2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
42 #include "drm_crtc_helper.h"
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
);
47 static void intel_update_watermarks(struct drm_device
*dev
);
48 static void intel_increase_pllclock(struct drm_crtc
*crtc
);
49 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
, bool on
);
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t
;
75 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
77 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
78 int, int, intel_clock_t
*);
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
85 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
86 int target
, int refclk
, intel_clock_t
*best_clock
);
88 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
89 int target
, int refclk
, intel_clock_t
*best_clock
);
92 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
93 int target
, int refclk
, intel_clock_t
*best_clock
);
95 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
96 int target
, int refclk
, intel_clock_t
*best_clock
);
98 static inline u32
/* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device
*dev
)
102 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
103 return (I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2;
108 static const intel_limit_t intel_limits_i8xx_dvo
= {
109 .dot
= { .min
= 25000, .max
= 350000 },
110 .vco
= { .min
= 930000, .max
= 1400000 },
111 .n
= { .min
= 3, .max
= 16 },
112 .m
= { .min
= 96, .max
= 140 },
113 .m1
= { .min
= 18, .max
= 26 },
114 .m2
= { .min
= 6, .max
= 16 },
115 .p
= { .min
= 4, .max
= 128 },
116 .p1
= { .min
= 2, .max
= 33 },
117 .p2
= { .dot_limit
= 165000,
118 .p2_slow
= 4, .p2_fast
= 2 },
119 .find_pll
= intel_find_best_PLL
,
122 static const intel_limit_t intel_limits_i8xx_lvds
= {
123 .dot
= { .min
= 25000, .max
= 350000 },
124 .vco
= { .min
= 930000, .max
= 1400000 },
125 .n
= { .min
= 3, .max
= 16 },
126 .m
= { .min
= 96, .max
= 140 },
127 .m1
= { .min
= 18, .max
= 26 },
128 .m2
= { .min
= 6, .max
= 16 },
129 .p
= { .min
= 4, .max
= 128 },
130 .p1
= { .min
= 1, .max
= 6 },
131 .p2
= { .dot_limit
= 165000,
132 .p2_slow
= 14, .p2_fast
= 7 },
133 .find_pll
= intel_find_best_PLL
,
136 static const intel_limit_t intel_limits_i9xx_sdvo
= {
137 .dot
= { .min
= 20000, .max
= 400000 },
138 .vco
= { .min
= 1400000, .max
= 2800000 },
139 .n
= { .min
= 1, .max
= 6 },
140 .m
= { .min
= 70, .max
= 120 },
141 .m1
= { .min
= 10, .max
= 22 },
142 .m2
= { .min
= 5, .max
= 9 },
143 .p
= { .min
= 5, .max
= 80 },
144 .p1
= { .min
= 1, .max
= 8 },
145 .p2
= { .dot_limit
= 200000,
146 .p2_slow
= 10, .p2_fast
= 5 },
147 .find_pll
= intel_find_best_PLL
,
150 static const intel_limit_t intel_limits_i9xx_lvds
= {
151 .dot
= { .min
= 20000, .max
= 400000 },
152 .vco
= { .min
= 1400000, .max
= 2800000 },
153 .n
= { .min
= 1, .max
= 6 },
154 .m
= { .min
= 70, .max
= 120 },
155 .m1
= { .min
= 10, .max
= 22 },
156 .m2
= { .min
= 5, .max
= 9 },
157 .p
= { .min
= 7, .max
= 98 },
158 .p1
= { .min
= 1, .max
= 8 },
159 .p2
= { .dot_limit
= 112000,
160 .p2_slow
= 14, .p2_fast
= 7 },
161 .find_pll
= intel_find_best_PLL
,
165 static const intel_limit_t intel_limits_g4x_sdvo
= {
166 .dot
= { .min
= 25000, .max
= 270000 },
167 .vco
= { .min
= 1750000, .max
= 3500000},
168 .n
= { .min
= 1, .max
= 4 },
169 .m
= { .min
= 104, .max
= 138 },
170 .m1
= { .min
= 17, .max
= 23 },
171 .m2
= { .min
= 5, .max
= 11 },
172 .p
= { .min
= 10, .max
= 30 },
173 .p1
= { .min
= 1, .max
= 3},
174 .p2
= { .dot_limit
= 270000,
178 .find_pll
= intel_g4x_find_best_PLL
,
181 static const intel_limit_t intel_limits_g4x_hdmi
= {
182 .dot
= { .min
= 22000, .max
= 400000 },
183 .vco
= { .min
= 1750000, .max
= 3500000},
184 .n
= { .min
= 1, .max
= 4 },
185 .m
= { .min
= 104, .max
= 138 },
186 .m1
= { .min
= 16, .max
= 23 },
187 .m2
= { .min
= 5, .max
= 11 },
188 .p
= { .min
= 5, .max
= 80 },
189 .p1
= { .min
= 1, .max
= 8},
190 .p2
= { .dot_limit
= 165000,
191 .p2_slow
= 10, .p2_fast
= 5 },
192 .find_pll
= intel_g4x_find_best_PLL
,
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
196 .dot
= { .min
= 20000, .max
= 115000 },
197 .vco
= { .min
= 1750000, .max
= 3500000 },
198 .n
= { .min
= 1, .max
= 3 },
199 .m
= { .min
= 104, .max
= 138 },
200 .m1
= { .min
= 17, .max
= 23 },
201 .m2
= { .min
= 5, .max
= 11 },
202 .p
= { .min
= 28, .max
= 112 },
203 .p1
= { .min
= 2, .max
= 8 },
204 .p2
= { .dot_limit
= 0,
205 .p2_slow
= 14, .p2_fast
= 14
207 .find_pll
= intel_g4x_find_best_PLL
,
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
211 .dot
= { .min
= 80000, .max
= 224000 },
212 .vco
= { .min
= 1750000, .max
= 3500000 },
213 .n
= { .min
= 1, .max
= 3 },
214 .m
= { .min
= 104, .max
= 138 },
215 .m1
= { .min
= 17, .max
= 23 },
216 .m2
= { .min
= 5, .max
= 11 },
217 .p
= { .min
= 14, .max
= 42 },
218 .p1
= { .min
= 2, .max
= 6 },
219 .p2
= { .dot_limit
= 0,
220 .p2_slow
= 7, .p2_fast
= 7
222 .find_pll
= intel_g4x_find_best_PLL
,
225 static const intel_limit_t intel_limits_g4x_display_port
= {
226 .dot
= { .min
= 161670, .max
= 227000 },
227 .vco
= { .min
= 1750000, .max
= 3500000},
228 .n
= { .min
= 1, .max
= 2 },
229 .m
= { .min
= 97, .max
= 108 },
230 .m1
= { .min
= 0x10, .max
= 0x12 },
231 .m2
= { .min
= 0x05, .max
= 0x06 },
232 .p
= { .min
= 10, .max
= 20 },
233 .p1
= { .min
= 1, .max
= 2},
234 .p2
= { .dot_limit
= 0,
235 .p2_slow
= 10, .p2_fast
= 10 },
236 .find_pll
= intel_find_pll_g4x_dp
,
239 static const intel_limit_t intel_limits_pineview_sdvo
= {
240 .dot
= { .min
= 20000, .max
= 400000},
241 .vco
= { .min
= 1700000, .max
= 3500000 },
242 /* Pineview's Ncounter is a ring counter */
243 .n
= { .min
= 3, .max
= 6 },
244 .m
= { .min
= 2, .max
= 256 },
245 /* Pineview only has one combined m divider, which we treat as m2. */
246 .m1
= { .min
= 0, .max
= 0 },
247 .m2
= { .min
= 0, .max
= 254 },
248 .p
= { .min
= 5, .max
= 80 },
249 .p1
= { .min
= 1, .max
= 8 },
250 .p2
= { .dot_limit
= 200000,
251 .p2_slow
= 10, .p2_fast
= 5 },
252 .find_pll
= intel_find_best_PLL
,
255 static const intel_limit_t intel_limits_pineview_lvds
= {
256 .dot
= { .min
= 20000, .max
= 400000 },
257 .vco
= { .min
= 1700000, .max
= 3500000 },
258 .n
= { .min
= 3, .max
= 6 },
259 .m
= { .min
= 2, .max
= 256 },
260 .m1
= { .min
= 0, .max
= 0 },
261 .m2
= { .min
= 0, .max
= 254 },
262 .p
= { .min
= 7, .max
= 112 },
263 .p1
= { .min
= 1, .max
= 8 },
264 .p2
= { .dot_limit
= 112000,
265 .p2_slow
= 14, .p2_fast
= 14 },
266 .find_pll
= intel_find_best_PLL
,
269 /* Ironlake / Sandybridge
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
274 static const intel_limit_t intel_limits_ironlake_dac
= {
275 .dot
= { .min
= 25000, .max
= 350000 },
276 .vco
= { .min
= 1760000, .max
= 3510000 },
277 .n
= { .min
= 1, .max
= 5 },
278 .m
= { .min
= 79, .max
= 127 },
279 .m1
= { .min
= 12, .max
= 22 },
280 .m2
= { .min
= 5, .max
= 9 },
281 .p
= { .min
= 5, .max
= 80 },
282 .p1
= { .min
= 1, .max
= 8 },
283 .p2
= { .dot_limit
= 225000,
284 .p2_slow
= 10, .p2_fast
= 5 },
285 .find_pll
= intel_g4x_find_best_PLL
,
288 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
289 .dot
= { .min
= 25000, .max
= 350000 },
290 .vco
= { .min
= 1760000, .max
= 3510000 },
291 .n
= { .min
= 1, .max
= 3 },
292 .m
= { .min
= 79, .max
= 118 },
293 .m1
= { .min
= 12, .max
= 22 },
294 .m2
= { .min
= 5, .max
= 9 },
295 .p
= { .min
= 28, .max
= 112 },
296 .p1
= { .min
= 2, .max
= 8 },
297 .p2
= { .dot_limit
= 225000,
298 .p2_slow
= 14, .p2_fast
= 14 },
299 .find_pll
= intel_g4x_find_best_PLL
,
302 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
303 .dot
= { .min
= 25000, .max
= 350000 },
304 .vco
= { .min
= 1760000, .max
= 3510000 },
305 .n
= { .min
= 1, .max
= 3 },
306 .m
= { .min
= 79, .max
= 127 },
307 .m1
= { .min
= 12, .max
= 22 },
308 .m2
= { .min
= 5, .max
= 9 },
309 .p
= { .min
= 14, .max
= 56 },
310 .p1
= { .min
= 2, .max
= 8 },
311 .p2
= { .dot_limit
= 225000,
312 .p2_slow
= 7, .p2_fast
= 7 },
313 .find_pll
= intel_g4x_find_best_PLL
,
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
318 .dot
= { .min
= 25000, .max
= 350000 },
319 .vco
= { .min
= 1760000, .max
= 3510000 },
320 .n
= { .min
= 1, .max
= 2 },
321 .m
= { .min
= 79, .max
= 126 },
322 .m1
= { .min
= 12, .max
= 22 },
323 .m2
= { .min
= 5, .max
= 9 },
324 .p
= { .min
= 28, .max
= 112 },
325 .p1
= { .min
= 2, .max
= 8 },
326 .p2
= { .dot_limit
= 225000,
327 .p2_slow
= 14, .p2_fast
= 14 },
328 .find_pll
= intel_g4x_find_best_PLL
,
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
332 .dot
= { .min
= 25000, .max
= 350000 },
333 .vco
= { .min
= 1760000, .max
= 3510000 },
334 .n
= { .min
= 1, .max
= 3 },
335 .m
= { .min
= 79, .max
= 126 },
336 .m1
= { .min
= 12, .max
= 22 },
337 .m2
= { .min
= 5, .max
= 9 },
338 .p
= { .min
= 14, .max
= 42 },
339 .p1
= { .min
= 2, .max
= 6 },
340 .p2
= { .dot_limit
= 225000,
341 .p2_slow
= 7, .p2_fast
= 7 },
342 .find_pll
= intel_g4x_find_best_PLL
,
345 static const intel_limit_t intel_limits_ironlake_display_port
= {
346 .dot
= { .min
= 25000, .max
= 350000 },
347 .vco
= { .min
= 1760000, .max
= 3510000},
348 .n
= { .min
= 1, .max
= 2 },
349 .m
= { .min
= 81, .max
= 90 },
350 .m1
= { .min
= 12, .max
= 22 },
351 .m2
= { .min
= 5, .max
= 9 },
352 .p
= { .min
= 10, .max
= 20 },
353 .p1
= { .min
= 1, .max
= 2},
354 .p2
= { .dot_limit
= 0,
355 .p2_slow
= 10, .p2_fast
= 10 },
356 .find_pll
= intel_find_pll_ironlake_dp
,
359 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
,
362 struct drm_device
*dev
= crtc
->dev
;
363 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
364 const intel_limit_t
*limit
;
366 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
367 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
368 LVDS_CLKB_POWER_UP
) {
369 /* LVDS dual channel */
370 if (refclk
== 100000)
371 limit
= &intel_limits_ironlake_dual_lvds_100m
;
373 limit
= &intel_limits_ironlake_dual_lvds
;
375 if (refclk
== 100000)
376 limit
= &intel_limits_ironlake_single_lvds_100m
;
378 limit
= &intel_limits_ironlake_single_lvds
;
380 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
382 limit
= &intel_limits_ironlake_display_port
;
384 limit
= &intel_limits_ironlake_dac
;
389 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
391 struct drm_device
*dev
= crtc
->dev
;
392 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
393 const intel_limit_t
*limit
;
395 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
396 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
398 /* LVDS with dual channel */
399 limit
= &intel_limits_g4x_dual_channel_lvds
;
401 /* LVDS with dual channel */
402 limit
= &intel_limits_g4x_single_channel_lvds
;
403 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
404 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
405 limit
= &intel_limits_g4x_hdmi
;
406 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
407 limit
= &intel_limits_g4x_sdvo
;
408 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
409 limit
= &intel_limits_g4x_display_port
;
410 } else /* The option is for other outputs */
411 limit
= &intel_limits_i9xx_sdvo
;
416 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
, int refclk
)
418 struct drm_device
*dev
= crtc
->dev
;
419 const intel_limit_t
*limit
;
421 if (HAS_PCH_SPLIT(dev
))
422 limit
= intel_ironlake_limit(crtc
, refclk
);
423 else if (IS_G4X(dev
)) {
424 limit
= intel_g4x_limit(crtc
);
425 } else if (IS_PINEVIEW(dev
)) {
426 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
427 limit
= &intel_limits_pineview_lvds
;
429 limit
= &intel_limits_pineview_sdvo
;
430 } else if (!IS_GEN2(dev
)) {
431 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
432 limit
= &intel_limits_i9xx_lvds
;
434 limit
= &intel_limits_i9xx_sdvo
;
436 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
437 limit
= &intel_limits_i8xx_lvds
;
439 limit
= &intel_limits_i8xx_dvo
;
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
447 clock
->m
= clock
->m2
+ 2;
448 clock
->p
= clock
->p1
* clock
->p2
;
449 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
450 clock
->dot
= clock
->vco
/ clock
->p
;
453 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
455 if (IS_PINEVIEW(dev
)) {
456 pineview_clock(refclk
, clock
);
459 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
460 clock
->p
= clock
->p1
* clock
->p2
;
461 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
462 clock
->dot
= clock
->vco
/ clock
->p
;
466 * Returns whether any output on the specified pipe is of the specified type
468 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
470 struct drm_device
*dev
= crtc
->dev
;
471 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
472 struct intel_encoder
*encoder
;
474 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
)
475 if (encoder
->base
.crtc
== crtc
&& encoder
->type
== type
)
481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
487 static bool intel_PLL_is_valid(struct drm_device
*dev
,
488 const intel_limit_t
*limit
,
489 const intel_clock_t
*clock
)
491 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
492 INTELPllInvalid("p1 out of range\n");
493 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
494 INTELPllInvalid("p out of range\n");
495 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
496 INTELPllInvalid("m2 out of range\n");
497 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
498 INTELPllInvalid("m1 out of range\n");
499 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
500 INTELPllInvalid("m1 <= m2\n");
501 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
502 INTELPllInvalid("m out of range\n");
503 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
504 INTELPllInvalid("n out of range\n");
505 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
506 INTELPllInvalid("vco out of range\n");
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
510 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
511 INTELPllInvalid("dot out of range\n");
517 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
518 int target
, int refclk
, intel_clock_t
*best_clock
)
521 struct drm_device
*dev
= crtc
->dev
;
522 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
526 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
527 (I915_READ(LVDS
)) != 0) {
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
534 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
536 clock
.p2
= limit
->p2
.p2_fast
;
538 clock
.p2
= limit
->p2
.p2_slow
;
540 if (target
< limit
->p2
.dot_limit
)
541 clock
.p2
= limit
->p2
.p2_slow
;
543 clock
.p2
= limit
->p2
.p2_fast
;
546 memset(best_clock
, 0, sizeof(*best_clock
));
548 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
550 for (clock
.m2
= limit
->m2
.min
;
551 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
552 /* m1 is always 0 in Pineview */
553 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
555 for (clock
.n
= limit
->n
.min
;
556 clock
.n
<= limit
->n
.max
; clock
.n
++) {
557 for (clock
.p1
= limit
->p1
.min
;
558 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
561 intel_clock(dev
, refclk
, &clock
);
562 if (!intel_PLL_is_valid(dev
, limit
,
566 this_err
= abs(clock
.dot
- target
);
567 if (this_err
< err
) {
576 return (err
!= target
);
580 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
581 int target
, int refclk
, intel_clock_t
*best_clock
)
583 struct drm_device
*dev
= crtc
->dev
;
584 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
588 /* approximately equals target * 0.00585 */
589 int err_most
= (target
>> 8) + (target
>> 9);
592 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
595 if (HAS_PCH_SPLIT(dev
))
599 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
601 clock
.p2
= limit
->p2
.p2_fast
;
603 clock
.p2
= limit
->p2
.p2_slow
;
605 if (target
< limit
->p2
.dot_limit
)
606 clock
.p2
= limit
->p2
.p2_slow
;
608 clock
.p2
= limit
->p2
.p2_fast
;
611 memset(best_clock
, 0, sizeof(*best_clock
));
612 max_n
= limit
->n
.max
;
613 /* based on hardware requirement, prefer smaller n to precision */
614 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
615 /* based on hardware requirement, prefere larger m1,m2 */
616 for (clock
.m1
= limit
->m1
.max
;
617 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
618 for (clock
.m2
= limit
->m2
.max
;
619 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
620 for (clock
.p1
= limit
->p1
.max
;
621 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
624 intel_clock(dev
, refclk
, &clock
);
625 if (!intel_PLL_is_valid(dev
, limit
,
629 this_err
= abs(clock
.dot
- target
);
630 if (this_err
< err_most
) {
644 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
645 int target
, int refclk
, intel_clock_t
*best_clock
)
647 struct drm_device
*dev
= crtc
->dev
;
650 if (target
< 200000) {
663 intel_clock(dev
, refclk
, &clock
);
664 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
670 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
671 int target
, int refclk
, intel_clock_t
*best_clock
)
674 if (target
< 200000) {
687 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
688 clock
.p
= (clock
.p1
* clock
.p2
);
689 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
691 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
696 * intel_wait_for_vblank - wait for vblank on a given pipe
698 * @pipe: pipe to wait for
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
703 void intel_wait_for_vblank(struct drm_device
*dev
, int pipe
)
705 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
706 int pipestat_reg
= PIPESTAT(pipe
);
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
721 I915_WRITE(pipestat_reg
,
722 I915_READ(pipestat_reg
) | PIPE_VBLANK_INTERRUPT_STATUS
);
724 /* Wait for vblank interrupt bit to set */
725 if (wait_for(I915_READ(pipestat_reg
) &
726 PIPE_VBLANK_INTERRUPT_STATUS
,
728 DRM_DEBUG_KMS("vblank wait timed out\n");
732 * intel_wait_for_pipe_off - wait for pipe to turn off
734 * @pipe: pipe to wait for
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
741 * wait for the pipe register state bit to turn off
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
748 void intel_wait_for_pipe_off(struct drm_device
*dev
, int pipe
)
750 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
752 if (INTEL_INFO(dev
)->gen
>= 4) {
753 int reg
= PIPECONF(pipe
);
755 /* Wait for the Pipe State to go off */
756 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0,
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
761 int reg
= PIPEDSL(pipe
);
762 unsigned long timeout
= jiffies
+ msecs_to_jiffies(100);
764 /* Wait for the display line to settle */
766 last_line
= I915_READ(reg
) & DSL_LINEMASK
;
768 } while (((I915_READ(reg
) & DSL_LINEMASK
) != last_line
) &&
769 time_after(timeout
, jiffies
));
770 if (time_after(jiffies
, timeout
))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
775 static const char *state_string(bool enabled
)
777 return enabled
? "on" : "off";
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private
*dev_priv
,
782 enum pipe pipe
, bool state
)
789 val
= I915_READ(reg
);
790 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
791 WARN(cur_state
!= state
,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state
), state_string(cur_state
));
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
799 static void assert_pch_pll(struct drm_i915_private
*dev_priv
,
800 enum pipe pipe
, bool state
)
806 if (HAS_PCH_CPT(dev_priv
->dev
)) {
809 pch_dpll
= I915_READ(PCH_DPLL_SEL
);
811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll
>> (4 * pipe
)) & 8),
813 "transcoder %d PLL not enabled\n", pipe
);
815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe
= (pch_dpll
>> (4 * pipe
)) & 1;
819 reg
= PCH_DPLL(pipe
);
820 val
= I915_READ(reg
);
821 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
822 WARN(cur_state
!= state
,
823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state
), state_string(cur_state
));
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
829 static void assert_fdi_tx(struct drm_i915_private
*dev_priv
,
830 enum pipe pipe
, bool state
)
836 reg
= FDI_TX_CTL(pipe
);
837 val
= I915_READ(reg
);
838 cur_state
= !!(val
& FDI_TX_ENABLE
);
839 WARN(cur_state
!= state
,
840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state
), state_string(cur_state
));
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
846 static void assert_fdi_rx(struct drm_i915_private
*dev_priv
,
847 enum pipe pipe
, bool state
)
853 reg
= FDI_RX_CTL(pipe
);
854 val
= I915_READ(reg
);
855 cur_state
= !!(val
& FDI_RX_ENABLE
);
856 WARN(cur_state
!= state
,
857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state
), state_string(cur_state
));
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private
*dev_priv
,
869 /* ILK FDI PLL is always enabled */
870 if (dev_priv
->info
->gen
== 5)
873 reg
= FDI_TX_CTL(pipe
);
874 val
= I915_READ(reg
);
875 WARN(!(val
& FDI_TX_PLL_ENABLE
), "FDI TX PLL assertion failure, should be active but is disabled\n");
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private
*dev_priv
,
884 reg
= FDI_RX_CTL(pipe
);
885 val
= I915_READ(reg
);
886 WARN(!(val
& FDI_RX_PLL_ENABLE
), "FDI RX PLL assertion failure, should be active but is disabled\n");
889 static void assert_panel_unlocked(struct drm_i915_private
*dev_priv
,
892 int pp_reg
, lvds_reg
;
894 enum pipe panel_pipe
= PIPE_A
;
897 if (HAS_PCH_SPLIT(dev_priv
->dev
)) {
898 pp_reg
= PCH_PP_CONTROL
;
905 val
= I915_READ(pp_reg
);
906 if (!(val
& PANEL_POWER_ON
) ||
907 ((val
& PANEL_UNLOCK_REGS
) == PANEL_UNLOCK_REGS
))
910 if (I915_READ(lvds_reg
) & LVDS_PIPEB_SELECT
)
913 WARN(panel_pipe
== pipe
&& locked
,
914 "panel assertion failure, pipe %c regs locked\n",
918 static void assert_pipe(struct drm_i915_private
*dev_priv
,
919 enum pipe pipe
, bool state
)
925 reg
= PIPECONF(pipe
);
926 val
= I915_READ(reg
);
927 cur_state
= !!(val
& PIPECONF_ENABLE
);
928 WARN(cur_state
!= state
,
929 "pipe %c assertion failure (expected %s, current %s)\n",
930 pipe_name(pipe
), state_string(state
), state_string(cur_state
));
932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
935 static void assert_plane_enabled(struct drm_i915_private
*dev_priv
,
941 reg
= DSPCNTR(plane
);
942 val
= I915_READ(reg
);
943 WARN(!(val
& DISPLAY_PLANE_ENABLE
),
944 "plane %c assertion failure, should be active but is disabled\n",
948 static void assert_planes_disabled(struct drm_i915_private
*dev_priv
,
955 /* Planes are fixed to pipes on ILK+ */
956 if (HAS_PCH_SPLIT(dev_priv
->dev
))
959 /* Need to check both planes against the pipe */
960 for (i
= 0; i
< 2; i
++) {
962 val
= I915_READ(reg
);
963 cur_pipe
= (val
& DISPPLANE_SEL_PIPE_MASK
) >>
964 DISPPLANE_SEL_PIPE_SHIFT
;
965 WARN((val
& DISPLAY_PLANE_ENABLE
) && pipe
== cur_pipe
,
966 "plane %c assertion failure, should be off on pipe %c but is still active\n",
967 plane_name(i
), pipe_name(pipe
));
971 static void assert_pch_refclk_enabled(struct drm_i915_private
*dev_priv
)
976 val
= I915_READ(PCH_DREF_CONTROL
);
977 enabled
= !!(val
& (DREF_SSC_SOURCE_MASK
| DREF_NONSPREAD_SOURCE_MASK
|
978 DREF_SUPERSPREAD_SOURCE_MASK
));
979 WARN(!enabled
, "PCH refclk assertion failure, should be active but is disabled\n");
982 static void assert_transcoder_disabled(struct drm_i915_private
*dev_priv
,
989 reg
= TRANSCONF(pipe
);
990 val
= I915_READ(reg
);
991 enabled
= !!(val
& TRANS_ENABLE
);
993 "transcoder assertion failed, should be off on pipe %c but is still active\n",
997 static bool dp_pipe_enabled(struct drm_i915_private
*dev_priv
,
998 enum pipe pipe
, u32 port_sel
, u32 val
)
1000 if ((val
& DP_PORT_EN
) == 0)
1003 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1004 u32 trans_dp_ctl_reg
= TRANS_DP_CTL(pipe
);
1005 u32 trans_dp_ctl
= I915_READ(trans_dp_ctl_reg
);
1006 if ((trans_dp_ctl
& TRANS_DP_PORT_SEL_MASK
) != port_sel
)
1009 if ((val
& DP_PIPE_MASK
) != (pipe
<< 30))
1015 static bool hdmi_pipe_enabled(struct drm_i915_private
*dev_priv
,
1016 enum pipe pipe
, u32 val
)
1018 if ((val
& PORT_ENABLE
) == 0)
1021 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1022 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1025 if ((val
& TRANSCODER_MASK
) != TRANSCODER(pipe
))
1031 static bool lvds_pipe_enabled(struct drm_i915_private
*dev_priv
,
1032 enum pipe pipe
, u32 val
)
1034 if ((val
& LVDS_PORT_EN
) == 0)
1037 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1038 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1041 if ((val
& LVDS_PIPE_MASK
) != LVDS_PIPE(pipe
))
1047 static bool adpa_pipe_enabled(struct drm_i915_private
*dev_priv
,
1048 enum pipe pipe
, u32 val
)
1050 if ((val
& ADPA_DAC_ENABLE
) == 0)
1052 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1053 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1056 if ((val
& ADPA_PIPE_SELECT_MASK
) != ADPA_PIPE_SELECT(pipe
))
1062 static void assert_pch_dp_disabled(struct drm_i915_private
*dev_priv
,
1063 enum pipe pipe
, int reg
, u32 port_sel
)
1065 u32 val
= I915_READ(reg
);
1066 WARN(dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
),
1067 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1068 reg
, pipe_name(pipe
));
1071 static void assert_pch_hdmi_disabled(struct drm_i915_private
*dev_priv
,
1072 enum pipe pipe
, int reg
)
1074 u32 val
= I915_READ(reg
);
1075 WARN(hdmi_pipe_enabled(dev_priv
, val
, pipe
),
1076 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1077 reg
, pipe_name(pipe
));
1080 static void assert_pch_ports_disabled(struct drm_i915_private
*dev_priv
,
1086 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1087 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1088 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1091 val
= I915_READ(reg
);
1092 WARN(adpa_pipe_enabled(dev_priv
, val
, pipe
),
1093 "PCH VGA enabled on transcoder %c, should be disabled\n",
1097 val
= I915_READ(reg
);
1098 WARN(lvds_pipe_enabled(dev_priv
, val
, pipe
),
1099 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1102 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIB
);
1103 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIC
);
1104 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMID
);
1108 * intel_enable_pll - enable a PLL
1109 * @dev_priv: i915 private structure
1110 * @pipe: pipe PLL to enable
1112 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1113 * make sure the PLL reg is writable first though, since the panel write
1114 * protect mechanism may be enabled.
1116 * Note! This is for pre-ILK only.
1118 static void intel_enable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1123 /* No really, not for ILK+ */
1124 BUG_ON(dev_priv
->info
->gen
>= 5);
1126 /* PLL is protected by panel, make sure we can write it */
1127 if (IS_MOBILE(dev_priv
->dev
) && !IS_I830(dev_priv
->dev
))
1128 assert_panel_unlocked(dev_priv
, pipe
);
1131 val
= I915_READ(reg
);
1132 val
|= DPLL_VCO_ENABLE
;
1134 /* We do this three times for luck */
1135 I915_WRITE(reg
, val
);
1137 udelay(150); /* wait for warmup */
1138 I915_WRITE(reg
, val
);
1140 udelay(150); /* wait for warmup */
1141 I915_WRITE(reg
, val
);
1143 udelay(150); /* wait for warmup */
1147 * intel_disable_pll - disable a PLL
1148 * @dev_priv: i915 private structure
1149 * @pipe: pipe PLL to disable
1151 * Disable the PLL for @pipe, making sure the pipe is off first.
1153 * Note! This is for pre-ILK only.
1155 static void intel_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1160 /* Don't disable pipe A or pipe A PLLs if needed */
1161 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1164 /* Make sure the pipe isn't still relying on us */
1165 assert_pipe_disabled(dev_priv
, pipe
);
1168 val
= I915_READ(reg
);
1169 val
&= ~DPLL_VCO_ENABLE
;
1170 I915_WRITE(reg
, val
);
1175 * intel_enable_pch_pll - enable PCH PLL
1176 * @dev_priv: i915 private structure
1177 * @pipe: pipe PLL to enable
1179 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180 * drives the transcoder clock.
1182 static void intel_enable_pch_pll(struct drm_i915_private
*dev_priv
,
1191 /* PCH only available on ILK+ */
1192 BUG_ON(dev_priv
->info
->gen
< 5);
1194 /* PCH refclock must be enabled first */
1195 assert_pch_refclk_enabled(dev_priv
);
1197 reg
= PCH_DPLL(pipe
);
1198 val
= I915_READ(reg
);
1199 val
|= DPLL_VCO_ENABLE
;
1200 I915_WRITE(reg
, val
);
1205 static void intel_disable_pch_pll(struct drm_i915_private
*dev_priv
,
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv
->info
->gen
< 5);
1217 /* Make sure transcoder isn't still depending on us */
1218 assert_transcoder_disabled(dev_priv
, pipe
);
1220 reg
= PCH_DPLL(pipe
);
1221 val
= I915_READ(reg
);
1222 val
&= ~DPLL_VCO_ENABLE
;
1223 I915_WRITE(reg
, val
);
1228 static void intel_enable_transcoder(struct drm_i915_private
*dev_priv
,
1234 /* PCH only available on ILK+ */
1235 BUG_ON(dev_priv
->info
->gen
< 5);
1237 /* Make sure PCH DPLL is enabled */
1238 assert_pch_pll_enabled(dev_priv
, pipe
);
1240 /* FDI must be feeding us bits for PCH ports */
1241 assert_fdi_tx_enabled(dev_priv
, pipe
);
1242 assert_fdi_rx_enabled(dev_priv
, pipe
);
1244 reg
= TRANSCONF(pipe
);
1245 val
= I915_READ(reg
);
1247 if (HAS_PCH_IBX(dev_priv
->dev
)) {
1249 * make the BPC in transcoder be consistent with
1250 * that in pipeconf reg.
1252 val
&= ~PIPE_BPC_MASK
;
1253 val
|= I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
;
1255 I915_WRITE(reg
, val
| TRANS_ENABLE
);
1256 if (wait_for(I915_READ(reg
) & TRANS_STATE_ENABLE
, 100))
1257 DRM_ERROR("failed to enable transcoder %d\n", pipe
);
1260 static void intel_disable_transcoder(struct drm_i915_private
*dev_priv
,
1266 /* FDI relies on the transcoder */
1267 assert_fdi_tx_disabled(dev_priv
, pipe
);
1268 assert_fdi_rx_disabled(dev_priv
, pipe
);
1270 /* Ports must be off as well */
1271 assert_pch_ports_disabled(dev_priv
, pipe
);
1273 reg
= TRANSCONF(pipe
);
1274 val
= I915_READ(reg
);
1275 val
&= ~TRANS_ENABLE
;
1276 I915_WRITE(reg
, val
);
1277 /* wait for PCH transcoder off, transcoder state */
1278 if (wait_for((I915_READ(reg
) & TRANS_STATE_ENABLE
) == 0, 50))
1279 DRM_ERROR("failed to disable transcoder %d\n", pipe
);
1283 * intel_enable_pipe - enable a pipe, asserting requirements
1284 * @dev_priv: i915 private structure
1285 * @pipe: pipe to enable
1286 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1288 * Enable @pipe, making sure that various hardware specific requirements
1289 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1291 * @pipe should be %PIPE_A or %PIPE_B.
1293 * Will wait until the pipe is actually running (i.e. first vblank) before
1296 static void intel_enable_pipe(struct drm_i915_private
*dev_priv
, enum pipe pipe
,
1303 * A pipe without a PLL won't actually be able to drive bits from
1304 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1307 if (!HAS_PCH_SPLIT(dev_priv
->dev
))
1308 assert_pll_enabled(dev_priv
, pipe
);
1311 /* if driving the PCH, we need FDI enabled */
1312 assert_fdi_rx_pll_enabled(dev_priv
, pipe
);
1313 assert_fdi_tx_pll_enabled(dev_priv
, pipe
);
1315 /* FIXME: assert CPU port conditions for SNB+ */
1318 reg
= PIPECONF(pipe
);
1319 val
= I915_READ(reg
);
1320 if (val
& PIPECONF_ENABLE
)
1323 I915_WRITE(reg
, val
| PIPECONF_ENABLE
);
1324 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1328 * intel_disable_pipe - disable a pipe, asserting requirements
1329 * @dev_priv: i915 private structure
1330 * @pipe: pipe to disable
1332 * Disable @pipe, making sure that various hardware specific requirements
1333 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1335 * @pipe should be %PIPE_A or %PIPE_B.
1337 * Will wait until the pipe has shut down before returning.
1339 static void intel_disable_pipe(struct drm_i915_private
*dev_priv
,
1346 * Make sure planes won't keep trying to pump pixels to us,
1347 * or we might hang the display.
1349 assert_planes_disabled(dev_priv
, pipe
);
1351 /* Don't disable pipe A or pipe A PLLs if needed */
1352 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1355 reg
= PIPECONF(pipe
);
1356 val
= I915_READ(reg
);
1357 if ((val
& PIPECONF_ENABLE
) == 0)
1360 I915_WRITE(reg
, val
& ~PIPECONF_ENABLE
);
1361 intel_wait_for_pipe_off(dev_priv
->dev
, pipe
);
1365 * Plane regs are double buffered, going from enabled->disabled needs a
1366 * trigger in order to latch. The display address reg provides this.
1368 static void intel_flush_display_plane(struct drm_i915_private
*dev_priv
,
1371 I915_WRITE(DSPADDR(plane
), I915_READ(DSPADDR(plane
)));
1372 I915_WRITE(DSPSURF(plane
), I915_READ(DSPSURF(plane
)));
1376 * intel_enable_plane - enable a display plane on a given pipe
1377 * @dev_priv: i915 private structure
1378 * @plane: plane to enable
1379 * @pipe: pipe being fed
1381 * Enable @plane on @pipe, making sure that @pipe is running first.
1383 static void intel_enable_plane(struct drm_i915_private
*dev_priv
,
1384 enum plane plane
, enum pipe pipe
)
1389 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390 assert_pipe_enabled(dev_priv
, pipe
);
1392 reg
= DSPCNTR(plane
);
1393 val
= I915_READ(reg
);
1394 if (val
& DISPLAY_PLANE_ENABLE
)
1397 I915_WRITE(reg
, val
| DISPLAY_PLANE_ENABLE
);
1398 intel_flush_display_plane(dev_priv
, plane
);
1399 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1403 * intel_disable_plane - disable a display plane
1404 * @dev_priv: i915 private structure
1405 * @plane: plane to disable
1406 * @pipe: pipe consuming the data
1408 * Disable @plane; should be an independent operation.
1410 static void intel_disable_plane(struct drm_i915_private
*dev_priv
,
1411 enum plane plane
, enum pipe pipe
)
1416 reg
= DSPCNTR(plane
);
1417 val
= I915_READ(reg
);
1418 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
1421 I915_WRITE(reg
, val
& ~DISPLAY_PLANE_ENABLE
);
1422 intel_flush_display_plane(dev_priv
, plane
);
1423 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1426 static void disable_pch_dp(struct drm_i915_private
*dev_priv
,
1427 enum pipe pipe
, int reg
, u32 port_sel
)
1429 u32 val
= I915_READ(reg
);
1430 if (dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
)) {
1431 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg
, pipe
);
1432 I915_WRITE(reg
, val
& ~DP_PORT_EN
);
1436 static void disable_pch_hdmi(struct drm_i915_private
*dev_priv
,
1437 enum pipe pipe
, int reg
)
1439 u32 val
= I915_READ(reg
);
1440 if (hdmi_pipe_enabled(dev_priv
, val
, pipe
)) {
1441 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1443 I915_WRITE(reg
, val
& ~PORT_ENABLE
);
1447 /* Disable any ports connected to this transcoder */
1448 static void intel_disable_pch_ports(struct drm_i915_private
*dev_priv
,
1453 val
= I915_READ(PCH_PP_CONTROL
);
1454 I915_WRITE(PCH_PP_CONTROL
, val
| PANEL_UNLOCK_REGS
);
1456 disable_pch_dp(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1457 disable_pch_dp(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1458 disable_pch_dp(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1461 val
= I915_READ(reg
);
1462 if (adpa_pipe_enabled(dev_priv
, val
, pipe
))
1463 I915_WRITE(reg
, val
& ~ADPA_DAC_ENABLE
);
1466 val
= I915_READ(reg
);
1467 if (lvds_pipe_enabled(dev_priv
, val
, pipe
)) {
1468 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe
, val
);
1469 I915_WRITE(reg
, val
& ~LVDS_PORT_EN
);
1474 disable_pch_hdmi(dev_priv
, pipe
, HDMIB
);
1475 disable_pch_hdmi(dev_priv
, pipe
, HDMIC
);
1476 disable_pch_hdmi(dev_priv
, pipe
, HDMID
);
1479 static void i8xx_disable_fbc(struct drm_device
*dev
)
1481 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1484 /* Disable compression */
1485 fbc_ctl
= I915_READ(FBC_CONTROL
);
1486 if ((fbc_ctl
& FBC_CTL_EN
) == 0)
1489 fbc_ctl
&= ~FBC_CTL_EN
;
1490 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1492 /* Wait for compressing bit to clear */
1493 if (wait_for((I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
) == 0, 10)) {
1494 DRM_DEBUG_KMS("FBC idle timed out\n");
1498 DRM_DEBUG_KMS("disabled FBC\n");
1501 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1503 struct drm_device
*dev
= crtc
->dev
;
1504 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1505 struct drm_framebuffer
*fb
= crtc
->fb
;
1506 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1507 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1508 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1511 u32 fbc_ctl
, fbc_ctl2
;
1513 cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1514 if (fb
->pitch
< cfb_pitch
)
1515 cfb_pitch
= fb
->pitch
;
1517 /* FBC_CTL wants 64B units */
1518 cfb_pitch
= (cfb_pitch
/ 64) - 1;
1519 plane
= intel_crtc
->plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1521 /* Clear old tags */
1522 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1523 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1526 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| FBC_CTL_CPU_FENCE
;
1528 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1529 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1532 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1534 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
1535 fbc_ctl
|= (cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1536 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1537 fbc_ctl
|= obj
->fence_reg
;
1538 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1540 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541 cfb_pitch
, crtc
->y
, intel_crtc
->plane
);
1544 static bool i8xx_fbc_enabled(struct drm_device
*dev
)
1546 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1548 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1551 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1553 struct drm_device
*dev
= crtc
->dev
;
1554 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1555 struct drm_framebuffer
*fb
= crtc
->fb
;
1556 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1557 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1558 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1559 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1560 unsigned long stall_watermark
= 200;
1563 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1564 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| obj
->fence_reg
;
1565 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1567 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1568 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1569 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1570 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1573 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1575 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1578 static void g4x_disable_fbc(struct drm_device
*dev
)
1580 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1583 /* Disable compression */
1584 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1585 if (dpfc_ctl
& DPFC_CTL_EN
) {
1586 dpfc_ctl
&= ~DPFC_CTL_EN
;
1587 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1589 DRM_DEBUG_KMS("disabled FBC\n");
1593 static bool g4x_fbc_enabled(struct drm_device
*dev
)
1595 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1597 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1600 static void sandybridge_blit_fbc_update(struct drm_device
*dev
)
1602 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1605 /* Make sure blitter notifies FBC of writes */
1606 gen6_gt_force_wake_get(dev_priv
);
1607 blt_ecoskpd
= I915_READ(GEN6_BLITTER_ECOSKPD
);
1608 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
<<
1609 GEN6_BLITTER_LOCK_SHIFT
;
1610 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1611 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
;
1612 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1613 blt_ecoskpd
&= ~(GEN6_BLITTER_FBC_NOTIFY
<<
1614 GEN6_BLITTER_LOCK_SHIFT
);
1615 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1616 POSTING_READ(GEN6_BLITTER_ECOSKPD
);
1617 gen6_gt_force_wake_put(dev_priv
);
1620 static void ironlake_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1622 struct drm_device
*dev
= crtc
->dev
;
1623 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1624 struct drm_framebuffer
*fb
= crtc
->fb
;
1625 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1626 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1627 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1628 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1629 unsigned long stall_watermark
= 200;
1632 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1633 dpfc_ctl
&= DPFC_RESERVED
;
1634 dpfc_ctl
|= (plane
| DPFC_CTL_LIMIT_1X
);
1635 /* Set persistent mode for front-buffer rendering, ala X. */
1636 dpfc_ctl
|= DPFC_CTL_PERSISTENT_MODE
;
1637 dpfc_ctl
|= (DPFC_CTL_FENCE_EN
| obj
->fence_reg
);
1638 I915_WRITE(ILK_DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1640 I915_WRITE(ILK_DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1641 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1642 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1643 I915_WRITE(ILK_DPFC_FENCE_YOFF
, crtc
->y
);
1644 I915_WRITE(ILK_FBC_RT_BASE
, obj
->gtt_offset
| ILK_FBC_RT_VALID
);
1646 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
| DPFC_CTL_EN
);
1649 I915_WRITE(SNB_DPFC_CTL_SA
,
1650 SNB_CPU_FENCE_ENABLE
| obj
->fence_reg
);
1651 I915_WRITE(DPFC_CPU_FENCE_OFFSET
, crtc
->y
);
1652 sandybridge_blit_fbc_update(dev
);
1655 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1658 static void ironlake_disable_fbc(struct drm_device
*dev
)
1660 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1663 /* Disable compression */
1664 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1665 if (dpfc_ctl
& DPFC_CTL_EN
) {
1666 dpfc_ctl
&= ~DPFC_CTL_EN
;
1667 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
);
1669 DRM_DEBUG_KMS("disabled FBC\n");
1673 static bool ironlake_fbc_enabled(struct drm_device
*dev
)
1675 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1677 return I915_READ(ILK_DPFC_CONTROL
) & DPFC_CTL_EN
;
1680 bool intel_fbc_enabled(struct drm_device
*dev
)
1682 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1684 if (!dev_priv
->display
.fbc_enabled
)
1687 return dev_priv
->display
.fbc_enabled(dev
);
1690 static void intel_fbc_work_fn(struct work_struct
*__work
)
1692 struct intel_fbc_work
*work
=
1693 container_of(to_delayed_work(__work
),
1694 struct intel_fbc_work
, work
);
1695 struct drm_device
*dev
= work
->crtc
->dev
;
1696 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1698 mutex_lock(&dev
->struct_mutex
);
1699 if (work
== dev_priv
->fbc_work
) {
1700 /* Double check that we haven't switched fb without cancelling
1703 if (work
->crtc
->fb
== work
->fb
) {
1704 dev_priv
->display
.enable_fbc(work
->crtc
,
1707 dev_priv
->cfb_plane
= to_intel_crtc(work
->crtc
)->plane
;
1708 dev_priv
->cfb_fb
= work
->crtc
->fb
->base
.id
;
1709 dev_priv
->cfb_y
= work
->crtc
->y
;
1712 dev_priv
->fbc_work
= NULL
;
1714 mutex_unlock(&dev
->struct_mutex
);
1719 static void intel_cancel_fbc_work(struct drm_i915_private
*dev_priv
)
1721 if (dev_priv
->fbc_work
== NULL
)
1724 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1726 /* Synchronisation is provided by struct_mutex and checking of
1727 * dev_priv->fbc_work, so we can perform the cancellation
1728 * entirely asynchronously.
1730 if (cancel_delayed_work(&dev_priv
->fbc_work
->work
))
1731 /* tasklet was killed before being run, clean up */
1732 kfree(dev_priv
->fbc_work
);
1734 /* Mark the work as no longer wanted so that if it does
1735 * wake-up (because the work was already running and waiting
1736 * for our mutex), it will discover that is no longer
1739 dev_priv
->fbc_work
= NULL
;
1742 static void intel_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1744 struct intel_fbc_work
*work
;
1745 struct drm_device
*dev
= crtc
->dev
;
1746 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1748 if (!dev_priv
->display
.enable_fbc
)
1751 intel_cancel_fbc_work(dev_priv
);
1753 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
1755 dev_priv
->display
.enable_fbc(crtc
, interval
);
1760 work
->fb
= crtc
->fb
;
1761 work
->interval
= interval
;
1762 INIT_DELAYED_WORK(&work
->work
, intel_fbc_work_fn
);
1764 dev_priv
->fbc_work
= work
;
1766 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1768 /* Delay the actual enabling to let pageflipping cease and the
1769 * display to settle before starting the compression. Note that
1770 * this delay also serves a second purpose: it allows for a
1771 * vblank to pass after disabling the FBC before we attempt
1772 * to modify the control registers.
1774 * A more complicated solution would involve tracking vblanks
1775 * following the termination of the page-flipping sequence
1776 * and indeed performing the enable as a co-routine and not
1777 * waiting synchronously upon the vblank.
1779 schedule_delayed_work(&work
->work
, msecs_to_jiffies(50));
1782 void intel_disable_fbc(struct drm_device
*dev
)
1784 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1786 intel_cancel_fbc_work(dev_priv
);
1788 if (!dev_priv
->display
.disable_fbc
)
1791 dev_priv
->display
.disable_fbc(dev
);
1792 dev_priv
->cfb_plane
= -1;
1796 * intel_update_fbc - enable/disable FBC as needed
1797 * @dev: the drm_device
1799 * Set up the framebuffer compression hardware at mode set time. We
1800 * enable it if possible:
1801 * - plane A only (on pre-965)
1802 * - no pixel mulitply/line duplication
1803 * - no alpha buffer discard
1805 * - framebuffer <= 2048 in width, 1536 in height
1807 * We can't assume that any compression will take place (worst case),
1808 * so the compressed buffer has to be the same size as the uncompressed
1809 * one. It also must reside (along with the line length buffer) in
1812 * We need to enable/disable FBC on a global basis.
1814 static void intel_update_fbc(struct drm_device
*dev
)
1816 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1817 struct drm_crtc
*crtc
= NULL
, *tmp_crtc
;
1818 struct intel_crtc
*intel_crtc
;
1819 struct drm_framebuffer
*fb
;
1820 struct intel_framebuffer
*intel_fb
;
1821 struct drm_i915_gem_object
*obj
;
1824 DRM_DEBUG_KMS("\n");
1826 if (!i915_powersave
)
1829 if (!I915_HAS_FBC(dev
))
1833 * If FBC is already on, we just have to verify that we can
1834 * keep it that way...
1835 * Need to disable if:
1836 * - more than one pipe is active
1837 * - changing FBC params (stride, fence, mode)
1838 * - new fb is too large to fit in compressed buffer
1839 * - going to an unsupported config (interlace, pixel multiply, etc.)
1841 list_for_each_entry(tmp_crtc
, &dev
->mode_config
.crtc_list
, head
) {
1842 if (tmp_crtc
->enabled
&& tmp_crtc
->fb
) {
1844 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845 dev_priv
->no_fbc_reason
= FBC_MULTIPLE_PIPES
;
1852 if (!crtc
|| crtc
->fb
== NULL
) {
1853 DRM_DEBUG_KMS("no output, disabling\n");
1854 dev_priv
->no_fbc_reason
= FBC_NO_OUTPUT
;
1858 intel_crtc
= to_intel_crtc(crtc
);
1860 intel_fb
= to_intel_framebuffer(fb
);
1861 obj
= intel_fb
->obj
;
1863 enable_fbc
= i915_enable_fbc
;
1864 if (enable_fbc
< 0) {
1865 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1867 if (INTEL_INFO(dev
)->gen
<= 5)
1871 DRM_DEBUG_KMS("fbc disabled per module param\n");
1872 dev_priv
->no_fbc_reason
= FBC_MODULE_PARAM
;
1875 if (intel_fb
->obj
->base
.size
> dev_priv
->cfb_size
) {
1876 DRM_DEBUG_KMS("framebuffer too large, disabling "
1878 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1881 if ((crtc
->mode
.flags
& DRM_MODE_FLAG_INTERLACE
) ||
1882 (crtc
->mode
.flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1883 DRM_DEBUG_KMS("mode incompatible with compression, "
1885 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1888 if ((crtc
->mode
.hdisplay
> 2048) ||
1889 (crtc
->mode
.vdisplay
> 1536)) {
1890 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1891 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1894 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && intel_crtc
->plane
!= 0) {
1895 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1896 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1900 /* The use of a CPU fence is mandatory in order to detect writes
1901 * by the CPU to the scanout and trigger updates to the FBC.
1903 if (obj
->tiling_mode
!= I915_TILING_X
||
1904 obj
->fence_reg
== I915_FENCE_REG_NONE
) {
1905 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1906 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1910 /* If the kernel debugger is active, always disable compression */
1911 if (in_dbg_master())
1914 /* If the scanout has not changed, don't modify the FBC settings.
1915 * Note that we make the fundamental assumption that the fb->obj
1916 * cannot be unpinned (and have its GTT offset and fence revoked)
1917 * without first being decoupled from the scanout and FBC disabled.
1919 if (dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1920 dev_priv
->cfb_fb
== fb
->base
.id
&&
1921 dev_priv
->cfb_y
== crtc
->y
)
1924 if (intel_fbc_enabled(dev
)) {
1925 /* We update FBC along two paths, after changing fb/crtc
1926 * configuration (modeswitching) and after page-flipping
1927 * finishes. For the latter, we know that not only did
1928 * we disable the FBC at the start of the page-flip
1929 * sequence, but also more than one vblank has passed.
1931 * For the former case of modeswitching, it is possible
1932 * to switch between two FBC valid configurations
1933 * instantaneously so we do need to disable the FBC
1934 * before we can modify its control registers. We also
1935 * have to wait for the next vblank for that to take
1936 * effect. However, since we delay enabling FBC we can
1937 * assume that a vblank has passed since disabling and
1938 * that we can safely alter the registers in the deferred
1941 * In the scenario that we go from a valid to invalid
1942 * and then back to valid FBC configuration we have
1943 * no strict enforcement that a vblank occurred since
1944 * disabling the FBC. However, along all current pipe
1945 * disabling paths we do need to wait for a vblank at
1946 * some point. And we wait before enabling FBC anyway.
1948 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949 intel_disable_fbc(dev
);
1952 intel_enable_fbc(crtc
, 500);
1956 /* Multiple disables should be harmless */
1957 if (intel_fbc_enabled(dev
)) {
1958 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1959 intel_disable_fbc(dev
);
1964 intel_pin_and_fence_fb_obj(struct drm_device
*dev
,
1965 struct drm_i915_gem_object
*obj
,
1966 struct intel_ring_buffer
*pipelined
)
1968 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1972 switch (obj
->tiling_mode
) {
1973 case I915_TILING_NONE
:
1974 if (IS_BROADWATER(dev
) || IS_CRESTLINE(dev
))
1975 alignment
= 128 * 1024;
1976 else if (INTEL_INFO(dev
)->gen
>= 4)
1977 alignment
= 4 * 1024;
1979 alignment
= 64 * 1024;
1982 /* pin() will align the object as required by fence */
1986 /* FIXME: Is this true? */
1987 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1993 dev_priv
->mm
.interruptible
= false;
1994 ret
= i915_gem_object_pin_to_display_plane(obj
, alignment
, pipelined
);
1996 goto err_interruptible
;
1998 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999 * fence, whereas 965+ only requires a fence if using
2000 * framebuffer compression. For simplicity, we always install
2001 * a fence as the cost is not that onerous.
2003 if (obj
->tiling_mode
!= I915_TILING_NONE
) {
2004 ret
= i915_gem_object_get_fence(obj
, pipelined
);
2009 dev_priv
->mm
.interruptible
= true;
2013 i915_gem_object_unpin(obj
);
2015 dev_priv
->mm
.interruptible
= true;
2019 static int i9xx_update_plane(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
2022 struct drm_device
*dev
= crtc
->dev
;
2023 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2024 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2025 struct intel_framebuffer
*intel_fb
;
2026 struct drm_i915_gem_object
*obj
;
2027 int plane
= intel_crtc
->plane
;
2028 unsigned long Start
, Offset
;
2037 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
2041 intel_fb
= to_intel_framebuffer(fb
);
2042 obj
= intel_fb
->obj
;
2044 reg
= DSPCNTR(plane
);
2045 dspcntr
= I915_READ(reg
);
2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
2048 switch (fb
->bits_per_pixel
) {
2050 dspcntr
|= DISPPLANE_8BPP
;
2053 if (fb
->depth
== 15)
2054 dspcntr
|= DISPPLANE_15_16BPP
;
2056 dspcntr
|= DISPPLANE_16BPP
;
2060 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
2063 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
2066 if (INTEL_INFO(dev
)->gen
>= 4) {
2067 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2068 dspcntr
|= DISPPLANE_TILED
;
2070 dspcntr
&= ~DISPPLANE_TILED
;
2073 I915_WRITE(reg
, dspcntr
);
2075 Start
= obj
->gtt_offset
;
2076 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
2078 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079 Start
, Offset
, x
, y
, fb
->pitch
);
2080 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
2081 if (INTEL_INFO(dev
)->gen
>= 4) {
2082 I915_WRITE(DSPSURF(plane
), Start
);
2083 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2084 I915_WRITE(DSPADDR(plane
), Offset
);
2086 I915_WRITE(DSPADDR(plane
), Start
+ Offset
);
2092 static int ironlake_update_plane(struct drm_crtc
*crtc
,
2093 struct drm_framebuffer
*fb
, int x
, int y
)
2095 struct drm_device
*dev
= crtc
->dev
;
2096 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2097 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2098 struct intel_framebuffer
*intel_fb
;
2099 struct drm_i915_gem_object
*obj
;
2100 int plane
= intel_crtc
->plane
;
2101 unsigned long Start
, Offset
;
2111 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
2115 intel_fb
= to_intel_framebuffer(fb
);
2116 obj
= intel_fb
->obj
;
2118 reg
= DSPCNTR(plane
);
2119 dspcntr
= I915_READ(reg
);
2120 /* Mask out pixel format bits in case we change it */
2121 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
2122 switch (fb
->bits_per_pixel
) {
2124 dspcntr
|= DISPPLANE_8BPP
;
2127 if (fb
->depth
!= 16)
2130 dspcntr
|= DISPPLANE_16BPP
;
2134 if (fb
->depth
== 24)
2135 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
2136 else if (fb
->depth
== 30)
2137 dspcntr
|= DISPPLANE_32BPP_30BIT_NO_ALPHA
;
2142 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
2146 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2147 dspcntr
|= DISPPLANE_TILED
;
2149 dspcntr
&= ~DISPPLANE_TILED
;
2152 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
2154 I915_WRITE(reg
, dspcntr
);
2156 Start
= obj
->gtt_offset
;
2157 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
2159 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160 Start
, Offset
, x
, y
, fb
->pitch
);
2161 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
2162 I915_WRITE(DSPSURF(plane
), Start
);
2163 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2164 I915_WRITE(DSPADDR(plane
), Offset
);
2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2172 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
2173 int x
, int y
, enum mode_set_atomic state
)
2175 struct drm_device
*dev
= crtc
->dev
;
2176 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2179 ret
= dev_priv
->display
.update_plane(crtc
, fb
, x
, y
);
2183 intel_update_fbc(dev
);
2184 intel_increase_pllclock(crtc
);
2190 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
2191 struct drm_framebuffer
*old_fb
)
2193 struct drm_device
*dev
= crtc
->dev
;
2194 struct drm_i915_master_private
*master_priv
;
2195 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2200 DRM_ERROR("No FB bound\n");
2204 switch (intel_crtc
->plane
) {
2209 if (IS_IVYBRIDGE(dev
))
2211 /* fall through otherwise */
2213 DRM_ERROR("no plane for crtc\n");
2217 mutex_lock(&dev
->struct_mutex
);
2218 ret
= intel_pin_and_fence_fb_obj(dev
,
2219 to_intel_framebuffer(crtc
->fb
)->obj
,
2222 mutex_unlock(&dev
->struct_mutex
);
2223 DRM_ERROR("pin & fence failed\n");
2228 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2229 struct drm_i915_gem_object
*obj
= to_intel_framebuffer(old_fb
)->obj
;
2231 wait_event(dev_priv
->pending_flip_queue
,
2232 atomic_read(&dev_priv
->mm
.wedged
) ||
2233 atomic_read(&obj
->pending_flip
) == 0);
2235 /* Big Hammer, we also need to ensure that any pending
2236 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237 * current scanout is retired before unpinning the old
2240 * This should only fail upon a hung GPU, in which case we
2241 * can safely continue.
2243 ret
= i915_gem_object_finish_gpu(obj
);
2247 ret
= intel_pipe_set_base_atomic(crtc
, crtc
->fb
, x
, y
,
2248 LEAVE_ATOMIC_MODE_SET
);
2250 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
2251 mutex_unlock(&dev
->struct_mutex
);
2252 DRM_ERROR("failed to update base address\n");
2257 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
2258 i915_gem_object_unpin(to_intel_framebuffer(old_fb
)->obj
);
2261 mutex_unlock(&dev
->struct_mutex
);
2263 if (!dev
->primary
->master
)
2266 master_priv
= dev
->primary
->master
->driver_priv
;
2267 if (!master_priv
->sarea_priv
)
2270 if (intel_crtc
->pipe
) {
2271 master_priv
->sarea_priv
->pipeB_x
= x
;
2272 master_priv
->sarea_priv
->pipeB_y
= y
;
2274 master_priv
->sarea_priv
->pipeA_x
= x
;
2275 master_priv
->sarea_priv
->pipeA_y
= y
;
2281 static void ironlake_set_pll_edp(struct drm_crtc
*crtc
, int clock
)
2283 struct drm_device
*dev
= crtc
->dev
;
2284 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2287 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
2288 dpa_ctl
= I915_READ(DP_A
);
2289 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
2291 if (clock
< 200000) {
2293 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
2294 /* workaround for 160Mhz:
2295 1) program 0x4600c bits 15:0 = 0x8124
2296 2) program 0x46010 bit 0 = 1
2297 3) program 0x46034 bit 24 = 1
2298 4) program 0x64000 bit 14 = 1
2300 temp
= I915_READ(0x4600c);
2302 I915_WRITE(0x4600c, temp
| 0x8124);
2304 temp
= I915_READ(0x46010);
2305 I915_WRITE(0x46010, temp
| 1);
2307 temp
= I915_READ(0x46034);
2308 I915_WRITE(0x46034, temp
| (1 << 24));
2310 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
2312 I915_WRITE(DP_A
, dpa_ctl
);
2318 static void intel_fdi_normal_train(struct drm_crtc
*crtc
)
2320 struct drm_device
*dev
= crtc
->dev
;
2321 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2322 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2323 int pipe
= intel_crtc
->pipe
;
2326 /* enable normal train */
2327 reg
= FDI_TX_CTL(pipe
);
2328 temp
= I915_READ(reg
);
2329 if (IS_IVYBRIDGE(dev
)) {
2330 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2331 temp
|= FDI_LINK_TRAIN_NONE_IVB
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2333 temp
&= ~FDI_LINK_TRAIN_NONE
;
2334 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2336 I915_WRITE(reg
, temp
);
2338 reg
= FDI_RX_CTL(pipe
);
2339 temp
= I915_READ(reg
);
2340 if (HAS_PCH_CPT(dev
)) {
2341 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2342 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
2344 temp
&= ~FDI_LINK_TRAIN_NONE
;
2345 temp
|= FDI_LINK_TRAIN_NONE
;
2347 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
2349 /* wait one idle pattern time */
2353 /* IVB wants error correction enabled */
2354 if (IS_IVYBRIDGE(dev
))
2355 I915_WRITE(reg
, I915_READ(reg
) | FDI_FS_ERRC_ENABLE
|
2356 FDI_FE_ERRC_ENABLE
);
2359 static void cpt_phase_pointer_enable(struct drm_device
*dev
, int pipe
)
2361 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2362 u32 flags
= I915_READ(SOUTH_CHICKEN1
);
2364 flags
|= FDI_PHASE_SYNC_OVR(pipe
);
2365 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* once to unlock... */
2366 flags
|= FDI_PHASE_SYNC_EN(pipe
);
2367 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* then again to enable */
2368 POSTING_READ(SOUTH_CHICKEN1
);
2371 /* The FDI link training functions for ILK/Ibexpeak. */
2372 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
2374 struct drm_device
*dev
= crtc
->dev
;
2375 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2376 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2377 int pipe
= intel_crtc
->pipe
;
2378 int plane
= intel_crtc
->plane
;
2379 u32 reg
, temp
, tries
;
2381 /* FDI needs bits from pipe & plane first */
2382 assert_pipe_enabled(dev_priv
, pipe
);
2383 assert_plane_enabled(dev_priv
, plane
);
2385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2387 reg
= FDI_RX_IMR(pipe
);
2388 temp
= I915_READ(reg
);
2389 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2390 temp
&= ~FDI_RX_BIT_LOCK
;
2391 I915_WRITE(reg
, temp
);
2395 /* enable CPU FDI TX and PCH FDI RX */
2396 reg
= FDI_TX_CTL(pipe
);
2397 temp
= I915_READ(reg
);
2399 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2400 temp
&= ~FDI_LINK_TRAIN_NONE
;
2401 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2402 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2404 reg
= FDI_RX_CTL(pipe
);
2405 temp
= I915_READ(reg
);
2406 temp
&= ~FDI_LINK_TRAIN_NONE
;
2407 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2408 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2413 /* Ironlake workaround, enable clock pointer after FDI enable*/
2414 if (HAS_PCH_IBX(dev
)) {
2415 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2416 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
|
2417 FDI_RX_PHASE_SYNC_POINTER_EN
);
2420 reg
= FDI_RX_IIR(pipe
);
2421 for (tries
= 0; tries
< 5; tries
++) {
2422 temp
= I915_READ(reg
);
2423 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2425 if ((temp
& FDI_RX_BIT_LOCK
)) {
2426 DRM_DEBUG_KMS("FDI train 1 done.\n");
2427 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2432 DRM_ERROR("FDI train 1 fail!\n");
2435 reg
= FDI_TX_CTL(pipe
);
2436 temp
= I915_READ(reg
);
2437 temp
&= ~FDI_LINK_TRAIN_NONE
;
2438 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2439 I915_WRITE(reg
, temp
);
2441 reg
= FDI_RX_CTL(pipe
);
2442 temp
= I915_READ(reg
);
2443 temp
&= ~FDI_LINK_TRAIN_NONE
;
2444 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2445 I915_WRITE(reg
, temp
);
2450 reg
= FDI_RX_IIR(pipe
);
2451 for (tries
= 0; tries
< 5; tries
++) {
2452 temp
= I915_READ(reg
);
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2455 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2456 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2457 DRM_DEBUG_KMS("FDI train 2 done.\n");
2462 DRM_ERROR("FDI train 2 fail!\n");
2464 DRM_DEBUG_KMS("FDI train done\n");
2468 static const int snb_b_fdi_train_param
[] = {
2469 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
2470 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
2471 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
2472 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
2475 /* The FDI link training functions for SNB/Cougarpoint. */
2476 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
2478 struct drm_device
*dev
= crtc
->dev
;
2479 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2480 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2481 int pipe
= intel_crtc
->pipe
;
2484 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2486 reg
= FDI_RX_IMR(pipe
);
2487 temp
= I915_READ(reg
);
2488 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2489 temp
&= ~FDI_RX_BIT_LOCK
;
2490 I915_WRITE(reg
, temp
);
2495 /* enable CPU FDI TX and PCH FDI RX */
2496 reg
= FDI_TX_CTL(pipe
);
2497 temp
= I915_READ(reg
);
2499 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2500 temp
&= ~FDI_LINK_TRAIN_NONE
;
2501 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2502 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2504 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2505 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2507 reg
= FDI_RX_CTL(pipe
);
2508 temp
= I915_READ(reg
);
2509 if (HAS_PCH_CPT(dev
)) {
2510 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2511 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2513 temp
&= ~FDI_LINK_TRAIN_NONE
;
2514 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2516 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2521 if (HAS_PCH_CPT(dev
))
2522 cpt_phase_pointer_enable(dev
, pipe
);
2524 for (i
= 0; i
< 4; i
++) {
2525 reg
= FDI_TX_CTL(pipe
);
2526 temp
= I915_READ(reg
);
2527 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2528 temp
|= snb_b_fdi_train_param
[i
];
2529 I915_WRITE(reg
, temp
);
2534 reg
= FDI_RX_IIR(pipe
);
2535 temp
= I915_READ(reg
);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2538 if (temp
& FDI_RX_BIT_LOCK
) {
2539 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2540 DRM_DEBUG_KMS("FDI train 1 done.\n");
2545 DRM_ERROR("FDI train 1 fail!\n");
2548 reg
= FDI_TX_CTL(pipe
);
2549 temp
= I915_READ(reg
);
2550 temp
&= ~FDI_LINK_TRAIN_NONE
;
2551 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2553 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2555 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2557 I915_WRITE(reg
, temp
);
2559 reg
= FDI_RX_CTL(pipe
);
2560 temp
= I915_READ(reg
);
2561 if (HAS_PCH_CPT(dev
)) {
2562 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2563 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2565 temp
&= ~FDI_LINK_TRAIN_NONE
;
2566 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2568 I915_WRITE(reg
, temp
);
2573 for (i
= 0; i
< 4; i
++) {
2574 reg
= FDI_TX_CTL(pipe
);
2575 temp
= I915_READ(reg
);
2576 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2577 temp
|= snb_b_fdi_train_param
[i
];
2578 I915_WRITE(reg
, temp
);
2583 reg
= FDI_RX_IIR(pipe
);
2584 temp
= I915_READ(reg
);
2585 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2587 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2588 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2589 DRM_DEBUG_KMS("FDI train 2 done.\n");
2594 DRM_ERROR("FDI train 2 fail!\n");
2596 DRM_DEBUG_KMS("FDI train done.\n");
2599 /* Manual link training for Ivy Bridge A0 parts */
2600 static void ivb_manual_fdi_link_train(struct drm_crtc
*crtc
)
2602 struct drm_device
*dev
= crtc
->dev
;
2603 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2604 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2605 int pipe
= intel_crtc
->pipe
;
2608 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2610 reg
= FDI_RX_IMR(pipe
);
2611 temp
= I915_READ(reg
);
2612 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2613 temp
&= ~FDI_RX_BIT_LOCK
;
2614 I915_WRITE(reg
, temp
);
2619 /* enable CPU FDI TX and PCH FDI RX */
2620 reg
= FDI_TX_CTL(pipe
);
2621 temp
= I915_READ(reg
);
2623 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2624 temp
&= ~(FDI_LINK_TRAIN_AUTO
| FDI_LINK_TRAIN_NONE_IVB
);
2625 temp
|= FDI_LINK_TRAIN_PATTERN_1_IVB
;
2626 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2627 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2628 temp
|= FDI_COMPOSITE_SYNC
;
2629 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2631 reg
= FDI_RX_CTL(pipe
);
2632 temp
= I915_READ(reg
);
2633 temp
&= ~FDI_LINK_TRAIN_AUTO
;
2634 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2635 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2636 temp
|= FDI_COMPOSITE_SYNC
;
2637 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2642 if (HAS_PCH_CPT(dev
))
2643 cpt_phase_pointer_enable(dev
, pipe
);
2645 for (i
= 0; i
< 4; i
++) {
2646 reg
= FDI_TX_CTL(pipe
);
2647 temp
= I915_READ(reg
);
2648 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2649 temp
|= snb_b_fdi_train_param
[i
];
2650 I915_WRITE(reg
, temp
);
2655 reg
= FDI_RX_IIR(pipe
);
2656 temp
= I915_READ(reg
);
2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2659 if (temp
& FDI_RX_BIT_LOCK
||
2660 (I915_READ(reg
) & FDI_RX_BIT_LOCK
)) {
2661 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2662 DRM_DEBUG_KMS("FDI train 1 done.\n");
2667 DRM_ERROR("FDI train 1 fail!\n");
2670 reg
= FDI_TX_CTL(pipe
);
2671 temp
= I915_READ(reg
);
2672 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2673 temp
|= FDI_LINK_TRAIN_PATTERN_2_IVB
;
2674 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2675 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2676 I915_WRITE(reg
, temp
);
2678 reg
= FDI_RX_CTL(pipe
);
2679 temp
= I915_READ(reg
);
2680 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2681 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2682 I915_WRITE(reg
, temp
);
2687 for (i
= 0; i
< 4; i
++) {
2688 reg
= FDI_TX_CTL(pipe
);
2689 temp
= I915_READ(reg
);
2690 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2691 temp
|= snb_b_fdi_train_param
[i
];
2692 I915_WRITE(reg
, temp
);
2697 reg
= FDI_RX_IIR(pipe
);
2698 temp
= I915_READ(reg
);
2699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2701 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2702 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2703 DRM_DEBUG_KMS("FDI train 2 done.\n");
2708 DRM_ERROR("FDI train 2 fail!\n");
2710 DRM_DEBUG_KMS("FDI train done.\n");
2713 static void ironlake_fdi_pll_enable(struct drm_crtc
*crtc
)
2715 struct drm_device
*dev
= crtc
->dev
;
2716 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2717 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2718 int pipe
= intel_crtc
->pipe
;
2721 /* Write the TU size bits so error detection works */
2722 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
2723 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
2725 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2726 reg
= FDI_RX_CTL(pipe
);
2727 temp
= I915_READ(reg
);
2728 temp
&= ~((0x7 << 19) | (0x7 << 16));
2729 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2730 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2731 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
2736 /* Switch from Rawclk to PCDclk */
2737 temp
= I915_READ(reg
);
2738 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
2743 /* Enable CPU FDI TX PLL, always on for Ironlake */
2744 reg
= FDI_TX_CTL(pipe
);
2745 temp
= I915_READ(reg
);
2746 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
2747 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
2754 static void cpt_phase_pointer_disable(struct drm_device
*dev
, int pipe
)
2756 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2757 u32 flags
= I915_READ(SOUTH_CHICKEN1
);
2759 flags
&= ~(FDI_PHASE_SYNC_EN(pipe
));
2760 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* once to disable... */
2761 flags
&= ~(FDI_PHASE_SYNC_OVR(pipe
));
2762 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* then again to lock */
2763 POSTING_READ(SOUTH_CHICKEN1
);
2765 static void ironlake_fdi_disable(struct drm_crtc
*crtc
)
2767 struct drm_device
*dev
= crtc
->dev
;
2768 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2769 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2770 int pipe
= intel_crtc
->pipe
;
2773 /* disable CPU FDI tx and PCH FDI rx */
2774 reg
= FDI_TX_CTL(pipe
);
2775 temp
= I915_READ(reg
);
2776 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
2779 reg
= FDI_RX_CTL(pipe
);
2780 temp
= I915_READ(reg
);
2781 temp
&= ~(0x7 << 16);
2782 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2783 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
2788 /* Ironlake workaround, disable clock pointer after downing FDI */
2789 if (HAS_PCH_IBX(dev
)) {
2790 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2791 I915_WRITE(FDI_RX_CHICKEN(pipe
),
2792 I915_READ(FDI_RX_CHICKEN(pipe
) &
2793 ~FDI_RX_PHASE_SYNC_POINTER_EN
));
2794 } else if (HAS_PCH_CPT(dev
)) {
2795 cpt_phase_pointer_disable(dev
, pipe
);
2798 /* still set train pattern 1 */
2799 reg
= FDI_TX_CTL(pipe
);
2800 temp
= I915_READ(reg
);
2801 temp
&= ~FDI_LINK_TRAIN_NONE
;
2802 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2803 I915_WRITE(reg
, temp
);
2805 reg
= FDI_RX_CTL(pipe
);
2806 temp
= I915_READ(reg
);
2807 if (HAS_PCH_CPT(dev
)) {
2808 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2809 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2811 temp
&= ~FDI_LINK_TRAIN_NONE
;
2812 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2814 /* BPC in FDI rx is consistent with that in PIPECONF */
2815 temp
&= ~(0x07 << 16);
2816 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2817 I915_WRITE(reg
, temp
);
2824 * When we disable a pipe, we need to clear any pending scanline wait events
2825 * to avoid hanging the ring, which we assume we are waiting on.
2827 static void intel_clear_scanline_wait(struct drm_device
*dev
)
2829 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2830 struct intel_ring_buffer
*ring
;
2834 /* Can't break the hang on i8xx */
2837 ring
= LP_RING(dev_priv
);
2838 tmp
= I915_READ_CTL(ring
);
2839 if (tmp
& RING_WAIT
)
2840 I915_WRITE_CTL(ring
, tmp
);
2843 static void intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
2845 struct drm_i915_gem_object
*obj
;
2846 struct drm_i915_private
*dev_priv
;
2848 if (crtc
->fb
== NULL
)
2851 obj
= to_intel_framebuffer(crtc
->fb
)->obj
;
2852 dev_priv
= crtc
->dev
->dev_private
;
2853 wait_event(dev_priv
->pending_flip_queue
,
2854 atomic_read(&obj
->pending_flip
) == 0);
2857 static bool intel_crtc_driving_pch(struct drm_crtc
*crtc
)
2859 struct drm_device
*dev
= crtc
->dev
;
2860 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2861 struct intel_encoder
*encoder
;
2864 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865 * must be driven by its own crtc; no sharing is possible.
2867 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
2868 if (encoder
->base
.crtc
!= crtc
)
2871 switch (encoder
->type
) {
2872 case INTEL_OUTPUT_EDP
:
2873 if (!intel_encoder_is_pch_edp(&encoder
->base
))
2883 * Enable PCH resources required for PCH ports:
2885 * - FDI training & RX/TX
2886 * - update transcoder timings
2887 * - DP transcoding bits
2890 static void ironlake_pch_enable(struct drm_crtc
*crtc
)
2892 struct drm_device
*dev
= crtc
->dev
;
2893 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2894 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2895 int pipe
= intel_crtc
->pipe
;
2896 u32 reg
, temp
, transc_sel
;
2898 /* For PCH output, training FDI link */
2899 dev_priv
->display
.fdi_link_train(crtc
);
2901 intel_enable_pch_pll(dev_priv
, pipe
);
2903 if (HAS_PCH_CPT(dev
)) {
2904 transc_sel
= intel_crtc
->use_pll_a
? TRANSC_DPLLA_SEL
:
2907 /* Be sure PCH DPLL SEL is set */
2908 temp
= I915_READ(PCH_DPLL_SEL
);
2910 temp
&= ~(TRANSA_DPLLB_SEL
);
2911 temp
|= (TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
2912 } else if (pipe
== 1) {
2913 temp
&= ~(TRANSB_DPLLB_SEL
);
2914 temp
|= (TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2915 } else if (pipe
== 2) {
2916 temp
&= ~(TRANSC_DPLLB_SEL
);
2917 temp
|= (TRANSC_DPLL_ENABLE
| transc_sel
);
2919 I915_WRITE(PCH_DPLL_SEL
, temp
);
2922 /* set transcoder timing, panel must allow it */
2923 assert_panel_unlocked(dev_priv
, pipe
);
2924 I915_WRITE(TRANS_HTOTAL(pipe
), I915_READ(HTOTAL(pipe
)));
2925 I915_WRITE(TRANS_HBLANK(pipe
), I915_READ(HBLANK(pipe
)));
2926 I915_WRITE(TRANS_HSYNC(pipe
), I915_READ(HSYNC(pipe
)));
2928 I915_WRITE(TRANS_VTOTAL(pipe
), I915_READ(VTOTAL(pipe
)));
2929 I915_WRITE(TRANS_VBLANK(pipe
), I915_READ(VBLANK(pipe
)));
2930 I915_WRITE(TRANS_VSYNC(pipe
), I915_READ(VSYNC(pipe
)));
2932 intel_fdi_normal_train(crtc
);
2934 /* For PCH DP, enable TRANS_DP_CTL */
2935 if (HAS_PCH_CPT(dev
) &&
2936 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
2937 intel_pipe_has_type(crtc
, INTEL_OUTPUT_EDP
))) {
2938 u32 bpc
= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) >> 5;
2939 reg
= TRANS_DP_CTL(pipe
);
2940 temp
= I915_READ(reg
);
2941 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
2942 TRANS_DP_SYNC_MASK
|
2944 temp
|= (TRANS_DP_OUTPUT_ENABLE
|
2945 TRANS_DP_ENH_FRAMING
);
2946 temp
|= bpc
<< 9; /* same format but at 11:9 */
2948 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PHSYNC
)
2949 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
2950 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PVSYNC
)
2951 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
2953 switch (intel_trans_dp_port_sel(crtc
)) {
2955 temp
|= TRANS_DP_PORT_SEL_B
;
2958 temp
|= TRANS_DP_PORT_SEL_C
;
2961 temp
|= TRANS_DP_PORT_SEL_D
;
2964 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2965 temp
|= TRANS_DP_PORT_SEL_B
;
2969 I915_WRITE(reg
, temp
);
2972 intel_enable_transcoder(dev_priv
, pipe
);
2975 void intel_cpt_verify_modeset(struct drm_device
*dev
, int pipe
)
2977 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2978 int dslreg
= PIPEDSL(pipe
), tc2reg
= TRANS_CHICKEN2(pipe
);
2981 temp
= I915_READ(dslreg
);
2983 if (wait_for(I915_READ(dslreg
) != temp
, 5)) {
2984 /* Without this, mode sets may fail silently on FDI */
2985 I915_WRITE(tc2reg
, TRANS_AUTOTRAIN_GEN_STALL_DIS
);
2987 I915_WRITE(tc2reg
, 0);
2988 if (wait_for(I915_READ(dslreg
) != temp
, 5))
2989 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe
);
2993 static void ironlake_crtc_enable(struct drm_crtc
*crtc
)
2995 struct drm_device
*dev
= crtc
->dev
;
2996 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2997 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2998 int pipe
= intel_crtc
->pipe
;
2999 int plane
= intel_crtc
->plane
;
3003 if (intel_crtc
->active
)
3006 intel_crtc
->active
= true;
3007 intel_update_watermarks(dev
);
3009 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
3010 temp
= I915_READ(PCH_LVDS
);
3011 if ((temp
& LVDS_PORT_EN
) == 0)
3012 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
3015 is_pch_port
= intel_crtc_driving_pch(crtc
);
3018 ironlake_fdi_pll_enable(crtc
);
3020 ironlake_fdi_disable(crtc
);
3022 /* Enable panel fitting for LVDS */
3023 if (dev_priv
->pch_pf_size
&&
3024 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) || HAS_eDP
)) {
3025 /* Force use of hard-coded filter coefficients
3026 * as some pre-programmed values are broken,
3029 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
);
3030 I915_WRITE(PF_WIN_POS(pipe
), dev_priv
->pch_pf_pos
);
3031 I915_WRITE(PF_WIN_SZ(pipe
), dev_priv
->pch_pf_size
);
3035 * On ILK+ LUT must be loaded before the pipe is running but with
3038 intel_crtc_load_lut(crtc
);
3040 intel_enable_pipe(dev_priv
, pipe
, is_pch_port
);
3041 intel_enable_plane(dev_priv
, plane
, pipe
);
3044 ironlake_pch_enable(crtc
);
3046 mutex_lock(&dev
->struct_mutex
);
3047 intel_update_fbc(dev
);
3048 mutex_unlock(&dev
->struct_mutex
);
3050 intel_crtc_update_cursor(crtc
, true);
3053 static void ironlake_crtc_disable(struct drm_crtc
*crtc
)
3055 struct drm_device
*dev
= crtc
->dev
;
3056 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3057 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3058 int pipe
= intel_crtc
->pipe
;
3059 int plane
= intel_crtc
->plane
;
3062 if (!intel_crtc
->active
)
3065 intel_crtc_wait_for_pending_flips(crtc
);
3066 drm_vblank_off(dev
, pipe
);
3067 intel_crtc_update_cursor(crtc
, false);
3069 intel_disable_plane(dev_priv
, plane
, pipe
);
3071 if (dev_priv
->cfb_plane
== plane
)
3072 intel_disable_fbc(dev
);
3074 intel_disable_pipe(dev_priv
, pipe
);
3077 I915_WRITE(PF_CTL(pipe
), 0);
3078 I915_WRITE(PF_WIN_SZ(pipe
), 0);
3080 ironlake_fdi_disable(crtc
);
3082 /* This is a horrible layering violation; we should be doing this in
3083 * the connector/encoder ->prepare instead, but we don't always have
3084 * enough information there about the config to know whether it will
3085 * actually be necessary or just cause undesired flicker.
3087 intel_disable_pch_ports(dev_priv
, pipe
);
3089 intel_disable_transcoder(dev_priv
, pipe
);
3091 if (HAS_PCH_CPT(dev
)) {
3092 /* disable TRANS_DP_CTL */
3093 reg
= TRANS_DP_CTL(pipe
);
3094 temp
= I915_READ(reg
);
3095 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
| TRANS_DP_PORT_SEL_MASK
);
3096 temp
|= TRANS_DP_PORT_SEL_NONE
;
3097 I915_WRITE(reg
, temp
);
3099 /* disable DPLL_SEL */
3100 temp
= I915_READ(PCH_DPLL_SEL
);
3103 temp
&= ~(TRANSA_DPLL_ENABLE
| TRANSA_DPLLB_SEL
);
3106 temp
&= ~(TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
3109 /* C shares PLL A or B */
3110 temp
&= ~(TRANSC_DPLL_ENABLE
| TRANSC_DPLLB_SEL
);
3115 I915_WRITE(PCH_DPLL_SEL
, temp
);
3118 /* disable PCH DPLL */
3119 if (!intel_crtc
->no_pll
)
3120 intel_disable_pch_pll(dev_priv
, pipe
);
3122 /* Switch from PCDclk to Rawclk */
3123 reg
= FDI_RX_CTL(pipe
);
3124 temp
= I915_READ(reg
);
3125 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
3127 /* Disable CPU FDI TX PLL */
3128 reg
= FDI_TX_CTL(pipe
);
3129 temp
= I915_READ(reg
);
3130 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
3135 reg
= FDI_RX_CTL(pipe
);
3136 temp
= I915_READ(reg
);
3137 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
3139 /* Wait for the clocks to turn off. */
3143 intel_crtc
->active
= false;
3144 intel_update_watermarks(dev
);
3146 mutex_lock(&dev
->struct_mutex
);
3147 intel_update_fbc(dev
);
3148 intel_clear_scanline_wait(dev
);
3149 mutex_unlock(&dev
->struct_mutex
);
3152 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3154 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3155 int pipe
= intel_crtc
->pipe
;
3156 int plane
= intel_crtc
->plane
;
3158 /* XXX: When our outputs are all unaware of DPMS modes other than off
3159 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3162 case DRM_MODE_DPMS_ON
:
3163 case DRM_MODE_DPMS_STANDBY
:
3164 case DRM_MODE_DPMS_SUSPEND
:
3165 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe
, plane
);
3166 ironlake_crtc_enable(crtc
);
3169 case DRM_MODE_DPMS_OFF
:
3170 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe
, plane
);
3171 ironlake_crtc_disable(crtc
);
3176 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
3178 if (!enable
&& intel_crtc
->overlay
) {
3179 struct drm_device
*dev
= intel_crtc
->base
.dev
;
3180 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3182 mutex_lock(&dev
->struct_mutex
);
3183 dev_priv
->mm
.interruptible
= false;
3184 (void) intel_overlay_switch_off(intel_crtc
->overlay
);
3185 dev_priv
->mm
.interruptible
= true;
3186 mutex_unlock(&dev
->struct_mutex
);
3189 /* Let userspace switch the overlay on again. In most cases userspace
3190 * has to recompute where to put it anyway.
3194 static void i9xx_crtc_enable(struct drm_crtc
*crtc
)
3196 struct drm_device
*dev
= crtc
->dev
;
3197 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3198 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3199 int pipe
= intel_crtc
->pipe
;
3200 int plane
= intel_crtc
->plane
;
3202 if (intel_crtc
->active
)
3205 intel_crtc
->active
= true;
3206 intel_update_watermarks(dev
);
3208 intel_enable_pll(dev_priv
, pipe
);
3209 intel_enable_pipe(dev_priv
, pipe
, false);
3210 intel_enable_plane(dev_priv
, plane
, pipe
);
3212 intel_crtc_load_lut(crtc
);
3213 intel_update_fbc(dev
);
3215 /* Give the overlay scaler a chance to enable if it's on this pipe */
3216 intel_crtc_dpms_overlay(intel_crtc
, true);
3217 intel_crtc_update_cursor(crtc
, true);
3220 static void i9xx_crtc_disable(struct drm_crtc
*crtc
)
3222 struct drm_device
*dev
= crtc
->dev
;
3223 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3224 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3225 int pipe
= intel_crtc
->pipe
;
3226 int plane
= intel_crtc
->plane
;
3228 if (!intel_crtc
->active
)
3231 /* Give the overlay scaler a chance to disable if it's on this pipe */
3232 intel_crtc_wait_for_pending_flips(crtc
);
3233 drm_vblank_off(dev
, pipe
);
3234 intel_crtc_dpms_overlay(intel_crtc
, false);
3235 intel_crtc_update_cursor(crtc
, false);
3237 if (dev_priv
->cfb_plane
== plane
)
3238 intel_disable_fbc(dev
);
3240 intel_disable_plane(dev_priv
, plane
, pipe
);
3241 intel_disable_pipe(dev_priv
, pipe
);
3242 intel_disable_pll(dev_priv
, pipe
);
3244 intel_crtc
->active
= false;
3245 intel_update_fbc(dev
);
3246 intel_update_watermarks(dev
);
3247 intel_clear_scanline_wait(dev
);
3250 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3252 /* XXX: When our outputs are all unaware of DPMS modes other than off
3253 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3256 case DRM_MODE_DPMS_ON
:
3257 case DRM_MODE_DPMS_STANDBY
:
3258 case DRM_MODE_DPMS_SUSPEND
:
3259 i9xx_crtc_enable(crtc
);
3261 case DRM_MODE_DPMS_OFF
:
3262 i9xx_crtc_disable(crtc
);
3268 * Sets the power management mode of the pipe and plane.
3270 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3272 struct drm_device
*dev
= crtc
->dev
;
3273 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3274 struct drm_i915_master_private
*master_priv
;
3275 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3276 int pipe
= intel_crtc
->pipe
;
3279 if (intel_crtc
->dpms_mode
== mode
)
3282 intel_crtc
->dpms_mode
= mode
;
3284 dev_priv
->display
.dpms(crtc
, mode
);
3286 if (!dev
->primary
->master
)
3289 master_priv
= dev
->primary
->master
->driver_priv
;
3290 if (!master_priv
->sarea_priv
)
3293 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
3297 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3298 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3301 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3302 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3305 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe
));
3310 static void intel_crtc_disable(struct drm_crtc
*crtc
)
3312 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3313 struct drm_device
*dev
= crtc
->dev
;
3315 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
3318 mutex_lock(&dev
->struct_mutex
);
3319 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
3320 mutex_unlock(&dev
->struct_mutex
);
3324 /* Prepare for a mode set.
3326 * Note we could be a lot smarter here. We need to figure out which outputs
3327 * will be enabled, which disabled (in short, how the config will changes)
3328 * and perform the minimum necessary steps to accomplish that, e.g. updating
3329 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3330 * panel fitting is in the proper state, etc.
3332 static void i9xx_crtc_prepare(struct drm_crtc
*crtc
)
3334 i9xx_crtc_disable(crtc
);
3337 static void i9xx_crtc_commit(struct drm_crtc
*crtc
)
3339 i9xx_crtc_enable(crtc
);
3342 static void ironlake_crtc_prepare(struct drm_crtc
*crtc
)
3344 ironlake_crtc_disable(crtc
);
3347 static void ironlake_crtc_commit(struct drm_crtc
*crtc
)
3349 ironlake_crtc_enable(crtc
);
3352 void intel_encoder_prepare(struct drm_encoder
*encoder
)
3354 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3355 /* lvds has its own version of prepare see intel_lvds_prepare */
3356 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
3359 void intel_encoder_commit(struct drm_encoder
*encoder
)
3361 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3362 struct drm_device
*dev
= encoder
->dev
;
3363 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
3364 struct intel_crtc
*intel_crtc
= to_intel_crtc(intel_encoder
->base
.crtc
);
3366 /* lvds has its own version of commit see intel_lvds_commit */
3367 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3369 if (HAS_PCH_CPT(dev
))
3370 intel_cpt_verify_modeset(dev
, intel_crtc
->pipe
);
3373 void intel_encoder_destroy(struct drm_encoder
*encoder
)
3375 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
3377 drm_encoder_cleanup(encoder
);
3378 kfree(intel_encoder
);
3381 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
3382 struct drm_display_mode
*mode
,
3383 struct drm_display_mode
*adjusted_mode
)
3385 struct drm_device
*dev
= crtc
->dev
;
3387 if (HAS_PCH_SPLIT(dev
)) {
3388 /* FDI link clock is fixed at 2.7G */
3389 if (mode
->clock
* 3 > IRONLAKE_FDI_FREQ
* 4)
3393 /* XXX some encoders set the crtcinfo, others don't.
3394 * Obviously we need some form of conflict resolution here...
3396 if (adjusted_mode
->crtc_htotal
== 0)
3397 drm_mode_set_crtcinfo(adjusted_mode
, 0);
3402 static int i945_get_display_clock_speed(struct drm_device
*dev
)
3407 static int i915_get_display_clock_speed(struct drm_device
*dev
)
3412 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
3417 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
3421 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3423 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
3426 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
3427 case GC_DISPLAY_CLOCK_333_MHZ
:
3430 case GC_DISPLAY_CLOCK_190_200_MHZ
:
3436 static int i865_get_display_clock_speed(struct drm_device
*dev
)
3441 static int i855_get_display_clock_speed(struct drm_device
*dev
)
3444 /* Assume that the hardware is in the high speed state. This
3445 * should be the default.
3447 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
3448 case GC_CLOCK_133_200
:
3449 case GC_CLOCK_100_200
:
3451 case GC_CLOCK_166_250
:
3453 case GC_CLOCK_100_133
:
3457 /* Shouldn't happen */
3461 static int i830_get_display_clock_speed(struct drm_device
*dev
)
3475 fdi_reduce_ratio(u32
*num
, u32
*den
)
3477 while (*num
> 0xffffff || *den
> 0xffffff) {
3484 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
3485 int link_clock
, struct fdi_m_n
*m_n
)
3487 m_n
->tu
= 64; /* default size */
3489 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3490 m_n
->gmch_m
= bits_per_pixel
* pixel_clock
;
3491 m_n
->gmch_n
= link_clock
* nlanes
* 8;
3492 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
3494 m_n
->link_m
= pixel_clock
;
3495 m_n
->link_n
= link_clock
;
3496 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
3500 struct intel_watermark_params
{
3501 unsigned long fifo_size
;
3502 unsigned long max_wm
;
3503 unsigned long default_wm
;
3504 unsigned long guard_size
;
3505 unsigned long cacheline_size
;
3508 /* Pineview has different values for various configs */
3509 static const struct intel_watermark_params pineview_display_wm
= {
3510 PINEVIEW_DISPLAY_FIFO
,
3514 PINEVIEW_FIFO_LINE_SIZE
3516 static const struct intel_watermark_params pineview_display_hplloff_wm
= {
3517 PINEVIEW_DISPLAY_FIFO
,
3519 PINEVIEW_DFT_HPLLOFF_WM
,
3521 PINEVIEW_FIFO_LINE_SIZE
3523 static const struct intel_watermark_params pineview_cursor_wm
= {
3524 PINEVIEW_CURSOR_FIFO
,
3525 PINEVIEW_CURSOR_MAX_WM
,
3526 PINEVIEW_CURSOR_DFT_WM
,
3527 PINEVIEW_CURSOR_GUARD_WM
,
3528 PINEVIEW_FIFO_LINE_SIZE
,
3530 static const struct intel_watermark_params pineview_cursor_hplloff_wm
= {
3531 PINEVIEW_CURSOR_FIFO
,
3532 PINEVIEW_CURSOR_MAX_WM
,
3533 PINEVIEW_CURSOR_DFT_WM
,
3534 PINEVIEW_CURSOR_GUARD_WM
,
3535 PINEVIEW_FIFO_LINE_SIZE
3537 static const struct intel_watermark_params g4x_wm_info
= {
3544 static const struct intel_watermark_params g4x_cursor_wm_info
= {
3551 static const struct intel_watermark_params i965_cursor_wm_info
= {
3556 I915_FIFO_LINE_SIZE
,
3558 static const struct intel_watermark_params i945_wm_info
= {
3565 static const struct intel_watermark_params i915_wm_info
= {
3572 static const struct intel_watermark_params i855_wm_info
= {
3579 static const struct intel_watermark_params i830_wm_info
= {
3587 static const struct intel_watermark_params ironlake_display_wm_info
= {
3594 static const struct intel_watermark_params ironlake_cursor_wm_info
= {
3601 static const struct intel_watermark_params ironlake_display_srwm_info
= {
3602 ILK_DISPLAY_SR_FIFO
,
3603 ILK_DISPLAY_MAX_SRWM
,
3604 ILK_DISPLAY_DFT_SRWM
,
3608 static const struct intel_watermark_params ironlake_cursor_srwm_info
= {
3610 ILK_CURSOR_MAX_SRWM
,
3611 ILK_CURSOR_DFT_SRWM
,
3616 static const struct intel_watermark_params sandybridge_display_wm_info
= {
3623 static const struct intel_watermark_params sandybridge_cursor_wm_info
= {
3630 static const struct intel_watermark_params sandybridge_display_srwm_info
= {
3631 SNB_DISPLAY_SR_FIFO
,
3632 SNB_DISPLAY_MAX_SRWM
,
3633 SNB_DISPLAY_DFT_SRWM
,
3637 static const struct intel_watermark_params sandybridge_cursor_srwm_info
= {
3639 SNB_CURSOR_MAX_SRWM
,
3640 SNB_CURSOR_DFT_SRWM
,
3647 * intel_calculate_wm - calculate watermark level
3648 * @clock_in_khz: pixel clock
3649 * @wm: chip FIFO params
3650 * @pixel_size: display pixel size
3651 * @latency_ns: memory latency for the platform
3653 * Calculate the watermark level (the level at which the display plane will
3654 * start fetching from memory again). Each chip has a different display
3655 * FIFO size and allocation, so the caller needs to figure that out and pass
3656 * in the correct intel_watermark_params structure.
3658 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3659 * on the pixel size. When it reaches the watermark level, it'll start
3660 * fetching FIFO line sized based chunks from memory until the FIFO fills
3661 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3662 * will occur, and a display engine hang could result.
3664 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
3665 const struct intel_watermark_params
*wm
,
3668 unsigned long latency_ns
)
3670 long entries_required
, wm_size
;
3673 * Note: we need to make sure we don't overflow for various clock &
3675 * clocks go from a few thousand to several hundred thousand.
3676 * latency is usually a few thousand
3678 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
3680 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
3682 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required
);
3684 wm_size
= fifo_size
- (entries_required
+ wm
->guard_size
);
3686 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size
);
3688 /* Don't promote wm_size to unsigned... */
3689 if (wm_size
> (long)wm
->max_wm
)
3690 wm_size
= wm
->max_wm
;
3692 wm_size
= wm
->default_wm
;
3696 struct cxsr_latency
{
3699 unsigned long fsb_freq
;
3700 unsigned long mem_freq
;
3701 unsigned long display_sr
;
3702 unsigned long display_hpll_disable
;
3703 unsigned long cursor_sr
;
3704 unsigned long cursor_hpll_disable
;
3707 static const struct cxsr_latency cxsr_latency_table
[] = {
3708 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3709 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3710 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3711 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3712 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3714 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3715 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3716 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3717 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3718 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3720 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3721 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3722 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3723 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3724 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3726 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3727 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3728 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3729 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3730 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3732 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3733 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3734 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3735 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3736 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3738 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3739 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3740 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3741 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3742 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3745 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
3750 const struct cxsr_latency
*latency
;
3753 if (fsb
== 0 || mem
== 0)
3756 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
3757 latency
= &cxsr_latency_table
[i
];
3758 if (is_desktop
== latency
->is_desktop
&&
3759 is_ddr3
== latency
->is_ddr3
&&
3760 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
3764 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3769 static void pineview_disable_cxsr(struct drm_device
*dev
)
3771 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3773 /* deactivate cxsr */
3774 I915_WRITE(DSPFW3
, I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
);
3778 * Latency for FIFO fetches is dependent on several factors:
3779 * - memory configuration (speed, channels)
3781 * - current MCH state
3782 * It can be fairly high in some situations, so here we assume a fairly
3783 * pessimal value. It's a tradeoff between extra memory fetches (if we
3784 * set this value too high, the FIFO will fetch frequently to stay full)
3785 * and power consumption (set it too low to save power and we might see
3786 * FIFO underruns and display "flicker").
3788 * A value of 5us seems to be a good balance; safe for very low end
3789 * platforms but not overly aggressive on lower latency configs.
3791 static const int latency_ns
= 5000;
3793 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
3795 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3796 uint32_t dsparb
= I915_READ(DSPARB
);
3799 size
= dsparb
& 0x7f;
3801 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
3803 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3804 plane
? "B" : "A", size
);
3809 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
3811 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3812 uint32_t dsparb
= I915_READ(DSPARB
);
3815 size
= dsparb
& 0x1ff;
3817 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
3818 size
>>= 1; /* Convert to cachelines */
3820 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3821 plane
? "B" : "A", size
);
3826 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
3828 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3829 uint32_t dsparb
= I915_READ(DSPARB
);
3832 size
= dsparb
& 0x7f;
3833 size
>>= 2; /* Convert to cachelines */
3835 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3842 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
3844 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3845 uint32_t dsparb
= I915_READ(DSPARB
);
3848 size
= dsparb
& 0x7f;
3849 size
>>= 1; /* Convert to cachelines */
3851 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3852 plane
? "B" : "A", size
);
3857 static struct drm_crtc
*single_enabled_crtc(struct drm_device
*dev
)
3859 struct drm_crtc
*crtc
, *enabled
= NULL
;
3861 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3862 if (crtc
->enabled
&& crtc
->fb
) {
3872 static void pineview_update_wm(struct drm_device
*dev
)
3874 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3875 struct drm_crtc
*crtc
;
3876 const struct cxsr_latency
*latency
;
3880 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
3881 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
3883 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3884 pineview_disable_cxsr(dev
);
3888 crtc
= single_enabled_crtc(dev
);
3890 int clock
= crtc
->mode
.clock
;
3891 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3894 wm
= intel_calculate_wm(clock
, &pineview_display_wm
,
3895 pineview_display_wm
.fifo_size
,
3896 pixel_size
, latency
->display_sr
);
3897 reg
= I915_READ(DSPFW1
);
3898 reg
&= ~DSPFW_SR_MASK
;
3899 reg
|= wm
<< DSPFW_SR_SHIFT
;
3900 I915_WRITE(DSPFW1
, reg
);
3901 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
3904 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
,
3905 pineview_display_wm
.fifo_size
,
3906 pixel_size
, latency
->cursor_sr
);
3907 reg
= I915_READ(DSPFW3
);
3908 reg
&= ~DSPFW_CURSOR_SR_MASK
;
3909 reg
|= (wm
& 0x3f) << DSPFW_CURSOR_SR_SHIFT
;
3910 I915_WRITE(DSPFW3
, reg
);
3912 /* Display HPLL off SR */
3913 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
3914 pineview_display_hplloff_wm
.fifo_size
,
3915 pixel_size
, latency
->display_hpll_disable
);
3916 reg
= I915_READ(DSPFW3
);
3917 reg
&= ~DSPFW_HPLL_SR_MASK
;
3918 reg
|= wm
& DSPFW_HPLL_SR_MASK
;
3919 I915_WRITE(DSPFW3
, reg
);
3921 /* cursor HPLL off SR */
3922 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
,
3923 pineview_display_hplloff_wm
.fifo_size
,
3924 pixel_size
, latency
->cursor_hpll_disable
);
3925 reg
= I915_READ(DSPFW3
);
3926 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
3927 reg
|= (wm
& 0x3f) << DSPFW_HPLL_CURSOR_SHIFT
;
3928 I915_WRITE(DSPFW3
, reg
);
3929 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
3933 I915_READ(DSPFW3
) | PINEVIEW_SELF_REFRESH_EN
);
3934 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3936 pineview_disable_cxsr(dev
);
3937 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3941 static bool g4x_compute_wm0(struct drm_device
*dev
,
3943 const struct intel_watermark_params
*display
,
3944 int display_latency_ns
,
3945 const struct intel_watermark_params
*cursor
,
3946 int cursor_latency_ns
,
3950 struct drm_crtc
*crtc
;
3951 int htotal
, hdisplay
, clock
, pixel_size
;
3952 int line_time_us
, line_count
;
3953 int entries
, tlb_miss
;
3955 crtc
= intel_get_crtc_for_plane(dev
, plane
);
3956 if (crtc
->fb
== NULL
|| !crtc
->enabled
) {
3957 *cursor_wm
= cursor
->guard_size
;
3958 *plane_wm
= display
->guard_size
;
3962 htotal
= crtc
->mode
.htotal
;
3963 hdisplay
= crtc
->mode
.hdisplay
;
3964 clock
= crtc
->mode
.clock
;
3965 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3967 /* Use the small buffer method to calculate plane watermark */
3968 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
3969 tlb_miss
= display
->fifo_size
*display
->cacheline_size
- hdisplay
* 8;
3971 entries
+= tlb_miss
;
3972 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
3973 *plane_wm
= entries
+ display
->guard_size
;
3974 if (*plane_wm
> (int)display
->max_wm
)
3975 *plane_wm
= display
->max_wm
;
3977 /* Use the large buffer method to calculate cursor watermark */
3978 line_time_us
= ((htotal
* 1000) / clock
);
3979 line_count
= (cursor_latency_ns
/ line_time_us
+ 1000) / 1000;
3980 entries
= line_count
* 64 * pixel_size
;
3981 tlb_miss
= cursor
->fifo_size
*cursor
->cacheline_size
- hdisplay
* 8;
3983 entries
+= tlb_miss
;
3984 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
3985 *cursor_wm
= entries
+ cursor
->guard_size
;
3986 if (*cursor_wm
> (int)cursor
->max_wm
)
3987 *cursor_wm
= (int)cursor
->max_wm
;
3993 * Check the wm result.
3995 * If any calculated watermark values is larger than the maximum value that
3996 * can be programmed into the associated watermark register, that watermark
3999 static bool g4x_check_srwm(struct drm_device
*dev
,
4000 int display_wm
, int cursor_wm
,
4001 const struct intel_watermark_params
*display
,
4002 const struct intel_watermark_params
*cursor
)
4004 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4005 display_wm
, cursor_wm
);
4007 if (display_wm
> display
->max_wm
) {
4008 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4009 display_wm
, display
->max_wm
);
4013 if (cursor_wm
> cursor
->max_wm
) {
4014 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4015 cursor_wm
, cursor
->max_wm
);
4019 if (!(display_wm
|| cursor_wm
)) {
4020 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4027 static bool g4x_compute_srwm(struct drm_device
*dev
,
4030 const struct intel_watermark_params
*display
,
4031 const struct intel_watermark_params
*cursor
,
4032 int *display_wm
, int *cursor_wm
)
4034 struct drm_crtc
*crtc
;
4035 int hdisplay
, htotal
, pixel_size
, clock
;
4036 unsigned long line_time_us
;
4037 int line_count
, line_size
;
4042 *display_wm
= *cursor_wm
= 0;
4046 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4047 hdisplay
= crtc
->mode
.hdisplay
;
4048 htotal
= crtc
->mode
.htotal
;
4049 clock
= crtc
->mode
.clock
;
4050 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4052 line_time_us
= (htotal
* 1000) / clock
;
4053 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
4054 line_size
= hdisplay
* pixel_size
;
4056 /* Use the minimum of the small and large buffer method for primary */
4057 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
4058 large
= line_count
* line_size
;
4060 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
4061 *display_wm
= entries
+ display
->guard_size
;
4063 /* calculate the self-refresh watermark for display cursor */
4064 entries
= line_count
* pixel_size
* 64;
4065 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
4066 *cursor_wm
= entries
+ cursor
->guard_size
;
4068 return g4x_check_srwm(dev
,
4069 *display_wm
, *cursor_wm
,
4073 #define single_plane_enabled(mask) is_power_of_2(mask)
4075 static void g4x_update_wm(struct drm_device
*dev
)
4077 static const int sr_latency_ns
= 12000;
4078 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4079 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
4080 int plane_sr
, cursor_sr
;
4081 unsigned int enabled
= 0;
4083 if (g4x_compute_wm0(dev
, 0,
4084 &g4x_wm_info
, latency_ns
,
4085 &g4x_cursor_wm_info
, latency_ns
,
4086 &planea_wm
, &cursora_wm
))
4089 if (g4x_compute_wm0(dev
, 1,
4090 &g4x_wm_info
, latency_ns
,
4091 &g4x_cursor_wm_info
, latency_ns
,
4092 &planeb_wm
, &cursorb_wm
))
4095 plane_sr
= cursor_sr
= 0;
4096 if (single_plane_enabled(enabled
) &&
4097 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
4100 &g4x_cursor_wm_info
,
4101 &plane_sr
, &cursor_sr
))
4102 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
4104 I915_WRITE(FW_BLC_SELF
,
4105 I915_READ(FW_BLC_SELF
) & ~FW_BLC_SELF_EN
);
4107 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4108 planea_wm
, cursora_wm
,
4109 planeb_wm
, cursorb_wm
,
4110 plane_sr
, cursor_sr
);
4113 (plane_sr
<< DSPFW_SR_SHIFT
) |
4114 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
4115 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) |
4118 (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
4119 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
4120 /* HPLL off in SR has some issues on G4x... disable it */
4122 (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
4123 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
4126 static void i965_update_wm(struct drm_device
*dev
)
4128 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4129 struct drm_crtc
*crtc
;
4133 /* Calc sr entries for one plane configs */
4134 crtc
= single_enabled_crtc(dev
);
4136 /* self-refresh has much higher latency */
4137 static const int sr_latency_ns
= 12000;
4138 int clock
= crtc
->mode
.clock
;
4139 int htotal
= crtc
->mode
.htotal
;
4140 int hdisplay
= crtc
->mode
.hdisplay
;
4141 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4142 unsigned long line_time_us
;
4145 line_time_us
= ((htotal
* 1000) / clock
);
4147 /* Use ns/us then divide to preserve precision */
4148 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4149 pixel_size
* hdisplay
;
4150 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
4151 srwm
= I965_FIFO_SIZE
- entries
;
4155 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4158 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4160 entries
= DIV_ROUND_UP(entries
,
4161 i965_cursor_wm_info
.cacheline_size
);
4162 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
4163 (entries
+ i965_cursor_wm_info
.guard_size
);
4165 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
4166 cursor_sr
= i965_cursor_wm_info
.max_wm
;
4168 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4169 "cursor %d\n", srwm
, cursor_sr
);
4171 if (IS_CRESTLINE(dev
))
4172 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
4174 /* Turn off self refresh if both pipes are enabled */
4175 if (IS_CRESTLINE(dev
))
4176 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
4180 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4183 /* 965 has limitations... */
4184 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) |
4185 (8 << 16) | (8 << 8) | (8 << 0));
4186 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
4187 /* update cursor SR watermark */
4188 I915_WRITE(DSPFW3
, (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
4191 static void i9xx_update_wm(struct drm_device
*dev
)
4193 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4194 const struct intel_watermark_params
*wm_info
;
4199 int planea_wm
, planeb_wm
;
4200 struct drm_crtc
*crtc
, *enabled
= NULL
;
4203 wm_info
= &i945_wm_info
;
4204 else if (!IS_GEN2(dev
))
4205 wm_info
= &i915_wm_info
;
4207 wm_info
= &i855_wm_info
;
4209 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
4210 crtc
= intel_get_crtc_for_plane(dev
, 0);
4211 if (crtc
->enabled
&& crtc
->fb
) {
4212 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
,
4214 crtc
->fb
->bits_per_pixel
/ 8,
4218 planea_wm
= fifo_size
- wm_info
->guard_size
;
4220 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
4221 crtc
= intel_get_crtc_for_plane(dev
, 1);
4222 if (crtc
->enabled
&& crtc
->fb
) {
4223 planeb_wm
= intel_calculate_wm(crtc
->mode
.clock
,
4225 crtc
->fb
->bits_per_pixel
/ 8,
4227 if (enabled
== NULL
)
4232 planeb_wm
= fifo_size
- wm_info
->guard_size
;
4234 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
4237 * Overlay gets an aggressive default since video jitter is bad.
4241 /* Play safe and disable self-refresh before adjusting watermarks. */
4242 if (IS_I945G(dev
) || IS_I945GM(dev
))
4243 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| 0);
4244 else if (IS_I915GM(dev
))
4245 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
4247 /* Calc sr entries for one plane configs */
4248 if (HAS_FW_BLC(dev
) && enabled
) {
4249 /* self-refresh has much higher latency */
4250 static const int sr_latency_ns
= 6000;
4251 int clock
= enabled
->mode
.clock
;
4252 int htotal
= enabled
->mode
.htotal
;
4253 int hdisplay
= enabled
->mode
.hdisplay
;
4254 int pixel_size
= enabled
->fb
->bits_per_pixel
/ 8;
4255 unsigned long line_time_us
;
4258 line_time_us
= (htotal
* 1000) / clock
;
4260 /* Use ns/us then divide to preserve precision */
4261 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4262 pixel_size
* hdisplay
;
4263 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
4264 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries
);
4265 srwm
= wm_info
->fifo_size
- entries
;
4269 if (IS_I945G(dev
) || IS_I945GM(dev
))
4270 I915_WRITE(FW_BLC_SELF
,
4271 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
4272 else if (IS_I915GM(dev
))
4273 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
4276 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4277 planea_wm
, planeb_wm
, cwm
, srwm
);
4279 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
4280 fwater_hi
= (cwm
& 0x1f);
4282 /* Set request length to 8 cachelines per fetch */
4283 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
4284 fwater_hi
= fwater_hi
| (1 << 8);
4286 I915_WRITE(FW_BLC
, fwater_lo
);
4287 I915_WRITE(FW_BLC2
, fwater_hi
);
4289 if (HAS_FW_BLC(dev
)) {
4291 if (IS_I945G(dev
) || IS_I945GM(dev
))
4292 I915_WRITE(FW_BLC_SELF
,
4293 FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4294 else if (IS_I915GM(dev
))
4295 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
4296 DRM_DEBUG_KMS("memory self refresh enabled\n");
4298 DRM_DEBUG_KMS("memory self refresh disabled\n");
4302 static void i830_update_wm(struct drm_device
*dev
)
4304 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4305 struct drm_crtc
*crtc
;
4309 crtc
= single_enabled_crtc(dev
);
4313 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
, &i830_wm_info
,
4314 dev_priv
->display
.get_fifo_size(dev
, 0),
4315 crtc
->fb
->bits_per_pixel
/ 8,
4317 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
4318 fwater_lo
|= (3<<8) | planea_wm
;
4320 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
4322 I915_WRITE(FW_BLC
, fwater_lo
);
4325 #define ILK_LP0_PLANE_LATENCY 700
4326 #define ILK_LP0_CURSOR_LATENCY 1300
4329 * Check the wm result.
4331 * If any calculated watermark values is larger than the maximum value that
4332 * can be programmed into the associated watermark register, that watermark
4335 static bool ironlake_check_srwm(struct drm_device
*dev
, int level
,
4336 int fbc_wm
, int display_wm
, int cursor_wm
,
4337 const struct intel_watermark_params
*display
,
4338 const struct intel_watermark_params
*cursor
)
4340 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4342 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4343 " cursor %d\n", level
, display_wm
, fbc_wm
, cursor_wm
);
4345 if (fbc_wm
> SNB_FBC_MAX_SRWM
) {
4346 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4347 fbc_wm
, SNB_FBC_MAX_SRWM
, level
);
4349 /* fbc has it's own way to disable FBC WM */
4350 I915_WRITE(DISP_ARB_CTL
,
4351 I915_READ(DISP_ARB_CTL
) | DISP_FBC_WM_DIS
);
4355 if (display_wm
> display
->max_wm
) {
4356 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4357 display_wm
, SNB_DISPLAY_MAX_SRWM
, level
);
4361 if (cursor_wm
> cursor
->max_wm
) {
4362 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4363 cursor_wm
, SNB_CURSOR_MAX_SRWM
, level
);
4367 if (!(fbc_wm
|| display_wm
|| cursor_wm
)) {
4368 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level
, level
);
4376 * Compute watermark values of WM[1-3],
4378 static bool ironlake_compute_srwm(struct drm_device
*dev
, int level
, int plane
,
4380 const struct intel_watermark_params
*display
,
4381 const struct intel_watermark_params
*cursor
,
4382 int *fbc_wm
, int *display_wm
, int *cursor_wm
)
4384 struct drm_crtc
*crtc
;
4385 unsigned long line_time_us
;
4386 int hdisplay
, htotal
, pixel_size
, clock
;
4387 int line_count
, line_size
;
4392 *fbc_wm
= *display_wm
= *cursor_wm
= 0;
4396 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4397 hdisplay
= crtc
->mode
.hdisplay
;
4398 htotal
= crtc
->mode
.htotal
;
4399 clock
= crtc
->mode
.clock
;
4400 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4402 line_time_us
= (htotal
* 1000) / clock
;
4403 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
4404 line_size
= hdisplay
* pixel_size
;
4406 /* Use the minimum of the small and large buffer method for primary */
4407 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
4408 large
= line_count
* line_size
;
4410 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
4411 *display_wm
= entries
+ display
->guard_size
;
4415 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4417 *fbc_wm
= DIV_ROUND_UP(*display_wm
* 64, line_size
) + 2;
4419 /* calculate the self-refresh watermark for display cursor */
4420 entries
= line_count
* pixel_size
* 64;
4421 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
4422 *cursor_wm
= entries
+ cursor
->guard_size
;
4424 return ironlake_check_srwm(dev
, level
,
4425 *fbc_wm
, *display_wm
, *cursor_wm
,
4429 static void ironlake_update_wm(struct drm_device
*dev
)
4431 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4432 int fbc_wm
, plane_wm
, cursor_wm
;
4433 unsigned int enabled
;
4436 if (g4x_compute_wm0(dev
, 0,
4437 &ironlake_display_wm_info
,
4438 ILK_LP0_PLANE_LATENCY
,
4439 &ironlake_cursor_wm_info
,
4440 ILK_LP0_CURSOR_LATENCY
,
4441 &plane_wm
, &cursor_wm
)) {
4442 I915_WRITE(WM0_PIPEA_ILK
,
4443 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4444 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4445 " plane %d, " "cursor: %d\n",
4446 plane_wm
, cursor_wm
);
4450 if (g4x_compute_wm0(dev
, 1,
4451 &ironlake_display_wm_info
,
4452 ILK_LP0_PLANE_LATENCY
,
4453 &ironlake_cursor_wm_info
,
4454 ILK_LP0_CURSOR_LATENCY
,
4455 &plane_wm
, &cursor_wm
)) {
4456 I915_WRITE(WM0_PIPEB_ILK
,
4457 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4458 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4459 " plane %d, cursor: %d\n",
4460 plane_wm
, cursor_wm
);
4465 * Calculate and update the self-refresh watermark only when one
4466 * display plane is used.
4468 I915_WRITE(WM3_LP_ILK
, 0);
4469 I915_WRITE(WM2_LP_ILK
, 0);
4470 I915_WRITE(WM1_LP_ILK
, 0);
4472 if (!single_plane_enabled(enabled
))
4474 enabled
= ffs(enabled
) - 1;
4477 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4478 ILK_READ_WM1_LATENCY() * 500,
4479 &ironlake_display_srwm_info
,
4480 &ironlake_cursor_srwm_info
,
4481 &fbc_wm
, &plane_wm
, &cursor_wm
))
4484 I915_WRITE(WM1_LP_ILK
,
4486 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4487 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4488 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4492 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4493 ILK_READ_WM2_LATENCY() * 500,
4494 &ironlake_display_srwm_info
,
4495 &ironlake_cursor_srwm_info
,
4496 &fbc_wm
, &plane_wm
, &cursor_wm
))
4499 I915_WRITE(WM2_LP_ILK
,
4501 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4502 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4503 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4507 * WM3 is unsupported on ILK, probably because we don't have latency
4508 * data for that power state
4512 static void sandybridge_update_wm(struct drm_device
*dev
)
4514 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4515 int latency
= SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4516 int fbc_wm
, plane_wm
, cursor_wm
;
4517 unsigned int enabled
;
4520 if (g4x_compute_wm0(dev
, 0,
4521 &sandybridge_display_wm_info
, latency
,
4522 &sandybridge_cursor_wm_info
, latency
,
4523 &plane_wm
, &cursor_wm
)) {
4524 I915_WRITE(WM0_PIPEA_ILK
,
4525 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4526 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4527 " plane %d, " "cursor: %d\n",
4528 plane_wm
, cursor_wm
);
4532 if (g4x_compute_wm0(dev
, 1,
4533 &sandybridge_display_wm_info
, latency
,
4534 &sandybridge_cursor_wm_info
, latency
,
4535 &plane_wm
, &cursor_wm
)) {
4536 I915_WRITE(WM0_PIPEB_ILK
,
4537 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4538 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4539 " plane %d, cursor: %d\n",
4540 plane_wm
, cursor_wm
);
4544 /* IVB has 3 pipes */
4545 if (IS_IVYBRIDGE(dev
) &&
4546 g4x_compute_wm0(dev
, 2,
4547 &sandybridge_display_wm_info
, latency
,
4548 &sandybridge_cursor_wm_info
, latency
,
4549 &plane_wm
, &cursor_wm
)) {
4550 I915_WRITE(WM0_PIPEC_IVB
,
4551 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4552 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4553 " plane %d, cursor: %d\n",
4554 plane_wm
, cursor_wm
);
4559 * Calculate and update the self-refresh watermark only when one
4560 * display plane is used.
4562 * SNB support 3 levels of watermark.
4564 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4565 * and disabled in the descending order
4568 I915_WRITE(WM3_LP_ILK
, 0);
4569 I915_WRITE(WM2_LP_ILK
, 0);
4570 I915_WRITE(WM1_LP_ILK
, 0);
4572 if (!single_plane_enabled(enabled
))
4574 enabled
= ffs(enabled
) - 1;
4577 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4578 SNB_READ_WM1_LATENCY() * 500,
4579 &sandybridge_display_srwm_info
,
4580 &sandybridge_cursor_srwm_info
,
4581 &fbc_wm
, &plane_wm
, &cursor_wm
))
4584 I915_WRITE(WM1_LP_ILK
,
4586 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4587 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4588 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4592 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4593 SNB_READ_WM2_LATENCY() * 500,
4594 &sandybridge_display_srwm_info
,
4595 &sandybridge_cursor_srwm_info
,
4596 &fbc_wm
, &plane_wm
, &cursor_wm
))
4599 I915_WRITE(WM2_LP_ILK
,
4601 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4602 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4603 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4607 if (!ironlake_compute_srwm(dev
, 3, enabled
,
4608 SNB_READ_WM3_LATENCY() * 500,
4609 &sandybridge_display_srwm_info
,
4610 &sandybridge_cursor_srwm_info
,
4611 &fbc_wm
, &plane_wm
, &cursor_wm
))
4614 I915_WRITE(WM3_LP_ILK
,
4616 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4617 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4618 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4623 * intel_update_watermarks - update FIFO watermark values based on current modes
4625 * Calculate watermark values for the various WM regs based on current mode
4626 * and plane configuration.
4628 * There are several cases to deal with here:
4629 * - normal (i.e. non-self-refresh)
4630 * - self-refresh (SR) mode
4631 * - lines are large relative to FIFO size (buffer can hold up to 2)
4632 * - lines are small relative to FIFO size (buffer can hold more than 2
4633 * lines), so need to account for TLB latency
4635 * The normal calculation is:
4636 * watermark = dotclock * bytes per pixel * latency
4637 * where latency is platform & configuration dependent (we assume pessimal
4640 * The SR calculation is:
4641 * watermark = (trunc(latency/line time)+1) * surface width *
4644 * line time = htotal / dotclock
4645 * surface width = hdisplay for normal plane and 64 for cursor
4646 * and latency is assumed to be high, as above.
4648 * The final value programmed to the register should always be rounded up,
4649 * and include an extra 2 entries to account for clock crossings.
4651 * We don't use the sprite, so we can ignore that. And on Crestline we have
4652 * to set the non-SR watermarks to 8.
4654 static void intel_update_watermarks(struct drm_device
*dev
)
4656 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4658 if (dev_priv
->display
.update_wm
)
4659 dev_priv
->display
.update_wm(dev
);
4662 static inline bool intel_panel_use_ssc(struct drm_i915_private
*dev_priv
)
4664 if (i915_panel_use_ssc
>= 0)
4665 return i915_panel_use_ssc
!= 0;
4666 return dev_priv
->lvds_use_ssc
4667 && !(dev_priv
->quirks
& QUIRK_LVDS_SSC_DISABLE
);
4671 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4672 * @crtc: CRTC structure
4674 * A pipe may be connected to one or more outputs. Based on the depth of the
4675 * attached framebuffer, choose a good color depth to use on the pipe.
4677 * If possible, match the pipe depth to the fb depth. In some cases, this
4678 * isn't ideal, because the connected output supports a lesser or restricted
4679 * set of depths. Resolve that here:
4680 * LVDS typically supports only 6bpc, so clamp down in that case
4681 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4682 * Displays may support a restricted set as well, check EDID and clamp as
4686 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4687 * true if they don't match).
4689 static bool intel_choose_pipe_bpp_dither(struct drm_crtc
*crtc
,
4690 unsigned int *pipe_bpp
)
4692 struct drm_device
*dev
= crtc
->dev
;
4693 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4694 struct drm_encoder
*encoder
;
4695 struct drm_connector
*connector
;
4696 unsigned int display_bpc
= UINT_MAX
, bpc
;
4698 /* Walk the encoders & connectors on this crtc, get min bpc */
4699 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
4700 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
4702 if (encoder
->crtc
!= crtc
)
4705 if (intel_encoder
->type
== INTEL_OUTPUT_LVDS
) {
4706 unsigned int lvds_bpc
;
4708 if ((I915_READ(PCH_LVDS
) & LVDS_A3_POWER_MASK
) ==
4714 if (lvds_bpc
< display_bpc
) {
4715 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc
, lvds_bpc
);
4716 display_bpc
= lvds_bpc
;
4721 if (intel_encoder
->type
== INTEL_OUTPUT_EDP
) {
4722 /* Use VBT settings if we have an eDP panel */
4723 unsigned int edp_bpc
= dev_priv
->edp
.bpp
/ 3;
4725 if (edp_bpc
< display_bpc
) {
4726 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc
, edp_bpc
);
4727 display_bpc
= edp_bpc
;
4732 /* Not one of the known troublemakers, check the EDID */
4733 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
,
4735 if (connector
->encoder
!= encoder
)
4738 /* Don't use an invalid EDID bpc value */
4739 if (connector
->display_info
.bpc
&&
4740 connector
->display_info
.bpc
< display_bpc
) {
4741 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc
, connector
->display_info
.bpc
);
4742 display_bpc
= connector
->display_info
.bpc
;
4747 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4748 * through, clamp it down. (Note: >12bpc will be caught below.)
4750 if (intel_encoder
->type
== INTEL_OUTPUT_HDMI
) {
4751 if (display_bpc
> 8 && display_bpc
< 12) {
4752 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4755 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4762 * We could just drive the pipe at the highest bpc all the time and
4763 * enable dithering as needed, but that costs bandwidth. So choose
4764 * the minimum value that expresses the full color range of the fb but
4765 * also stays within the max display bpc discovered above.
4768 switch (crtc
->fb
->depth
) {
4770 bpc
= 8; /* since we go through a colormap */
4774 bpc
= 6; /* min is 18bpp */
4786 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4787 bpc
= min((unsigned int)8, display_bpc
);
4791 display_bpc
= min(display_bpc
, bpc
);
4793 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4796 *pipe_bpp
= display_bpc
* 3;
4798 return display_bpc
!= bpc
;
4801 static int i9xx_crtc_mode_set(struct drm_crtc
*crtc
,
4802 struct drm_display_mode
*mode
,
4803 struct drm_display_mode
*adjusted_mode
,
4805 struct drm_framebuffer
*old_fb
)
4807 struct drm_device
*dev
= crtc
->dev
;
4808 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4809 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4810 int pipe
= intel_crtc
->pipe
;
4811 int plane
= intel_crtc
->plane
;
4812 int refclk
, num_connectors
= 0;
4813 intel_clock_t clock
, reduced_clock
;
4814 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
4815 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
4816 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
4817 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
4818 struct intel_encoder
*encoder
;
4819 const intel_limit_t
*limit
;
4824 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
4825 if (encoder
->base
.crtc
!= crtc
)
4828 switch (encoder
->type
) {
4829 case INTEL_OUTPUT_LVDS
:
4832 case INTEL_OUTPUT_SDVO
:
4833 case INTEL_OUTPUT_HDMI
:
4835 if (encoder
->needs_tv_clock
)
4838 case INTEL_OUTPUT_DVO
:
4841 case INTEL_OUTPUT_TVOUT
:
4844 case INTEL_OUTPUT_ANALOG
:
4847 case INTEL_OUTPUT_DISPLAYPORT
:
4855 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
4856 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
4857 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4859 } else if (!IS_GEN2(dev
)) {
4866 * Returns a set of divisors for the desired target clock with the given
4867 * refclk, or FALSE. The returned values represent the clock equation:
4868 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4870 limit
= intel_limit(crtc
, refclk
);
4871 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
4873 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4877 /* Ensure that the cursor is valid for the new mode before changing... */
4878 intel_crtc_update_cursor(crtc
, true);
4880 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
4881 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
4882 dev_priv
->lvds_downclock
,
4885 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
4887 * If the different P is found, it means that we can't
4888 * switch the display clock by using the FP0/FP1.
4889 * In such case we will disable the LVDS downclock
4892 DRM_DEBUG_KMS("Different P is found for "
4893 "LVDS clock/downclock\n");
4894 has_reduced_clock
= 0;
4897 /* SDVO TV has fixed PLL values depend on its clock range,
4898 this mirrors vbios setting. */
4899 if (is_sdvo
&& is_tv
) {
4900 if (adjusted_mode
->clock
>= 100000
4901 && adjusted_mode
->clock
< 140500) {
4907 } else if (adjusted_mode
->clock
>= 140500
4908 && adjusted_mode
->clock
<= 200000) {
4917 if (IS_PINEVIEW(dev
)) {
4918 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
4919 if (has_reduced_clock
)
4920 fp2
= (1 << reduced_clock
.n
) << 16 |
4921 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
4923 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
4924 if (has_reduced_clock
)
4925 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
4929 dpll
= DPLL_VGA_MODE_DIS
;
4931 if (!IS_GEN2(dev
)) {
4933 dpll
|= DPLLB_MODE_LVDS
;
4935 dpll
|= DPLLB_MODE_DAC_SERIAL
;
4937 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
4938 if (pixel_multiplier
> 1) {
4939 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
4940 dpll
|= (pixel_multiplier
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
4942 dpll
|= DPLL_DVO_HIGH_SPEED
;
4945 dpll
|= DPLL_DVO_HIGH_SPEED
;
4947 /* compute bitmask from p1 value */
4948 if (IS_PINEVIEW(dev
))
4949 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
4951 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4952 if (IS_G4X(dev
) && has_reduced_clock
)
4953 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
4957 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
4960 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
4963 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
4966 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
4969 if (INTEL_INFO(dev
)->gen
>= 4)
4970 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
4973 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4976 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
4978 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4980 dpll
|= PLL_P2_DIVIDE_BY_4
;
4984 if (is_sdvo
&& is_tv
)
4985 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
4987 /* XXX: just matching BIOS for now */
4988 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4990 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
4991 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
4993 dpll
|= PLL_REF_INPUT_DREFCLK
;
4995 /* setup pipeconf */
4996 pipeconf
= I915_READ(PIPECONF(pipe
));
4998 /* Set up the display plane register */
4999 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
5001 /* Ironlake's plane is forced to pipe, bit 24 is to
5002 enable color space conversion */
5004 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
5006 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
5008 if (pipe
== 0 && INTEL_INFO(dev
)->gen
< 4) {
5009 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5012 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5016 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
5017 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
5019 pipeconf
&= ~PIPECONF_DOUBLE_WIDE
;
5022 dpll
|= DPLL_VCO_ENABLE
;
5024 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
5025 drm_mode_debug_printmodeline(mode
);
5027 I915_WRITE(FP0(pipe
), fp
);
5028 I915_WRITE(DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
5030 POSTING_READ(DPLL(pipe
));
5033 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5034 * This is an exception to the general rule that mode_set doesn't turn
5038 temp
= I915_READ(LVDS
);
5039 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
5041 temp
|= LVDS_PIPEB_SELECT
;
5043 temp
&= ~LVDS_PIPEB_SELECT
;
5045 /* set the corresponsding LVDS_BORDER bit */
5046 temp
|= dev_priv
->lvds_border_bits
;
5047 /* Set the B0-B3 data pairs corresponding to whether we're going to
5048 * set the DPLLs for dual-channel mode or not.
5051 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
5053 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
5055 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5056 * appropriately here, but we need to look more thoroughly into how
5057 * panels behave in the two modes.
5059 /* set the dithering flag on LVDS as needed */
5060 if (INTEL_INFO(dev
)->gen
>= 4) {
5061 if (dev_priv
->lvds_dither
)
5062 temp
|= LVDS_ENABLE_DITHER
;
5064 temp
&= ~LVDS_ENABLE_DITHER
;
5066 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
5067 lvds_sync
|= LVDS_HSYNC_POLARITY
;
5068 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
5069 lvds_sync
|= LVDS_VSYNC_POLARITY
;
5070 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
5072 char flags
[2] = "-+";
5073 DRM_INFO("Changing LVDS panel from "
5074 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5075 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
5076 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
5077 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
5078 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
5079 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
5082 I915_WRITE(LVDS
, temp
);
5086 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
5089 I915_WRITE(DPLL(pipe
), dpll
);
5091 /* Wait for the clocks to stabilize. */
5092 POSTING_READ(DPLL(pipe
));
5095 if (INTEL_INFO(dev
)->gen
>= 4) {
5098 temp
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5100 temp
= (temp
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
5104 I915_WRITE(DPLL_MD(pipe
), temp
);
5106 /* The pixel multiplier can only be updated once the
5107 * DPLL is enabled and the clocks are stable.
5109 * So write it again.
5111 I915_WRITE(DPLL(pipe
), dpll
);
5114 intel_crtc
->lowfreq_avail
= false;
5115 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
5116 I915_WRITE(FP1(pipe
), fp2
);
5117 intel_crtc
->lowfreq_avail
= true;
5118 if (HAS_PIPE_CXSR(dev
)) {
5119 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5120 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
5123 I915_WRITE(FP1(pipe
), fp
);
5124 if (HAS_PIPE_CXSR(dev
)) {
5125 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5126 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
5130 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
5131 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
5132 /* the chip adds 2 halflines automatically */
5133 adjusted_mode
->crtc_vdisplay
-= 1;
5134 adjusted_mode
->crtc_vtotal
-= 1;
5135 adjusted_mode
->crtc_vblank_start
-= 1;
5136 adjusted_mode
->crtc_vblank_end
-= 1;
5137 adjusted_mode
->crtc_vsync_end
-= 1;
5138 adjusted_mode
->crtc_vsync_start
-= 1;
5140 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
5142 I915_WRITE(HTOTAL(pipe
),
5143 (adjusted_mode
->crtc_hdisplay
- 1) |
5144 ((adjusted_mode
->crtc_htotal
- 1) << 16));
5145 I915_WRITE(HBLANK(pipe
),
5146 (adjusted_mode
->crtc_hblank_start
- 1) |
5147 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
5148 I915_WRITE(HSYNC(pipe
),
5149 (adjusted_mode
->crtc_hsync_start
- 1) |
5150 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
5152 I915_WRITE(VTOTAL(pipe
),
5153 (adjusted_mode
->crtc_vdisplay
- 1) |
5154 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
5155 I915_WRITE(VBLANK(pipe
),
5156 (adjusted_mode
->crtc_vblank_start
- 1) |
5157 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
5158 I915_WRITE(VSYNC(pipe
),
5159 (adjusted_mode
->crtc_vsync_start
- 1) |
5160 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
5162 /* pipesrc and dspsize control the size that is scaled from,
5163 * which should always be the user's requested size.
5165 I915_WRITE(DSPSIZE(plane
),
5166 ((mode
->vdisplay
- 1) << 16) |
5167 (mode
->hdisplay
- 1));
5168 I915_WRITE(DSPPOS(plane
), 0);
5169 I915_WRITE(PIPESRC(pipe
),
5170 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
5172 I915_WRITE(PIPECONF(pipe
), pipeconf
);
5173 POSTING_READ(PIPECONF(pipe
));
5174 intel_enable_pipe(dev_priv
, pipe
, false);
5176 intel_wait_for_vblank(dev
, pipe
);
5178 I915_WRITE(DSPCNTR(plane
), dspcntr
);
5179 POSTING_READ(DSPCNTR(plane
));
5180 intel_enable_plane(dev_priv
, plane
, pipe
);
5182 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
5184 intel_update_watermarks(dev
);
5190 * Initialize reference clocks when the driver loads
5192 void ironlake_init_pch_refclk(struct drm_device
*dev
)
5194 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5195 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5196 struct intel_encoder
*encoder
;
5198 bool has_lvds
= false;
5199 bool has_cpu_edp
= false;
5200 bool has_pch_edp
= false;
5201 bool has_panel
= false;
5202 bool has_ck505
= false;
5203 bool can_ssc
= false;
5205 /* We need to take the global config into account */
5206 list_for_each_entry(encoder
, &mode_config
->encoder_list
,
5208 switch (encoder
->type
) {
5209 case INTEL_OUTPUT_LVDS
:
5213 case INTEL_OUTPUT_EDP
:
5215 if (intel_encoder_is_pch_edp(&encoder
->base
))
5223 if (HAS_PCH_IBX(dev
)) {
5224 has_ck505
= dev_priv
->display_clock_mode
;
5225 can_ssc
= has_ck505
;
5231 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5232 has_panel
, has_lvds
, has_pch_edp
, has_cpu_edp
,
5235 /* Ironlake: try to setup display ref clock before DPLL
5236 * enabling. This is only under driver's control after
5237 * PCH B stepping, previous chipset stepping should be
5238 * ignoring this setting.
5240 temp
= I915_READ(PCH_DREF_CONTROL
);
5241 /* Always enable nonspread source */
5242 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
5245 temp
|= DREF_NONSPREAD_CK505_ENABLE
;
5247 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
5250 temp
&= ~DREF_SSC_SOURCE_MASK
;
5251 temp
|= DREF_SSC_SOURCE_ENABLE
;
5253 /* SSC must be turned on before enabling the CPU output */
5254 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
5255 DRM_DEBUG_KMS("Using SSC on panel\n");
5256 temp
|= DREF_SSC1_ENABLE
;
5259 /* Get SSC going before enabling the outputs */
5260 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5261 POSTING_READ(PCH_DREF_CONTROL
);
5264 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
5266 /* Enable CPU source on CPU attached eDP */
5268 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
5269 DRM_DEBUG_KMS("Using SSC on eDP\n");
5270 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
5273 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
5275 temp
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
5277 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5278 POSTING_READ(PCH_DREF_CONTROL
);
5281 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5283 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
5285 /* Turn off CPU output */
5286 temp
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
5288 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5289 POSTING_READ(PCH_DREF_CONTROL
);
5292 /* Turn off the SSC source */
5293 temp
&= ~DREF_SSC_SOURCE_MASK
;
5294 temp
|= DREF_SSC_SOURCE_DISABLE
;
5297 temp
&= ~ DREF_SSC1_ENABLE
;
5299 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5300 POSTING_READ(PCH_DREF_CONTROL
);
5305 static int ironlake_get_refclk(struct drm_crtc
*crtc
)
5307 struct drm_device
*dev
= crtc
->dev
;
5308 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5309 struct intel_encoder
*encoder
;
5310 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5311 struct intel_encoder
*edp_encoder
= NULL
;
5312 int num_connectors
= 0;
5313 bool is_lvds
= false;
5315 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
5316 if (encoder
->base
.crtc
!= crtc
)
5319 switch (encoder
->type
) {
5320 case INTEL_OUTPUT_LVDS
:
5323 case INTEL_OUTPUT_EDP
:
5324 edp_encoder
= encoder
;
5330 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
5331 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5332 dev_priv
->lvds_ssc_freq
);
5333 return dev_priv
->lvds_ssc_freq
* 1000;
5339 static int ironlake_crtc_mode_set(struct drm_crtc
*crtc
,
5340 struct drm_display_mode
*mode
,
5341 struct drm_display_mode
*adjusted_mode
,
5343 struct drm_framebuffer
*old_fb
)
5345 struct drm_device
*dev
= crtc
->dev
;
5346 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5347 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5348 int pipe
= intel_crtc
->pipe
;
5349 int plane
= intel_crtc
->plane
;
5350 int refclk
, num_connectors
= 0;
5351 intel_clock_t clock
, reduced_clock
;
5352 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
5353 bool ok
, has_reduced_clock
= false, is_sdvo
= false;
5354 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
5355 struct intel_encoder
*has_edp_encoder
= NULL
;
5356 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5357 struct intel_encoder
*encoder
;
5358 const intel_limit_t
*limit
;
5360 struct fdi_m_n m_n
= {0};
5363 int target_clock
, pixel_multiplier
, lane
, link_bw
, factor
;
5364 unsigned int pipe_bpp
;
5367 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
5368 if (encoder
->base
.crtc
!= crtc
)
5371 switch (encoder
->type
) {
5372 case INTEL_OUTPUT_LVDS
:
5375 case INTEL_OUTPUT_SDVO
:
5376 case INTEL_OUTPUT_HDMI
:
5378 if (encoder
->needs_tv_clock
)
5381 case INTEL_OUTPUT_TVOUT
:
5384 case INTEL_OUTPUT_ANALOG
:
5387 case INTEL_OUTPUT_DISPLAYPORT
:
5390 case INTEL_OUTPUT_EDP
:
5391 has_edp_encoder
= encoder
;
5398 refclk
= ironlake_get_refclk(crtc
);
5401 * Returns a set of divisors for the desired target clock with the given
5402 * refclk, or FALSE. The returned values represent the clock equation:
5403 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5405 limit
= intel_limit(crtc
, refclk
);
5406 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
5408 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5412 /* Ensure that the cursor is valid for the new mode before changing... */
5413 intel_crtc_update_cursor(crtc
, true);
5415 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
5416 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
5417 dev_priv
->lvds_downclock
,
5420 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
5422 * If the different P is found, it means that we can't
5423 * switch the display clock by using the FP0/FP1.
5424 * In such case we will disable the LVDS downclock
5427 DRM_DEBUG_KMS("Different P is found for "
5428 "LVDS clock/downclock\n");
5429 has_reduced_clock
= 0;
5432 /* SDVO TV has fixed PLL values depend on its clock range,
5433 this mirrors vbios setting. */
5434 if (is_sdvo
&& is_tv
) {
5435 if (adjusted_mode
->clock
>= 100000
5436 && adjusted_mode
->clock
< 140500) {
5442 } else if (adjusted_mode
->clock
>= 140500
5443 && adjusted_mode
->clock
<= 200000) {
5453 pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5455 /* CPU eDP doesn't require FDI link, so just set DP M/N
5456 according to current link config */
5457 if (has_edp_encoder
&&
5458 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5459 target_clock
= mode
->clock
;
5460 intel_edp_link_config(has_edp_encoder
,
5463 /* [e]DP over FDI requires target mode clock
5464 instead of link clock */
5465 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5466 target_clock
= mode
->clock
;
5468 target_clock
= adjusted_mode
->clock
;
5470 /* FDI is a binary signal running at ~2.7GHz, encoding
5471 * each output octet as 10 bits. The actual frequency
5472 * is stored as a divider into a 100MHz clock, and the
5473 * mode pixel clock is stored in units of 1KHz.
5474 * Hence the bw of each lane in terms of the mode signal
5477 link_bw
= intel_fdi_link_freq(dev
) * MHz(100)/KHz(1)/10;
5480 /* determine panel color depth */
5481 temp
= I915_READ(PIPECONF(pipe
));
5482 temp
&= ~PIPE_BPC_MASK
;
5483 dither
= intel_choose_pipe_bpp_dither(crtc
, &pipe_bpp
);
5498 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5505 intel_crtc
->bpp
= pipe_bpp
;
5506 I915_WRITE(PIPECONF(pipe
), temp
);
5510 * Account for spread spectrum to avoid
5511 * oversubscribing the link. Max center spread
5512 * is 2.5%; use 5% for safety's sake.
5514 u32 bps
= target_clock
* intel_crtc
->bpp
* 21 / 20;
5515 lane
= bps
/ (link_bw
* 8) + 1;
5518 intel_crtc
->fdi_lanes
= lane
;
5520 if (pixel_multiplier
> 1)
5521 link_bw
*= pixel_multiplier
;
5522 ironlake_compute_m_n(intel_crtc
->bpp
, lane
, target_clock
, link_bw
,
5525 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
5526 if (has_reduced_clock
)
5527 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
5530 /* Enable autotuning of the PLL clock (if permissible) */
5533 if ((intel_panel_use_ssc(dev_priv
) &&
5534 dev_priv
->lvds_ssc_freq
== 100) ||
5535 (I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) == LVDS_CLKB_POWER_UP
)
5537 } else if (is_sdvo
&& is_tv
)
5540 if (clock
.m
< factor
* clock
.n
)
5546 dpll
|= DPLLB_MODE_LVDS
;
5548 dpll
|= DPLLB_MODE_DAC_SERIAL
;
5550 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5551 if (pixel_multiplier
> 1) {
5552 dpll
|= (pixel_multiplier
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
5554 dpll
|= DPLL_DVO_HIGH_SPEED
;
5556 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5557 dpll
|= DPLL_DVO_HIGH_SPEED
;
5559 /* compute bitmask from p1 value */
5560 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
5562 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
5566 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
5569 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
5572 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
5575 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
5579 if (is_sdvo
&& is_tv
)
5580 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
5582 /* XXX: just matching BIOS for now */
5583 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5585 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
5586 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
5588 dpll
|= PLL_REF_INPUT_DREFCLK
;
5590 /* setup pipeconf */
5591 pipeconf
= I915_READ(PIPECONF(pipe
));
5593 /* Set up the display plane register */
5594 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
5596 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe
);
5597 drm_mode_debug_printmodeline(mode
);
5599 /* PCH eDP needs FDI, but CPU eDP does not */
5600 if (!intel_crtc
->no_pll
) {
5601 if (!has_edp_encoder
||
5602 intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5603 I915_WRITE(PCH_FP0(pipe
), fp
);
5604 I915_WRITE(PCH_DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
5606 POSTING_READ(PCH_DPLL(pipe
));
5610 if (dpll
== (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5611 fp
== I915_READ(PCH_FP0(0))) {
5612 intel_crtc
->use_pll_a
= true;
5613 DRM_DEBUG_KMS("using pipe a dpll\n");
5614 } else if (dpll
== (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5615 fp
== I915_READ(PCH_FP0(1))) {
5616 intel_crtc
->use_pll_a
= false;
5617 DRM_DEBUG_KMS("using pipe b dpll\n");
5619 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5624 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5625 * This is an exception to the general rule that mode_set doesn't turn
5629 temp
= I915_READ(PCH_LVDS
);
5630 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
5631 if (HAS_PCH_CPT(dev
))
5632 temp
|= PORT_TRANS_SEL_CPT(pipe
);
5634 temp
|= LVDS_PIPEB_SELECT
;
5636 temp
&= ~LVDS_PIPEB_SELECT
;
5638 /* set the corresponsding LVDS_BORDER bit */
5639 temp
|= dev_priv
->lvds_border_bits
;
5640 /* Set the B0-B3 data pairs corresponding to whether we're going to
5641 * set the DPLLs for dual-channel mode or not.
5644 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
5646 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
5648 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5649 * appropriately here, but we need to look more thoroughly into how
5650 * panels behave in the two modes.
5652 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
5653 lvds_sync
|= LVDS_HSYNC_POLARITY
;
5654 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
5655 lvds_sync
|= LVDS_VSYNC_POLARITY
;
5656 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
5658 char flags
[2] = "-+";
5659 DRM_INFO("Changing LVDS panel from "
5660 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5661 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
5662 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
5663 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
5664 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
5665 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
5668 I915_WRITE(PCH_LVDS
, temp
);
5671 pipeconf
&= ~PIPECONF_DITHER_EN
;
5672 pipeconf
&= ~PIPECONF_DITHER_TYPE_MASK
;
5673 if ((is_lvds
&& dev_priv
->lvds_dither
) || dither
) {
5674 pipeconf
|= PIPECONF_DITHER_EN
;
5675 pipeconf
|= PIPECONF_DITHER_TYPE_SP
;
5677 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5678 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
5680 /* For non-DP output, clear any trans DP clock recovery setting.*/
5681 I915_WRITE(TRANSDATA_M1(pipe
), 0);
5682 I915_WRITE(TRANSDATA_N1(pipe
), 0);
5683 I915_WRITE(TRANSDPLINK_M1(pipe
), 0);
5684 I915_WRITE(TRANSDPLINK_N1(pipe
), 0);
5687 if (!intel_crtc
->no_pll
&&
5688 (!has_edp_encoder
||
5689 intel_encoder_is_pch_edp(&has_edp_encoder
->base
))) {
5690 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5692 /* Wait for the clocks to stabilize. */
5693 POSTING_READ(PCH_DPLL(pipe
));
5696 /* The pixel multiplier can only be updated once the
5697 * DPLL is enabled and the clocks are stable.
5699 * So write it again.
5701 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5704 intel_crtc
->lowfreq_avail
= false;
5705 if (!intel_crtc
->no_pll
) {
5706 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
5707 I915_WRITE(PCH_FP1(pipe
), fp2
);
5708 intel_crtc
->lowfreq_avail
= true;
5709 if (HAS_PIPE_CXSR(dev
)) {
5710 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5711 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
5714 I915_WRITE(PCH_FP1(pipe
), fp
);
5715 if (HAS_PIPE_CXSR(dev
)) {
5716 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5717 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
5722 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
5723 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
5724 /* the chip adds 2 halflines automatically */
5725 adjusted_mode
->crtc_vdisplay
-= 1;
5726 adjusted_mode
->crtc_vtotal
-= 1;
5727 adjusted_mode
->crtc_vblank_start
-= 1;
5728 adjusted_mode
->crtc_vblank_end
-= 1;
5729 adjusted_mode
->crtc_vsync_end
-= 1;
5730 adjusted_mode
->crtc_vsync_start
-= 1;
5732 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
5734 I915_WRITE(HTOTAL(pipe
),
5735 (adjusted_mode
->crtc_hdisplay
- 1) |
5736 ((adjusted_mode
->crtc_htotal
- 1) << 16));
5737 I915_WRITE(HBLANK(pipe
),
5738 (adjusted_mode
->crtc_hblank_start
- 1) |
5739 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
5740 I915_WRITE(HSYNC(pipe
),
5741 (adjusted_mode
->crtc_hsync_start
- 1) |
5742 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
5744 I915_WRITE(VTOTAL(pipe
),
5745 (adjusted_mode
->crtc_vdisplay
- 1) |
5746 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
5747 I915_WRITE(VBLANK(pipe
),
5748 (adjusted_mode
->crtc_vblank_start
- 1) |
5749 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
5750 I915_WRITE(VSYNC(pipe
),
5751 (adjusted_mode
->crtc_vsync_start
- 1) |
5752 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
5754 /* pipesrc controls the size that is scaled from, which should
5755 * always be the user's requested size.
5757 I915_WRITE(PIPESRC(pipe
),
5758 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
5760 I915_WRITE(PIPE_DATA_M1(pipe
), TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
5761 I915_WRITE(PIPE_DATA_N1(pipe
), m_n
.gmch_n
);
5762 I915_WRITE(PIPE_LINK_M1(pipe
), m_n
.link_m
);
5763 I915_WRITE(PIPE_LINK_N1(pipe
), m_n
.link_n
);
5765 if (has_edp_encoder
&&
5766 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5767 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
5770 I915_WRITE(PIPECONF(pipe
), pipeconf
);
5771 POSTING_READ(PIPECONF(pipe
));
5773 intel_wait_for_vblank(dev
, pipe
);
5776 /* enable address swizzle for tiling buffer */
5777 temp
= I915_READ(DISP_ARB_CTL
);
5778 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
5781 I915_WRITE(DSPCNTR(plane
), dspcntr
);
5782 POSTING_READ(DSPCNTR(plane
));
5784 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
5786 intel_update_watermarks(dev
);
5791 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
5792 struct drm_display_mode
*mode
,
5793 struct drm_display_mode
*adjusted_mode
,
5795 struct drm_framebuffer
*old_fb
)
5797 struct drm_device
*dev
= crtc
->dev
;
5798 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5799 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5800 int pipe
= intel_crtc
->pipe
;
5803 drm_vblank_pre_modeset(dev
, pipe
);
5805 ret
= dev_priv
->display
.crtc_mode_set(crtc
, mode
, adjusted_mode
,
5808 drm_vblank_post_modeset(dev
, pipe
);
5810 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_ON
;
5815 static void g4x_write_eld(struct drm_connector
*connector
,
5816 struct drm_crtc
*crtc
)
5818 struct drm_i915_private
*dev_priv
= connector
->dev
->dev_private
;
5819 uint8_t *eld
= connector
->eld
;
5824 i
= I915_READ(G4X_AUD_VID_DID
);
5826 if (i
== INTEL_AUDIO_DEVBLC
|| i
== INTEL_AUDIO_DEVCL
)
5827 eldv
= G4X_ELDV_DEVCL_DEVBLC
;
5829 eldv
= G4X_ELDV_DEVCTG
;
5831 i
= I915_READ(G4X_AUD_CNTL_ST
);
5832 i
&= ~(eldv
| G4X_ELD_ADDR
);
5833 len
= (i
>> 9) & 0x1f; /* ELD buffer size */
5834 I915_WRITE(G4X_AUD_CNTL_ST
, i
);
5839 len
= min_t(uint8_t, eld
[2], len
);
5840 DRM_DEBUG_DRIVER("ELD size %d\n", len
);
5841 for (i
= 0; i
< len
; i
++)
5842 I915_WRITE(G4X_HDMIW_HDMIEDID
, *((uint32_t *)eld
+ i
));
5844 i
= I915_READ(G4X_AUD_CNTL_ST
);
5846 I915_WRITE(G4X_AUD_CNTL_ST
, i
);
5849 static void ironlake_write_eld(struct drm_connector
*connector
,
5850 struct drm_crtc
*crtc
)
5852 struct drm_i915_private
*dev_priv
= connector
->dev
->dev_private
;
5853 uint8_t *eld
= connector
->eld
;
5861 if (IS_IVYBRIDGE(connector
->dev
)) {
5862 hdmiw_hdmiedid
= GEN7_HDMIW_HDMIEDID_A
;
5863 aud_cntl_st
= GEN7_AUD_CNTRL_ST_A
;
5864 aud_cntrl_st2
= GEN7_AUD_CNTRL_ST2
;
5866 hdmiw_hdmiedid
= GEN5_HDMIW_HDMIEDID_A
;
5867 aud_cntl_st
= GEN5_AUD_CNTL_ST_A
;
5868 aud_cntrl_st2
= GEN5_AUD_CNTL_ST2
;
5871 i
= to_intel_crtc(crtc
)->pipe
;
5872 hdmiw_hdmiedid
+= i
* 0x100;
5873 aud_cntl_st
+= i
* 0x100;
5875 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i
));
5877 i
= I915_READ(aud_cntl_st
);
5878 i
= (i
>> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5880 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5881 /* operate blindly on all ports */
5882 eldv
= GEN5_ELD_VALIDB
;
5883 eldv
|= GEN5_ELD_VALIDB
<< 4;
5884 eldv
|= GEN5_ELD_VALIDB
<< 8;
5886 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i
);
5887 eldv
= GEN5_ELD_VALIDB
<< ((i
- 1) * 4);
5890 i
= I915_READ(aud_cntrl_st2
);
5892 I915_WRITE(aud_cntrl_st2
, i
);
5897 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
5898 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5899 eld
[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5902 i
= I915_READ(aud_cntl_st
);
5903 i
&= ~GEN5_ELD_ADDRESS
;
5904 I915_WRITE(aud_cntl_st
, i
);
5906 len
= min_t(uint8_t, eld
[2], 21); /* 84 bytes of hw ELD buffer */
5907 DRM_DEBUG_DRIVER("ELD size %d\n", len
);
5908 for (i
= 0; i
< len
; i
++)
5909 I915_WRITE(hdmiw_hdmiedid
, *((uint32_t *)eld
+ i
));
5911 i
= I915_READ(aud_cntrl_st2
);
5913 I915_WRITE(aud_cntrl_st2
, i
);
5916 void intel_write_eld(struct drm_encoder
*encoder
,
5917 struct drm_display_mode
*mode
)
5919 struct drm_crtc
*crtc
= encoder
->crtc
;
5920 struct drm_connector
*connector
;
5921 struct drm_device
*dev
= encoder
->dev
;
5922 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5924 connector
= drm_select_eld(encoder
, mode
);
5928 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5930 drm_get_connector_name(connector
),
5931 connector
->encoder
->base
.id
,
5932 drm_get_encoder_name(connector
->encoder
));
5934 connector
->eld
[6] = drm_av_sync_delay(connector
, mode
) / 2;
5936 if (dev_priv
->display
.write_eld
)
5937 dev_priv
->display
.write_eld(connector
, crtc
);
5940 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5941 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
5943 struct drm_device
*dev
= crtc
->dev
;
5944 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5945 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5946 int palreg
= PALETTE(intel_crtc
->pipe
);
5949 /* The clocks have to be on to load the palette. */
5953 /* use legacy palette for Ironlake */
5954 if (HAS_PCH_SPLIT(dev
))
5955 palreg
= LGC_PALETTE(intel_crtc
->pipe
);
5957 for (i
= 0; i
< 256; i
++) {
5958 I915_WRITE(palreg
+ 4 * i
,
5959 (intel_crtc
->lut_r
[i
] << 16) |
5960 (intel_crtc
->lut_g
[i
] << 8) |
5961 intel_crtc
->lut_b
[i
]);
5965 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
)
5967 struct drm_device
*dev
= crtc
->dev
;
5968 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5969 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5970 bool visible
= base
!= 0;
5973 if (intel_crtc
->cursor_visible
== visible
)
5976 cntl
= I915_READ(_CURACNTR
);
5978 /* On these chipsets we can only modify the base whilst
5979 * the cursor is disabled.
5981 I915_WRITE(_CURABASE
, base
);
5983 cntl
&= ~(CURSOR_FORMAT_MASK
);
5984 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5985 cntl
|= CURSOR_ENABLE
|
5986 CURSOR_GAMMA_ENABLE
|
5989 cntl
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
5990 I915_WRITE(_CURACNTR
, cntl
);
5992 intel_crtc
->cursor_visible
= visible
;
5995 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
)
5997 struct drm_device
*dev
= crtc
->dev
;
5998 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5999 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6000 int pipe
= intel_crtc
->pipe
;
6001 bool visible
= base
!= 0;
6003 if (intel_crtc
->cursor_visible
!= visible
) {
6004 uint32_t cntl
= I915_READ(CURCNTR(pipe
));
6006 cntl
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
6007 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
6008 cntl
|= pipe
<< 28; /* Connect to correct pipe */
6010 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
6011 cntl
|= CURSOR_MODE_DISABLE
;
6013 I915_WRITE(CURCNTR(pipe
), cntl
);
6015 intel_crtc
->cursor_visible
= visible
;
6017 /* and commit changes on next vblank */
6018 I915_WRITE(CURBASE(pipe
), base
);
6021 static void ivb_update_cursor(struct drm_crtc
*crtc
, u32 base
)
6023 struct drm_device
*dev
= crtc
->dev
;
6024 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6025 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6026 int pipe
= intel_crtc
->pipe
;
6027 bool visible
= base
!= 0;
6029 if (intel_crtc
->cursor_visible
!= visible
) {
6030 uint32_t cntl
= I915_READ(CURCNTR_IVB(pipe
));
6032 cntl
&= ~CURSOR_MODE
;
6033 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
6035 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
6036 cntl
|= CURSOR_MODE_DISABLE
;
6038 I915_WRITE(CURCNTR_IVB(pipe
), cntl
);
6040 intel_crtc
->cursor_visible
= visible
;
6042 /* and commit changes on next vblank */
6043 I915_WRITE(CURBASE_IVB(pipe
), base
);
6046 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6047 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
6050 struct drm_device
*dev
= crtc
->dev
;
6051 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6052 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6053 int pipe
= intel_crtc
->pipe
;
6054 int x
= intel_crtc
->cursor_x
;
6055 int y
= intel_crtc
->cursor_y
;
6061 if (on
&& crtc
->enabled
&& crtc
->fb
) {
6062 base
= intel_crtc
->cursor_addr
;
6063 if (x
> (int) crtc
->fb
->width
)
6066 if (y
> (int) crtc
->fb
->height
)
6072 if (x
+ intel_crtc
->cursor_width
< 0)
6075 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
6078 pos
|= x
<< CURSOR_X_SHIFT
;
6081 if (y
+ intel_crtc
->cursor_height
< 0)
6084 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
6087 pos
|= y
<< CURSOR_Y_SHIFT
;
6089 visible
= base
!= 0;
6090 if (!visible
&& !intel_crtc
->cursor_visible
)
6093 if (IS_IVYBRIDGE(dev
)) {
6094 I915_WRITE(CURPOS_IVB(pipe
), pos
);
6095 ivb_update_cursor(crtc
, base
);
6097 I915_WRITE(CURPOS(pipe
), pos
);
6098 if (IS_845G(dev
) || IS_I865G(dev
))
6099 i845_update_cursor(crtc
, base
);
6101 i9xx_update_cursor(crtc
, base
);
6105 intel_mark_busy(dev
, to_intel_framebuffer(crtc
->fb
)->obj
);
6108 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
6109 struct drm_file
*file
,
6111 uint32_t width
, uint32_t height
)
6113 struct drm_device
*dev
= crtc
->dev
;
6114 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6115 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6116 struct drm_i915_gem_object
*obj
;
6120 DRM_DEBUG_KMS("\n");
6122 /* if we want to turn off the cursor ignore width and height */
6124 DRM_DEBUG_KMS("cursor off\n");
6127 mutex_lock(&dev
->struct_mutex
);
6131 /* Currently we only support 64x64 cursors */
6132 if (width
!= 64 || height
!= 64) {
6133 DRM_ERROR("we currently only support 64x64 cursors\n");
6137 obj
= to_intel_bo(drm_gem_object_lookup(dev
, file
, handle
));
6138 if (&obj
->base
== NULL
)
6141 if (obj
->base
.size
< width
* height
* 4) {
6142 DRM_ERROR("buffer is to small\n");
6147 /* we only need to pin inside GTT if cursor is non-phy */
6148 mutex_lock(&dev
->struct_mutex
);
6149 if (!dev_priv
->info
->cursor_needs_physical
) {
6150 if (obj
->tiling_mode
) {
6151 DRM_ERROR("cursor cannot be tiled\n");
6156 ret
= i915_gem_object_pin_to_display_plane(obj
, 0, NULL
);
6158 DRM_ERROR("failed to move cursor bo into the GTT\n");
6162 ret
= i915_gem_object_put_fence(obj
);
6164 DRM_ERROR("failed to release fence for cursor");
6168 addr
= obj
->gtt_offset
;
6170 int align
= IS_I830(dev
) ? 16 * 1024 : 256;
6171 ret
= i915_gem_attach_phys_object(dev
, obj
,
6172 (intel_crtc
->pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
,
6175 DRM_ERROR("failed to attach phys object\n");
6178 addr
= obj
->phys_obj
->handle
->busaddr
;
6182 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
6185 if (intel_crtc
->cursor_bo
) {
6186 if (dev_priv
->info
->cursor_needs_physical
) {
6187 if (intel_crtc
->cursor_bo
!= obj
)
6188 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
6190 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
6191 drm_gem_object_unreference(&intel_crtc
->cursor_bo
->base
);
6194 mutex_unlock(&dev
->struct_mutex
);
6196 intel_crtc
->cursor_addr
= addr
;
6197 intel_crtc
->cursor_bo
= obj
;
6198 intel_crtc
->cursor_width
= width
;
6199 intel_crtc
->cursor_height
= height
;
6201 intel_crtc_update_cursor(crtc
, true);
6205 i915_gem_object_unpin(obj
);
6207 mutex_unlock(&dev
->struct_mutex
);
6209 drm_gem_object_unreference_unlocked(&obj
->base
);
6213 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
6215 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6217 intel_crtc
->cursor_x
= x
;
6218 intel_crtc
->cursor_y
= y
;
6220 intel_crtc_update_cursor(crtc
, true);
6225 /** Sets the color ramps on behalf of RandR */
6226 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
6227 u16 blue
, int regno
)
6229 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6231 intel_crtc
->lut_r
[regno
] = red
>> 8;
6232 intel_crtc
->lut_g
[regno
] = green
>> 8;
6233 intel_crtc
->lut_b
[regno
] = blue
>> 8;
6236 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
6237 u16
*blue
, int regno
)
6239 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6241 *red
= intel_crtc
->lut_r
[regno
] << 8;
6242 *green
= intel_crtc
->lut_g
[regno
] << 8;
6243 *blue
= intel_crtc
->lut_b
[regno
] << 8;
6246 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
6247 u16
*blue
, uint32_t start
, uint32_t size
)
6249 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
6250 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6252 for (i
= start
; i
< end
; i
++) {
6253 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
6254 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
6255 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
6258 intel_crtc_load_lut(crtc
);
6262 * Get a pipe with a simple mode set on it for doing load-based monitor
6265 * It will be up to the load-detect code to adjust the pipe as appropriate for
6266 * its requirements. The pipe will be connected to no other encoders.
6268 * Currently this code will only succeed if there is a pipe with no encoders
6269 * configured for it. In the future, it could choose to temporarily disable
6270 * some outputs to free up a pipe for its use.
6272 * \return crtc, or NULL if no pipes are available.
6275 /* VESA 640x480x72Hz mode to set on the pipe */
6276 static struct drm_display_mode load_detect_mode
= {
6277 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
6278 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
6281 static struct drm_framebuffer
*
6282 intel_framebuffer_create(struct drm_device
*dev
,
6283 struct drm_mode_fb_cmd
*mode_cmd
,
6284 struct drm_i915_gem_object
*obj
)
6286 struct intel_framebuffer
*intel_fb
;
6289 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
6291 drm_gem_object_unreference_unlocked(&obj
->base
);
6292 return ERR_PTR(-ENOMEM
);
6295 ret
= intel_framebuffer_init(dev
, intel_fb
, mode_cmd
, obj
);
6297 drm_gem_object_unreference_unlocked(&obj
->base
);
6299 return ERR_PTR(ret
);
6302 return &intel_fb
->base
;
6306 intel_framebuffer_pitch_for_width(int width
, int bpp
)
6308 u32 pitch
= DIV_ROUND_UP(width
* bpp
, 8);
6309 return ALIGN(pitch
, 64);
6313 intel_framebuffer_size_for_mode(struct drm_display_mode
*mode
, int bpp
)
6315 u32 pitch
= intel_framebuffer_pitch_for_width(mode
->hdisplay
, bpp
);
6316 return ALIGN(pitch
* mode
->vdisplay
, PAGE_SIZE
);
6319 static struct drm_framebuffer
*
6320 intel_framebuffer_create_for_mode(struct drm_device
*dev
,
6321 struct drm_display_mode
*mode
,
6324 struct drm_i915_gem_object
*obj
;
6325 struct drm_mode_fb_cmd mode_cmd
;
6327 obj
= i915_gem_alloc_object(dev
,
6328 intel_framebuffer_size_for_mode(mode
, bpp
));
6330 return ERR_PTR(-ENOMEM
);
6332 mode_cmd
.width
= mode
->hdisplay
;
6333 mode_cmd
.height
= mode
->vdisplay
;
6334 mode_cmd
.depth
= depth
;
6336 mode_cmd
.pitch
= intel_framebuffer_pitch_for_width(mode_cmd
.width
, bpp
);
6338 return intel_framebuffer_create(dev
, &mode_cmd
, obj
);
6341 static struct drm_framebuffer
*
6342 mode_fits_in_fbdev(struct drm_device
*dev
,
6343 struct drm_display_mode
*mode
)
6345 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6346 struct drm_i915_gem_object
*obj
;
6347 struct drm_framebuffer
*fb
;
6349 if (dev_priv
->fbdev
== NULL
)
6352 obj
= dev_priv
->fbdev
->ifb
.obj
;
6356 fb
= &dev_priv
->fbdev
->ifb
.base
;
6357 if (fb
->pitch
< intel_framebuffer_pitch_for_width(mode
->hdisplay
,
6358 fb
->bits_per_pixel
))
6361 if (obj
->base
.size
< mode
->vdisplay
* fb
->pitch
)
6367 bool intel_get_load_detect_pipe(struct intel_encoder
*intel_encoder
,
6368 struct drm_connector
*connector
,
6369 struct drm_display_mode
*mode
,
6370 struct intel_load_detect_pipe
*old
)
6372 struct intel_crtc
*intel_crtc
;
6373 struct drm_crtc
*possible_crtc
;
6374 struct drm_encoder
*encoder
= &intel_encoder
->base
;
6375 struct drm_crtc
*crtc
= NULL
;
6376 struct drm_device
*dev
= encoder
->dev
;
6377 struct drm_framebuffer
*old_fb
;
6380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6381 connector
->base
.id
, drm_get_connector_name(connector
),
6382 encoder
->base
.id
, drm_get_encoder_name(encoder
));
6385 * Algorithm gets a little messy:
6387 * - if the connector already has an assigned crtc, use it (but make
6388 * sure it's on first)
6390 * - try to find the first unused crtc that can drive this connector,
6391 * and use that if we find one
6394 /* See if we already have a CRTC for this connector */
6395 if (encoder
->crtc
) {
6396 crtc
= encoder
->crtc
;
6398 intel_crtc
= to_intel_crtc(crtc
);
6399 old
->dpms_mode
= intel_crtc
->dpms_mode
;
6400 old
->load_detect_temp
= false;
6402 /* Make sure the crtc and connector are running */
6403 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
6404 struct drm_encoder_helper_funcs
*encoder_funcs
;
6405 struct drm_crtc_helper_funcs
*crtc_funcs
;
6407 crtc_funcs
= crtc
->helper_private
;
6408 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
6410 encoder_funcs
= encoder
->helper_private
;
6411 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
6417 /* Find an unused one (if possible) */
6418 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
6420 if (!(encoder
->possible_crtcs
& (1 << i
)))
6422 if (!possible_crtc
->enabled
) {
6423 crtc
= possible_crtc
;
6429 * If we didn't find an unused CRTC, don't use any.
6432 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6436 encoder
->crtc
= crtc
;
6437 connector
->encoder
= encoder
;
6439 intel_crtc
= to_intel_crtc(crtc
);
6440 old
->dpms_mode
= intel_crtc
->dpms_mode
;
6441 old
->load_detect_temp
= true;
6442 old
->release_fb
= NULL
;
6445 mode
= &load_detect_mode
;
6449 /* We need a framebuffer large enough to accommodate all accesses
6450 * that the plane may generate whilst we perform load detection.
6451 * We can not rely on the fbcon either being present (we get called
6452 * during its initialisation to detect all boot displays, or it may
6453 * not even exist) or that it is large enough to satisfy the
6456 crtc
->fb
= mode_fits_in_fbdev(dev
, mode
);
6457 if (crtc
->fb
== NULL
) {
6458 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6459 crtc
->fb
= intel_framebuffer_create_for_mode(dev
, mode
, 24, 32);
6460 old
->release_fb
= crtc
->fb
;
6462 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6463 if (IS_ERR(crtc
->fb
)) {
6464 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6469 if (!drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, old_fb
)) {
6470 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6471 if (old
->release_fb
)
6472 old
->release_fb
->funcs
->destroy(old
->release_fb
);
6477 /* let the connector get through one full cycle before testing */
6478 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
6483 void intel_release_load_detect_pipe(struct intel_encoder
*intel_encoder
,
6484 struct drm_connector
*connector
,
6485 struct intel_load_detect_pipe
*old
)
6487 struct drm_encoder
*encoder
= &intel_encoder
->base
;
6488 struct drm_device
*dev
= encoder
->dev
;
6489 struct drm_crtc
*crtc
= encoder
->crtc
;
6490 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
6491 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
6493 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6494 connector
->base
.id
, drm_get_connector_name(connector
),
6495 encoder
->base
.id
, drm_get_encoder_name(encoder
));
6497 if (old
->load_detect_temp
) {
6498 connector
->encoder
= NULL
;
6499 drm_helper_disable_unused_functions(dev
);
6501 if (old
->release_fb
)
6502 old
->release_fb
->funcs
->destroy(old
->release_fb
);
6507 /* Switch crtc and encoder back off if necessary */
6508 if (old
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
6509 encoder_funcs
->dpms(encoder
, old
->dpms_mode
);
6510 crtc_funcs
->dpms(crtc
, old
->dpms_mode
);
6514 /* Returns the clock of the currently programmed mode of the given pipe. */
6515 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
6517 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6518 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6519 int pipe
= intel_crtc
->pipe
;
6520 u32 dpll
= I915_READ(DPLL(pipe
));
6522 intel_clock_t clock
;
6524 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
6525 fp
= I915_READ(FP0(pipe
));
6527 fp
= I915_READ(FP1(pipe
));
6529 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
6530 if (IS_PINEVIEW(dev
)) {
6531 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
6532 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6534 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
6535 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6538 if (!IS_GEN2(dev
)) {
6539 if (IS_PINEVIEW(dev
))
6540 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
6541 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
6543 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
6544 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6546 switch (dpll
& DPLL_MODE_MASK
) {
6547 case DPLLB_MODE_DAC_SERIAL
:
6548 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
6551 case DPLLB_MODE_LVDS
:
6552 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
6556 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6557 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
6561 /* XXX: Handle the 100Mhz refclk */
6562 intel_clock(dev
, 96000, &clock
);
6564 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
6567 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
6568 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6571 if ((dpll
& PLL_REF_INPUT_MASK
) ==
6572 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
6573 /* XXX: might not be 66MHz */
6574 intel_clock(dev
, 66000, &clock
);
6576 intel_clock(dev
, 48000, &clock
);
6578 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
6581 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
6582 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
6584 if (dpll
& PLL_P2_DIVIDE_BY_4
)
6589 intel_clock(dev
, 48000, &clock
);
6593 /* XXX: It would be nice to validate the clocks, but we can't reuse
6594 * i830PllIsValid() because it relies on the xf86_config connector
6595 * configuration being accurate, which it isn't necessarily.
6601 /** Returns the currently programmed mode of the given pipe. */
6602 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
6603 struct drm_crtc
*crtc
)
6605 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6606 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6607 int pipe
= intel_crtc
->pipe
;
6608 struct drm_display_mode
*mode
;
6609 int htot
= I915_READ(HTOTAL(pipe
));
6610 int hsync
= I915_READ(HSYNC(pipe
));
6611 int vtot
= I915_READ(VTOTAL(pipe
));
6612 int vsync
= I915_READ(VSYNC(pipe
));
6614 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
6618 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
6619 mode
->hdisplay
= (htot
& 0xffff) + 1;
6620 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
6621 mode
->hsync_start
= (hsync
& 0xffff) + 1;
6622 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
6623 mode
->vdisplay
= (vtot
& 0xffff) + 1;
6624 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
6625 mode
->vsync_start
= (vsync
& 0xffff) + 1;
6626 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
6628 drm_mode_set_name(mode
);
6629 drm_mode_set_crtcinfo(mode
, 0);
6634 #define GPU_IDLE_TIMEOUT 500 /* ms */
6636 /* When this timer fires, we've been idle for awhile */
6637 static void intel_gpu_idle_timer(unsigned long arg
)
6639 struct drm_device
*dev
= (struct drm_device
*)arg
;
6640 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6642 if (!list_empty(&dev_priv
->mm
.active_list
)) {
6643 /* Still processing requests, so just re-arm the timer. */
6644 mod_timer(&dev_priv
->idle_timer
, jiffies
+
6645 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
6649 dev_priv
->busy
= false;
6650 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6653 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6655 static void intel_crtc_idle_timer(unsigned long arg
)
6657 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
6658 struct drm_crtc
*crtc
= &intel_crtc
->base
;
6659 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
6660 struct intel_framebuffer
*intel_fb
;
6662 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6663 if (intel_fb
&& intel_fb
->obj
->active
) {
6664 /* The framebuffer is still being accessed by the GPU. */
6665 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6666 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6670 intel_crtc
->busy
= false;
6671 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6674 static void intel_increase_pllclock(struct drm_crtc
*crtc
)
6676 struct drm_device
*dev
= crtc
->dev
;
6677 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6678 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6679 int pipe
= intel_crtc
->pipe
;
6680 int dpll_reg
= DPLL(pipe
);
6683 if (HAS_PCH_SPLIT(dev
))
6686 if (!dev_priv
->lvds_downclock_avail
)
6689 dpll
= I915_READ(dpll_reg
);
6690 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
6691 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6693 /* Unlock panel regs */
6694 I915_WRITE(PP_CONTROL
,
6695 I915_READ(PP_CONTROL
) | PANEL_UNLOCK_REGS
);
6697 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
6698 I915_WRITE(dpll_reg
, dpll
);
6699 intel_wait_for_vblank(dev
, pipe
);
6701 dpll
= I915_READ(dpll_reg
);
6702 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
6703 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6705 /* ...and lock them again */
6706 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6709 /* Schedule downclock */
6710 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6711 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6714 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
6716 struct drm_device
*dev
= crtc
->dev
;
6717 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6718 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6719 int pipe
= intel_crtc
->pipe
;
6720 int dpll_reg
= DPLL(pipe
);
6721 int dpll
= I915_READ(dpll_reg
);
6723 if (HAS_PCH_SPLIT(dev
))
6726 if (!dev_priv
->lvds_downclock_avail
)
6730 * Since this is called by a timer, we should never get here in
6733 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
6734 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6736 /* Unlock panel regs */
6737 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
6740 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
6741 I915_WRITE(dpll_reg
, dpll
);
6742 intel_wait_for_vblank(dev
, pipe
);
6743 dpll
= I915_READ(dpll_reg
);
6744 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
6745 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6747 /* ...and lock them again */
6748 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6754 * intel_idle_update - adjust clocks for idleness
6755 * @work: work struct
6757 * Either the GPU or display (or both) went idle. Check the busy status
6758 * here and adjust the CRTC and GPU clocks as necessary.
6760 static void intel_idle_update(struct work_struct
*work
)
6762 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
6764 struct drm_device
*dev
= dev_priv
->dev
;
6765 struct drm_crtc
*crtc
;
6766 struct intel_crtc
*intel_crtc
;
6768 if (!i915_powersave
)
6771 mutex_lock(&dev
->struct_mutex
);
6773 i915_update_gfx_val(dev_priv
);
6775 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6776 /* Skip inactive CRTCs */
6780 intel_crtc
= to_intel_crtc(crtc
);
6781 if (!intel_crtc
->busy
)
6782 intel_decrease_pllclock(crtc
);
6786 mutex_unlock(&dev
->struct_mutex
);
6790 * intel_mark_busy - mark the GPU and possibly the display busy
6792 * @obj: object we're operating on
6794 * Callers can use this function to indicate that the GPU is busy processing
6795 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6796 * buffer), we'll also mark the display as busy, so we know to increase its
6799 void intel_mark_busy(struct drm_device
*dev
, struct drm_i915_gem_object
*obj
)
6801 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6802 struct drm_crtc
*crtc
= NULL
;
6803 struct intel_framebuffer
*intel_fb
;
6804 struct intel_crtc
*intel_crtc
;
6806 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
6809 if (!dev_priv
->busy
)
6810 dev_priv
->busy
= true;
6812 mod_timer(&dev_priv
->idle_timer
, jiffies
+
6813 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
6815 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6819 intel_crtc
= to_intel_crtc(crtc
);
6820 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6821 if (intel_fb
->obj
== obj
) {
6822 if (!intel_crtc
->busy
) {
6823 /* Non-busy -> busy, upclock */
6824 intel_increase_pllclock(crtc
);
6825 intel_crtc
->busy
= true;
6827 /* Busy -> busy, put off timer */
6828 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6829 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6835 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
6837 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6838 struct drm_device
*dev
= crtc
->dev
;
6839 struct intel_unpin_work
*work
;
6840 unsigned long flags
;
6842 spin_lock_irqsave(&dev
->event_lock
, flags
);
6843 work
= intel_crtc
->unpin_work
;
6844 intel_crtc
->unpin_work
= NULL
;
6845 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6848 cancel_work_sync(&work
->work
);
6852 drm_crtc_cleanup(crtc
);
6857 static void intel_unpin_work_fn(struct work_struct
*__work
)
6859 struct intel_unpin_work
*work
=
6860 container_of(__work
, struct intel_unpin_work
, work
);
6862 mutex_lock(&work
->dev
->struct_mutex
);
6863 i915_gem_object_unpin(work
->old_fb_obj
);
6864 drm_gem_object_unreference(&work
->pending_flip_obj
->base
);
6865 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
6867 intel_update_fbc(work
->dev
);
6868 mutex_unlock(&work
->dev
->struct_mutex
);
6872 static void do_intel_finish_page_flip(struct drm_device
*dev
,
6873 struct drm_crtc
*crtc
)
6875 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6876 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6877 struct intel_unpin_work
*work
;
6878 struct drm_i915_gem_object
*obj
;
6879 struct drm_pending_vblank_event
*e
;
6880 struct timeval tnow
, tvbl
;
6881 unsigned long flags
;
6883 /* Ignore early vblank irqs */
6884 if (intel_crtc
== NULL
)
6887 do_gettimeofday(&tnow
);
6889 spin_lock_irqsave(&dev
->event_lock
, flags
);
6890 work
= intel_crtc
->unpin_work
;
6891 if (work
== NULL
|| !work
->pending
) {
6892 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6896 intel_crtc
->unpin_work
= NULL
;
6900 e
->event
.sequence
= drm_vblank_count_and_time(dev
, intel_crtc
->pipe
, &tvbl
);
6902 /* Called before vblank count and timestamps have
6903 * been updated for the vblank interval of flip
6904 * completion? Need to increment vblank count and
6905 * add one videorefresh duration to returned timestamp
6906 * to account for this. We assume this happened if we
6907 * get called over 0.9 frame durations after the last
6908 * timestamped vblank.
6910 * This calculation can not be used with vrefresh rates
6911 * below 5Hz (10Hz to be on the safe side) without
6912 * promoting to 64 integers.
6914 if (10 * (timeval_to_ns(&tnow
) - timeval_to_ns(&tvbl
)) >
6915 9 * crtc
->framedur_ns
) {
6916 e
->event
.sequence
++;
6917 tvbl
= ns_to_timeval(timeval_to_ns(&tvbl
) +
6921 e
->event
.tv_sec
= tvbl
.tv_sec
;
6922 e
->event
.tv_usec
= tvbl
.tv_usec
;
6924 list_add_tail(&e
->base
.link
,
6925 &e
->base
.file_priv
->event_list
);
6926 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
6929 drm_vblank_put(dev
, intel_crtc
->pipe
);
6931 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6933 obj
= work
->old_fb_obj
;
6935 atomic_clear_mask(1 << intel_crtc
->plane
,
6936 &obj
->pending_flip
.counter
);
6937 if (atomic_read(&obj
->pending_flip
) == 0)
6938 wake_up(&dev_priv
->pending_flip_queue
);
6940 schedule_work(&work
->work
);
6942 trace_i915_flip_complete(intel_crtc
->plane
, work
->pending_flip_obj
);
6945 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
6947 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6948 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
6950 do_intel_finish_page_flip(dev
, crtc
);
6953 void intel_finish_page_flip_plane(struct drm_device
*dev
, int plane
)
6955 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6956 struct drm_crtc
*crtc
= dev_priv
->plane_to_crtc_mapping
[plane
];
6958 do_intel_finish_page_flip(dev
, crtc
);
6961 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
6963 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6964 struct intel_crtc
*intel_crtc
=
6965 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
6966 unsigned long flags
;
6968 spin_lock_irqsave(&dev
->event_lock
, flags
);
6969 if (intel_crtc
->unpin_work
) {
6970 if ((++intel_crtc
->unpin_work
->pending
) > 1)
6971 DRM_ERROR("Prepared flip multiple times\n");
6973 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6975 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6978 static int intel_gen2_queue_flip(struct drm_device
*dev
,
6979 struct drm_crtc
*crtc
,
6980 struct drm_framebuffer
*fb
,
6981 struct drm_i915_gem_object
*obj
)
6983 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6984 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6985 unsigned long offset
;
6989 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6993 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6994 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
6996 ret
= BEGIN_LP_RING(6);
7000 /* Can't queue multiple flips, so wait for the previous
7001 * one to finish before executing the next.
7003 if (intel_crtc
->plane
)
7004 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
7006 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
7007 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
7009 OUT_RING(MI_DISPLAY_FLIP
|
7010 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7011 OUT_RING(fb
->pitch
);
7012 OUT_RING(obj
->gtt_offset
+ offset
);
7019 static int intel_gen3_queue_flip(struct drm_device
*dev
,
7020 struct drm_crtc
*crtc
,
7021 struct drm_framebuffer
*fb
,
7022 struct drm_i915_gem_object
*obj
)
7024 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7025 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7026 unsigned long offset
;
7030 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
7034 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7035 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
7037 ret
= BEGIN_LP_RING(6);
7041 if (intel_crtc
->plane
)
7042 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
7044 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
7045 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
7047 OUT_RING(MI_DISPLAY_FLIP_I915
|
7048 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7049 OUT_RING(fb
->pitch
);
7050 OUT_RING(obj
->gtt_offset
+ offset
);
7058 static int intel_gen4_queue_flip(struct drm_device
*dev
,
7059 struct drm_crtc
*crtc
,
7060 struct drm_framebuffer
*fb
,
7061 struct drm_i915_gem_object
*obj
)
7063 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7064 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7065 uint32_t pf
, pipesrc
;
7068 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
7072 ret
= BEGIN_LP_RING(4);
7076 /* i965+ uses the linear or tiled offsets from the
7077 * Display Registers (which do not change across a page-flip)
7078 * so we need only reprogram the base address.
7080 OUT_RING(MI_DISPLAY_FLIP
|
7081 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7082 OUT_RING(fb
->pitch
);
7083 OUT_RING(obj
->gtt_offset
| obj
->tiling_mode
);
7085 /* XXX Enabling the panel-fitter across page-flip is so far
7086 * untested on non-native modes, so ignore it for now.
7087 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7090 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
7091 OUT_RING(pf
| pipesrc
);
7097 static int intel_gen6_queue_flip(struct drm_device
*dev
,
7098 struct drm_crtc
*crtc
,
7099 struct drm_framebuffer
*fb
,
7100 struct drm_i915_gem_object
*obj
)
7102 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7103 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7104 uint32_t pf
, pipesrc
;
7107 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
7111 ret
= BEGIN_LP_RING(4);
7115 OUT_RING(MI_DISPLAY_FLIP
|
7116 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7117 OUT_RING(fb
->pitch
| obj
->tiling_mode
);
7118 OUT_RING(obj
->gtt_offset
);
7120 pf
= I915_READ(PF_CTL(intel_crtc
->pipe
)) & PF_ENABLE
;
7121 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
7122 OUT_RING(pf
| pipesrc
);
7129 * On gen7 we currently use the blit ring because (in early silicon at least)
7130 * the render ring doesn't give us interrpts for page flip completion, which
7131 * means clients will hang after the first flip is queued. Fortunately the
7132 * blit ring generates interrupts properly, so use it instead.
7134 static int intel_gen7_queue_flip(struct drm_device
*dev
,
7135 struct drm_crtc
*crtc
,
7136 struct drm_framebuffer
*fb
,
7137 struct drm_i915_gem_object
*obj
)
7139 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7140 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7141 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[BCS
];
7144 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, ring
);
7148 ret
= intel_ring_begin(ring
, 4);
7152 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
| (intel_crtc
->plane
<< 19));
7153 intel_ring_emit(ring
, (fb
->pitch
| obj
->tiling_mode
));
7154 intel_ring_emit(ring
, (obj
->gtt_offset
));
7155 intel_ring_emit(ring
, (MI_NOOP
));
7156 intel_ring_advance(ring
);
7161 static int intel_default_queue_flip(struct drm_device
*dev
,
7162 struct drm_crtc
*crtc
,
7163 struct drm_framebuffer
*fb
,
7164 struct drm_i915_gem_object
*obj
)
7169 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
7170 struct drm_framebuffer
*fb
,
7171 struct drm_pending_vblank_event
*event
)
7173 struct drm_device
*dev
= crtc
->dev
;
7174 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7175 struct intel_framebuffer
*intel_fb
;
7176 struct drm_i915_gem_object
*obj
;
7177 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7178 struct intel_unpin_work
*work
;
7179 unsigned long flags
;
7182 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
7186 work
->event
= event
;
7187 work
->dev
= crtc
->dev
;
7188 intel_fb
= to_intel_framebuffer(crtc
->fb
);
7189 work
->old_fb_obj
= intel_fb
->obj
;
7190 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
7192 /* We borrow the event spin lock for protecting unpin_work */
7193 spin_lock_irqsave(&dev
->event_lock
, flags
);
7194 if (intel_crtc
->unpin_work
) {
7195 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7198 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7201 intel_crtc
->unpin_work
= work
;
7202 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7204 intel_fb
= to_intel_framebuffer(fb
);
7205 obj
= intel_fb
->obj
;
7207 mutex_lock(&dev
->struct_mutex
);
7209 /* Reference the objects for the scheduled work. */
7210 drm_gem_object_reference(&work
->old_fb_obj
->base
);
7211 drm_gem_object_reference(&obj
->base
);
7215 ret
= drm_vblank_get(dev
, intel_crtc
->pipe
);
7219 work
->pending_flip_obj
= obj
;
7221 work
->enable_stall_check
= true;
7223 /* Block clients from rendering to the new back buffer until
7224 * the flip occurs and the object is no longer visible.
7226 atomic_add(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
7228 ret
= dev_priv
->display
.queue_flip(dev
, crtc
, fb
, obj
);
7230 goto cleanup_pending
;
7232 intel_disable_fbc(dev
);
7233 mutex_unlock(&dev
->struct_mutex
);
7235 trace_i915_flip_request(intel_crtc
->plane
, obj
);
7240 atomic_sub(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
7242 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
7243 drm_gem_object_unreference(&obj
->base
);
7244 mutex_unlock(&dev
->struct_mutex
);
7246 spin_lock_irqsave(&dev
->event_lock
, flags
);
7247 intel_crtc
->unpin_work
= NULL
;
7248 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7255 static void intel_sanitize_modesetting(struct drm_device
*dev
,
7256 int pipe
, int plane
)
7258 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7261 if (HAS_PCH_SPLIT(dev
))
7264 /* Who knows what state these registers were left in by the BIOS or
7267 * If we leave the registers in a conflicting state (e.g. with the
7268 * display plane reading from the other pipe than the one we intend
7269 * to use) then when we attempt to teardown the active mode, we will
7270 * not disable the pipes and planes in the correct order -- leaving
7271 * a plane reading from a disabled pipe and possibly leading to
7272 * undefined behaviour.
7275 reg
= DSPCNTR(plane
);
7276 val
= I915_READ(reg
);
7278 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
7280 if (!!(val
& DISPPLANE_SEL_PIPE_MASK
) == pipe
)
7283 /* This display plane is active and attached to the other CPU pipe. */
7286 /* Disable the plane and wait for it to stop reading from the pipe. */
7287 intel_disable_plane(dev_priv
, plane
, pipe
);
7288 intel_disable_pipe(dev_priv
, pipe
);
7291 static void intel_crtc_reset(struct drm_crtc
*crtc
)
7293 struct drm_device
*dev
= crtc
->dev
;
7294 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7296 /* Reset flags back to the 'unknown' status so that they
7297 * will be correctly set on the initial modeset.
7299 intel_crtc
->dpms_mode
= -1;
7301 /* We need to fix up any BIOS configuration that conflicts with
7304 intel_sanitize_modesetting(dev
, intel_crtc
->pipe
, intel_crtc
->plane
);
7307 static struct drm_crtc_helper_funcs intel_helper_funcs
= {
7308 .dpms
= intel_crtc_dpms
,
7309 .mode_fixup
= intel_crtc_mode_fixup
,
7310 .mode_set
= intel_crtc_mode_set
,
7311 .mode_set_base
= intel_pipe_set_base
,
7312 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
7313 .load_lut
= intel_crtc_load_lut
,
7314 .disable
= intel_crtc_disable
,
7317 static const struct drm_crtc_funcs intel_crtc_funcs
= {
7318 .reset
= intel_crtc_reset
,
7319 .cursor_set
= intel_crtc_cursor_set
,
7320 .cursor_move
= intel_crtc_cursor_move
,
7321 .gamma_set
= intel_crtc_gamma_set
,
7322 .set_config
= drm_crtc_helper_set_config
,
7323 .destroy
= intel_crtc_destroy
,
7324 .page_flip
= intel_crtc_page_flip
,
7327 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
7329 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7330 struct intel_crtc
*intel_crtc
;
7333 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
7334 if (intel_crtc
== NULL
)
7337 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
7339 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
7340 for (i
= 0; i
< 256; i
++) {
7341 intel_crtc
->lut_r
[i
] = i
;
7342 intel_crtc
->lut_g
[i
] = i
;
7343 intel_crtc
->lut_b
[i
] = i
;
7346 /* Swap pipes & planes for FBC on pre-965 */
7347 intel_crtc
->pipe
= pipe
;
7348 intel_crtc
->plane
= pipe
;
7349 if (IS_MOBILE(dev
) && IS_GEN3(dev
)) {
7350 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7351 intel_crtc
->plane
= !pipe
;
7354 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
7355 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
7356 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
7357 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
7359 intel_crtc_reset(&intel_crtc
->base
);
7360 intel_crtc
->active
= true; /* force the pipe off on setup_init_config */
7361 intel_crtc
->bpp
= 24; /* default for pre-Ironlake */
7363 if (HAS_PCH_SPLIT(dev
)) {
7364 if (pipe
== 2 && IS_IVYBRIDGE(dev
))
7365 intel_crtc
->no_pll
= true;
7366 intel_helper_funcs
.prepare
= ironlake_crtc_prepare
;
7367 intel_helper_funcs
.commit
= ironlake_crtc_commit
;
7369 intel_helper_funcs
.prepare
= i9xx_crtc_prepare
;
7370 intel_helper_funcs
.commit
= i9xx_crtc_commit
;
7373 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
7375 intel_crtc
->busy
= false;
7377 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
7378 (unsigned long)intel_crtc
);
7381 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
7382 struct drm_file
*file
)
7384 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7385 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
7386 struct drm_mode_object
*drmmode_obj
;
7387 struct intel_crtc
*crtc
;
7390 DRM_ERROR("called with no initialization\n");
7394 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
7395 DRM_MODE_OBJECT_CRTC
);
7398 DRM_ERROR("no such CRTC id\n");
7402 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
7403 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
7408 static int intel_encoder_clones(struct drm_device
*dev
, int type_mask
)
7410 struct intel_encoder
*encoder
;
7414 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
7415 if (type_mask
& encoder
->clone_mask
)
7416 index_mask
|= (1 << entry
);
7423 static bool has_edp_a(struct drm_device
*dev
)
7425 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7427 if (!IS_MOBILE(dev
))
7430 if ((I915_READ(DP_A
) & DP_DETECTED
) == 0)
7434 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES
) & ILK_eDP_A_DISABLE
))
7440 static void intel_setup_outputs(struct drm_device
*dev
)
7442 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7443 struct intel_encoder
*encoder
;
7444 bool dpd_is_edp
= false;
7445 bool has_lvds
= false;
7447 if (IS_MOBILE(dev
) && !IS_I830(dev
))
7448 has_lvds
= intel_lvds_init(dev
);
7449 if (!has_lvds
&& !HAS_PCH_SPLIT(dev
)) {
7450 /* disable the panel fitter on everything but LVDS */
7451 I915_WRITE(PFIT_CONTROL
, 0);
7454 if (HAS_PCH_SPLIT(dev
)) {
7455 dpd_is_edp
= intel_dpd_is_edp(dev
);
7458 intel_dp_init(dev
, DP_A
);
7460 if (dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
7461 intel_dp_init(dev
, PCH_DP_D
);
7464 intel_crt_init(dev
);
7466 if (HAS_PCH_SPLIT(dev
)) {
7469 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
7470 /* PCH SDVOB multiplex with HDMIB */
7471 found
= intel_sdvo_init(dev
, PCH_SDVOB
);
7473 intel_hdmi_init(dev
, HDMIB
);
7474 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
7475 intel_dp_init(dev
, PCH_DP_B
);
7478 if (I915_READ(HDMIC
) & PORT_DETECTED
)
7479 intel_hdmi_init(dev
, HDMIC
);
7481 if (I915_READ(HDMID
) & PORT_DETECTED
)
7482 intel_hdmi_init(dev
, HDMID
);
7484 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
7485 intel_dp_init(dev
, PCH_DP_C
);
7487 if (!dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
7488 intel_dp_init(dev
, PCH_DP_D
);
7490 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
7493 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
7494 DRM_DEBUG_KMS("probing SDVOB\n");
7495 found
= intel_sdvo_init(dev
, SDVOB
);
7496 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
7497 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7498 intel_hdmi_init(dev
, SDVOB
);
7501 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
7502 DRM_DEBUG_KMS("probing DP_B\n");
7503 intel_dp_init(dev
, DP_B
);
7507 /* Before G4X SDVOC doesn't have its own detect register */
7509 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
7510 DRM_DEBUG_KMS("probing SDVOC\n");
7511 found
= intel_sdvo_init(dev
, SDVOC
);
7514 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
7516 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
7517 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7518 intel_hdmi_init(dev
, SDVOC
);
7520 if (SUPPORTS_INTEGRATED_DP(dev
)) {
7521 DRM_DEBUG_KMS("probing DP_C\n");
7522 intel_dp_init(dev
, DP_C
);
7526 if (SUPPORTS_INTEGRATED_DP(dev
) &&
7527 (I915_READ(DP_D
) & DP_DETECTED
)) {
7528 DRM_DEBUG_KMS("probing DP_D\n");
7529 intel_dp_init(dev
, DP_D
);
7531 } else if (IS_GEN2(dev
))
7532 intel_dvo_init(dev
);
7534 if (SUPPORTS_TV(dev
))
7537 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
7538 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
7539 encoder
->base
.possible_clones
=
7540 intel_encoder_clones(dev
, encoder
->clone_mask
);
7543 /* disable all the possible outputs/crtcs before entering KMS mode */
7544 drm_helper_disable_unused_functions(dev
);
7546 if (HAS_PCH_SPLIT(dev
))
7547 ironlake_init_pch_refclk(dev
);
7550 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
7552 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7554 drm_framebuffer_cleanup(fb
);
7555 drm_gem_object_unreference_unlocked(&intel_fb
->obj
->base
);
7560 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
7561 struct drm_file
*file
,
7562 unsigned int *handle
)
7564 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7565 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
7567 return drm_gem_handle_create(file
, &obj
->base
, handle
);
7570 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
7571 .destroy
= intel_user_framebuffer_destroy
,
7572 .create_handle
= intel_user_framebuffer_create_handle
,
7575 int intel_framebuffer_init(struct drm_device
*dev
,
7576 struct intel_framebuffer
*intel_fb
,
7577 struct drm_mode_fb_cmd
*mode_cmd
,
7578 struct drm_i915_gem_object
*obj
)
7582 if (obj
->tiling_mode
== I915_TILING_Y
)
7585 if (mode_cmd
->pitch
& 63)
7588 switch (mode_cmd
->bpp
) {
7591 /* Only pre-ILK can handle 5:5:5 */
7592 if (mode_cmd
->depth
== 15 && !HAS_PCH_SPLIT(dev
))
7603 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
7605 DRM_ERROR("framebuffer init failed %d\n", ret
);
7609 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
7610 intel_fb
->obj
= obj
;
7614 static struct drm_framebuffer
*
7615 intel_user_framebuffer_create(struct drm_device
*dev
,
7616 struct drm_file
*filp
,
7617 struct drm_mode_fb_cmd
*mode_cmd
)
7619 struct drm_i915_gem_object
*obj
;
7621 obj
= to_intel_bo(drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
));
7622 if (&obj
->base
== NULL
)
7623 return ERR_PTR(-ENOENT
);
7625 return intel_framebuffer_create(dev
, mode_cmd
, obj
);
7628 static const struct drm_mode_config_funcs intel_mode_funcs
= {
7629 .fb_create
= intel_user_framebuffer_create
,
7630 .output_poll_changed
= intel_fb_output_poll_changed
,
7633 static struct drm_i915_gem_object
*
7634 intel_alloc_context_page(struct drm_device
*dev
)
7636 struct drm_i915_gem_object
*ctx
;
7639 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
7641 ctx
= i915_gem_alloc_object(dev
, 4096);
7643 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7647 ret
= i915_gem_object_pin(ctx
, 4096, true);
7649 DRM_ERROR("failed to pin power context: %d\n", ret
);
7653 ret
= i915_gem_object_set_to_gtt_domain(ctx
, 1);
7655 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
7662 i915_gem_object_unpin(ctx
);
7664 drm_gem_object_unreference(&ctx
->base
);
7665 mutex_unlock(&dev
->struct_mutex
);
7669 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
7671 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7674 rgvswctl
= I915_READ16(MEMSWCTL
);
7675 if (rgvswctl
& MEMCTL_CMD_STS
) {
7676 DRM_DEBUG("gpu busy, RCS change rejected\n");
7677 return false; /* still busy with another command */
7680 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
7681 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
7682 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7683 POSTING_READ16(MEMSWCTL
);
7685 rgvswctl
|= MEMCTL_CMD_STS
;
7686 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7691 void ironlake_enable_drps(struct drm_device
*dev
)
7693 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7694 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
7695 u8 fmax
, fmin
, fstart
, vstart
;
7697 /* Enable temp reporting */
7698 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
7699 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
7701 /* 100ms RC evaluation intervals */
7702 I915_WRITE(RCUPEI
, 100000);
7703 I915_WRITE(RCDNEI
, 100000);
7705 /* Set max/min thresholds to 90ms and 80ms respectively */
7706 I915_WRITE(RCBMAXAVG
, 90000);
7707 I915_WRITE(RCBMINAVG
, 80000);
7709 I915_WRITE(MEMIHYST
, 1);
7711 /* Set up min, max, and cur for interrupt handling */
7712 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
7713 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
7714 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
7715 MEMMODE_FSTART_SHIFT
;
7717 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
7720 dev_priv
->fmax
= fmax
; /* IPS callback will increase this */
7721 dev_priv
->fstart
= fstart
;
7723 dev_priv
->max_delay
= fstart
;
7724 dev_priv
->min_delay
= fmin
;
7725 dev_priv
->cur_delay
= fstart
;
7727 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7728 fmax
, fmin
, fstart
);
7730 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
7733 * Interrupts will be enabled in ironlake_irq_postinstall
7736 I915_WRITE(VIDSTART
, vstart
);
7737 POSTING_READ(VIDSTART
);
7739 rgvmodectl
|= MEMMODE_SWMODE_EN
;
7740 I915_WRITE(MEMMODECTL
, rgvmodectl
);
7742 if (wait_for((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
7743 DRM_ERROR("stuck trying to change perf mode\n");
7746 ironlake_set_drps(dev
, fstart
);
7748 dev_priv
->last_count1
= I915_READ(0x112e4) + I915_READ(0x112e8) +
7750 dev_priv
->last_time1
= jiffies_to_msecs(jiffies
);
7751 dev_priv
->last_count2
= I915_READ(0x112f4);
7752 getrawmonotonic(&dev_priv
->last_time2
);
7755 void ironlake_disable_drps(struct drm_device
*dev
)
7757 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7758 u16 rgvswctl
= I915_READ16(MEMSWCTL
);
7760 /* Ack interrupts, disable EFC interrupt */
7761 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
7762 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
7763 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
7764 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
7765 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
7767 /* Go back to the starting frequency */
7768 ironlake_set_drps(dev
, dev_priv
->fstart
);
7770 rgvswctl
|= MEMCTL_CMD_STS
;
7771 I915_WRITE(MEMSWCTL
, rgvswctl
);
7776 void gen6_set_rps(struct drm_device
*dev
, u8 val
)
7778 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7781 swreq
= (val
& 0x3ff) << 25;
7782 I915_WRITE(GEN6_RPNSWREQ
, swreq
);
7785 void gen6_disable_rps(struct drm_device
*dev
)
7787 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7789 I915_WRITE(GEN6_RPNSWREQ
, 1 << 31);
7790 I915_WRITE(GEN6_PMINTRMSK
, 0xffffffff);
7791 I915_WRITE(GEN6_PMIER
, 0);
7792 /* Complete PM interrupt masking here doesn't race with the rps work
7793 * item again unmasking PM interrupts because that is using a different
7794 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7795 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7797 spin_lock_irq(&dev_priv
->rps_lock
);
7798 dev_priv
->pm_iir
= 0;
7799 spin_unlock_irq(&dev_priv
->rps_lock
);
7801 I915_WRITE(GEN6_PMIIR
, I915_READ(GEN6_PMIIR
));
7804 static unsigned long intel_pxfreq(u32 vidfreq
)
7807 int div
= (vidfreq
& 0x3f0000) >> 16;
7808 int post
= (vidfreq
& 0x3000) >> 12;
7809 int pre
= (vidfreq
& 0x7);
7814 freq
= ((div
* 133333) / ((1<<post
) * pre
));
7819 void intel_init_emon(struct drm_device
*dev
)
7821 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7826 /* Disable to program */
7830 /* Program energy weights for various events */
7831 I915_WRITE(SDEW
, 0x15040d00);
7832 I915_WRITE(CSIEW0
, 0x007f0000);
7833 I915_WRITE(CSIEW1
, 0x1e220004);
7834 I915_WRITE(CSIEW2
, 0x04000004);
7836 for (i
= 0; i
< 5; i
++)
7837 I915_WRITE(PEW
+ (i
* 4), 0);
7838 for (i
= 0; i
< 3; i
++)
7839 I915_WRITE(DEW
+ (i
* 4), 0);
7841 /* Program P-state weights to account for frequency power adjustment */
7842 for (i
= 0; i
< 16; i
++) {
7843 u32 pxvidfreq
= I915_READ(PXVFREQ_BASE
+ (i
* 4));
7844 unsigned long freq
= intel_pxfreq(pxvidfreq
);
7845 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
7850 val
*= (freq
/ 1000);
7852 val
/= (127*127*900);
7854 DRM_ERROR("bad pxval: %ld\n", val
);
7857 /* Render standby states get 0 weight */
7861 for (i
= 0; i
< 4; i
++) {
7862 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
7863 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
7864 I915_WRITE(PXW
+ (i
* 4), val
);
7867 /* Adjust magic regs to magic values (more experimental results) */
7868 I915_WRITE(OGW0
, 0);
7869 I915_WRITE(OGW1
, 0);
7870 I915_WRITE(EG0
, 0x00007f00);
7871 I915_WRITE(EG1
, 0x0000000e);
7872 I915_WRITE(EG2
, 0x000e0000);
7873 I915_WRITE(EG3
, 0x68000300);
7874 I915_WRITE(EG4
, 0x42000000);
7875 I915_WRITE(EG5
, 0x00140031);
7879 for (i
= 0; i
< 8; i
++)
7880 I915_WRITE(PXWL
+ (i
* 4), 0);
7882 /* Enable PMON + select events */
7883 I915_WRITE(ECR
, 0x80000019);
7885 lcfuse
= I915_READ(LCFUSE02
);
7887 dev_priv
->corr
= (lcfuse
& LCFUSE_HIV_MASK
);
7890 void gen6_enable_rps(struct drm_i915_private
*dev_priv
)
7892 u32 rp_state_cap
= I915_READ(GEN6_RP_STATE_CAP
);
7893 u32 gt_perf_status
= I915_READ(GEN6_GT_PERF_STATUS
);
7894 u32 pcu_mbox
, rc6_mask
= 0;
7895 int cur_freq
, min_freq
, max_freq
;
7898 /* Here begins a magic sequence of register writes to enable
7899 * auto-downclocking.
7901 * Perhaps there might be some value in exposing these to
7904 I915_WRITE(GEN6_RC_STATE
, 0);
7905 mutex_lock(&dev_priv
->dev
->struct_mutex
);
7906 gen6_gt_force_wake_get(dev_priv
);
7908 /* disable the counters and set deterministic thresholds */
7909 I915_WRITE(GEN6_RC_CONTROL
, 0);
7911 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT
, 1000 << 16);
7912 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16 | 30);
7913 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT
, 30);
7914 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
7915 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
7917 for (i
= 0; i
< I915_NUM_RINGS
; i
++)
7918 I915_WRITE(RING_MAX_IDLE(dev_priv
->ring
[i
].mmio_base
), 10);
7920 I915_WRITE(GEN6_RC_SLEEP
, 0);
7921 I915_WRITE(GEN6_RC1e_THRESHOLD
, 1000);
7922 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000);
7923 I915_WRITE(GEN6_RC6p_THRESHOLD
, 100000);
7924 I915_WRITE(GEN6_RC6pp_THRESHOLD
, 64000); /* unused */
7926 if (i915_enable_rc6
)
7927 rc6_mask
= GEN6_RC_CTL_RC6p_ENABLE
|
7928 GEN6_RC_CTL_RC6_ENABLE
;
7930 I915_WRITE(GEN6_RC_CONTROL
,
7932 GEN6_RC_CTL_EI_MODE(1) |
7933 GEN6_RC_CTL_HW_ENABLE
);
7935 I915_WRITE(GEN6_RPNSWREQ
,
7936 GEN6_FREQUENCY(10) |
7938 GEN6_AGGRESSIVE_TURBO
);
7939 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
7940 GEN6_FREQUENCY(12));
7942 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
7943 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
,
7946 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 10000);
7947 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 1000000);
7948 I915_WRITE(GEN6_RP_UP_EI
, 100000);
7949 I915_WRITE(GEN6_RP_DOWN_EI
, 5000000);
7950 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
7951 I915_WRITE(GEN6_RP_CONTROL
,
7952 GEN6_RP_MEDIA_TURBO
|
7953 GEN6_RP_USE_NORMAL_FREQ
|
7954 GEN6_RP_MEDIA_IS_GFX
|
7956 GEN6_RP_UP_BUSY_AVG
|
7957 GEN6_RP_DOWN_IDLE_CONT
);
7959 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7961 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7963 I915_WRITE(GEN6_PCODE_DATA
, 0);
7964 I915_WRITE(GEN6_PCODE_MAILBOX
,
7966 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
7967 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7969 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7971 min_freq
= (rp_state_cap
& 0xff0000) >> 16;
7972 max_freq
= rp_state_cap
& 0xff;
7973 cur_freq
= (gt_perf_status
& 0xff00) >> 8;
7975 /* Check for overclock support */
7976 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7978 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7979 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_READ_OC_PARAMS
);
7980 pcu_mbox
= I915_READ(GEN6_PCODE_DATA
);
7981 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7983 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7984 if (pcu_mbox
& (1<<31)) { /* OC supported */
7985 max_freq
= pcu_mbox
& 0xff;
7986 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox
* 50);
7989 /* In units of 100MHz */
7990 dev_priv
->max_delay
= max_freq
;
7991 dev_priv
->min_delay
= min_freq
;
7992 dev_priv
->cur_delay
= cur_freq
;
7994 /* requires MSI enabled */
7995 I915_WRITE(GEN6_PMIER
,
7996 GEN6_PM_MBOX_EVENT
|
7997 GEN6_PM_THERMAL_EVENT
|
7998 GEN6_PM_RP_DOWN_TIMEOUT
|
7999 GEN6_PM_RP_UP_THRESHOLD
|
8000 GEN6_PM_RP_DOWN_THRESHOLD
|
8001 GEN6_PM_RP_UP_EI_EXPIRED
|
8002 GEN6_PM_RP_DOWN_EI_EXPIRED
);
8003 spin_lock_irq(&dev_priv
->rps_lock
);
8004 WARN_ON(dev_priv
->pm_iir
!= 0);
8005 I915_WRITE(GEN6_PMIMR
, 0);
8006 spin_unlock_irq(&dev_priv
->rps_lock
);
8007 /* enable all PM interrupts */
8008 I915_WRITE(GEN6_PMINTRMSK
, 0);
8010 gen6_gt_force_wake_put(dev_priv
);
8011 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
8014 void gen6_update_ring_freq(struct drm_i915_private
*dev_priv
)
8017 int gpu_freq
, ia_freq
, max_ia_freq
;
8018 int scaling_factor
= 180;
8020 max_ia_freq
= cpufreq_quick_get_max(0);
8022 * Default to measured freq if none found, PCU will ensure we don't go
8026 max_ia_freq
= tsc_khz
;
8028 /* Convert from kHz to MHz */
8029 max_ia_freq
/= 1000;
8031 mutex_lock(&dev_priv
->dev
->struct_mutex
);
8034 * For each potential GPU frequency, load a ring frequency we'd like
8035 * to use for memory access. We do this by specifying the IA frequency
8036 * the PCU should use as a reference to determine the ring frequency.
8038 for (gpu_freq
= dev_priv
->max_delay
; gpu_freq
>= dev_priv
->min_delay
;
8040 int diff
= dev_priv
->max_delay
- gpu_freq
;
8043 * For GPU frequencies less than 750MHz, just use the lowest
8046 if (gpu_freq
< min_freq
)
8049 ia_freq
= max_ia_freq
- ((diff
* scaling_factor
) / 2);
8050 ia_freq
= DIV_ROUND_CLOSEST(ia_freq
, 100);
8052 I915_WRITE(GEN6_PCODE_DATA
,
8053 (ia_freq
<< GEN6_PCODE_FREQ_IA_RATIO_SHIFT
) |
8055 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
|
8056 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
8057 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) &
8058 GEN6_PCODE_READY
) == 0, 10)) {
8059 DRM_ERROR("pcode write of freq table timed out\n");
8064 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
8067 static void ironlake_init_clock_gating(struct drm_device
*dev
)
8069 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8070 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
8072 /* Required for FBC */
8073 dspclk_gate
|= DPFCUNIT_CLOCK_GATE_DISABLE
|
8074 DPFCRUNIT_CLOCK_GATE_DISABLE
|
8075 DPFDUNIT_CLOCK_GATE_DISABLE
;
8076 /* Required for CxSR */
8077 dspclk_gate
|= DPARBUNIT_CLOCK_GATE_DISABLE
;
8079 I915_WRITE(PCH_3DCGDIS0
,
8080 MARIUNIT_CLOCK_GATE_DISABLE
|
8081 SVSMUNIT_CLOCK_GATE_DISABLE
);
8082 I915_WRITE(PCH_3DCGDIS1
,
8083 VFMUNIT_CLOCK_GATE_DISABLE
);
8085 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
8088 * According to the spec the following bits should be set in
8089 * order to enable memory self-refresh
8090 * The bit 22/21 of 0x42004
8091 * The bit 5 of 0x42020
8092 * The bit 15 of 0x45000
8094 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8095 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
8096 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
8097 I915_WRITE(ILK_DSPCLK_GATE
,
8098 (I915_READ(ILK_DSPCLK_GATE
) |
8099 ILK_DPARB_CLK_GATE
));
8100 I915_WRITE(DISP_ARB_CTL
,
8101 (I915_READ(DISP_ARB_CTL
) |
8103 I915_WRITE(WM3_LP_ILK
, 0);
8104 I915_WRITE(WM2_LP_ILK
, 0);
8105 I915_WRITE(WM1_LP_ILK
, 0);
8108 * Based on the document from hardware guys the following bits
8109 * should be set unconditionally in order to enable FBC.
8110 * The bit 22 of 0x42000
8111 * The bit 22 of 0x42004
8112 * The bit 7,8,9 of 0x42020.
8114 if (IS_IRONLAKE_M(dev
)) {
8115 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
8116 I915_READ(ILK_DISPLAY_CHICKEN1
) |
8118 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8119 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8121 I915_WRITE(ILK_DSPCLK_GATE
,
8122 I915_READ(ILK_DSPCLK_GATE
) |
8128 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8129 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8130 ILK_ELPIN_409_SELECT
);
8131 I915_WRITE(_3D_CHICKEN2
,
8132 _3D_CHICKEN2_WM_READ_PIPELINED
<< 16 |
8133 _3D_CHICKEN2_WM_READ_PIPELINED
);
8136 static void gen6_init_clock_gating(struct drm_device
*dev
)
8138 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8140 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
8142 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
8144 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8145 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8146 ILK_ELPIN_409_SELECT
);
8148 I915_WRITE(WM3_LP_ILK
, 0);
8149 I915_WRITE(WM2_LP_ILK
, 0);
8150 I915_WRITE(WM1_LP_ILK
, 0);
8152 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8153 * gating disable must be set. Failure to set it results in
8154 * flickering pixels due to Z write ordering failures after
8155 * some amount of runtime in the Mesa "fire" demo, and Unigine
8156 * Sanctuary and Tropics, and apparently anything else with
8157 * alpha test or pixel discard.
8159 * According to the spec, bit 11 (RCCUNIT) must also be set,
8160 * but we didn't debug actual testcases to find it out.
8162 I915_WRITE(GEN6_UCGCTL2
,
8163 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE
|
8164 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
8167 * According to the spec the following bits should be
8168 * set in order to enable memory self-refresh and fbc:
8169 * The bit21 and bit22 of 0x42000
8170 * The bit21 and bit22 of 0x42004
8171 * The bit5 and bit7 of 0x42020
8172 * The bit14 of 0x70180
8173 * The bit14 of 0x71180
8175 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
8176 I915_READ(ILK_DISPLAY_CHICKEN1
) |
8177 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
8178 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8179 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8180 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
8181 I915_WRITE(ILK_DSPCLK_GATE
,
8182 I915_READ(ILK_DSPCLK_GATE
) |
8183 ILK_DPARB_CLK_GATE
|
8186 for_each_pipe(pipe
) {
8187 I915_WRITE(DSPCNTR(pipe
),
8188 I915_READ(DSPCNTR(pipe
)) |
8189 DISPPLANE_TRICKLE_FEED_DISABLE
);
8190 intel_flush_display_plane(dev_priv
, pipe
);
8194 static void ivybridge_init_clock_gating(struct drm_device
*dev
)
8196 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8198 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
8200 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
8202 I915_WRITE(WM3_LP_ILK
, 0);
8203 I915_WRITE(WM2_LP_ILK
, 0);
8204 I915_WRITE(WM1_LP_ILK
, 0);
8206 I915_WRITE(ILK_DSPCLK_GATE
, IVB_VRHUNIT_CLK_GATE
);
8208 for_each_pipe(pipe
) {
8209 I915_WRITE(DSPCNTR(pipe
),
8210 I915_READ(DSPCNTR(pipe
)) |
8211 DISPPLANE_TRICKLE_FEED_DISABLE
);
8212 intel_flush_display_plane(dev_priv
, pipe
);
8216 static void g4x_init_clock_gating(struct drm_device
*dev
)
8218 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8219 uint32_t dspclk_gate
;
8221 I915_WRITE(RENCLK_GATE_D1
, 0);
8222 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
8223 GS_UNIT_CLOCK_GATE_DISABLE
|
8224 CL_UNIT_CLOCK_GATE_DISABLE
);
8225 I915_WRITE(RAMCLK_GATE_D
, 0);
8226 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
8227 OVRUNIT_CLOCK_GATE_DISABLE
|
8228 OVCUNIT_CLOCK_GATE_DISABLE
;
8230 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
8231 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
8234 static void crestline_init_clock_gating(struct drm_device
*dev
)
8236 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8238 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
8239 I915_WRITE(RENCLK_GATE_D2
, 0);
8240 I915_WRITE(DSPCLK_GATE_D
, 0);
8241 I915_WRITE(RAMCLK_GATE_D
, 0);
8242 I915_WRITE16(DEUC
, 0);
8245 static void broadwater_init_clock_gating(struct drm_device
*dev
)
8247 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8249 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
8250 I965_RCC_CLOCK_GATE_DISABLE
|
8251 I965_RCPB_CLOCK_GATE_DISABLE
|
8252 I965_ISC_CLOCK_GATE_DISABLE
|
8253 I965_FBC_CLOCK_GATE_DISABLE
);
8254 I915_WRITE(RENCLK_GATE_D2
, 0);
8257 static void gen3_init_clock_gating(struct drm_device
*dev
)
8259 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8260 u32 dstate
= I915_READ(D_STATE
);
8262 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
8263 DSTATE_DOT_CLOCK_GATING
;
8264 I915_WRITE(D_STATE
, dstate
);
8267 static void i85x_init_clock_gating(struct drm_device
*dev
)
8269 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8271 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
8274 static void i830_init_clock_gating(struct drm_device
*dev
)
8276 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8278 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
8281 static void ibx_init_clock_gating(struct drm_device
*dev
)
8283 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8286 * On Ibex Peak and Cougar Point, we need to disable clock
8287 * gating for the panel power sequencer or it will fail to
8288 * start up when no ports are active.
8290 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
8293 static void cpt_init_clock_gating(struct drm_device
*dev
)
8295 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8299 * On Ibex Peak and Cougar Point, we need to disable clock
8300 * gating for the panel power sequencer or it will fail to
8301 * start up when no ports are active.
8303 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
8304 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
8305 DPLS_EDP_PPS_FIX_DIS
);
8306 /* Without this, mode sets may fail silently on FDI */
8308 I915_WRITE(TRANS_CHICKEN2(pipe
), TRANS_AUTOTRAIN_GEN_STALL_DIS
);
8311 static void ironlake_teardown_rc6(struct drm_device
*dev
)
8313 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8315 if (dev_priv
->renderctx
) {
8316 i915_gem_object_unpin(dev_priv
->renderctx
);
8317 drm_gem_object_unreference(&dev_priv
->renderctx
->base
);
8318 dev_priv
->renderctx
= NULL
;
8321 if (dev_priv
->pwrctx
) {
8322 i915_gem_object_unpin(dev_priv
->pwrctx
);
8323 drm_gem_object_unreference(&dev_priv
->pwrctx
->base
);
8324 dev_priv
->pwrctx
= NULL
;
8328 static void ironlake_disable_rc6(struct drm_device
*dev
)
8330 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8332 if (I915_READ(PWRCTXA
)) {
8333 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8334 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) | RCX_SW_EXIT
);
8335 wait_for(((I915_READ(RSTDBYCTL
) & RSX_STATUS_MASK
) == RSX_STATUS_ON
),
8338 I915_WRITE(PWRCTXA
, 0);
8339 POSTING_READ(PWRCTXA
);
8341 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
8342 POSTING_READ(RSTDBYCTL
);
8345 ironlake_teardown_rc6(dev
);
8348 static int ironlake_setup_rc6(struct drm_device
*dev
)
8350 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8352 if (dev_priv
->renderctx
== NULL
)
8353 dev_priv
->renderctx
= intel_alloc_context_page(dev
);
8354 if (!dev_priv
->renderctx
)
8357 if (dev_priv
->pwrctx
== NULL
)
8358 dev_priv
->pwrctx
= intel_alloc_context_page(dev
);
8359 if (!dev_priv
->pwrctx
) {
8360 ironlake_teardown_rc6(dev
);
8367 void ironlake_enable_rc6(struct drm_device
*dev
)
8369 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8372 /* rc6 disabled by default due to repeated reports of hanging during
8375 if (!i915_enable_rc6
)
8378 mutex_lock(&dev
->struct_mutex
);
8379 ret
= ironlake_setup_rc6(dev
);
8381 mutex_unlock(&dev
->struct_mutex
);
8386 * GPU can automatically power down the render unit if given a page
8389 ret
= BEGIN_LP_RING(6);
8391 ironlake_teardown_rc6(dev
);
8392 mutex_unlock(&dev
->struct_mutex
);
8396 OUT_RING(MI_SUSPEND_FLUSH
| MI_SUSPEND_FLUSH_EN
);
8397 OUT_RING(MI_SET_CONTEXT
);
8398 OUT_RING(dev_priv
->renderctx
->gtt_offset
|
8400 MI_SAVE_EXT_STATE_EN
|
8401 MI_RESTORE_EXT_STATE_EN
|
8402 MI_RESTORE_INHIBIT
);
8403 OUT_RING(MI_SUSPEND_FLUSH
);
8409 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8410 * does an implicit flush, combined with MI_FLUSH above, it should be
8411 * safe to assume that renderctx is valid
8413 ret
= intel_wait_ring_idle(LP_RING(dev_priv
));
8415 DRM_ERROR("failed to enable ironlake power power savings\n");
8416 ironlake_teardown_rc6(dev
);
8417 mutex_unlock(&dev
->struct_mutex
);
8421 I915_WRITE(PWRCTXA
, dev_priv
->pwrctx
->gtt_offset
| PWRCTX_EN
);
8422 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
8423 mutex_unlock(&dev
->struct_mutex
);
8426 void intel_init_clock_gating(struct drm_device
*dev
)
8428 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8430 dev_priv
->display
.init_clock_gating(dev
);
8432 if (dev_priv
->display
.init_pch_clock_gating
)
8433 dev_priv
->display
.init_pch_clock_gating(dev
);
8436 /* Set up chip specific display functions */
8437 static void intel_init_display(struct drm_device
*dev
)
8439 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8441 /* We always want a DPMS function */
8442 if (HAS_PCH_SPLIT(dev
)) {
8443 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
8444 dev_priv
->display
.crtc_mode_set
= ironlake_crtc_mode_set
;
8445 dev_priv
->display
.update_plane
= ironlake_update_plane
;
8447 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
8448 dev_priv
->display
.crtc_mode_set
= i9xx_crtc_mode_set
;
8449 dev_priv
->display
.update_plane
= i9xx_update_plane
;
8452 if (I915_HAS_FBC(dev
)) {
8453 if (HAS_PCH_SPLIT(dev
)) {
8454 dev_priv
->display
.fbc_enabled
= ironlake_fbc_enabled
;
8455 dev_priv
->display
.enable_fbc
= ironlake_enable_fbc
;
8456 dev_priv
->display
.disable_fbc
= ironlake_disable_fbc
;
8457 } else if (IS_GM45(dev
)) {
8458 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
8459 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
8460 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
8461 } else if (IS_CRESTLINE(dev
)) {
8462 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
8463 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
8464 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
8466 /* 855GM needs testing */
8469 /* Returns the core display clock speed */
8470 if (IS_I945G(dev
) || (IS_G33(dev
) && !IS_PINEVIEW_M(dev
)))
8471 dev_priv
->display
.get_display_clock_speed
=
8472 i945_get_display_clock_speed
;
8473 else if (IS_I915G(dev
))
8474 dev_priv
->display
.get_display_clock_speed
=
8475 i915_get_display_clock_speed
;
8476 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
8477 dev_priv
->display
.get_display_clock_speed
=
8478 i9xx_misc_get_display_clock_speed
;
8479 else if (IS_I915GM(dev
))
8480 dev_priv
->display
.get_display_clock_speed
=
8481 i915gm_get_display_clock_speed
;
8482 else if (IS_I865G(dev
))
8483 dev_priv
->display
.get_display_clock_speed
=
8484 i865_get_display_clock_speed
;
8485 else if (IS_I85X(dev
))
8486 dev_priv
->display
.get_display_clock_speed
=
8487 i855_get_display_clock_speed
;
8489 dev_priv
->display
.get_display_clock_speed
=
8490 i830_get_display_clock_speed
;
8492 /* For FIFO watermark updates */
8493 if (HAS_PCH_SPLIT(dev
)) {
8494 if (HAS_PCH_IBX(dev
))
8495 dev_priv
->display
.init_pch_clock_gating
= ibx_init_clock_gating
;
8496 else if (HAS_PCH_CPT(dev
))
8497 dev_priv
->display
.init_pch_clock_gating
= cpt_init_clock_gating
;
8500 if (I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
)
8501 dev_priv
->display
.update_wm
= ironlake_update_wm
;
8503 DRM_DEBUG_KMS("Failed to get proper latency. "
8505 dev_priv
->display
.update_wm
= NULL
;
8507 dev_priv
->display
.fdi_link_train
= ironlake_fdi_link_train
;
8508 dev_priv
->display
.init_clock_gating
= ironlake_init_clock_gating
;
8509 dev_priv
->display
.write_eld
= ironlake_write_eld
;
8510 } else if (IS_GEN6(dev
)) {
8511 if (SNB_READ_WM0_LATENCY()) {
8512 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
8514 DRM_DEBUG_KMS("Failed to read display plane latency. "
8516 dev_priv
->display
.update_wm
= NULL
;
8518 dev_priv
->display
.fdi_link_train
= gen6_fdi_link_train
;
8519 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
8520 dev_priv
->display
.write_eld
= ironlake_write_eld
;
8521 } else if (IS_IVYBRIDGE(dev
)) {
8522 /* FIXME: detect B0+ stepping and use auto training */
8523 dev_priv
->display
.fdi_link_train
= ivb_manual_fdi_link_train
;
8524 if (SNB_READ_WM0_LATENCY()) {
8525 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
8527 DRM_DEBUG_KMS("Failed to read display plane latency. "
8529 dev_priv
->display
.update_wm
= NULL
;
8531 dev_priv
->display
.init_clock_gating
= ivybridge_init_clock_gating
;
8532 dev_priv
->display
.write_eld
= ironlake_write_eld
;
8534 dev_priv
->display
.update_wm
= NULL
;
8535 } else if (IS_PINEVIEW(dev
)) {
8536 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
8539 dev_priv
->mem_freq
)) {
8540 DRM_INFO("failed to find known CxSR latency "
8541 "(found ddr%s fsb freq %d, mem freq %d), "
8543 (dev_priv
->is_ddr3
== 1) ? "3" : "2",
8544 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
8545 /* Disable CxSR and never update its watermark again */
8546 pineview_disable_cxsr(dev
);
8547 dev_priv
->display
.update_wm
= NULL
;
8549 dev_priv
->display
.update_wm
= pineview_update_wm
;
8550 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
8551 } else if (IS_G4X(dev
)) {
8552 dev_priv
->display
.write_eld
= g4x_write_eld
;
8553 dev_priv
->display
.update_wm
= g4x_update_wm
;
8554 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
8555 } else if (IS_GEN4(dev
)) {
8556 dev_priv
->display
.update_wm
= i965_update_wm
;
8557 if (IS_CRESTLINE(dev
))
8558 dev_priv
->display
.init_clock_gating
= crestline_init_clock_gating
;
8559 else if (IS_BROADWATER(dev
))
8560 dev_priv
->display
.init_clock_gating
= broadwater_init_clock_gating
;
8561 } else if (IS_GEN3(dev
)) {
8562 dev_priv
->display
.update_wm
= i9xx_update_wm
;
8563 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
8564 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
8565 } else if (IS_I865G(dev
)) {
8566 dev_priv
->display
.update_wm
= i830_update_wm
;
8567 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8568 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8569 } else if (IS_I85X(dev
)) {
8570 dev_priv
->display
.update_wm
= i9xx_update_wm
;
8571 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
8572 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8574 dev_priv
->display
.update_wm
= i830_update_wm
;
8575 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
8577 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
8579 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8582 /* Default just returns -ENODEV to indicate unsupported */
8583 dev_priv
->display
.queue_flip
= intel_default_queue_flip
;
8585 switch (INTEL_INFO(dev
)->gen
) {
8587 dev_priv
->display
.queue_flip
= intel_gen2_queue_flip
;
8591 dev_priv
->display
.queue_flip
= intel_gen3_queue_flip
;
8596 dev_priv
->display
.queue_flip
= intel_gen4_queue_flip
;
8600 dev_priv
->display
.queue_flip
= intel_gen6_queue_flip
;
8603 dev_priv
->display
.queue_flip
= intel_gen7_queue_flip
;
8609 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8610 * resume, or other times. This quirk makes sure that's the case for
8613 static void quirk_pipea_force(struct drm_device
*dev
)
8615 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8617 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
8618 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8622 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8624 static void quirk_ssc_force_disable(struct drm_device
*dev
)
8626 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8627 dev_priv
->quirks
|= QUIRK_LVDS_SSC_DISABLE
;
8630 struct intel_quirk
{
8632 int subsystem_vendor
;
8633 int subsystem_device
;
8634 void (*hook
)(struct drm_device
*dev
);
8637 struct intel_quirk intel_quirks
[] = {
8638 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8639 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force
},
8640 /* HP Mini needs pipe A force quirk (LP: #322104) */
8641 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force
},
8643 /* Thinkpad R31 needs pipe A force quirk */
8644 { 0x3577, 0x1014, 0x0505, quirk_pipea_force
},
8645 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8646 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
8648 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8649 { 0x3577, 0x1014, 0x0513, quirk_pipea_force
},
8650 /* ThinkPad X40 needs pipe A force quirk */
8652 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8653 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
8655 /* 855 & before need to leave pipe A & dpll A up */
8656 { 0x3582, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8657 { 0x2562, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8659 /* Lenovo U160 cannot use SSC on LVDS */
8660 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable
},
8662 /* Sony Vaio Y cannot use SSC on LVDS */
8663 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable
},
8666 static void intel_init_quirks(struct drm_device
*dev
)
8668 struct pci_dev
*d
= dev
->pdev
;
8671 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
8672 struct intel_quirk
*q
= &intel_quirks
[i
];
8674 if (d
->device
== q
->device
&&
8675 (d
->subsystem_vendor
== q
->subsystem_vendor
||
8676 q
->subsystem_vendor
== PCI_ANY_ID
) &&
8677 (d
->subsystem_device
== q
->subsystem_device
||
8678 q
->subsystem_device
== PCI_ANY_ID
))
8683 /* Disable the VGA plane that we never use */
8684 static void i915_disable_vga(struct drm_device
*dev
)
8686 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8690 if (HAS_PCH_SPLIT(dev
))
8691 vga_reg
= CPU_VGACNTRL
;
8695 vga_get_uninterruptible(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
8696 outb(1, VGA_SR_INDEX
);
8697 sr1
= inb(VGA_SR_DATA
);
8698 outb(sr1
| 1<<5, VGA_SR_DATA
);
8699 vga_put(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
8702 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
8703 POSTING_READ(vga_reg
);
8706 void intel_modeset_init(struct drm_device
*dev
)
8708 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8711 drm_mode_config_init(dev
);
8713 dev
->mode_config
.min_width
= 0;
8714 dev
->mode_config
.min_height
= 0;
8716 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
8718 intel_init_quirks(dev
);
8720 intel_init_display(dev
);
8723 dev
->mode_config
.max_width
= 2048;
8724 dev
->mode_config
.max_height
= 2048;
8725 } else if (IS_GEN3(dev
)) {
8726 dev
->mode_config
.max_width
= 4096;
8727 dev
->mode_config
.max_height
= 4096;
8729 dev
->mode_config
.max_width
= 8192;
8730 dev
->mode_config
.max_height
= 8192;
8732 dev
->mode_config
.fb_base
= dev
->agp
->base
;
8734 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8735 dev_priv
->num_pipe
, dev_priv
->num_pipe
> 1 ? "s" : "");
8737 for (i
= 0; i
< dev_priv
->num_pipe
; i
++) {
8738 intel_crtc_init(dev
, i
);
8741 /* Just disable it once at startup */
8742 i915_disable_vga(dev
);
8743 intel_setup_outputs(dev
);
8745 intel_init_clock_gating(dev
);
8747 if (IS_IRONLAKE_M(dev
)) {
8748 ironlake_enable_drps(dev
);
8749 intel_init_emon(dev
);
8752 if (IS_GEN6(dev
) || IS_GEN7(dev
)) {
8753 gen6_enable_rps(dev_priv
);
8754 gen6_update_ring_freq(dev_priv
);
8757 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
8758 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
8759 (unsigned long)dev
);
8762 void intel_modeset_gem_init(struct drm_device
*dev
)
8764 if (IS_IRONLAKE_M(dev
))
8765 ironlake_enable_rc6(dev
);
8767 intel_setup_overlay(dev
);
8770 void intel_modeset_cleanup(struct drm_device
*dev
)
8772 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8773 struct drm_crtc
*crtc
;
8774 struct intel_crtc
*intel_crtc
;
8776 drm_kms_helper_poll_fini(dev
);
8777 mutex_lock(&dev
->struct_mutex
);
8779 intel_unregister_dsm_handler();
8782 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
8783 /* Skip inactive CRTCs */
8787 intel_crtc
= to_intel_crtc(crtc
);
8788 intel_increase_pllclock(crtc
);
8791 intel_disable_fbc(dev
);
8793 if (IS_IRONLAKE_M(dev
))
8794 ironlake_disable_drps(dev
);
8795 if (IS_GEN6(dev
) || IS_GEN7(dev
))
8796 gen6_disable_rps(dev
);
8798 if (IS_IRONLAKE_M(dev
))
8799 ironlake_disable_rc6(dev
);
8801 mutex_unlock(&dev
->struct_mutex
);
8803 /* Disable the irq before mode object teardown, for the irq might
8804 * enqueue unpin/hotplug work. */
8805 drm_irq_uninstall(dev
);
8806 cancel_work_sync(&dev_priv
->hotplug_work
);
8807 cancel_work_sync(&dev_priv
->rps_work
);
8809 /* flush any delayed tasks or pending work */
8810 flush_scheduled_work();
8812 /* Shut off idle work before the crtcs get freed. */
8813 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
8814 intel_crtc
= to_intel_crtc(crtc
);
8815 del_timer_sync(&intel_crtc
->idle_timer
);
8817 del_timer_sync(&dev_priv
->idle_timer
);
8818 cancel_work_sync(&dev_priv
->idle_work
);
8820 drm_mode_config_cleanup(dev
);
8824 * Return which encoder is currently attached for connector.
8826 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
8828 return &intel_attached_encoder(connector
)->base
;
8831 void intel_connector_attach_encoder(struct intel_connector
*connector
,
8832 struct intel_encoder
*encoder
)
8834 connector
->encoder
= encoder
;
8835 drm_mode_connector_attach_encoder(&connector
->base
,
8840 * set vga decode state - true == enable VGA decode
8842 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
8844 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8847 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
8849 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
8851 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
8852 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);
8856 #ifdef CONFIG_DEBUG_FS
8857 #include <linux/seq_file.h>
8859 struct intel_display_error_state
{
8860 struct intel_cursor_error_state
{
8867 struct intel_pipe_error_state
{
8879 struct intel_plane_error_state
{
8890 struct intel_display_error_state
*
8891 intel_display_capture_error_state(struct drm_device
*dev
)
8893 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
8894 struct intel_display_error_state
*error
;
8897 error
= kmalloc(sizeof(*error
), GFP_ATOMIC
);
8901 for (i
= 0; i
< 2; i
++) {
8902 error
->cursor
[i
].control
= I915_READ(CURCNTR(i
));
8903 error
->cursor
[i
].position
= I915_READ(CURPOS(i
));
8904 error
->cursor
[i
].base
= I915_READ(CURBASE(i
));
8906 error
->plane
[i
].control
= I915_READ(DSPCNTR(i
));
8907 error
->plane
[i
].stride
= I915_READ(DSPSTRIDE(i
));
8908 error
->plane
[i
].size
= I915_READ(DSPSIZE(i
));
8909 error
->plane
[i
].pos
= I915_READ(DSPPOS(i
));
8910 error
->plane
[i
].addr
= I915_READ(DSPADDR(i
));
8911 if (INTEL_INFO(dev
)->gen
>= 4) {
8912 error
->plane
[i
].surface
= I915_READ(DSPSURF(i
));
8913 error
->plane
[i
].tile_offset
= I915_READ(DSPTILEOFF(i
));
8916 error
->pipe
[i
].conf
= I915_READ(PIPECONF(i
));
8917 error
->pipe
[i
].source
= I915_READ(PIPESRC(i
));
8918 error
->pipe
[i
].htotal
= I915_READ(HTOTAL(i
));
8919 error
->pipe
[i
].hblank
= I915_READ(HBLANK(i
));
8920 error
->pipe
[i
].hsync
= I915_READ(HSYNC(i
));
8921 error
->pipe
[i
].vtotal
= I915_READ(VTOTAL(i
));
8922 error
->pipe
[i
].vblank
= I915_READ(VBLANK(i
));
8923 error
->pipe
[i
].vsync
= I915_READ(VSYNC(i
));
8930 intel_display_print_error_state(struct seq_file
*m
,
8931 struct drm_device
*dev
,
8932 struct intel_display_error_state
*error
)
8936 for (i
= 0; i
< 2; i
++) {
8937 seq_printf(m
, "Pipe [%d]:\n", i
);
8938 seq_printf(m
, " CONF: %08x\n", error
->pipe
[i
].conf
);
8939 seq_printf(m
, " SRC: %08x\n", error
->pipe
[i
].source
);
8940 seq_printf(m
, " HTOTAL: %08x\n", error
->pipe
[i
].htotal
);
8941 seq_printf(m
, " HBLANK: %08x\n", error
->pipe
[i
].hblank
);
8942 seq_printf(m
, " HSYNC: %08x\n", error
->pipe
[i
].hsync
);
8943 seq_printf(m
, " VTOTAL: %08x\n", error
->pipe
[i
].vtotal
);
8944 seq_printf(m
, " VBLANK: %08x\n", error
->pipe
[i
].vblank
);
8945 seq_printf(m
, " VSYNC: %08x\n", error
->pipe
[i
].vsync
);
8947 seq_printf(m
, "Plane [%d]:\n", i
);
8948 seq_printf(m
, " CNTR: %08x\n", error
->plane
[i
].control
);
8949 seq_printf(m
, " STRIDE: %08x\n", error
->plane
[i
].stride
);
8950 seq_printf(m
, " SIZE: %08x\n", error
->plane
[i
].size
);
8951 seq_printf(m
, " POS: %08x\n", error
->plane
[i
].pos
);
8952 seq_printf(m
, " ADDR: %08x\n", error
->plane
[i
].addr
);
8953 if (INTEL_INFO(dev
)->gen
>= 4) {
8954 seq_printf(m
, " SURF: %08x\n", error
->plane
[i
].surface
);
8955 seq_printf(m
, " TILEOFF: %08x\n", error
->plane
[i
].tile_offset
);
8958 seq_printf(m
, "Cursor [%d]:\n", i
);
8959 seq_printf(m
, " CNTR: %08x\n", error
->cursor
[i
].control
);
8960 seq_printf(m
, " POS: %08x\n", error
->cursor
[i
].position
);
8961 seq_printf(m
, " BASE: %08x\n", error
->cursor
[i
].base
);