descriptor
*(*device_prep_dma_xor_val
)(
564 struct dma_chan
*chan
, dma_addr_t
*src
, unsigned int src_cnt
,
565 size_t len
, enum sum_check_flags
*result
, unsigned long flags
);
566 struct dma_async_tx_descriptor
*(*device_prep_dma_pq
)(
567 struct dma_chan
*chan
, dma_addr_t
*dst
, dma_addr_t
*src
,
568 unsigned int src_cnt
, const unsigned char *scf
,
569 size_t len
, unsigned long flags
);
570 struct dma_async_tx_descriptor
*(*device_prep_dma_pq_val
)(
571 struct dma_chan
*chan
, dma_addr_t
*pq
, dma_addr_t
*src
,
572 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
573 enum sum_check_flags
*pqres
, unsigned long flags
);
574 struct dma_async_tx_descriptor
*(*device_prep_dma_interrupt
)(
575 struct dma_chan
*chan
, unsigned long flags
);
576 struct dma_async_tx_descriptor
*(*device_prep_dma_sg
)(
577 struct dma_chan
*chan
,
578 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
579 struct scatterlist
*src_sg
, unsigned int src_nents
,
580 unsigned long flags
);
582 struct dma_async_tx_descriptor
*(*device_prep_slave_sg
)(
583 struct dma_chan
*chan
, struct scatterlist
*sgl
,
584 unsigned int sg_len
, enum dma_transfer_direction direction
,
585 unsigned long flags
, void *context
);
586 struct dma_async_tx_descriptor
*(*device_prep_dma_cyclic
)(
587 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
588 size_t period_len
, enum dma_transfer_direction direction
,
589 unsigned long flags
, void *context
);
590 struct dma_async_tx_descriptor
*(*device_prep_interleaved_dma
)(
591 struct dma_chan
*chan
, struct dma_interleaved_template
*xt
,
592 unsigned long flags
);
593 int (*device_control
)(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
596 enum dma_status (*device_tx_status
)(struct dma_chan
*chan
,
598 struct dma_tx_state
*txstate
);
599 void (*device_issue_pending
)(struct dma_chan
*chan
);
602 static inline int dmaengine_device_control(struct dma_chan
*chan
,
603 enum dma_ctrl_cmd cmd
,
606 if (chan
->device
->device_control
)
607 return chan
->device
->device_control(chan
, cmd
, arg
);
612 static inline int dmaengine_slave_config(struct dma_chan
*chan
,
613 struct dma_slave_config
*config
)
615 return dmaengine_device_control(chan
, DMA_SLAVE_CONFIG
,
616 (unsigned long)config
);
619 static inline bool is_slave_direction(enum dma_transfer_direction direction
)
621 return (direction
== DMA_MEM_TO_DEV
) || (direction
== DMA_DEV_TO_MEM
);
624 static inline struct dma_async_tx_descriptor
*dmaengine_prep_slave_single(
625 struct dma_chan
*chan
, dma_addr_t buf
, size_t len
,
626 enum dma_transfer_direction dir
, unsigned long flags
)
628 struct scatterlist sg
;
629 sg_init_table(&sg
, 1);
630 sg_dma_address(&sg
) = buf
;
631 sg_dma_len(&sg
) = len
;
633 return chan
->device
->device_prep_slave_sg(chan
, &sg
, 1,
637 static inline struct dma_async_tx_descriptor
*dmaengine_prep_slave_sg(
638 struct dma_chan
*chan
, struct scatterlist
*sgl
, unsigned int sg_len
,
639 enum dma_transfer_direction dir
, unsigned long flags
)
641 return chan
->device
->device_prep_slave_sg(chan
, sgl
, sg_len
,
645 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
647 static inline struct dma_async_tx_descriptor
*dmaengine_prep_rio_sg(
648 struct dma_chan
*chan
, struct scatterlist
*sgl
, unsigned int sg_len
,
649 enum dma_transfer_direction dir
, unsigned long flags
,
650 struct rio_dma_ext
*rio_ext
)
652 return chan
->device
->device_prep_slave_sg(chan
, sgl
, sg_len
,
653 dir
, flags
, rio_ext
);
657 static inline struct dma_async_tx_descriptor
*dmaengine_prep_dma_cyclic(
658 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
659 size_t period_len
, enum dma_transfer_direction dir
,
662 return chan
->device
->device_prep_dma_cyclic(chan
, buf_addr
, buf_len
,
663 period_len
, dir
, flags
, NULL
);
666 static inline struct dma_async_tx_descriptor
*dmaengine_prep_interleaved_dma(
667 struct dma_chan
*chan
, struct dma_interleaved_template
*xt
,
670 return chan
->device
->device_prep_interleaved_dma(chan
, xt
, flags
);
673 static inline int dmaengine_terminate_all(struct dma_chan
*chan
)
675 return dmaengine_device_control(chan
, DMA_TERMINATE_ALL
, 0);
678 static inline int dmaengine_pause(struct dma_chan
*chan
)
680 return dmaengine_device_control(chan
, DMA_PAUSE
, 0);
683 static inline int dmaengine_resume(struct dma_chan
*chan
)
685 return dmaengine_device_control(chan
, DMA_RESUME
, 0);
688 static inline enum dma_status
dmaengine_tx_status(struct dma_chan
*chan
,
689 dma_cookie_t cookie
, struct dma_tx_state
*state
)
691 return chan
->device
->device_tx_status(chan
, cookie
, state
);
694 static inline dma_cookie_t
dmaengine_submit(struct dma_async_tx_descriptor
*desc
)
696 return desc
->tx_submit(desc
);
699 static inline bool dmaengine_check_align(u8 align
, size_t off1
, size_t off2
, size_t len
)
705 mask
= (1 << align
) - 1;
706 if (mask
& (off1
| off2
| len
))
711 static inline bool is_dma_copy_aligned(struct dma_device
*dev
, size_t off1
,
712 size_t off2
, size_t len
)
714 return dmaengine_check_align(dev
->copy_align
, off1
, off2
, len
);
717 static inline bool is_dma_xor_aligned(struct dma_device
*dev
, size_t off1
,
718 size_t off2
, size_t len
)
720 return dmaengine_check_align(dev
->xor_align
, off1
, off2
, len
);
723 static inline bool is_dma_pq_aligned(struct dma_device
*dev
, size_t off1
,
724 size_t off2
, size_t len
)
726 return dmaengine_check_align(dev
->pq_align
, off1
, off2
, len
);
729 static inline bool is_dma_fill_aligned(struct dma_device
*dev
, size_t off1
,
730 size_t off2
, size_t len
)
732 return dmaengine_check_align(dev
->fill_align
, off1
, off2
, len
);
736 dma_set_maxpq(struct dma_device
*dma
, int maxpq
, int has_pq_continue
)
740 dma
->max_pq
|= DMA_HAS_PQ_CONTINUE
;
743 static inline bool dmaf_continue(enum dma_ctrl_flags flags
)
745 return (flags
& DMA_PREP_CONTINUE
) == DMA_PREP_CONTINUE
;
748 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags
)
750 enum dma_ctrl_flags mask
= DMA_PREP_CONTINUE
| DMA_PREP_PQ_DISABLE_P
;
752 return (flags
& mask
) == mask
;
755 static inline bool dma_dev_has_pq_continue(struct dma_device
*dma
)
757 return (dma
->max_pq
& DMA_HAS_PQ_CONTINUE
) == DMA_HAS_PQ_CONTINUE
;
760 static inline unsigned short dma_dev_to_maxpq(struct dma_device
*dma
)
762 return dma
->max_pq
& ~DMA_HAS_PQ_CONTINUE
;
765 /* dma_maxpq - reduce maxpq in the face of continued operations
766 * @dma - dma device with PQ capability
767 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
769 * When an engine does not support native continuation we need 3 extra
770 * source slots to reuse P and Q with the following coefficients:
771 * 1/ {00} * P : remove P from Q', but use it as a source for P'
772 * 2/ {01} * Q : use Q to continue Q' calculation
773 * 3/ {00} * Q : subtract Q from P' to cancel (2)
775 * In the case where P is disabled we only need 1 extra source:
776 * 1/ {01} * Q : use Q to continue Q' calculation
778 static inline int dma_maxpq(struct dma_device
*dma
, enum dma_ctrl_flags flags
)
780 if (dma_dev_has_pq_continue(dma
) || !dmaf_continue(flags
))
781 return dma_dev_to_maxpq(dma
);
782 else if (dmaf_p_disabled_continue(flags
))
783 return dma_dev_to_maxpq(dma
) - 1;
784 else if (dmaf_continue(flags
))
785 return dma_dev_to_maxpq(dma
) - 3;
789 /* --- public DMA engine API --- */
791 #ifdef CONFIG_DMA_ENGINE
792 void dmaengine_get(void);
793 void dmaengine_put(void);
795 static inline void dmaengine_get(void)
798 static inline void dmaengine_put(void)
803 #ifdef CONFIG_NET_DMA
804 #define net_dmaengine_get() dmaengine_get()
805 #define net_dmaengine_put() dmaengine_put()
807 static inline void net_dmaengine_get(void)
810 static inline void net_dmaengine_put(void)
815 #ifdef CONFIG_ASYNC_TX_DMA
816 #define async_dmaengine_get() dmaengine_get()
817 #define async_dmaengine_put() dmaengine_put()
818 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
819 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
821 #define async_dma_find_channel(type) dma_find_channel(type)
822 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
824 static inline void async_dmaengine_get(void)
827 static inline void async_dmaengine_put(void)
830 static inline struct dma_chan
*
831 async_dma_find_channel(enum dma_transaction_type type
)
835 #endif /* CONFIG_ASYNC_TX_DMA */
837 dma_cookie_t
dma_async_memcpy_buf_to_buf(struct dma_chan
*chan
,
838 void *dest
, void *src
, size_t len
);
839 dma_cookie_t
dma_async_memcpy_buf_to_pg(struct dma_chan
*chan
,
840 struct page
*page
, unsigned int offset
, void *kdata
, size_t len
);
841 dma_cookie_t
dma_async_memcpy_pg_to_pg(struct dma_chan
*chan
,
842 struct page
*dest_pg
, unsigned int dest_off
, struct page
*src_pg
,
843 unsigned int src_off
, size_t len
);
844 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor
*tx
,
845 struct dma_chan
*chan
);
847 static inline void async_tx_ack(struct dma_async_tx_descriptor
*tx
)
849 tx
->flags
|= DMA_CTRL_ACK
;
852 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor
*tx
)
854 tx
->flags
&= ~DMA_CTRL_ACK
;
857 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor
*tx
)
859 return (tx
->flags
& DMA_CTRL_ACK
) == DMA_CTRL_ACK
;
862 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
864 __dma_cap_set(enum dma_transaction_type tx_type
, dma_cap_mask_t
*dstp
)
866 set_bit(tx_type
, dstp
->bits
);
869 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
871 __dma_cap_clear(enum dma_transaction_type tx_type
, dma_cap_mask_t
*dstp
)
873 clear_bit(tx_type
, dstp
->bits
);
876 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
877 static inline void __dma_cap_zero(dma_cap_mask_t
*dstp
)
879 bitmap_zero(dstp
->bits
, DMA_TX_TYPE_END
);
882 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
884 __dma_has_cap(enum dma_transaction_type tx_type
, dma_cap_mask_t
*srcp
)
886 return test_bit(tx_type
, srcp
->bits
);
889 #define for_each_dma_cap_mask(cap, mask) \
890 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
893 * dma_async_issue_pending - flush pending transactions to HW
894 * @chan: target DMA channel
896 * This allows drivers to push copies to HW in batches,
897 * reducing MMIO writes where possible.
899 static inline void dma_async_issue_pending(struct dma_chan
*chan
)
901 chan
->device
->device_issue_pending(chan
);
905 * dma_async_is_tx_complete - poll for transaction completion
907 * @cookie: transaction identifier to check status of
908 * @last: returns last completed cookie, can be NULL
909 * @used: returns last issued cookie, can be NULL
911 * If @last and @used are passed in, upon return they reflect the driver
912 * internal state and can be used with dma_async_is_complete() to check
913 * the status of multiple cookies without re-checking hardware state.
915 static inline enum dma_status
dma_async_is_tx_complete(struct dma_chan
*chan
,
916 dma_cookie_t cookie
, dma_cookie_t
*last
, dma_cookie_t
*used
)
918 struct dma_tx_state state
;
919 enum dma_status status
;
921 status
= chan
->device
->device_tx_status(chan
, cookie
, &state
);
930 * dma_async_is_complete - test a cookie against chan state
931 * @cookie: transaction identifier to test status of
932 * @last_complete: last know completed transaction
933 * @last_used: last cookie value handed out
935 * dma_async_is_complete() is used in dma_async_is_tx_complete()
936 * the test logic is separated for lightweight testing of multiple cookies
938 static inline enum dma_status
dma_async_is_complete(dma_cookie_t cookie
,
939 dma_cookie_t last_complete
, dma_cookie_t last_used
)
941 if (last_complete
<= last_used
) {
942 if ((cookie
<= last_complete
) || (cookie
> last_used
))
945 if ((cookie
<= last_complete
) && (cookie
> last_used
))
948 return DMA_IN_PROGRESS
;
952 dma_set_tx_state(struct dma_tx_state
*st
, dma_cookie_t last
, dma_cookie_t used
, u32 residue
)
957 st
->residue
= residue
;
961 enum dma_status
dma_sync_wait(struct dma_chan
*chan
, dma_cookie_t cookie
);
962 #ifdef CONFIG_DMA_ENGINE
963 enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor
*tx
);
964 void dma_issue_pending_all(void);
965 struct dma_chan
*__dma_request_channel(const dma_cap_mask_t
*mask
,
966 dma_filter_fn fn
, void *fn_param
);
967 struct dma_chan
*dma_request_slave_channel(struct device
*dev
, const char *name
);
968 void dma_release_channel(struct dma_chan
*chan
);
970 static inline enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor
*tx
)
974 static inline void dma_issue_pending_all(void)
977 static inline struct dma_chan
*__dma_request_channel(const dma_cap_mask_t
*mask
,
978 dma_filter_fn fn
, void *fn_param
)
982 static inline struct dma_chan
*dma_request_slave_channel(struct device
*dev
,
987 static inline void dma_release_channel(struct dma_chan
*chan
)
992 /* --- DMA device --- */
994 int dma_async_device_register(struct dma_device
*device
);
995 void dma_async_device_unregister(struct dma_device
*device
);
996 void dma_run_dependencies(struct dma_async_tx_descriptor
*tx
);
997 struct dma_chan
*dma_find_channel(enum dma_transaction_type tx_type
);
998 struct dma_chan
*net_dma_find_channel(void);
999 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1000 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1001 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1003 static inline struct dma_chan
1004 *__dma_request_slave_channel_compat(const dma_cap_mask_t
*mask
,
1005 dma_filter_fn fn
, void *fn_param
,
1006 struct device
*dev
, char *name
)
1008 struct dma_chan
*chan
;
1010 chan
= dma_request_slave_channel(dev
, name
);
1014 return __dma_request_channel(mask
, fn
, fn_param
);
1017 /* --- Helper iov-locking functions --- */
1019 struct dma_page_list
{
1020 char __user
*base_address
;
1022 struct page
**pages
;
1025 struct dma_pinned_list
{
1027 struct dma_page_list page_list
[0];
1030 struct dma_pinned_list
*dma_pin_iovec_pages(struct iovec
*iov
, size_t len
);
1031 void dma_unpin_iovec_pages(struct dma_pinned_list
* pinned_list
);
1033 dma_cookie_t
dma_memcpy_to_iovec(struct dma_chan
*chan
, struct iovec
*iov
,
1034 struct dma_pinned_list
*pinned_list
, unsigned char *kdata
, size_t len
);
1035 dma_cookie_t
dma_memcpy_pg_to_iovec(struct dma_chan
*chan
, struct iovec
*iov
,
1036 struct dma_pinned_list
*pinned_list
, struct page
*page
,
1037 unsigned int offset
, size_t len
);
1039 #endif /* DMAENGINE_H */