2 * sparse memory mappings.
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
18 * Permanent SPARSEMEM data:
20 * 1) mem_section - memory sections, mem_map's for valid memory
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
24 ____cacheline_internodealigned_in_smp
;
26 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
27 ____cacheline_internodealigned_in_smp
;
29 EXPORT_SYMBOL(mem_section
);
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
40 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
43 int page_to_nid(const struct page
*page
)
45 return section_to_node_table
[page_to_section(page
)];
47 EXPORT_SYMBOL(page_to_nid
);
49 static void set_section_nid(unsigned long section_nr
, int nid
)
51 section_to_node_table
[section_nr
] = nid
;
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr
, int nid
)
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
62 struct mem_section
*section
= NULL
;
63 unsigned long array_size
= SECTIONS_PER_ROOT
*
64 sizeof(struct mem_section
);
66 if (slab_is_available()) {
67 if (node_state(nid
, N_HIGH_MEMORY
))
68 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
70 section
= kmalloc(array_size
, GFP_KERNEL
);
72 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
75 memset(section
, 0, array_size
);
80 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
82 static DEFINE_SPINLOCK(index_init_lock
);
83 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
84 struct mem_section
*section
;
87 if (mem_section
[root
])
90 section
= sparse_index_alloc(nid
);
94 * This lock keeps two different sections from
95 * reallocating for the same index
97 spin_lock(&index_init_lock
);
99 if (mem_section
[root
]) {
104 mem_section
[root
] = section
;
106 spin_unlock(&index_init_lock
);
109 #else /* !SPARSEMEM_EXTREME */
110 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
121 int __section_nr(struct mem_section
* ms
)
123 unsigned long root_nr
;
124 struct mem_section
* root
;
126 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
127 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
131 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
135 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node. This keeps us from having to use another data structure. The
142 * node information is cleared just before we store the real mem_map.
144 static inline unsigned long sparse_encode_early_nid(int nid
)
146 return (nid
<< SECTION_NID_SHIFT
);
149 static inline int sparse_early_nid(struct mem_section
*section
)
151 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
154 /* Validate the physical addressing limitations of the model */
155 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
156 unsigned long *end_pfn
)
158 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
161 * Sanity checks - do not allow an architecture to pass
162 * in larger pfns than the maximum scope of sparsemem:
164 if (*start_pfn
> max_sparsemem_pfn
) {
165 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
169 *start_pfn
= max_sparsemem_pfn
;
170 *end_pfn
= max_sparsemem_pfn
;
171 } else if (*end_pfn
> max_sparsemem_pfn
) {
172 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
176 *end_pfn
= max_sparsemem_pfn
;
180 /* Record a memory area against a node. */
181 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
185 start
&= PAGE_SECTION_MASK
;
186 mminit_validate_memmodel_limits(&start
, &end
);
187 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
188 unsigned long section
= pfn_to_section_nr(pfn
);
189 struct mem_section
*ms
;
191 sparse_index_init(section
, nid
);
192 set_section_nid(section
, nid
);
194 ms
= __nr_to_section(section
);
195 if (!ms
->section_mem_map
)
196 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
197 SECTION_MARKED_PRESENT
;
202 * Only used by the i386 NUMA architecures, but relatively
205 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
206 unsigned long end_pfn
)
209 unsigned long nr_pages
= 0;
211 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
212 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
213 if (nid
!= early_pfn_to_nid(pfn
))
216 if (pfn_present(pfn
))
217 nr_pages
+= PAGES_PER_SECTION
;
220 return nr_pages
* sizeof(struct page
);
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
228 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
230 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
234 * Decode mem_map from the coded memmap
236 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
238 /* mask off the extra low bits of information */
239 coded_mem_map
&= SECTION_MAP_MASK
;
240 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
243 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
244 unsigned long pnum
, struct page
*mem_map
,
245 unsigned long *pageblock_bitmap
)
247 if (!present_section(ms
))
250 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
251 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
253 ms
->pageblock_flags
= pageblock_bitmap
;
258 unsigned long usemap_size(void)
260 unsigned long size_bytes
;
261 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
262 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
266 #ifdef CONFIG_MEMORY_HOTPLUG
267 static unsigned long *__kmalloc_section_usemap(void)
269 return kmalloc(usemap_size(), GFP_KERNEL
);
271 #endif /* CONFIG_MEMORY_HOTPLUG */
273 #ifdef CONFIG_MEMORY_HOTREMOVE
274 static unsigned long * __init
275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
278 pg_data_t
*host_pgdat
;
281 * A page may contain usemaps for other sections preventing the
282 * page being freed and making a section unremovable while
283 * other sections referencing the usemap retmain active. Similarly,
284 * a pgdat can prevent a section being removed. If section A
285 * contains a pgdat and section B contains the usemap, both
286 * sections become inter-dependent. This allocates usemaps
287 * from the same section as the pgdat where possible to avoid
290 goal
= __pa(pgdat
) & PAGE_SECTION_MASK
;
291 host_pgdat
= NODE_DATA(early_pfn_to_nid(goal
>> PAGE_SHIFT
));
292 return __alloc_bootmem_node_nopanic(host_pgdat
, size
,
293 SMP_CACHE_BYTES
, goal
);
296 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
298 unsigned long usemap_snr
, pgdat_snr
;
299 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
300 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
301 struct pglist_data
*pgdat
= NODE_DATA(nid
);
304 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
305 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
306 if (usemap_snr
== pgdat_snr
)
309 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
310 /* skip redundant message */
313 old_usemap_snr
= usemap_snr
;
314 old_pgdat_snr
= pgdat_snr
;
316 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
317 if (usemap_nid
!= nid
) {
319 "node %d must be removed before remove section %ld\n",
324 * There is a circular dependency.
325 * Some platforms allow un-removable section because they will just
326 * gather other removable sections for dynamic partitioning.
327 * Just notify un-removable section's number here.
329 printk(KERN_INFO
"Section %ld and %ld (node %d)", usemap_snr
,
332 " have a circular dependency on usemap and pgdat allocations\n");
335 static unsigned long * __init
336 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
339 return alloc_bootmem_node_nopanic(pgdat
, size
);
342 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
345 #endif /* CONFIG_MEMORY_HOTREMOVE */
347 static void __init
sparse_early_usemaps_alloc_node(unsigned long**usemap_map
,
348 unsigned long pnum_begin
,
349 unsigned long pnum_end
,
350 unsigned long usemap_count
, int nodeid
)
354 int size
= usemap_size();
356 usemap
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid
),
357 size
* usemap_count
);
359 printk(KERN_WARNING
"%s: allocation failed\n", __func__
);
363 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
364 if (!present_section_nr(pnum
))
366 usemap_map
[pnum
] = usemap
;
368 check_usemap_section_nr(nodeid
, usemap_map
[pnum
]);
372 #ifndef CONFIG_SPARSEMEM_VMEMMAP
373 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
378 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
382 size
= PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
383 map
= __alloc_bootmem_node_high(NODE_DATA(nid
), size
,
384 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
387 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
388 unsigned long pnum_begin
,
389 unsigned long pnum_end
,
390 unsigned long map_count
, int nodeid
)
394 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
396 map
= alloc_remap(nodeid
, size
* map_count
);
398 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
399 if (!present_section_nr(pnum
))
407 size
= PAGE_ALIGN(size
);
408 map
= __alloc_bootmem_node_high(NODE_DATA(nodeid
), size
* map_count
,
409 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
411 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
412 if (!present_section_nr(pnum
))
421 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
422 struct mem_section
*ms
;
424 if (!present_section_nr(pnum
))
426 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
);
429 ms
= __nr_to_section(pnum
);
430 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
431 "some memory will not be available.\n", __func__
);
432 ms
->section_mem_map
= 0;
435 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
437 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
438 static void __init
sparse_early_mem_maps_alloc_node(struct page
**map_map
,
439 unsigned long pnum_begin
,
440 unsigned long pnum_end
,
441 unsigned long map_count
, int nodeid
)
443 sparse_mem_maps_populate_node(map_map
, pnum_begin
, pnum_end
,
447 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
450 struct mem_section
*ms
= __nr_to_section(pnum
);
451 int nid
= sparse_early_nid(ms
);
453 map
= sparse_mem_map_populate(pnum
, nid
);
457 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
458 "some memory will not be available.\n", __func__
);
459 ms
->section_mem_map
= 0;
464 void __attribute__((weak
)) __meminit
vmemmap_populate_print_last(void)
469 * Allocate the accumulated non-linear sections, allocate a mem_map
470 * for each and record the physical to section mapping.
472 void __init
sparse_init(void)
476 unsigned long *usemap
;
477 unsigned long **usemap_map
;
479 int nodeid_begin
= 0;
480 unsigned long pnum_begin
= 0;
481 unsigned long usemap_count
;
482 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
483 unsigned long map_count
;
485 struct page
**map_map
;
489 * map is using big page (aka 2M in x86 64 bit)
490 * usemap is less one page (aka 24 bytes)
491 * so alloc 2M (with 2M align) and 24 bytes in turn will
492 * make next 2M slip to one more 2M later.
493 * then in big system, the memory will have a lot of holes...
494 * here try to allocate 2M pages continuously.
496 * powerpc need to call sparse_init_one_section right after each
497 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
499 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
500 usemap_map
= alloc_bootmem(size
);
502 panic("can not allocate usemap_map\n");
504 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
505 struct mem_section
*ms
;
507 if (!present_section_nr(pnum
))
509 ms
= __nr_to_section(pnum
);
510 nodeid_begin
= sparse_early_nid(ms
);
515 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
516 struct mem_section
*ms
;
519 if (!present_section_nr(pnum
))
521 ms
= __nr_to_section(pnum
);
522 nodeid
= sparse_early_nid(ms
);
523 if (nodeid
== nodeid_begin
) {
527 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
528 sparse_early_usemaps_alloc_node(usemap_map
, pnum_begin
, pnum
,
529 usemap_count
, nodeid_begin
);
530 /* new start, update count etc*/
531 nodeid_begin
= nodeid
;
536 sparse_early_usemaps_alloc_node(usemap_map
, pnum_begin
, NR_MEM_SECTIONS
,
537 usemap_count
, nodeid_begin
);
539 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
540 size2
= sizeof(struct page
*) * NR_MEM_SECTIONS
;
541 map_map
= alloc_bootmem(size2
);
543 panic("can not allocate map_map\n");
545 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
546 struct mem_section
*ms
;
548 if (!present_section_nr(pnum
))
550 ms
= __nr_to_section(pnum
);
551 nodeid_begin
= sparse_early_nid(ms
);
556 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
557 struct mem_section
*ms
;
560 if (!present_section_nr(pnum
))
562 ms
= __nr_to_section(pnum
);
563 nodeid
= sparse_early_nid(ms
);
564 if (nodeid
== nodeid_begin
) {
568 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
569 sparse_early_mem_maps_alloc_node(map_map
, pnum_begin
, pnum
,
570 map_count
, nodeid_begin
);
571 /* new start, update count etc*/
572 nodeid_begin
= nodeid
;
577 sparse_early_mem_maps_alloc_node(map_map
, pnum_begin
, NR_MEM_SECTIONS
,
578 map_count
, nodeid_begin
);
581 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
582 if (!present_section_nr(pnum
))
585 usemap
= usemap_map
[pnum
];
589 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
592 map
= sparse_early_mem_map_alloc(pnum
);
597 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
601 vmemmap_populate_print_last();
603 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
604 free_bootmem(__pa(map_map
), size2
);
606 free_bootmem(__pa(usemap_map
), size
);
609 #ifdef CONFIG_MEMORY_HOTPLUG
610 #ifdef CONFIG_SPARSEMEM_VMEMMAP
611 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
612 unsigned long nr_pages
)
614 /* This will make the necessary allocations eventually. */
615 return sparse_mem_map_populate(pnum
, nid
);
617 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
619 return; /* XXX: Not implemented yet */
621 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
625 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
627 struct page
*page
, *ret
;
628 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
630 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
634 ret
= vmalloc(memmap_size
);
640 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
642 memset(ret
, 0, memmap_size
);
647 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
648 unsigned long nr_pages
)
650 return __kmalloc_section_memmap(nr_pages
);
653 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
655 if (is_vmalloc_addr(memmap
))
658 free_pages((unsigned long)memmap
,
659 get_order(sizeof(struct page
) * nr_pages
));
662 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
664 unsigned long maps_section_nr
, removing_section_nr
, i
;
667 for (i
= 0; i
< nr_pages
; i
++, page
++) {
668 magic
= (unsigned long) page
->lru
.next
;
670 BUG_ON(magic
== NODE_INFO
);
672 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
673 removing_section_nr
= page
->private;
676 * When this function is called, the removing section is
677 * logical offlined state. This means all pages are isolated
678 * from page allocator. If removing section's memmap is placed
679 * on the same section, it must not be freed.
680 * If it is freed, page allocator may allocate it which will
681 * be removed physically soon.
683 if (maps_section_nr
!= removing_section_nr
)
684 put_page_bootmem(page
);
687 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
689 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
691 struct page
*usemap_page
;
692 unsigned long nr_pages
;
697 usemap_page
= virt_to_page(usemap
);
699 * Check to see if allocation came from hot-plug-add
701 if (PageSlab(usemap_page
)) {
704 __kfree_section_memmap(memmap
, PAGES_PER_SECTION
);
709 * The usemap came from bootmem. This is packed with other usemaps
710 * on the section which has pgdat at boot time. Just keep it as is now.
714 struct page
*memmap_page
;
715 memmap_page
= virt_to_page(memmap
);
717 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
720 free_map_bootmem(memmap_page
, nr_pages
);
725 * returns the number of sections whose mem_maps were properly
726 * set. If this is <=0, then that means that the passed-in
727 * map was not consumed and must be freed.
729 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
732 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
733 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
734 struct mem_section
*ms
;
736 unsigned long *usemap
;
741 * no locking for this, because it does its own
742 * plus, it does a kmalloc
744 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
745 if (ret
< 0 && ret
!= -EEXIST
)
747 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, nr_pages
);
750 usemap
= __kmalloc_section_usemap();
752 __kfree_section_memmap(memmap
, nr_pages
);
756 pgdat_resize_lock(pgdat
, &flags
);
758 ms
= __pfn_to_section(start_pfn
);
759 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
764 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
766 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
769 pgdat_resize_unlock(pgdat
, &flags
);
772 __kfree_section_memmap(memmap
, nr_pages
);
777 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
779 struct page
*memmap
= NULL
;
780 unsigned long *usemap
= NULL
;
782 if (ms
->section_mem_map
) {
783 usemap
= ms
->pageblock_flags
;
784 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
786 ms
->section_mem_map
= 0;
787 ms
->pageblock_flags
= NULL
;
790 free_section_usemap(memmap
, usemap
);