3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
133 #ifdef CONFIG_DEBUG_SLAB
136 #define FORCED_DEBUG 1
140 #define FORCED_DEBUG 0
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
147 #ifndef ARCH_KMALLOC_FLAGS
148 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
151 /* Legal flag mask for kmem_cache_create(). */
153 # define CREATE_MASK (SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
157 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
159 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
161 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
165 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
171 * Bufctl's are used for linking objs within a slab
174 * This implementation relies on "struct page" for locating the cache &
175 * slab an object belongs to.
176 * This allows the bufctl structure to be small (one int), but limits
177 * the number of objects a slab (not a cache) can contain when off-slab
178 * bufctls are used. The limit is the size of the largest general cache
179 * that does not use off-slab slabs.
180 * For 32bit archs with 4 kB pages, is this 56.
181 * This is not serious, as it is only for large objects, when it is unwise
182 * to have too many per slab.
183 * Note: This limit can be raised by introducing a general cache whose size
184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
187 typedef unsigned int kmem_bufctl_t
;
188 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
189 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
190 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
191 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
196 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
197 * arrange for kmem_freepages to be called via RCU. This is useful if
198 * we need to approach a kernel structure obliquely, from its address
199 * obtained without the usual locking. We can lock the structure to
200 * stabilize it and check it's still at the given address, only if we
201 * can be sure that the memory has not been meanwhile reused for some
202 * other kind of object (which our subsystem's lock might corrupt).
204 * rcu_read_lock before reading the address, then rcu_read_unlock after
205 * taking the spinlock within the structure expected at that address.
208 struct rcu_head head
;
209 struct kmem_cache
*cachep
;
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 struct list_head list
;
224 unsigned long colouroff
;
225 void *s_mem
; /* including colour offset */
226 unsigned int inuse
; /* num of objs active in slab */
228 unsigned short nodeid
;
230 struct slab_rcu __slab_cover_slab_rcu
;
238 * - LIFO ordering, to hand out cache-warm objects from _alloc
239 * - reduce the number of linked list operations
240 * - reduce spinlock operations
242 * The limit is stored in the per-cpu structure to reduce the data cache
249 unsigned int batchcount
;
250 unsigned int touched
;
253 * Must have this definition in here for the proper
254 * alignment of array_cache. Also simplifies accessing
260 * bootstrap: The caches do not work without cpuarrays anymore, but the
261 * cpuarrays are allocated from the generic caches...
263 #define BOOT_CPUCACHE_ENTRIES 1
264 struct arraycache_init
{
265 struct array_cache cache
;
266 void *entries
[BOOT_CPUCACHE_ENTRIES
];
270 * The slab lists for all objects.
273 struct list_head slabs_partial
; /* partial list first, better asm code */
274 struct list_head slabs_full
;
275 struct list_head slabs_free
;
276 unsigned long free_objects
;
277 unsigned int free_limit
;
278 unsigned int colour_next
; /* Per-node cache coloring */
279 spinlock_t list_lock
;
280 struct array_cache
*shared
; /* shared per node */
281 struct array_cache
**alien
; /* on other nodes */
282 unsigned long next_reap
; /* updated without locking */
283 int free_touched
; /* updated without locking */
287 * Need this for bootstrapping a per node allocator.
289 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
290 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
291 #define CACHE_CACHE 0
292 #define SIZE_AC MAX_NUMNODES
293 #define SIZE_L3 (2 * MAX_NUMNODES)
295 static int drain_freelist(struct kmem_cache
*cache
,
296 struct kmem_list3
*l3
, int tofree
);
297 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
299 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
300 static void cache_reap(struct work_struct
*unused
);
303 * This function must be completely optimized away if a constant is passed to
304 * it. Mostly the same as what is in linux/slab.h except it returns an index.
306 static __always_inline
int index_of(const size_t size
)
308 extern void __bad_size(void);
310 if (__builtin_constant_p(size
)) {
318 #include <linux/kmalloc_sizes.h>
326 static int slab_early_init
= 1;
328 #define INDEX_AC index_of(sizeof(struct arraycache_init))
329 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
331 static void kmem_list3_init(struct kmem_list3
*parent
)
333 INIT_LIST_HEAD(&parent
->slabs_full
);
334 INIT_LIST_HEAD(&parent
->slabs_partial
);
335 INIT_LIST_HEAD(&parent
->slabs_free
);
336 parent
->shared
= NULL
;
337 parent
->alien
= NULL
;
338 parent
->colour_next
= 0;
339 spin_lock_init(&parent
->list_lock
);
340 parent
->free_objects
= 0;
341 parent
->free_touched
= 0;
344 #define MAKE_LIST(cachep, listp, slab, nodeid) \
346 INIT_LIST_HEAD(listp); \
347 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
350 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
352 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
353 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
357 #define CFLGS_OFF_SLAB (0x80000000UL)
358 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
360 #define BATCHREFILL_LIMIT 16
362 * Optimization question: fewer reaps means less probability for unnessary
363 * cpucache drain/refill cycles.
365 * OTOH the cpuarrays can contain lots of objects,
366 * which could lock up otherwise freeable slabs.
368 #define REAPTIMEOUT_CPUC (2*HZ)
369 #define REAPTIMEOUT_LIST3 (4*HZ)
372 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
373 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
374 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
375 #define STATS_INC_GROWN(x) ((x)->grown++)
376 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
377 #define STATS_SET_HIGH(x) \
379 if ((x)->num_active > (x)->high_mark) \
380 (x)->high_mark = (x)->num_active; \
382 #define STATS_INC_ERR(x) ((x)->errors++)
383 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
384 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
385 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
386 #define STATS_SET_FREEABLE(x, i) \
388 if ((x)->max_freeable < i) \
389 (x)->max_freeable = i; \
391 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
392 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
393 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
394 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
396 #define STATS_INC_ACTIVE(x) do { } while (0)
397 #define STATS_DEC_ACTIVE(x) do { } while (0)
398 #define STATS_INC_ALLOCED(x) do { } while (0)
399 #define STATS_INC_GROWN(x) do { } while (0)
400 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
401 #define STATS_SET_HIGH(x) do { } while (0)
402 #define STATS_INC_ERR(x) do { } while (0)
403 #define STATS_INC_NODEALLOCS(x) do { } while (0)
404 #define STATS_INC_NODEFREES(x) do { } while (0)
405 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
406 #define STATS_SET_FREEABLE(x, i) do { } while (0)
407 #define STATS_INC_ALLOCHIT(x) do { } while (0)
408 #define STATS_INC_ALLOCMISS(x) do { } while (0)
409 #define STATS_INC_FREEHIT(x) do { } while (0)
410 #define STATS_INC_FREEMISS(x) do { } while (0)
416 * memory layout of objects:
418 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
419 * the end of an object is aligned with the end of the real
420 * allocation. Catches writes behind the end of the allocation.
421 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
423 * cachep->obj_offset: The real object.
424 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
425 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
426 * [BYTES_PER_WORD long]
428 static int obj_offset(struct kmem_cache
*cachep
)
430 return cachep
->obj_offset
;
433 static int obj_size(struct kmem_cache
*cachep
)
435 return cachep
->obj_size
;
438 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
440 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
441 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
442 sizeof(unsigned long long));
445 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
447 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
448 if (cachep
->flags
& SLAB_STORE_USER
)
449 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
450 sizeof(unsigned long long) -
452 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
453 sizeof(unsigned long long));
456 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
458 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
459 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
464 #define obj_offset(x) 0
465 #define obj_size(cachep) (cachep->buffer_size)
466 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
467 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
472 #ifdef CONFIG_TRACING
473 size_t slab_buffer_size(struct kmem_cache
*cachep
)
475 return cachep
->buffer_size
;
477 EXPORT_SYMBOL(slab_buffer_size
);
481 * Do not go above this order unless 0 objects fit into the slab.
483 #define BREAK_GFP_ORDER_HI 1
484 #define BREAK_GFP_ORDER_LO 0
485 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
488 * Functions for storing/retrieving the cachep and or slab from the page
489 * allocator. These are used to find the slab an obj belongs to. With kfree(),
490 * these are used to find the cache which an obj belongs to.
492 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
494 page
->lru
.next
= (struct list_head
*)cache
;
497 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
499 page
= compound_head(page
);
500 BUG_ON(!PageSlab(page
));
501 return (struct kmem_cache
*)page
->lru
.next
;
504 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
506 page
->lru
.prev
= (struct list_head
*)slab
;
509 static inline struct slab
*page_get_slab(struct page
*page
)
511 BUG_ON(!PageSlab(page
));
512 return (struct slab
*)page
->lru
.prev
;
515 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
517 struct page
*page
= virt_to_head_page(obj
);
518 return page_get_cache(page
);
521 static inline struct slab
*virt_to_slab(const void *obj
)
523 struct page
*page
= virt_to_head_page(obj
);
524 return page_get_slab(page
);
527 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
530 return slab
->s_mem
+ cache
->buffer_size
* idx
;
534 * We want to avoid an expensive divide : (offset / cache->buffer_size)
535 * Using the fact that buffer_size is a constant for a particular cache,
536 * we can replace (offset / cache->buffer_size) by
537 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
539 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
540 const struct slab
*slab
, void *obj
)
542 u32 offset
= (obj
- slab
->s_mem
);
543 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
547 * These are the default caches for kmalloc. Custom caches can have other sizes.
549 struct cache_sizes malloc_sizes
[] = {
550 #define CACHE(x) { .cs_size = (x) },
551 #include <linux/kmalloc_sizes.h>
555 EXPORT_SYMBOL(malloc_sizes
);
557 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
563 static struct cache_names __initdata cache_names
[] = {
564 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
565 #include <linux/kmalloc_sizes.h>
570 static struct arraycache_init initarray_cache __initdata
=
571 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
572 static struct arraycache_init initarray_generic
=
573 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
575 /* internal cache of cache description objs */
576 static struct kmem_cache cache_cache
= {
578 .limit
= BOOT_CPUCACHE_ENTRIES
,
580 .buffer_size
= sizeof(struct kmem_cache
),
581 .name
= "kmem_cache",
584 #define BAD_ALIEN_MAGIC 0x01020304ul
587 * chicken and egg problem: delay the per-cpu array allocation
588 * until the general caches are up.
599 * used by boot code to determine if it can use slab based allocator
601 int slab_is_available(void)
603 return g_cpucache_up
>= EARLY
;
606 #ifdef CONFIG_LOCKDEP
609 * Slab sometimes uses the kmalloc slabs to store the slab headers
610 * for other slabs "off slab".
611 * The locking for this is tricky in that it nests within the locks
612 * of all other slabs in a few places; to deal with this special
613 * locking we put on-slab caches into a separate lock-class.
615 * We set lock class for alien array caches which are up during init.
616 * The lock annotation will be lost if all cpus of a node goes down and
617 * then comes back up during hotplug
619 static struct lock_class_key on_slab_l3_key
;
620 static struct lock_class_key on_slab_alc_key
;
622 static void init_node_lock_keys(int q
)
624 struct cache_sizes
*s
= malloc_sizes
;
626 if (g_cpucache_up
!= FULL
)
629 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
630 struct array_cache
**alc
;
631 struct kmem_list3
*l3
;
634 l3
= s
->cs_cachep
->nodelists
[q
];
635 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
637 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
640 * FIXME: This check for BAD_ALIEN_MAGIC
641 * should go away when common slab code is taught to
642 * work even without alien caches.
643 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
644 * for alloc_alien_cache,
646 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
650 lockdep_set_class(&alc
[r
]->lock
,
656 static inline void init_lock_keys(void)
661 init_node_lock_keys(node
);
664 static void init_node_lock_keys(int q
)
668 static inline void init_lock_keys(void)
674 * Guard access to the cache-chain.
676 static DEFINE_MUTEX(cache_chain_mutex
);
677 static struct list_head cache_chain
;
679 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
681 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
683 return cachep
->array
[smp_processor_id()];
686 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
689 struct cache_sizes
*csizep
= malloc_sizes
;
692 /* This happens if someone tries to call
693 * kmem_cache_create(), or __kmalloc(), before
694 * the generic caches are initialized.
696 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
699 return ZERO_SIZE_PTR
;
701 while (size
> csizep
->cs_size
)
705 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
706 * has cs_{dma,}cachep==NULL. Thus no special case
707 * for large kmalloc calls required.
709 #ifdef CONFIG_ZONE_DMA
710 if (unlikely(gfpflags
& GFP_DMA
))
711 return csizep
->cs_dmacachep
;
713 return csizep
->cs_cachep
;
716 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
718 return __find_general_cachep(size
, gfpflags
);
721 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
723 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
727 * Calculate the number of objects and left-over bytes for a given buffer size.
729 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
730 size_t align
, int flags
, size_t *left_over
,
735 size_t slab_size
= PAGE_SIZE
<< gfporder
;
738 * The slab management structure can be either off the slab or
739 * on it. For the latter case, the memory allocated for a
743 * - One kmem_bufctl_t for each object
744 * - Padding to respect alignment of @align
745 * - @buffer_size bytes for each object
747 * If the slab management structure is off the slab, then the
748 * alignment will already be calculated into the size. Because
749 * the slabs are all pages aligned, the objects will be at the
750 * correct alignment when allocated.
752 if (flags
& CFLGS_OFF_SLAB
) {
754 nr_objs
= slab_size
/ buffer_size
;
756 if (nr_objs
> SLAB_LIMIT
)
757 nr_objs
= SLAB_LIMIT
;
760 * Ignore padding for the initial guess. The padding
761 * is at most @align-1 bytes, and @buffer_size is at
762 * least @align. In the worst case, this result will
763 * be one greater than the number of objects that fit
764 * into the memory allocation when taking the padding
767 nr_objs
= (slab_size
- sizeof(struct slab
)) /
768 (buffer_size
+ sizeof(kmem_bufctl_t
));
771 * This calculated number will be either the right
772 * amount, or one greater than what we want.
774 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
778 if (nr_objs
> SLAB_LIMIT
)
779 nr_objs
= SLAB_LIMIT
;
781 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
784 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
787 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
789 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
792 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
793 function
, cachep
->name
, msg
);
798 * By default on NUMA we use alien caches to stage the freeing of
799 * objects allocated from other nodes. This causes massive memory
800 * inefficiencies when using fake NUMA setup to split memory into a
801 * large number of small nodes, so it can be disabled on the command
805 static int use_alien_caches __read_mostly
= 1;
806 static int __init
noaliencache_setup(char *s
)
808 use_alien_caches
= 0;
811 __setup("noaliencache", noaliencache_setup
);
815 * Special reaping functions for NUMA systems called from cache_reap().
816 * These take care of doing round robin flushing of alien caches (containing
817 * objects freed on different nodes from which they were allocated) and the
818 * flushing of remote pcps by calling drain_node_pages.
820 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
822 static void init_reap_node(int cpu
)
826 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
827 if (node
== MAX_NUMNODES
)
828 node
= first_node(node_online_map
);
830 per_cpu(slab_reap_node
, cpu
) = node
;
833 static void next_reap_node(void)
835 int node
= __this_cpu_read(slab_reap_node
);
837 node
= next_node(node
, node_online_map
);
838 if (unlikely(node
>= MAX_NUMNODES
))
839 node
= first_node(node_online_map
);
840 __this_cpu_write(slab_reap_node
, node
);
844 #define init_reap_node(cpu) do { } while (0)
845 #define next_reap_node(void) do { } while (0)
849 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
850 * via the workqueue/eventd.
851 * Add the CPU number into the expiration time to minimize the possibility of
852 * the CPUs getting into lockstep and contending for the global cache chain
855 static void __cpuinit
start_cpu_timer(int cpu
)
857 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
860 * When this gets called from do_initcalls via cpucache_init(),
861 * init_workqueues() has already run, so keventd will be setup
864 if (keventd_up() && reap_work
->work
.func
== NULL
) {
866 INIT_DELAYED_WORK_DEFERRABLE(reap_work
, cache_reap
);
867 schedule_delayed_work_on(cpu
, reap_work
,
868 __round_jiffies_relative(HZ
, cpu
));
872 static struct array_cache
*alloc_arraycache(int node
, int entries
,
873 int batchcount
, gfp_t gfp
)
875 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
876 struct array_cache
*nc
= NULL
;
878 nc
= kmalloc_node(memsize
, gfp
, node
);
880 * The array_cache structures contain pointers to free object.
881 * However, when such objects are allocated or transfered to another
882 * cache the pointers are not cleared and they could be counted as
883 * valid references during a kmemleak scan. Therefore, kmemleak must
884 * not scan such objects.
886 kmemleak_no_scan(nc
);
890 nc
->batchcount
= batchcount
;
892 spin_lock_init(&nc
->lock
);
898 * Transfer objects in one arraycache to another.
899 * Locking must be handled by the caller.
901 * Return the number of entries transferred.
903 static int transfer_objects(struct array_cache
*to
,
904 struct array_cache
*from
, unsigned int max
)
906 /* Figure out how many entries to transfer */
907 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
912 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
922 #define drain_alien_cache(cachep, alien) do { } while (0)
923 #define reap_alien(cachep, l3) do { } while (0)
925 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
927 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
930 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
934 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
939 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
945 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
946 gfp_t flags
, int nodeid
)
951 #else /* CONFIG_NUMA */
953 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
954 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
956 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
958 struct array_cache
**ac_ptr
;
959 int memsize
= sizeof(void *) * nr_node_ids
;
964 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
967 if (i
== node
|| !node_online(i
))
969 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
971 for (i
--; i
>= 0; i
--)
981 static void free_alien_cache(struct array_cache
**ac_ptr
)
992 static void __drain_alien_cache(struct kmem_cache
*cachep
,
993 struct array_cache
*ac
, int node
)
995 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
998 spin_lock(&rl3
->list_lock
);
1000 * Stuff objects into the remote nodes shared array first.
1001 * That way we could avoid the overhead of putting the objects
1002 * into the free lists and getting them back later.
1005 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1007 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1009 spin_unlock(&rl3
->list_lock
);
1014 * Called from cache_reap() to regularly drain alien caches round robin.
1016 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1018 int node
= __this_cpu_read(slab_reap_node
);
1021 struct array_cache
*ac
= l3
->alien
[node
];
1023 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1024 __drain_alien_cache(cachep
, ac
, node
);
1025 spin_unlock_irq(&ac
->lock
);
1030 static void drain_alien_cache(struct kmem_cache
*cachep
,
1031 struct array_cache
**alien
)
1034 struct array_cache
*ac
;
1035 unsigned long flags
;
1037 for_each_online_node(i
) {
1040 spin_lock_irqsave(&ac
->lock
, flags
);
1041 __drain_alien_cache(cachep
, ac
, i
);
1042 spin_unlock_irqrestore(&ac
->lock
, flags
);
1047 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1049 struct slab
*slabp
= virt_to_slab(objp
);
1050 int nodeid
= slabp
->nodeid
;
1051 struct kmem_list3
*l3
;
1052 struct array_cache
*alien
= NULL
;
1055 node
= numa_mem_id();
1058 * Make sure we are not freeing a object from another node to the array
1059 * cache on this cpu.
1061 if (likely(slabp
->nodeid
== node
))
1064 l3
= cachep
->nodelists
[node
];
1065 STATS_INC_NODEFREES(cachep
);
1066 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1067 alien
= l3
->alien
[nodeid
];
1068 spin_lock(&alien
->lock
);
1069 if (unlikely(alien
->avail
== alien
->limit
)) {
1070 STATS_INC_ACOVERFLOW(cachep
);
1071 __drain_alien_cache(cachep
, alien
, nodeid
);
1073 alien
->entry
[alien
->avail
++] = objp
;
1074 spin_unlock(&alien
->lock
);
1076 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1077 free_block(cachep
, &objp
, 1, nodeid
);
1078 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1085 * Allocates and initializes nodelists for a node on each slab cache, used for
1086 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1087 * will be allocated off-node since memory is not yet online for the new node.
1088 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1091 * Must hold cache_chain_mutex.
1093 static int init_cache_nodelists_node(int node
)
1095 struct kmem_cache
*cachep
;
1096 struct kmem_list3
*l3
;
1097 const int memsize
= sizeof(struct kmem_list3
);
1099 list_for_each_entry(cachep
, &cache_chain
, next
) {
1101 * Set up the size64 kmemlist for cpu before we can
1102 * begin anything. Make sure some other cpu on this
1103 * node has not already allocated this
1105 if (!cachep
->nodelists
[node
]) {
1106 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1109 kmem_list3_init(l3
);
1110 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1111 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1114 * The l3s don't come and go as CPUs come and
1115 * go. cache_chain_mutex is sufficient
1118 cachep
->nodelists
[node
] = l3
;
1121 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1122 cachep
->nodelists
[node
]->free_limit
=
1123 (1 + nr_cpus_node(node
)) *
1124 cachep
->batchcount
+ cachep
->num
;
1125 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1130 static void __cpuinit
cpuup_canceled(long cpu
)
1132 struct kmem_cache
*cachep
;
1133 struct kmem_list3
*l3
= NULL
;
1134 int node
= cpu_to_mem(cpu
);
1135 const struct cpumask
*mask
= cpumask_of_node(node
);
1137 list_for_each_entry(cachep
, &cache_chain
, next
) {
1138 struct array_cache
*nc
;
1139 struct array_cache
*shared
;
1140 struct array_cache
**alien
;
1142 /* cpu is dead; no one can alloc from it. */
1143 nc
= cachep
->array
[cpu
];
1144 cachep
->array
[cpu
] = NULL
;
1145 l3
= cachep
->nodelists
[node
];
1148 goto free_array_cache
;
1150 spin_lock_irq(&l3
->list_lock
);
1152 /* Free limit for this kmem_list3 */
1153 l3
->free_limit
-= cachep
->batchcount
;
1155 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1157 if (!cpumask_empty(mask
)) {
1158 spin_unlock_irq(&l3
->list_lock
);
1159 goto free_array_cache
;
1162 shared
= l3
->shared
;
1164 free_block(cachep
, shared
->entry
,
1165 shared
->avail
, node
);
1172 spin_unlock_irq(&l3
->list_lock
);
1176 drain_alien_cache(cachep
, alien
);
1177 free_alien_cache(alien
);
1183 * In the previous loop, all the objects were freed to
1184 * the respective cache's slabs, now we can go ahead and
1185 * shrink each nodelist to its limit.
1187 list_for_each_entry(cachep
, &cache_chain
, next
) {
1188 l3
= cachep
->nodelists
[node
];
1191 drain_freelist(cachep
, l3
, l3
->free_objects
);
1195 static int __cpuinit
cpuup_prepare(long cpu
)
1197 struct kmem_cache
*cachep
;
1198 struct kmem_list3
*l3
= NULL
;
1199 int node
= cpu_to_mem(cpu
);
1203 * We need to do this right in the beginning since
1204 * alloc_arraycache's are going to use this list.
1205 * kmalloc_node allows us to add the slab to the right
1206 * kmem_list3 and not this cpu's kmem_list3
1208 err
= init_cache_nodelists_node(node
);
1213 * Now we can go ahead with allocating the shared arrays and
1216 list_for_each_entry(cachep
, &cache_chain
, next
) {
1217 struct array_cache
*nc
;
1218 struct array_cache
*shared
= NULL
;
1219 struct array_cache
**alien
= NULL
;
1221 nc
= alloc_arraycache(node
, cachep
->limit
,
1222 cachep
->batchcount
, GFP_KERNEL
);
1225 if (cachep
->shared
) {
1226 shared
= alloc_arraycache(node
,
1227 cachep
->shared
* cachep
->batchcount
,
1228 0xbaadf00d, GFP_KERNEL
);
1234 if (use_alien_caches
) {
1235 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1242 cachep
->array
[cpu
] = nc
;
1243 l3
= cachep
->nodelists
[node
];
1246 spin_lock_irq(&l3
->list_lock
);
1249 * We are serialised from CPU_DEAD or
1250 * CPU_UP_CANCELLED by the cpucontrol lock
1252 l3
->shared
= shared
;
1261 spin_unlock_irq(&l3
->list_lock
);
1263 free_alien_cache(alien
);
1265 init_node_lock_keys(node
);
1269 cpuup_canceled(cpu
);
1273 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1274 unsigned long action
, void *hcpu
)
1276 long cpu
= (long)hcpu
;
1280 case CPU_UP_PREPARE
:
1281 case CPU_UP_PREPARE_FROZEN
:
1282 mutex_lock(&cache_chain_mutex
);
1283 err
= cpuup_prepare(cpu
);
1284 mutex_unlock(&cache_chain_mutex
);
1287 case CPU_ONLINE_FROZEN
:
1288 start_cpu_timer(cpu
);
1290 #ifdef CONFIG_HOTPLUG_CPU
1291 case CPU_DOWN_PREPARE
:
1292 case CPU_DOWN_PREPARE_FROZEN
:
1294 * Shutdown cache reaper. Note that the cache_chain_mutex is
1295 * held so that if cache_reap() is invoked it cannot do
1296 * anything expensive but will only modify reap_work
1297 * and reschedule the timer.
1299 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1300 /* Now the cache_reaper is guaranteed to be not running. */
1301 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1303 case CPU_DOWN_FAILED
:
1304 case CPU_DOWN_FAILED_FROZEN
:
1305 start_cpu_timer(cpu
);
1308 case CPU_DEAD_FROZEN
:
1310 * Even if all the cpus of a node are down, we don't free the
1311 * kmem_list3 of any cache. This to avoid a race between
1312 * cpu_down, and a kmalloc allocation from another cpu for
1313 * memory from the node of the cpu going down. The list3
1314 * structure is usually allocated from kmem_cache_create() and
1315 * gets destroyed at kmem_cache_destroy().
1319 case CPU_UP_CANCELED
:
1320 case CPU_UP_CANCELED_FROZEN
:
1321 mutex_lock(&cache_chain_mutex
);
1322 cpuup_canceled(cpu
);
1323 mutex_unlock(&cache_chain_mutex
);
1326 return notifier_from_errno(err
);
1329 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1330 &cpuup_callback
, NULL
, 0
1333 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1335 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1336 * Returns -EBUSY if all objects cannot be drained so that the node is not
1339 * Must hold cache_chain_mutex.
1341 static int __meminit
drain_cache_nodelists_node(int node
)
1343 struct kmem_cache
*cachep
;
1346 list_for_each_entry(cachep
, &cache_chain
, next
) {
1347 struct kmem_list3
*l3
;
1349 l3
= cachep
->nodelists
[node
];
1353 drain_freelist(cachep
, l3
, l3
->free_objects
);
1355 if (!list_empty(&l3
->slabs_full
) ||
1356 !list_empty(&l3
->slabs_partial
)) {
1364 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1365 unsigned long action
, void *arg
)
1367 struct memory_notify
*mnb
= arg
;
1371 nid
= mnb
->status_change_nid
;
1376 case MEM_GOING_ONLINE
:
1377 mutex_lock(&cache_chain_mutex
);
1378 ret
= init_cache_nodelists_node(nid
);
1379 mutex_unlock(&cache_chain_mutex
);
1381 case MEM_GOING_OFFLINE
:
1382 mutex_lock(&cache_chain_mutex
);
1383 ret
= drain_cache_nodelists_node(nid
);
1384 mutex_unlock(&cache_chain_mutex
);
1388 case MEM_CANCEL_ONLINE
:
1389 case MEM_CANCEL_OFFLINE
:
1393 return notifier_from_errno(ret
);
1395 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1398 * swap the static kmem_list3 with kmalloced memory
1400 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1403 struct kmem_list3
*ptr
;
1405 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1408 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1410 * Do not assume that spinlocks can be initialized via memcpy:
1412 spin_lock_init(&ptr
->list_lock
);
1414 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1415 cachep
->nodelists
[nodeid
] = ptr
;
1419 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1420 * size of kmem_list3.
1422 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1426 for_each_online_node(node
) {
1427 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1428 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1430 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1435 * Initialisation. Called after the page allocator have been initialised and
1436 * before smp_init().
1438 void __init
kmem_cache_init(void)
1441 struct cache_sizes
*sizes
;
1442 struct cache_names
*names
;
1447 if (num_possible_nodes() == 1)
1448 use_alien_caches
= 0;
1450 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1451 kmem_list3_init(&initkmem_list3
[i
]);
1452 if (i
< MAX_NUMNODES
)
1453 cache_cache
.nodelists
[i
] = NULL
;
1455 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1458 * Fragmentation resistance on low memory - only use bigger
1459 * page orders on machines with more than 32MB of memory.
1461 if (totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1462 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1464 /* Bootstrap is tricky, because several objects are allocated
1465 * from caches that do not exist yet:
1466 * 1) initialize the cache_cache cache: it contains the struct
1467 * kmem_cache structures of all caches, except cache_cache itself:
1468 * cache_cache is statically allocated.
1469 * Initially an __init data area is used for the head array and the
1470 * kmem_list3 structures, it's replaced with a kmalloc allocated
1471 * array at the end of the bootstrap.
1472 * 2) Create the first kmalloc cache.
1473 * The struct kmem_cache for the new cache is allocated normally.
1474 * An __init data area is used for the head array.
1475 * 3) Create the remaining kmalloc caches, with minimally sized
1477 * 4) Replace the __init data head arrays for cache_cache and the first
1478 * kmalloc cache with kmalloc allocated arrays.
1479 * 5) Replace the __init data for kmem_list3 for cache_cache and
1480 * the other cache's with kmalloc allocated memory.
1481 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1484 node
= numa_mem_id();
1486 /* 1) create the cache_cache */
1487 INIT_LIST_HEAD(&cache_chain
);
1488 list_add(&cache_cache
.next
, &cache_chain
);
1489 cache_cache
.colour_off
= cache_line_size();
1490 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1491 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1494 * struct kmem_cache size depends on nr_node_ids, which
1495 * can be less than MAX_NUMNODES.
1497 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1498 nr_node_ids
* sizeof(struct kmem_list3
*);
1500 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1502 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1504 cache_cache
.reciprocal_buffer_size
=
1505 reciprocal_value(cache_cache
.buffer_size
);
1507 for (order
= 0; order
< MAX_ORDER
; order
++) {
1508 cache_estimate(order
, cache_cache
.buffer_size
,
1509 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1510 if (cache_cache
.num
)
1513 BUG_ON(!cache_cache
.num
);
1514 cache_cache
.gfporder
= order
;
1515 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1516 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1517 sizeof(struct slab
), cache_line_size());
1519 /* 2+3) create the kmalloc caches */
1520 sizes
= malloc_sizes
;
1521 names
= cache_names
;
1524 * Initialize the caches that provide memory for the array cache and the
1525 * kmem_list3 structures first. Without this, further allocations will
1529 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1530 sizes
[INDEX_AC
].cs_size
,
1531 ARCH_KMALLOC_MINALIGN
,
1532 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1535 if (INDEX_AC
!= INDEX_L3
) {
1536 sizes
[INDEX_L3
].cs_cachep
=
1537 kmem_cache_create(names
[INDEX_L3
].name
,
1538 sizes
[INDEX_L3
].cs_size
,
1539 ARCH_KMALLOC_MINALIGN
,
1540 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1544 slab_early_init
= 0;
1546 while (sizes
->cs_size
!= ULONG_MAX
) {
1548 * For performance, all the general caches are L1 aligned.
1549 * This should be particularly beneficial on SMP boxes, as it
1550 * eliminates "false sharing".
1551 * Note for systems short on memory removing the alignment will
1552 * allow tighter packing of the smaller caches.
1554 if (!sizes
->cs_cachep
) {
1555 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1557 ARCH_KMALLOC_MINALIGN
,
1558 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1561 #ifdef CONFIG_ZONE_DMA
1562 sizes
->cs_dmacachep
= kmem_cache_create(
1565 ARCH_KMALLOC_MINALIGN
,
1566 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1573 /* 4) Replace the bootstrap head arrays */
1575 struct array_cache
*ptr
;
1577 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1579 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1580 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1581 sizeof(struct arraycache_init
));
1583 * Do not assume that spinlocks can be initialized via memcpy:
1585 spin_lock_init(&ptr
->lock
);
1587 cache_cache
.array
[smp_processor_id()] = ptr
;
1589 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1591 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1592 != &initarray_generic
.cache
);
1593 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1594 sizeof(struct arraycache_init
));
1596 * Do not assume that spinlocks can be initialized via memcpy:
1598 spin_lock_init(&ptr
->lock
);
1600 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1603 /* 5) Replace the bootstrap kmem_list3's */
1607 for_each_online_node(nid
) {
1608 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1610 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1611 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1613 if (INDEX_AC
!= INDEX_L3
) {
1614 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1615 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1620 g_cpucache_up
= EARLY
;
1623 void __init
kmem_cache_init_late(void)
1625 struct kmem_cache
*cachep
;
1627 /* 6) resize the head arrays to their final sizes */
1628 mutex_lock(&cache_chain_mutex
);
1629 list_for_each_entry(cachep
, &cache_chain
, next
)
1630 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1632 mutex_unlock(&cache_chain_mutex
);
1635 g_cpucache_up
= FULL
;
1637 /* Annotate slab for lockdep -- annotate the malloc caches */
1641 * Register a cpu startup notifier callback that initializes
1642 * cpu_cache_get for all new cpus
1644 register_cpu_notifier(&cpucache_notifier
);
1648 * Register a memory hotplug callback that initializes and frees
1651 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1655 * The reap timers are started later, with a module init call: That part
1656 * of the kernel is not yet operational.
1660 static int __init
cpucache_init(void)
1665 * Register the timers that return unneeded pages to the page allocator
1667 for_each_online_cpu(cpu
)
1668 start_cpu_timer(cpu
);
1671 __initcall(cpucache_init
);
1674 * Interface to system's page allocator. No need to hold the cache-lock.
1676 * If we requested dmaable memory, we will get it. Even if we
1677 * did not request dmaable memory, we might get it, but that
1678 * would be relatively rare and ignorable.
1680 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1688 * Nommu uses slab's for process anonymous memory allocations, and thus
1689 * requires __GFP_COMP to properly refcount higher order allocations
1691 flags
|= __GFP_COMP
;
1694 flags
|= cachep
->gfpflags
;
1695 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1696 flags
|= __GFP_RECLAIMABLE
;
1698 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1702 nr_pages
= (1 << cachep
->gfporder
);
1703 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1704 add_zone_page_state(page_zone(page
),
1705 NR_SLAB_RECLAIMABLE
, nr_pages
);
1707 add_zone_page_state(page_zone(page
),
1708 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1709 for (i
= 0; i
< nr_pages
; i
++)
1710 __SetPageSlab(page
+ i
);
1712 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1713 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1716 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1718 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1721 return page_address(page
);
1725 * Interface to system's page release.
1727 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1729 unsigned long i
= (1 << cachep
->gfporder
);
1730 struct page
*page
= virt_to_page(addr
);
1731 const unsigned long nr_freed
= i
;
1733 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1735 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1736 sub_zone_page_state(page_zone(page
),
1737 NR_SLAB_RECLAIMABLE
, nr_freed
);
1739 sub_zone_page_state(page_zone(page
),
1740 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1742 BUG_ON(!PageSlab(page
));
1743 __ClearPageSlab(page
);
1746 if (current
->reclaim_state
)
1747 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1748 free_pages((unsigned long)addr
, cachep
->gfporder
);
1751 static void kmem_rcu_free(struct rcu_head
*head
)
1753 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1754 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1756 kmem_freepages(cachep
, slab_rcu
->addr
);
1757 if (OFF_SLAB(cachep
))
1758 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1763 #ifdef CONFIG_DEBUG_PAGEALLOC
1764 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1765 unsigned long caller
)
1767 int size
= obj_size(cachep
);
1769 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1771 if (size
< 5 * sizeof(unsigned long))
1774 *addr
++ = 0x12345678;
1776 *addr
++ = smp_processor_id();
1777 size
-= 3 * sizeof(unsigned long);
1779 unsigned long *sptr
= &caller
;
1780 unsigned long svalue
;
1782 while (!kstack_end(sptr
)) {
1784 if (kernel_text_address(svalue
)) {
1786 size
-= sizeof(unsigned long);
1787 if (size
<= sizeof(unsigned long))
1793 *addr
++ = 0x87654321;
1797 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1799 int size
= obj_size(cachep
);
1800 addr
= &((char *)addr
)[obj_offset(cachep
)];
1802 memset(addr
, val
, size
);
1803 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1806 static void dump_line(char *data
, int offset
, int limit
)
1809 unsigned char error
= 0;
1812 printk(KERN_ERR
"%03x:", offset
);
1813 for (i
= 0; i
< limit
; i
++) {
1814 if (data
[offset
+ i
] != POISON_FREE
) {
1815 error
= data
[offset
+ i
];
1818 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1822 if (bad_count
== 1) {
1823 error
^= POISON_FREE
;
1824 if (!(error
& (error
- 1))) {
1825 printk(KERN_ERR
"Single bit error detected. Probably "
1828 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1831 printk(KERN_ERR
"Run a memory test tool.\n");
1840 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1845 if (cachep
->flags
& SLAB_RED_ZONE
) {
1846 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1847 *dbg_redzone1(cachep
, objp
),
1848 *dbg_redzone2(cachep
, objp
));
1851 if (cachep
->flags
& SLAB_STORE_USER
) {
1852 printk(KERN_ERR
"Last user: [<%p>]",
1853 *dbg_userword(cachep
, objp
));
1854 print_symbol("(%s)",
1855 (unsigned long)*dbg_userword(cachep
, objp
));
1858 realobj
= (char *)objp
+ obj_offset(cachep
);
1859 size
= obj_size(cachep
);
1860 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1863 if (i
+ limit
> size
)
1865 dump_line(realobj
, i
, limit
);
1869 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1875 realobj
= (char *)objp
+ obj_offset(cachep
);
1876 size
= obj_size(cachep
);
1878 for (i
= 0; i
< size
; i
++) {
1879 char exp
= POISON_FREE
;
1882 if (realobj
[i
] != exp
) {
1888 "Slab corruption: %s start=%p, len=%d\n",
1889 cachep
->name
, realobj
, size
);
1890 print_objinfo(cachep
, objp
, 0);
1892 /* Hexdump the affected line */
1895 if (i
+ limit
> size
)
1897 dump_line(realobj
, i
, limit
);
1900 /* Limit to 5 lines */
1906 /* Print some data about the neighboring objects, if they
1909 struct slab
*slabp
= virt_to_slab(objp
);
1912 objnr
= obj_to_index(cachep
, slabp
, objp
);
1914 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1915 realobj
= (char *)objp
+ obj_offset(cachep
);
1916 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1918 print_objinfo(cachep
, objp
, 2);
1920 if (objnr
+ 1 < cachep
->num
) {
1921 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1922 realobj
= (char *)objp
+ obj_offset(cachep
);
1923 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1925 print_objinfo(cachep
, objp
, 2);
1932 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1935 for (i
= 0; i
< cachep
->num
; i
++) {
1936 void *objp
= index_to_obj(cachep
, slabp
, i
);
1938 if (cachep
->flags
& SLAB_POISON
) {
1939 #ifdef CONFIG_DEBUG_PAGEALLOC
1940 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1942 kernel_map_pages(virt_to_page(objp
),
1943 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1945 check_poison_obj(cachep
, objp
);
1947 check_poison_obj(cachep
, objp
);
1950 if (cachep
->flags
& SLAB_RED_ZONE
) {
1951 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1952 slab_error(cachep
, "start of a freed object "
1954 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1955 slab_error(cachep
, "end of a freed object "
1961 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1967 * slab_destroy - destroy and release all objects in a slab
1968 * @cachep: cache pointer being destroyed
1969 * @slabp: slab pointer being destroyed
1971 * Destroy all the objs in a slab, and release the mem back to the system.
1972 * Before calling the slab must have been unlinked from the cache. The
1973 * cache-lock is not held/needed.
1975 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1977 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1979 slab_destroy_debugcheck(cachep
, slabp
);
1980 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1981 struct slab_rcu
*slab_rcu
;
1983 slab_rcu
= (struct slab_rcu
*)slabp
;
1984 slab_rcu
->cachep
= cachep
;
1985 slab_rcu
->addr
= addr
;
1986 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1988 kmem_freepages(cachep
, addr
);
1989 if (OFF_SLAB(cachep
))
1990 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1994 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1997 struct kmem_list3
*l3
;
1999 for_each_online_cpu(i
)
2000 kfree(cachep
->array
[i
]);
2002 /* NUMA: free the list3 structures */
2003 for_each_online_node(i
) {
2004 l3
= cachep
->nodelists
[i
];
2007 free_alien_cache(l3
->alien
);
2011 kmem_cache_free(&cache_cache
, cachep
);
2016 * calculate_slab_order - calculate size (page order) of slabs
2017 * @cachep: pointer to the cache that is being created
2018 * @size: size of objects to be created in this cache.
2019 * @align: required alignment for the objects.
2020 * @flags: slab allocation flags
2022 * Also calculates the number of objects per slab.
2024 * This could be made much more intelligent. For now, try to avoid using
2025 * high order pages for slabs. When the gfp() functions are more friendly
2026 * towards high-order requests, this should be changed.
2028 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2029 size_t size
, size_t align
, unsigned long flags
)
2031 unsigned long offslab_limit
;
2032 size_t left_over
= 0;
2035 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2039 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2043 if (flags
& CFLGS_OFF_SLAB
) {
2045 * Max number of objs-per-slab for caches which
2046 * use off-slab slabs. Needed to avoid a possible
2047 * looping condition in cache_grow().
2049 offslab_limit
= size
- sizeof(struct slab
);
2050 offslab_limit
/= sizeof(kmem_bufctl_t
);
2052 if (num
> offslab_limit
)
2056 /* Found something acceptable - save it away */
2058 cachep
->gfporder
= gfporder
;
2059 left_over
= remainder
;
2062 * A VFS-reclaimable slab tends to have most allocations
2063 * as GFP_NOFS and we really don't want to have to be allocating
2064 * higher-order pages when we are unable to shrink dcache.
2066 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2070 * Large number of objects is good, but very large slabs are
2071 * currently bad for the gfp()s.
2073 if (gfporder
>= slab_break_gfp_order
)
2077 * Acceptable internal fragmentation?
2079 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2085 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2087 if (g_cpucache_up
== FULL
)
2088 return enable_cpucache(cachep
, gfp
);
2090 if (g_cpucache_up
== NONE
) {
2092 * Note: the first kmem_cache_create must create the cache
2093 * that's used by kmalloc(24), otherwise the creation of
2094 * further caches will BUG().
2096 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2099 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2100 * the first cache, then we need to set up all its list3s,
2101 * otherwise the creation of further caches will BUG().
2103 set_up_list3s(cachep
, SIZE_AC
);
2104 if (INDEX_AC
== INDEX_L3
)
2105 g_cpucache_up
= PARTIAL_L3
;
2107 g_cpucache_up
= PARTIAL_AC
;
2109 cachep
->array
[smp_processor_id()] =
2110 kmalloc(sizeof(struct arraycache_init
), gfp
);
2112 if (g_cpucache_up
== PARTIAL_AC
) {
2113 set_up_list3s(cachep
, SIZE_L3
);
2114 g_cpucache_up
= PARTIAL_L3
;
2117 for_each_online_node(node
) {
2118 cachep
->nodelists
[node
] =
2119 kmalloc_node(sizeof(struct kmem_list3
),
2121 BUG_ON(!cachep
->nodelists
[node
]);
2122 kmem_list3_init(cachep
->nodelists
[node
]);
2126 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2127 jiffies
+ REAPTIMEOUT_LIST3
+
2128 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2130 cpu_cache_get(cachep
)->avail
= 0;
2131 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2132 cpu_cache_get(cachep
)->batchcount
= 1;
2133 cpu_cache_get(cachep
)->touched
= 0;
2134 cachep
->batchcount
= 1;
2135 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2140 * kmem_cache_create - Create a cache.
2141 * @name: A string which is used in /proc/slabinfo to identify this cache.
2142 * @size: The size of objects to be created in this cache.
2143 * @align: The required alignment for the objects.
2144 * @flags: SLAB flags
2145 * @ctor: A constructor for the objects.
2147 * Returns a ptr to the cache on success, NULL on failure.
2148 * Cannot be called within a int, but can be interrupted.
2149 * The @ctor is run when new pages are allocated by the cache.
2151 * @name must be valid until the cache is destroyed. This implies that
2152 * the module calling this has to destroy the cache before getting unloaded.
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline. This can be beneficial if you're counting cycles as closely
2167 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2168 unsigned long flags
, void (*ctor
)(void *))
2170 size_t left_over
, slab_size
, ralign
;
2171 struct kmem_cache
*cachep
= NULL
, *pc
;
2175 * Sanity checks... these are all serious usage bugs.
2177 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2178 size
> KMALLOC_MAX_SIZE
) {
2179 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2185 * We use cache_chain_mutex to ensure a consistent view of
2186 * cpu_online_mask as well. Please see cpuup_callback
2188 if (slab_is_available()) {
2190 mutex_lock(&cache_chain_mutex
);
2193 list_for_each_entry(pc
, &cache_chain
, next
) {
2198 * This happens when the module gets unloaded and doesn't
2199 * destroy its slab cache and no-one else reuses the vmalloc
2200 * area of the module. Print a warning.
2202 res
= probe_kernel_address(pc
->name
, tmp
);
2205 "SLAB: cache with size %d has lost its name\n",
2210 if (!strcmp(pc
->name
, name
)) {
2212 "kmem_cache_create: duplicate cache %s\n", name
);
2219 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2222 * Enable redzoning and last user accounting, except for caches with
2223 * large objects, if the increased size would increase the object size
2224 * above the next power of two: caches with object sizes just above a
2225 * power of two have a significant amount of internal fragmentation.
2227 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2228 2 * sizeof(unsigned long long)))
2229 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2230 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2231 flags
|= SLAB_POISON
;
2233 if (flags
& SLAB_DESTROY_BY_RCU
)
2234 BUG_ON(flags
& SLAB_POISON
);
2237 * Always checks flags, a caller might be expecting debug support which
2240 BUG_ON(flags
& ~CREATE_MASK
);
2243 * Check that size is in terms of words. This is needed to avoid
2244 * unaligned accesses for some archs when redzoning is used, and makes
2245 * sure any on-slab bufctl's are also correctly aligned.
2247 if (size
& (BYTES_PER_WORD
- 1)) {
2248 size
+= (BYTES_PER_WORD
- 1);
2249 size
&= ~(BYTES_PER_WORD
- 1);
2252 /* calculate the final buffer alignment: */
2254 /* 1) arch recommendation: can be overridden for debug */
2255 if (flags
& SLAB_HWCACHE_ALIGN
) {
2257 * Default alignment: as specified by the arch code. Except if
2258 * an object is really small, then squeeze multiple objects into
2261 ralign
= cache_line_size();
2262 while (size
<= ralign
/ 2)
2265 ralign
= BYTES_PER_WORD
;
2269 * Redzoning and user store require word alignment or possibly larger.
2270 * Note this will be overridden by architecture or caller mandated
2271 * alignment if either is greater than BYTES_PER_WORD.
2273 if (flags
& SLAB_STORE_USER
)
2274 ralign
= BYTES_PER_WORD
;
2276 if (flags
& SLAB_RED_ZONE
) {
2277 ralign
= REDZONE_ALIGN
;
2278 /* If redzoning, ensure that the second redzone is suitably
2279 * aligned, by adjusting the object size accordingly. */
2280 size
+= REDZONE_ALIGN
- 1;
2281 size
&= ~(REDZONE_ALIGN
- 1);
2284 /* 2) arch mandated alignment */
2285 if (ralign
< ARCH_SLAB_MINALIGN
) {
2286 ralign
= ARCH_SLAB_MINALIGN
;
2288 /* 3) caller mandated alignment */
2289 if (ralign
< align
) {
2292 /* disable debug if necessary */
2293 if (ralign
> __alignof__(unsigned long long))
2294 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2300 if (slab_is_available())
2305 /* Get cache's description obj. */
2306 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2311 cachep
->obj_size
= size
;
2314 * Both debugging options require word-alignment which is calculated
2317 if (flags
& SLAB_RED_ZONE
) {
2318 /* add space for red zone words */
2319 cachep
->obj_offset
+= sizeof(unsigned long long);
2320 size
+= 2 * sizeof(unsigned long long);
2322 if (flags
& SLAB_STORE_USER
) {
2323 /* user store requires one word storage behind the end of
2324 * the real object. But if the second red zone needs to be
2325 * aligned to 64 bits, we must allow that much space.
2327 if (flags
& SLAB_RED_ZONE
)
2328 size
+= REDZONE_ALIGN
;
2330 size
+= BYTES_PER_WORD
;
2332 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2333 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2334 && cachep
->obj_size
> cache_line_size() && ALIGN(size
, align
) < PAGE_SIZE
) {
2335 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, align
);
2342 * Determine if the slab management is 'on' or 'off' slab.
2343 * (bootstrapping cannot cope with offslab caches so don't do
2344 * it too early on. Always use on-slab management when
2345 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2347 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2348 !(flags
& SLAB_NOLEAKTRACE
))
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2353 flags
|= CFLGS_OFF_SLAB
;
2355 size
= ALIGN(size
, align
);
2357 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2361 "kmem_cache_create: couldn't create cache %s.\n", name
);
2362 kmem_cache_free(&cache_cache
, cachep
);
2366 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2367 + sizeof(struct slab
), align
);
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2373 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2374 flags
&= ~CFLGS_OFF_SLAB
;
2375 left_over
-= slab_size
;
2378 if (flags
& CFLGS_OFF_SLAB
) {
2379 /* really off slab. No need for manual alignment */
2381 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2383 #ifdef CONFIG_PAGE_POISONING
2384 /* If we're going to use the generic kernel_map_pages()
2385 * poisoning, then it's going to smash the contents of
2386 * the redzone and userword anyhow, so switch them off.
2388 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2389 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2393 cachep
->colour_off
= cache_line_size();
2394 /* Offset must be a multiple of the alignment. */
2395 if (cachep
->colour_off
< align
)
2396 cachep
->colour_off
= align
;
2397 cachep
->colour
= left_over
/ cachep
->colour_off
;
2398 cachep
->slab_size
= slab_size
;
2399 cachep
->flags
= flags
;
2400 cachep
->gfpflags
= 0;
2401 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2402 cachep
->gfpflags
|= GFP_DMA
;
2403 cachep
->buffer_size
= size
;
2404 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2406 if (flags
& CFLGS_OFF_SLAB
) {
2407 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2409 * This is a possibility for one of the malloc_sizes caches.
2410 * But since we go off slab only for object size greater than
2411 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412 * this should not happen at all.
2413 * But leave a BUG_ON for some lucky dude.
2415 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2417 cachep
->ctor
= ctor
;
2418 cachep
->name
= name
;
2420 if (setup_cpu_cache(cachep
, gfp
)) {
2421 __kmem_cache_destroy(cachep
);
2426 /* cache setup completed, link it into the list */
2427 list_add(&cachep
->next
, &cache_chain
);
2429 if (!cachep
&& (flags
& SLAB_PANIC
))
2430 panic("kmem_cache_create(): failed to create slab `%s'\n",
2432 if (slab_is_available()) {
2433 mutex_unlock(&cache_chain_mutex
);
2438 EXPORT_SYMBOL(kmem_cache_create
);
2441 static void check_irq_off(void)
2443 BUG_ON(!irqs_disabled());
2446 static void check_irq_on(void)
2448 BUG_ON(irqs_disabled());
2451 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2455 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2459 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2463 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2468 #define check_irq_off() do { } while(0)
2469 #define check_irq_on() do { } while(0)
2470 #define check_spinlock_acquired(x) do { } while(0)
2471 #define check_spinlock_acquired_node(x, y) do { } while(0)
2474 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2475 struct array_cache
*ac
,
2476 int force
, int node
);
2478 static void do_drain(void *arg
)
2480 struct kmem_cache
*cachep
= arg
;
2481 struct array_cache
*ac
;
2482 int node
= numa_mem_id();
2485 ac
= cpu_cache_get(cachep
);
2486 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2487 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2488 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2492 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2494 struct kmem_list3
*l3
;
2497 on_each_cpu(do_drain
, cachep
, 1);
2499 for_each_online_node(node
) {
2500 l3
= cachep
->nodelists
[node
];
2501 if (l3
&& l3
->alien
)
2502 drain_alien_cache(cachep
, l3
->alien
);
2505 for_each_online_node(node
) {
2506 l3
= cachep
->nodelists
[node
];
2508 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2516 * Returns the actual number of slabs released.
2518 static int drain_freelist(struct kmem_cache
*cache
,
2519 struct kmem_list3
*l3
, int tofree
)
2521 struct list_head
*p
;
2526 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2528 spin_lock_irq(&l3
->list_lock
);
2529 p
= l3
->slabs_free
.prev
;
2530 if (p
== &l3
->slabs_free
) {
2531 spin_unlock_irq(&l3
->list_lock
);
2535 slabp
= list_entry(p
, struct slab
, list
);
2537 BUG_ON(slabp
->inuse
);
2539 list_del(&slabp
->list
);
2541 * Safe to drop the lock. The slab is no longer linked
2544 l3
->free_objects
-= cache
->num
;
2545 spin_unlock_irq(&l3
->list_lock
);
2546 slab_destroy(cache
, slabp
);
2553 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2554 static int __cache_shrink(struct kmem_cache
*cachep
)
2557 struct kmem_list3
*l3
;
2559 drain_cpu_caches(cachep
);
2562 for_each_online_node(i
) {
2563 l3
= cachep
->nodelists
[i
];
2567 drain_freelist(cachep
, l3
, l3
->free_objects
);
2569 ret
+= !list_empty(&l3
->slabs_full
) ||
2570 !list_empty(&l3
->slabs_partial
);
2572 return (ret
? 1 : 0);
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2582 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2585 BUG_ON(!cachep
|| in_interrupt());
2588 mutex_lock(&cache_chain_mutex
);
2589 ret
= __cache_shrink(cachep
);
2590 mutex_unlock(&cache_chain_mutex
);
2594 EXPORT_SYMBOL(kmem_cache_shrink
);
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2600 * Remove a &struct kmem_cache object from the slab cache.
2602 * It is expected this function will be called by a module when it is
2603 * unloaded. This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2607 * The cache must be empty before calling this function.
2609 * The caller must guarantee that noone will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2612 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2614 BUG_ON(!cachep
|| in_interrupt());
2616 /* Find the cache in the chain of caches. */
2618 mutex_lock(&cache_chain_mutex
);
2620 * the chain is never empty, cache_cache is never destroyed
2622 list_del(&cachep
->next
);
2623 if (__cache_shrink(cachep
)) {
2624 slab_error(cachep
, "Can't free all objects");
2625 list_add(&cachep
->next
, &cache_chain
);
2626 mutex_unlock(&cache_chain_mutex
);
2631 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2634 __kmem_cache_destroy(cachep
);
2635 mutex_unlock(&cache_chain_mutex
);
2638 EXPORT_SYMBOL(kmem_cache_destroy
);
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches. The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2651 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2652 int colour_off
, gfp_t local_flags
,
2657 if (OFF_SLAB(cachep
)) {
2658 /* Slab management obj is off-slab. */
2659 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2660 local_flags
, nodeid
);
2662 * If the first object in the slab is leaked (it's allocated
2663 * but no one has a reference to it), we want to make sure
2664 * kmemleak does not treat the ->s_mem pointer as a reference
2665 * to the object. Otherwise we will not report the leak.
2667 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2672 slabp
= objp
+ colour_off
;
2673 colour_off
+= cachep
->slab_size
;
2676 slabp
->colouroff
= colour_off
;
2677 slabp
->s_mem
= objp
+ colour_off
;
2678 slabp
->nodeid
= nodeid
;
2683 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2685 return (kmem_bufctl_t
*) (slabp
+ 1);
2688 static void cache_init_objs(struct kmem_cache
*cachep
,
2693 for (i
= 0; i
< cachep
->num
; i
++) {
2694 void *objp
= index_to_obj(cachep
, slabp
, i
);
2696 /* need to poison the objs? */
2697 if (cachep
->flags
& SLAB_POISON
)
2698 poison_obj(cachep
, objp
, POISON_FREE
);
2699 if (cachep
->flags
& SLAB_STORE_USER
)
2700 *dbg_userword(cachep
, objp
) = NULL
;
2702 if (cachep
->flags
& SLAB_RED_ZONE
) {
2703 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2704 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2707 * Constructors are not allowed to allocate memory from the same
2708 * cache which they are a constructor for. Otherwise, deadlock.
2709 * They must also be threaded.
2711 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2712 cachep
->ctor(objp
+ obj_offset(cachep
));
2714 if (cachep
->flags
& SLAB_RED_ZONE
) {
2715 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2716 slab_error(cachep
, "constructor overwrote the"
2717 " end of an object");
2718 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2719 slab_error(cachep
, "constructor overwrote the"
2720 " start of an object");
2722 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2723 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2724 kernel_map_pages(virt_to_page(objp
),
2725 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2730 slab_bufctl(slabp
)[i
] = i
+ 1;
2732 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2735 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2737 if (CONFIG_ZONE_DMA_FLAG
) {
2738 if (flags
& GFP_DMA
)
2739 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2741 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2745 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2748 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2752 next
= slab_bufctl(slabp
)[slabp
->free
];
2754 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2755 WARN_ON(slabp
->nodeid
!= nodeid
);
2762 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2763 void *objp
, int nodeid
)
2765 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2768 /* Verify that the slab belongs to the intended node */
2769 WARN_ON(slabp
->nodeid
!= nodeid
);
2771 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2772 printk(KERN_ERR
"slab: double free detected in cache "
2773 "'%s', objp %p\n", cachep
->name
, objp
);
2777 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2778 slabp
->free
= objnr
;
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
2785 * virtual address for kfree, ksize, and slab debugging.
2787 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2793 page
= virt_to_page(addr
);
2796 if (likely(!PageCompound(page
)))
2797 nr_pages
<<= cache
->gfporder
;
2800 page_set_cache(page
, cache
);
2801 page_set_slab(page
, slab
);
2803 } while (--nr_pages
);
2807 * Grow (by 1) the number of slabs within a cache. This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2810 static int cache_grow(struct kmem_cache
*cachep
,
2811 gfp_t flags
, int nodeid
, void *objp
)
2816 struct kmem_list3
*l3
;
2819 * Be lazy and only check for valid flags here, keeping it out of the
2820 * critical path in kmem_cache_alloc().
2822 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2823 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2825 /* Take the l3 list lock to change the colour_next on this node */
2827 l3
= cachep
->nodelists
[nodeid
];
2828 spin_lock(&l3
->list_lock
);
2830 /* Get colour for the slab, and cal the next value. */
2831 offset
= l3
->colour_next
;
2833 if (l3
->colour_next
>= cachep
->colour
)
2834 l3
->colour_next
= 0;
2835 spin_unlock(&l3
->list_lock
);
2837 offset
*= cachep
->colour_off
;
2839 if (local_flags
& __GFP_WAIT
)
2843 * The test for missing atomic flag is performed here, rather than
2844 * the more obvious place, simply to reduce the critical path length
2845 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846 * will eventually be caught here (where it matters).
2848 kmem_flagcheck(cachep
, flags
);
2851 * Get mem for the objs. Attempt to allocate a physical page from
2855 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2859 /* Get slab management. */
2860 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2861 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2865 slab_map_pages(cachep
, slabp
, objp
);
2867 cache_init_objs(cachep
, slabp
);
2869 if (local_flags
& __GFP_WAIT
)
2870 local_irq_disable();
2872 spin_lock(&l3
->list_lock
);
2874 /* Make slab active. */
2875 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2876 STATS_INC_GROWN(cachep
);
2877 l3
->free_objects
+= cachep
->num
;
2878 spin_unlock(&l3
->list_lock
);
2881 kmem_freepages(cachep
, objp
);
2883 if (local_flags
& __GFP_WAIT
)
2884 local_irq_disable();
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
2895 static void kfree_debugcheck(const void *objp
)
2897 if (!virt_addr_valid(objp
)) {
2898 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2899 (unsigned long)objp
);
2904 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2906 unsigned long long redzone1
, redzone2
;
2908 redzone1
= *dbg_redzone1(cache
, obj
);
2909 redzone2
= *dbg_redzone2(cache
, obj
);
2914 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2917 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2918 slab_error(cache
, "double free detected");
2920 slab_error(cache
, "memory outside object was overwritten");
2922 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923 obj
, redzone1
, redzone2
);
2926 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2933 BUG_ON(virt_to_cache(objp
) != cachep
);
2935 objp
-= obj_offset(cachep
);
2936 kfree_debugcheck(objp
);
2937 page
= virt_to_head_page(objp
);
2939 slabp
= page_get_slab(page
);
2941 if (cachep
->flags
& SLAB_RED_ZONE
) {
2942 verify_redzone_free(cachep
, objp
);
2943 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2944 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2946 if (cachep
->flags
& SLAB_STORE_USER
)
2947 *dbg_userword(cachep
, objp
) = caller
;
2949 objnr
= obj_to_index(cachep
, slabp
, objp
);
2951 BUG_ON(objnr
>= cachep
->num
);
2952 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2954 #ifdef CONFIG_DEBUG_SLAB_LEAK
2955 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2957 if (cachep
->flags
& SLAB_POISON
) {
2958 #ifdef CONFIG_DEBUG_PAGEALLOC
2959 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2960 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2961 kernel_map_pages(virt_to_page(objp
),
2962 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2964 poison_obj(cachep
, objp
, POISON_FREE
);
2967 poison_obj(cachep
, objp
, POISON_FREE
);
2973 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2978 /* Check slab's freelist to see if this obj is there. */
2979 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2981 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2984 if (entries
!= cachep
->num
- slabp
->inuse
) {
2986 printk(KERN_ERR
"slab: Internal list corruption detected in "
2987 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2990 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2993 printk("\n%03x:", i
);
2994 printk(" %02x", ((unsigned char *)slabp
)[i
]);
3001 #define kfree_debugcheck(x) do { } while(0)
3002 #define cache_free_debugcheck(x,objp,z) (objp)
3003 #define check_slabp(x,y) do { } while(0)
3006 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3009 struct kmem_list3
*l3
;
3010 struct array_cache
*ac
;
3015 node
= numa_mem_id();
3016 ac
= cpu_cache_get(cachep
);
3017 batchcount
= ac
->batchcount
;
3018 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3020 * If there was little recent activity on this cache, then
3021 * perform only a partial refill. Otherwise we could generate
3024 batchcount
= BATCHREFILL_LIMIT
;
3026 l3
= cachep
->nodelists
[node
];
3028 BUG_ON(ac
->avail
> 0 || !l3
);
3029 spin_lock(&l3
->list_lock
);
3031 /* See if we can refill from the shared array */
3032 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3033 l3
->shared
->touched
= 1;
3037 while (batchcount
> 0) {
3038 struct list_head
*entry
;
3040 /* Get slab alloc is to come from. */
3041 entry
= l3
->slabs_partial
.next
;
3042 if (entry
== &l3
->slabs_partial
) {
3043 l3
->free_touched
= 1;
3044 entry
= l3
->slabs_free
.next
;
3045 if (entry
== &l3
->slabs_free
)
3049 slabp
= list_entry(entry
, struct slab
, list
);
3050 check_slabp(cachep
, slabp
);
3051 check_spinlock_acquired(cachep
);
3054 * The slab was either on partial or free list so
3055 * there must be at least one object available for
3058 BUG_ON(slabp
->inuse
>= cachep
->num
);
3060 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3061 STATS_INC_ALLOCED(cachep
);
3062 STATS_INC_ACTIVE(cachep
);
3063 STATS_SET_HIGH(cachep
);
3065 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3068 check_slabp(cachep
, slabp
);
3070 /* move slabp to correct slabp list: */
3071 list_del(&slabp
->list
);
3072 if (slabp
->free
== BUFCTL_END
)
3073 list_add(&slabp
->list
, &l3
->slabs_full
);
3075 list_add(&slabp
->list
, &l3
->slabs_partial
);
3079 l3
->free_objects
-= ac
->avail
;
3081 spin_unlock(&l3
->list_lock
);
3083 if (unlikely(!ac
->avail
)) {
3085 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3087 /* cache_grow can reenable interrupts, then ac could change. */
3088 ac
= cpu_cache_get(cachep
);
3089 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3092 if (!ac
->avail
) /* objects refilled by interrupt? */
3096 return ac
->entry
[--ac
->avail
];
3099 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3102 might_sleep_if(flags
& __GFP_WAIT
);
3104 kmem_flagcheck(cachep
, flags
);
3109 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3110 gfp_t flags
, void *objp
, void *caller
)
3114 if (cachep
->flags
& SLAB_POISON
) {
3115 #ifdef CONFIG_DEBUG_PAGEALLOC
3116 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3117 kernel_map_pages(virt_to_page(objp
),
3118 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3120 check_poison_obj(cachep
, objp
);
3122 check_poison_obj(cachep
, objp
);
3124 poison_obj(cachep
, objp
, POISON_INUSE
);
3126 if (cachep
->flags
& SLAB_STORE_USER
)
3127 *dbg_userword(cachep
, objp
) = caller
;
3129 if (cachep
->flags
& SLAB_RED_ZONE
) {
3130 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3131 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3132 slab_error(cachep
, "double free, or memory outside"
3133 " object was overwritten");
3135 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3136 objp
, *dbg_redzone1(cachep
, objp
),
3137 *dbg_redzone2(cachep
, objp
));
3139 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3140 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3142 #ifdef CONFIG_DEBUG_SLAB_LEAK
3147 slabp
= page_get_slab(virt_to_head_page(objp
));
3148 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3149 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3152 objp
+= obj_offset(cachep
);
3153 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3155 #if ARCH_SLAB_MINALIGN
3156 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3157 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158 objp
, ARCH_SLAB_MINALIGN
);
3164 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3167 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3169 if (cachep
== &cache_cache
)
3172 return should_failslab(obj_size(cachep
), flags
, cachep
->flags
);
3175 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3178 struct array_cache
*ac
;
3182 ac
= cpu_cache_get(cachep
);
3183 if (likely(ac
->avail
)) {
3184 STATS_INC_ALLOCHIT(cachep
);
3186 objp
= ac
->entry
[--ac
->avail
];
3188 STATS_INC_ALLOCMISS(cachep
);
3189 objp
= cache_alloc_refill(cachep
, flags
);
3191 * the 'ac' may be updated by cache_alloc_refill(),
3192 * and kmemleak_erase() requires its correct value.
3194 ac
= cpu_cache_get(cachep
);
3197 * To avoid a false negative, if an object that is in one of the
3198 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199 * treat the array pointers as a reference to the object.
3202 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3213 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3215 int nid_alloc
, nid_here
;
3217 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3219 nid_alloc
= nid_here
= numa_mem_id();
3221 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3222 nid_alloc
= cpuset_slab_spread_node();
3223 else if (current
->mempolicy
)
3224 nid_alloc
= slab_node(current
->mempolicy
);
3226 if (nid_alloc
!= nid_here
)
3227 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3232 * Fallback function if there was no memory available and no objects on a
3233 * certain node and fall back is permitted. First we scan all the
3234 * available nodelists for available objects. If that fails then we
3235 * perform an allocation without specifying a node. This allows the page
3236 * allocator to do its reclaim / fallback magic. We then insert the
3237 * slab into the proper nodelist and then allocate from it.
3239 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3241 struct zonelist
*zonelist
;
3245 enum zone_type high_zoneidx
= gfp_zone(flags
);
3249 if (flags
& __GFP_THISNODE
)
3253 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3254 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3261 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3262 nid
= zone_to_nid(zone
);
3264 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3265 cache
->nodelists
[nid
] &&
3266 cache
->nodelists
[nid
]->free_objects
) {
3267 obj
= ____cache_alloc_node(cache
,
3268 flags
| GFP_THISNODE
, nid
);
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3281 if (local_flags
& __GFP_WAIT
)
3283 kmem_flagcheck(cache
, flags
);
3284 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3285 if (local_flags
& __GFP_WAIT
)
3286 local_irq_disable();
3289 * Insert into the appropriate per node queues
3291 nid
= page_to_nid(virt_to_page(obj
));
3292 if (cache_grow(cache
, flags
, nid
, obj
)) {
3293 obj
= ____cache_alloc_node(cache
,
3294 flags
| GFP_THISNODE
, nid
);
3297 * Another processor may allocate the
3298 * objects in the slab since we are
3299 * not holding any locks.
3303 /* cache_grow already freed obj */
3313 * A interface to enable slab creation on nodeid
3315 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3318 struct list_head
*entry
;
3320 struct kmem_list3
*l3
;
3324 l3
= cachep
->nodelists
[nodeid
];
3329 spin_lock(&l3
->list_lock
);
3330 entry
= l3
->slabs_partial
.next
;
3331 if (entry
== &l3
->slabs_partial
) {
3332 l3
->free_touched
= 1;
3333 entry
= l3
->slabs_free
.next
;
3334 if (entry
== &l3
->slabs_free
)
3338 slabp
= list_entry(entry
, struct slab
, list
);
3339 check_spinlock_acquired_node(cachep
, nodeid
);
3340 check_slabp(cachep
, slabp
);
3342 STATS_INC_NODEALLOCS(cachep
);
3343 STATS_INC_ACTIVE(cachep
);
3344 STATS_SET_HIGH(cachep
);
3346 BUG_ON(slabp
->inuse
== cachep
->num
);
3348 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3349 check_slabp(cachep
, slabp
);
3351 /* move slabp to correct slabp list: */
3352 list_del(&slabp
->list
);
3354 if (slabp
->free
== BUFCTL_END
)
3355 list_add(&slabp
->list
, &l3
->slabs_full
);
3357 list_add(&slabp
->list
, &l3
->slabs_partial
);
3359 spin_unlock(&l3
->list_lock
);
3363 spin_unlock(&l3
->list_lock
);
3364 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3368 return fallback_alloc(cachep
, flags
);
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 * @caller: return address of caller, used for debug information
3381 * Identical to kmem_cache_alloc but it will allocate memory on the given
3382 * node, which can improve the performance for cpu bound structures.
3384 * Fallback to other node is possible if __GFP_THISNODE is not set.
3386 static __always_inline
void *
3387 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3390 unsigned long save_flags
;
3392 int slab_node
= numa_mem_id();
3394 flags
&= gfp_allowed_mask
;
3396 lockdep_trace_alloc(flags
);
3398 if (slab_should_failslab(cachep
, flags
))
3401 cache_alloc_debugcheck_before(cachep
, flags
);
3402 local_irq_save(save_flags
);
3407 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3408 /* Node not bootstrapped yet */
3409 ptr
= fallback_alloc(cachep
, flags
);
3413 if (nodeid
== slab_node
) {
3415 * Use the locally cached objects if possible.
3416 * However ____cache_alloc does not allow fallback
3417 * to other nodes. It may fail while we still have
3418 * objects on other nodes available.
3420 ptr
= ____cache_alloc(cachep
, flags
);
3424 /* ___cache_alloc_node can fall back to other nodes */
3425 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3427 local_irq_restore(save_flags
);
3428 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3429 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3433 kmemcheck_slab_alloc(cachep
, flags
, ptr
, obj_size(cachep
));
3435 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3436 memset(ptr
, 0, obj_size(cachep
));
3441 static __always_inline
void *
3442 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3446 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3447 objp
= alternate_node_alloc(cache
, flags
);
3451 objp
= ____cache_alloc(cache
, flags
);
3454 * We may just have run out of memory on the local node.
3455 * ____cache_alloc_node() knows how to locate memory on other nodes
3458 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3465 static __always_inline
void *
3466 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3468 return ____cache_alloc(cachep
, flags
);
3471 #endif /* CONFIG_NUMA */
3473 static __always_inline
void *
3474 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3476 unsigned long save_flags
;
3479 flags
&= gfp_allowed_mask
;
3481 lockdep_trace_alloc(flags
);
3483 if (slab_should_failslab(cachep
, flags
))
3486 cache_alloc_debugcheck_before(cachep
, flags
);
3487 local_irq_save(save_flags
);
3488 objp
= __do_cache_alloc(cachep
, flags
);
3489 local_irq_restore(save_flags
);
3490 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3491 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3496 kmemcheck_slab_alloc(cachep
, flags
, objp
, obj_size(cachep
));
3498 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3499 memset(objp
, 0, obj_size(cachep
));
3505 * Caller needs to acquire correct kmem_list's list_lock
3507 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3511 struct kmem_list3
*l3
;
3513 for (i
= 0; i
< nr_objects
; i
++) {
3514 void *objp
= objpp
[i
];
3517 slabp
= virt_to_slab(objp
);
3518 l3
= cachep
->nodelists
[node
];
3519 list_del(&slabp
->list
);
3520 check_spinlock_acquired_node(cachep
, node
);
3521 check_slabp(cachep
, slabp
);
3522 slab_put_obj(cachep
, slabp
, objp
, node
);
3523 STATS_DEC_ACTIVE(cachep
);
3525 check_slabp(cachep
, slabp
);
3527 /* fixup slab chains */
3528 if (slabp
->inuse
== 0) {
3529 if (l3
->free_objects
> l3
->free_limit
) {
3530 l3
->free_objects
-= cachep
->num
;
3531 /* No need to drop any previously held
3532 * lock here, even if we have a off-slab slab
3533 * descriptor it is guaranteed to come from
3534 * a different cache, refer to comments before
3537 slab_destroy(cachep
, slabp
);
3539 list_add(&slabp
->list
, &l3
->slabs_free
);
3542 /* Unconditionally move a slab to the end of the
3543 * partial list on free - maximum time for the
3544 * other objects to be freed, too.
3546 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3551 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3554 struct kmem_list3
*l3
;
3555 int node
= numa_mem_id();
3557 batchcount
= ac
->batchcount
;
3559 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3562 l3
= cachep
->nodelists
[node
];
3563 spin_lock(&l3
->list_lock
);
3565 struct array_cache
*shared_array
= l3
->shared
;
3566 int max
= shared_array
->limit
- shared_array
->avail
;
3568 if (batchcount
> max
)
3570 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3571 ac
->entry
, sizeof(void *) * batchcount
);
3572 shared_array
->avail
+= batchcount
;
3577 free_block(cachep
, ac
->entry
, batchcount
, node
);
3582 struct list_head
*p
;
3584 p
= l3
->slabs_free
.next
;
3585 while (p
!= &(l3
->slabs_free
)) {
3588 slabp
= list_entry(p
, struct slab
, list
);
3589 BUG_ON(slabp
->inuse
);
3594 STATS_SET_FREEABLE(cachep
, i
);
3597 spin_unlock(&l3
->list_lock
);
3598 ac
->avail
-= batchcount
;
3599 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3603 * Release an obj back to its cache. If the obj has a constructed state, it must
3604 * be in this state _before_ it is released. Called with disabled ints.
3606 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3608 struct array_cache
*ac
= cpu_cache_get(cachep
);
3611 kmemleak_free_recursive(objp
, cachep
->flags
);
3612 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3614 kmemcheck_slab_free(cachep
, objp
, obj_size(cachep
));
3617 * Skip calling cache_free_alien() when the platform is not numa.
3618 * This will avoid cache misses that happen while accessing slabp (which
3619 * is per page memory reference) to get nodeid. Instead use a global
3620 * variable to skip the call, which is mostly likely to be present in
3623 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3626 if (likely(ac
->avail
< ac
->limit
)) {
3627 STATS_INC_FREEHIT(cachep
);
3628 ac
->entry
[ac
->avail
++] = objp
;
3631 STATS_INC_FREEMISS(cachep
);
3632 cache_flusharray(cachep
, ac
);
3633 ac
->entry
[ac
->avail
++] = objp
;
3638 * kmem_cache_alloc - Allocate an object
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3642 * Allocate an object from this cache. The flags are only relevant
3643 * if the cache has no available objects.
3645 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3647 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3649 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3650 obj_size(cachep
), cachep
->buffer_size
, flags
);
3654 EXPORT_SYMBOL(kmem_cache_alloc
);
3656 #ifdef CONFIG_TRACING
3658 kmem_cache_alloc_trace(size_t size
, struct kmem_cache
*cachep
, gfp_t flags
)
3662 ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3664 trace_kmalloc(_RET_IP_
, ret
,
3665 size
, slab_buffer_size(cachep
), flags
);
3668 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3672 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3674 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3675 __builtin_return_address(0));
3677 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3678 obj_size(cachep
), cachep
->buffer_size
,
3683 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3685 #ifdef CONFIG_TRACING
3686 void *kmem_cache_alloc_node_trace(size_t size
,
3687 struct kmem_cache
*cachep
,
3693 ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3694 __builtin_return_address(0));
3695 trace_kmalloc_node(_RET_IP_
, ret
,
3696 size
, slab_buffer_size(cachep
),
3700 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3703 static __always_inline
void *
3704 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3706 struct kmem_cache
*cachep
;
3708 cachep
= kmem_find_general_cachep(size
, flags
);
3709 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3711 return kmem_cache_alloc_node_trace(size
, cachep
, flags
, node
);
3714 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3715 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3717 return __do_kmalloc_node(size
, flags
, node
,
3718 __builtin_return_address(0));
3720 EXPORT_SYMBOL(__kmalloc_node
);
3722 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3723 int node
, unsigned long caller
)
3725 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3727 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3729 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3731 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3733 EXPORT_SYMBOL(__kmalloc_node
);
3734 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3735 #endif /* CONFIG_NUMA */
3738 * __do_kmalloc - allocate memory
3739 * @size: how many bytes of memory are required.
3740 * @flags: the type of memory to allocate (see kmalloc).
3741 * @caller: function caller for debug tracking of the caller
3743 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3746 struct kmem_cache
*cachep
;
3749 /* If you want to save a few bytes .text space: replace
3751 * Then kmalloc uses the uninlined functions instead of the inline
3754 cachep
= __find_general_cachep(size
, flags
);
3755 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3757 ret
= __cache_alloc(cachep
, flags
, caller
);
3759 trace_kmalloc((unsigned long) caller
, ret
,
3760 size
, cachep
->buffer_size
, flags
);
3766 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3767 void *__kmalloc(size_t size
, gfp_t flags
)
3769 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3771 EXPORT_SYMBOL(__kmalloc
);
3773 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3775 return __do_kmalloc(size
, flags
, (void *)caller
);
3777 EXPORT_SYMBOL(__kmalloc_track_caller
);
3780 void *__kmalloc(size_t size
, gfp_t flags
)
3782 return __do_kmalloc(size
, flags
, NULL
);
3784 EXPORT_SYMBOL(__kmalloc
);
3788 * kmem_cache_free - Deallocate an object
3789 * @cachep: The cache the allocation was from.
3790 * @objp: The previously allocated object.
3792 * Free an object which was previously allocated from this
3795 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3797 unsigned long flags
;
3799 local_irq_save(flags
);
3800 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3801 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3802 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3803 __cache_free(cachep
, objp
);
3804 local_irq_restore(flags
);
3806 trace_kmem_cache_free(_RET_IP_
, objp
);
3808 EXPORT_SYMBOL(kmem_cache_free
);
3811 * kfree - free previously allocated memory
3812 * @objp: pointer returned by kmalloc.
3814 * If @objp is NULL, no operation is performed.
3816 * Don't free memory not originally allocated by kmalloc()
3817 * or you will run into trouble.
3819 void kfree(const void *objp
)
3821 struct kmem_cache
*c
;
3822 unsigned long flags
;
3824 trace_kfree(_RET_IP_
, objp
);
3826 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3828 local_irq_save(flags
);
3829 kfree_debugcheck(objp
);
3830 c
= virt_to_cache(objp
);
3831 debug_check_no_locks_freed(objp
, obj_size(c
));
3832 debug_check_no_obj_freed(objp
, obj_size(c
));
3833 __cache_free(c
, (void *)objp
);
3834 local_irq_restore(flags
);
3836 EXPORT_SYMBOL(kfree
);
3838 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3840 return obj_size(cachep
);
3842 EXPORT_SYMBOL(kmem_cache_size
);
3845 * This initializes kmem_list3 or resizes various caches for all nodes.
3847 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3850 struct kmem_list3
*l3
;
3851 struct array_cache
*new_shared
;
3852 struct array_cache
**new_alien
= NULL
;
3854 for_each_online_node(node
) {
3856 if (use_alien_caches
) {
3857 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3863 if (cachep
->shared
) {
3864 new_shared
= alloc_arraycache(node
,
3865 cachep
->shared
*cachep
->batchcount
,
3868 free_alien_cache(new_alien
);
3873 l3
= cachep
->nodelists
[node
];
3875 struct array_cache
*shared
= l3
->shared
;
3877 spin_lock_irq(&l3
->list_lock
);
3880 free_block(cachep
, shared
->entry
,
3881 shared
->avail
, node
);
3883 l3
->shared
= new_shared
;
3885 l3
->alien
= new_alien
;
3888 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3889 cachep
->batchcount
+ cachep
->num
;
3890 spin_unlock_irq(&l3
->list_lock
);
3892 free_alien_cache(new_alien
);
3895 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3897 free_alien_cache(new_alien
);
3902 kmem_list3_init(l3
);
3903 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3904 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3905 l3
->shared
= new_shared
;
3906 l3
->alien
= new_alien
;
3907 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3908 cachep
->batchcount
+ cachep
->num
;
3909 cachep
->nodelists
[node
] = l3
;
3914 if (!cachep
->next
.next
) {
3915 /* Cache is not active yet. Roll back what we did */
3918 if (cachep
->nodelists
[node
]) {
3919 l3
= cachep
->nodelists
[node
];
3922 free_alien_cache(l3
->alien
);
3924 cachep
->nodelists
[node
] = NULL
;
3932 struct ccupdate_struct
{
3933 struct kmem_cache
*cachep
;
3934 struct array_cache
*new[NR_CPUS
];
3937 static void do_ccupdate_local(void *info
)
3939 struct ccupdate_struct
*new = info
;
3940 struct array_cache
*old
;
3943 old
= cpu_cache_get(new->cachep
);
3945 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3946 new->new[smp_processor_id()] = old
;
3949 /* Always called with the cache_chain_mutex held */
3950 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3951 int batchcount
, int shared
, gfp_t gfp
)
3953 struct ccupdate_struct
*new;
3956 new = kzalloc(sizeof(*new), gfp
);
3960 for_each_online_cpu(i
) {
3961 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
3964 for (i
--; i
>= 0; i
--)
3970 new->cachep
= cachep
;
3972 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3975 cachep
->batchcount
= batchcount
;
3976 cachep
->limit
= limit
;
3977 cachep
->shared
= shared
;
3979 for_each_online_cpu(i
) {
3980 struct array_cache
*ccold
= new->new[i
];
3983 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
3984 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
3985 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
3989 return alloc_kmemlist(cachep
, gfp
);
3992 /* Called with cache_chain_mutex held always */
3993 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3999 * The head array serves three purposes:
4000 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001 * - reduce the number of spinlock operations.
4002 * - reduce the number of linked list operations on the slab and
4003 * bufctl chains: array operations are cheaper.
4004 * The numbers are guessed, we should auto-tune as described by
4007 if (cachep
->buffer_size
> 131072)
4009 else if (cachep
->buffer_size
> PAGE_SIZE
)
4011 else if (cachep
->buffer_size
> 1024)
4013 else if (cachep
->buffer_size
> 256)
4019 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4020 * allocation behaviour: Most allocs on one cpu, most free operations
4021 * on another cpu. For these cases, an efficient object passing between
4022 * cpus is necessary. This is provided by a shared array. The array
4023 * replaces Bonwick's magazine layer.
4024 * On uniprocessor, it's functionally equivalent (but less efficient)
4025 * to a larger limit. Thus disabled by default.
4028 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4033 * With debugging enabled, large batchcount lead to excessively long
4034 * periods with disabled local interrupts. Limit the batchcount
4039 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4041 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4042 cachep
->name
, -err
);
4047 * Drain an array if it contains any elements taking the l3 lock only if
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
4051 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4052 struct array_cache
*ac
, int force
, int node
)
4056 if (!ac
|| !ac
->avail
)
4058 if (ac
->touched
&& !force
) {
4061 spin_lock_irq(&l3
->list_lock
);
4063 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4064 if (tofree
> ac
->avail
)
4065 tofree
= (ac
->avail
+ 1) / 2;
4066 free_block(cachep
, ac
->entry
, tofree
, node
);
4067 ac
->avail
-= tofree
;
4068 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4069 sizeof(void *) * ac
->avail
);
4071 spin_unlock_irq(&l3
->list_lock
);
4076 * cache_reap - Reclaim memory from caches.
4077 * @w: work descriptor
4079 * Called from workqueue/eventd every few seconds.
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
4087 static void cache_reap(struct work_struct
*w
)
4089 struct kmem_cache
*searchp
;
4090 struct kmem_list3
*l3
;
4091 int node
= numa_mem_id();
4092 struct delayed_work
*work
= to_delayed_work(w
);
4094 if (!mutex_trylock(&cache_chain_mutex
))
4095 /* Give up. Setup the next iteration. */
4098 list_for_each_entry(searchp
, &cache_chain
, next
) {
4102 * We only take the l3 lock if absolutely necessary and we
4103 * have established with reasonable certainty that
4104 * we can do some work if the lock was obtained.
4106 l3
= searchp
->nodelists
[node
];
4108 reap_alien(searchp
, l3
);
4110 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4113 * These are racy checks but it does not matter
4114 * if we skip one check or scan twice.
4116 if (time_after(l3
->next_reap
, jiffies
))
4119 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4121 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4123 if (l3
->free_touched
)
4124 l3
->free_touched
= 0;
4128 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4129 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4130 STATS_ADD_REAPED(searchp
, freed
);
4136 mutex_unlock(&cache_chain_mutex
);
4139 /* Set up the next iteration */
4140 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4143 #ifdef CONFIG_SLABINFO
4145 static void print_slabinfo_header(struct seq_file
*m
)
4148 * Output format version, so at least we can change it
4149 * without _too_ many complaints.
4152 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4154 seq_puts(m
, "slabinfo - version: 2.1\n");
4156 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4157 "<objperslab> <pagesperslab>");
4158 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4159 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4161 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4162 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4163 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4168 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4172 mutex_lock(&cache_chain_mutex
);
4174 print_slabinfo_header(m
);
4176 return seq_list_start(&cache_chain
, *pos
);
4179 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4181 return seq_list_next(p
, &cache_chain
, pos
);
4184 static void s_stop(struct seq_file
*m
, void *p
)
4186 mutex_unlock(&cache_chain_mutex
);
4189 static int s_show(struct seq_file
*m
, void *p
)
4191 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4193 unsigned long active_objs
;
4194 unsigned long num_objs
;
4195 unsigned long active_slabs
= 0;
4196 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4200 struct kmem_list3
*l3
;
4204 for_each_online_node(node
) {
4205 l3
= cachep
->nodelists
[node
];
4210 spin_lock_irq(&l3
->list_lock
);
4212 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4213 if (slabp
->inuse
!= cachep
->num
&& !error
)
4214 error
= "slabs_full accounting error";
4215 active_objs
+= cachep
->num
;
4218 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4219 if (slabp
->inuse
== cachep
->num
&& !error
)
4220 error
= "slabs_partial inuse accounting error";
4221 if (!slabp
->inuse
&& !error
)
4222 error
= "slabs_partial/inuse accounting error";
4223 active_objs
+= slabp
->inuse
;
4226 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4227 if (slabp
->inuse
&& !error
)
4228 error
= "slabs_free/inuse accounting error";
4231 free_objects
+= l3
->free_objects
;
4233 shared_avail
+= l3
->shared
->avail
;
4235 spin_unlock_irq(&l3
->list_lock
);
4237 num_slabs
+= active_slabs
;
4238 num_objs
= num_slabs
* cachep
->num
;
4239 if (num_objs
- active_objs
!= free_objects
&& !error
)
4240 error
= "free_objects accounting error";
4242 name
= cachep
->name
;
4244 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4246 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4247 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4248 cachep
->num
, (1 << cachep
->gfporder
));
4249 seq_printf(m
, " : tunables %4u %4u %4u",
4250 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4251 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4252 active_slabs
, num_slabs
, shared_avail
);
4255 unsigned long high
= cachep
->high_mark
;
4256 unsigned long allocs
= cachep
->num_allocations
;
4257 unsigned long grown
= cachep
->grown
;
4258 unsigned long reaped
= cachep
->reaped
;
4259 unsigned long errors
= cachep
->errors
;
4260 unsigned long max_freeable
= cachep
->max_freeable
;
4261 unsigned long node_allocs
= cachep
->node_allocs
;
4262 unsigned long node_frees
= cachep
->node_frees
;
4263 unsigned long overflows
= cachep
->node_overflow
;
4265 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4266 "%4lu %4lu %4lu %4lu %4lu",
4267 allocs
, high
, grown
,
4268 reaped
, errors
, max_freeable
, node_allocs
,
4269 node_frees
, overflows
);
4273 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4274 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4275 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4276 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4278 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4279 allochit
, allocmiss
, freehit
, freemiss
);
4287 * slabinfo_op - iterator that generates /proc/slabinfo
4296 * num-pages-per-slab
4297 * + further values on SMP and with statistics enabled
4300 static const struct seq_operations slabinfo_op
= {
4307 #define MAX_SLABINFO_WRITE 128
4309 * slabinfo_write - Tuning for the slab allocator
4311 * @buffer: user buffer
4312 * @count: data length
4315 static ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4316 size_t count
, loff_t
*ppos
)
4318 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4319 int limit
, batchcount
, shared
, res
;
4320 struct kmem_cache
*cachep
;
4322 if (count
> MAX_SLABINFO_WRITE
)
4324 if (copy_from_user(&kbuf
, buffer
, count
))
4326 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4328 tmp
= strchr(kbuf
, ' ');
4333 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4336 /* Find the cache in the chain of caches. */
4337 mutex_lock(&cache_chain_mutex
);
4339 list_for_each_entry(cachep
, &cache_chain
, next
) {
4340 if (!strcmp(cachep
->name
, kbuf
)) {
4341 if (limit
< 1 || batchcount
< 1 ||
4342 batchcount
> limit
|| shared
< 0) {
4345 res
= do_tune_cpucache(cachep
, limit
,
4352 mutex_unlock(&cache_chain_mutex
);
4358 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4360 return seq_open(file
, &slabinfo_op
);
4363 static const struct file_operations proc_slabinfo_operations
= {
4364 .open
= slabinfo_open
,
4366 .write
= slabinfo_write
,
4367 .llseek
= seq_lseek
,
4368 .release
= seq_release
,
4371 #ifdef CONFIG_DEBUG_SLAB_LEAK
4373 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4375 mutex_lock(&cache_chain_mutex
);
4376 return seq_list_start(&cache_chain
, *pos
);
4379 static inline int add_caller(unsigned long *n
, unsigned long v
)
4389 unsigned long *q
= p
+ 2 * i
;
4403 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4409 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4415 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4416 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4418 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4423 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4425 #ifdef CONFIG_KALLSYMS
4426 unsigned long offset
, size
;
4427 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4429 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4430 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4432 seq_printf(m
, " [%s]", modname
);
4436 seq_printf(m
, "%p", (void *)address
);
4439 static int leaks_show(struct seq_file
*m
, void *p
)
4441 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4443 struct kmem_list3
*l3
;
4445 unsigned long *n
= m
->private;
4449 if (!(cachep
->flags
& SLAB_STORE_USER
))
4451 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4454 /* OK, we can do it */
4458 for_each_online_node(node
) {
4459 l3
= cachep
->nodelists
[node
];
4464 spin_lock_irq(&l3
->list_lock
);
4466 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4467 handle_slab(n
, cachep
, slabp
);
4468 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4469 handle_slab(n
, cachep
, slabp
);
4470 spin_unlock_irq(&l3
->list_lock
);
4472 name
= cachep
->name
;
4474 /* Increase the buffer size */
4475 mutex_unlock(&cache_chain_mutex
);
4476 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4478 /* Too bad, we are really out */
4480 mutex_lock(&cache_chain_mutex
);
4483 *(unsigned long *)m
->private = n
[0] * 2;
4485 mutex_lock(&cache_chain_mutex
);
4486 /* Now make sure this entry will be retried */
4490 for (i
= 0; i
< n
[1]; i
++) {
4491 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4492 show_symbol(m
, n
[2*i
+2]);
4499 static const struct seq_operations slabstats_op
= {
4500 .start
= leaks_start
,
4506 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4508 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4511 ret
= seq_open(file
, &slabstats_op
);
4513 struct seq_file
*m
= file
->private_data
;
4514 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4523 static const struct file_operations proc_slabstats_operations
= {
4524 .open
= slabstats_open
,
4526 .llseek
= seq_lseek
,
4527 .release
= seq_release_private
,
4531 static int __init
slab_proc_init(void)
4533 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4534 #ifdef CONFIG_DEBUG_SLAB_LEAK
4535 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4539 module_init(slab_proc_init
);
4543 * ksize - get the actual amount of memory allocated for a given object
4544 * @objp: Pointer to the object
4546 * kmalloc may internally round up allocations and return more memory
4547 * than requested. ksize() can be used to determine the actual amount of
4548 * memory allocated. The caller may use this additional memory, even though
4549 * a smaller amount of memory was initially specified with the kmalloc call.
4550 * The caller must guarantee that objp points to a valid object previously
4551 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4552 * must not be freed during the duration of the call.
4554 size_t ksize(const void *objp
)
4557 if (unlikely(objp
== ZERO_SIZE_PTR
))
4560 return obj_size(virt_to_cache(objp
));
4562 EXPORT_SYMBOL(ksize
);