2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
42 * anon_vma->lock (memory_failure, collect_procs_anon)
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
88 kmem_cache_free(anon_vma_cachep
, anon_vma
);
91 static inline struct anon_vma_chain
*anon_vma_chain_alloc(void)
93 return kmem_cache_alloc(anon_vma_chain_cachep
, GFP_KERNEL
);
96 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
98 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
102 * anon_vma_prepare - attach an anon_vma to a memory region
103 * @vma: the memory region in question
105 * This makes sure the memory mapping described by 'vma' has
106 * an 'anon_vma' attached to it, so that we can associate the
107 * anonymous pages mapped into it with that anon_vma.
109 * The common case will be that we already have one, but if
110 * not we either need to find an adjacent mapping that we
111 * can re-use the anon_vma from (very common when the only
112 * reason for splitting a vma has been mprotect()), or we
113 * allocate a new one.
115 * Anon-vma allocations are very subtle, because we may have
116 * optimistically looked up an anon_vma in page_lock_anon_vma()
117 * and that may actually touch the spinlock even in the newly
118 * allocated vma (it depends on RCU to make sure that the
119 * anon_vma isn't actually destroyed).
121 * As a result, we need to do proper anon_vma locking even
122 * for the new allocation. At the same time, we do not want
123 * to do any locking for the common case of already having
126 * This must be called with the mmap_sem held for reading.
128 int anon_vma_prepare(struct vm_area_struct
*vma
)
130 struct anon_vma
*anon_vma
= vma
->anon_vma
;
131 struct anon_vma_chain
*avc
;
134 if (unlikely(!anon_vma
)) {
135 struct mm_struct
*mm
= vma
->vm_mm
;
136 struct anon_vma
*allocated
;
138 avc
= anon_vma_chain_alloc();
142 anon_vma
= find_mergeable_anon_vma(vma
);
145 anon_vma
= anon_vma_alloc();
146 if (unlikely(!anon_vma
))
147 goto out_enomem_free_avc
;
148 allocated
= anon_vma
;
151 anon_vma_lock(anon_vma
);
152 /* page_table_lock to protect against threads */
153 spin_lock(&mm
->page_table_lock
);
154 if (likely(!vma
->anon_vma
)) {
155 vma
->anon_vma
= anon_vma
;
156 avc
->anon_vma
= anon_vma
;
158 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
159 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
163 spin_unlock(&mm
->page_table_lock
);
164 anon_vma_unlock(anon_vma
);
166 if (unlikely(allocated
))
167 put_anon_vma(allocated
);
169 anon_vma_chain_free(avc
);
174 anon_vma_chain_free(avc
);
179 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
180 struct anon_vma_chain
*avc
,
181 struct anon_vma
*anon_vma
)
184 avc
->anon_vma
= anon_vma
;
185 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
187 anon_vma_lock(anon_vma
);
189 * It's critical to add new vmas to the tail of the anon_vma,
190 * see comment in huge_memory.c:__split_huge_page().
192 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
193 anon_vma_unlock(anon_vma
);
197 * Attach the anon_vmas from src to dst.
198 * Returns 0 on success, -ENOMEM on failure.
200 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
202 struct anon_vma_chain
*avc
, *pavc
;
204 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
205 avc
= anon_vma_chain_alloc();
208 anon_vma_chain_link(dst
, avc
, pavc
->anon_vma
);
213 unlink_anon_vmas(dst
);
218 * Attach vma to its own anon_vma, as well as to the anon_vmas that
219 * the corresponding VMA in the parent process is attached to.
220 * Returns 0 on success, non-zero on failure.
222 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
224 struct anon_vma_chain
*avc
;
225 struct anon_vma
*anon_vma
;
227 /* Don't bother if the parent process has no anon_vma here. */
232 * First, attach the new VMA to the parent VMA's anon_vmas,
233 * so rmap can find non-COWed pages in child processes.
235 if (anon_vma_clone(vma
, pvma
))
238 /* Then add our own anon_vma. */
239 anon_vma
= anon_vma_alloc();
242 avc
= anon_vma_chain_alloc();
244 goto out_error_free_anon_vma
;
247 * The root anon_vma's spinlock is the lock actually used when we
248 * lock any of the anon_vmas in this anon_vma tree.
250 anon_vma
->root
= pvma
->anon_vma
->root
;
252 * With refcounts, an anon_vma can stay around longer than the
253 * process it belongs to. The root anon_vma needs to be pinned until
254 * this anon_vma is freed, because the lock lives in the root.
256 get_anon_vma(anon_vma
->root
);
257 /* Mark this anon_vma as the one where our new (COWed) pages go. */
258 vma
->anon_vma
= anon_vma
;
259 anon_vma_chain_link(vma
, avc
, anon_vma
);
263 out_error_free_anon_vma
:
264 put_anon_vma(anon_vma
);
266 unlink_anon_vmas(vma
);
270 static void anon_vma_unlink(struct anon_vma_chain
*anon_vma_chain
)
272 struct anon_vma
*anon_vma
= anon_vma_chain
->anon_vma
;
275 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
279 anon_vma_lock(anon_vma
);
280 list_del(&anon_vma_chain
->same_anon_vma
);
282 /* We must garbage collect the anon_vma if it's empty */
283 empty
= list_empty(&anon_vma
->head
);
284 anon_vma_unlock(anon_vma
);
287 put_anon_vma(anon_vma
);
290 void unlink_anon_vmas(struct vm_area_struct
*vma
)
292 struct anon_vma_chain
*avc
, *next
;
295 * Unlink each anon_vma chained to the VMA. This list is ordered
296 * from newest to oldest, ensuring the root anon_vma gets freed last.
298 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
299 anon_vma_unlink(avc
);
300 list_del(&avc
->same_vma
);
301 anon_vma_chain_free(avc
);
305 static void anon_vma_ctor(void *data
)
307 struct anon_vma
*anon_vma
= data
;
309 spin_lock_init(&anon_vma
->lock
);
310 atomic_set(&anon_vma
->refcount
, 0);
311 INIT_LIST_HEAD(&anon_vma
->head
);
314 void __init
anon_vma_init(void)
316 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
317 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
318 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
322 * Getting a lock on a stable anon_vma from a page off the LRU is
323 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
325 struct anon_vma
*__page_lock_anon_vma(struct page
*page
)
327 struct anon_vma
*anon_vma
, *root_anon_vma
;
328 unsigned long anon_mapping
;
331 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
332 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
334 if (!page_mapped(page
))
337 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
338 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
339 spin_lock(&root_anon_vma
->lock
);
342 * If this page is still mapped, then its anon_vma cannot have been
343 * freed. But if it has been unmapped, we have no security against
344 * the anon_vma structure being freed and reused (for another anon_vma:
345 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
346 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
347 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
349 if (page_mapped(page
))
352 spin_unlock(&root_anon_vma
->lock
);
358 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
359 __releases(&anon_vma
->root
->lock
)
362 anon_vma_unlock(anon_vma
);
367 * At what user virtual address is page expected in @vma?
368 * Returns virtual address or -EFAULT if page's index/offset is not
369 * within the range mapped the @vma.
372 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
374 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
375 unsigned long address
;
377 if (unlikely(is_vm_hugetlb_page(vma
)))
378 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
379 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
380 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
381 /* page should be within @vma mapping range */
388 * At what user virtual address is page expected in vma?
389 * Caller should check the page is actually part of the vma.
391 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
393 if (PageAnon(page
)) {
394 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
396 * Note: swapoff's unuse_vma() is more efficient with this
397 * check, and needs it to match anon_vma when KSM is active.
399 if (!vma
->anon_vma
|| !page__anon_vma
||
400 vma
->anon_vma
->root
!= page__anon_vma
->root
)
402 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
404 vma
->vm_file
->f_mapping
!= page
->mapping
)
408 return vma_address(page
, vma
);
412 * Check that @page is mapped at @address into @mm.
414 * If @sync is false, page_check_address may perform a racy check to avoid
415 * the page table lock when the pte is not present (helpful when reclaiming
416 * highly shared pages).
418 * On success returns with pte mapped and locked.
420 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
421 unsigned long address
, spinlock_t
**ptlp
, int sync
)
429 if (unlikely(PageHuge(page
))) {
430 pte
= huge_pte_offset(mm
, address
);
431 ptl
= &mm
->page_table_lock
;
435 pgd
= pgd_offset(mm
, address
);
436 if (!pgd_present(*pgd
))
439 pud
= pud_offset(pgd
, address
);
440 if (!pud_present(*pud
))
443 pmd
= pmd_offset(pud
, address
);
444 if (!pmd_present(*pmd
))
446 if (pmd_trans_huge(*pmd
))
449 pte
= pte_offset_map(pmd
, address
);
450 /* Make a quick check before getting the lock */
451 if (!sync
&& !pte_present(*pte
)) {
456 ptl
= pte_lockptr(mm
, pmd
);
459 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
463 pte_unmap_unlock(pte
, ptl
);
468 * page_mapped_in_vma - check whether a page is really mapped in a VMA
469 * @page: the page to test
470 * @vma: the VMA to test
472 * Returns 1 if the page is mapped into the page tables of the VMA, 0
473 * if the page is not mapped into the page tables of this VMA. Only
474 * valid for normal file or anonymous VMAs.
476 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
478 unsigned long address
;
482 address
= vma_address(page
, vma
);
483 if (address
== -EFAULT
) /* out of vma range */
485 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
486 if (!pte
) /* the page is not in this mm */
488 pte_unmap_unlock(pte
, ptl
);
494 * Subfunctions of page_referenced: page_referenced_one called
495 * repeatedly from either page_referenced_anon or page_referenced_file.
497 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
498 unsigned long address
, unsigned int *mapcount
,
499 unsigned long *vm_flags
)
501 struct mm_struct
*mm
= vma
->vm_mm
;
504 if (unlikely(PageTransHuge(page
))) {
507 spin_lock(&mm
->page_table_lock
);
509 * rmap might return false positives; we must filter
510 * these out using page_check_address_pmd().
512 pmd
= page_check_address_pmd(page
, mm
, address
,
513 PAGE_CHECK_ADDRESS_PMD_FLAG
);
515 spin_unlock(&mm
->page_table_lock
);
519 if (vma
->vm_flags
& VM_LOCKED
) {
520 spin_unlock(&mm
->page_table_lock
);
521 *mapcount
= 0; /* break early from loop */
522 *vm_flags
|= VM_LOCKED
;
526 /* go ahead even if the pmd is pmd_trans_splitting() */
527 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
529 spin_unlock(&mm
->page_table_lock
);
535 * rmap might return false positives; we must filter
536 * these out using page_check_address().
538 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
542 if (vma
->vm_flags
& VM_LOCKED
) {
543 pte_unmap_unlock(pte
, ptl
);
544 *mapcount
= 0; /* break early from loop */
545 *vm_flags
|= VM_LOCKED
;
549 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
551 * Don't treat a reference through a sequentially read
552 * mapping as such. If the page has been used in
553 * another mapping, we will catch it; if this other
554 * mapping is already gone, the unmap path will have
555 * set PG_referenced or activated the page.
557 if (likely(!VM_SequentialReadHint(vma
)))
560 pte_unmap_unlock(pte
, ptl
);
563 /* Pretend the page is referenced if the task has the
564 swap token and is in the middle of a page fault. */
565 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
566 rwsem_is_locked(&mm
->mmap_sem
))
572 *vm_flags
|= vma
->vm_flags
;
577 static int page_referenced_anon(struct page
*page
,
578 struct mem_cgroup
*mem_cont
,
579 unsigned long *vm_flags
)
581 unsigned int mapcount
;
582 struct anon_vma
*anon_vma
;
583 struct anon_vma_chain
*avc
;
586 anon_vma
= page_lock_anon_vma(page
);
590 mapcount
= page_mapcount(page
);
591 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
592 struct vm_area_struct
*vma
= avc
->vma
;
593 unsigned long address
= vma_address(page
, vma
);
594 if (address
== -EFAULT
)
597 * If we are reclaiming on behalf of a cgroup, skip
598 * counting on behalf of references from different
601 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
603 referenced
+= page_referenced_one(page
, vma
, address
,
604 &mapcount
, vm_flags
);
609 page_unlock_anon_vma(anon_vma
);
614 * page_referenced_file - referenced check for object-based rmap
615 * @page: the page we're checking references on.
616 * @mem_cont: target memory controller
617 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
619 * For an object-based mapped page, find all the places it is mapped and
620 * check/clear the referenced flag. This is done by following the page->mapping
621 * pointer, then walking the chain of vmas it holds. It returns the number
622 * of references it found.
624 * This function is only called from page_referenced for object-based pages.
626 static int page_referenced_file(struct page
*page
,
627 struct mem_cgroup
*mem_cont
,
628 unsigned long *vm_flags
)
630 unsigned int mapcount
;
631 struct address_space
*mapping
= page
->mapping
;
632 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
633 struct vm_area_struct
*vma
;
634 struct prio_tree_iter iter
;
638 * The caller's checks on page->mapping and !PageAnon have made
639 * sure that this is a file page: the check for page->mapping
640 * excludes the case just before it gets set on an anon page.
642 BUG_ON(PageAnon(page
));
645 * The page lock not only makes sure that page->mapping cannot
646 * suddenly be NULLified by truncation, it makes sure that the
647 * structure at mapping cannot be freed and reused yet,
648 * so we can safely take mapping->i_mmap_lock.
650 BUG_ON(!PageLocked(page
));
652 spin_lock(&mapping
->i_mmap_lock
);
655 * i_mmap_lock does not stabilize mapcount at all, but mapcount
656 * is more likely to be accurate if we note it after spinning.
658 mapcount
= page_mapcount(page
);
660 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
661 unsigned long address
= vma_address(page
, vma
);
662 if (address
== -EFAULT
)
665 * If we are reclaiming on behalf of a cgroup, skip
666 * counting on behalf of references from different
669 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
671 referenced
+= page_referenced_one(page
, vma
, address
,
672 &mapcount
, vm_flags
);
677 spin_unlock(&mapping
->i_mmap_lock
);
682 * page_referenced - test if the page was referenced
683 * @page: the page to test
684 * @is_locked: caller holds lock on the page
685 * @mem_cont: target memory controller
686 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
688 * Quick test_and_clear_referenced for all mappings to a page,
689 * returns the number of ptes which referenced the page.
691 int page_referenced(struct page
*page
,
693 struct mem_cgroup
*mem_cont
,
694 unsigned long *vm_flags
)
700 if (page_mapped(page
) && page_rmapping(page
)) {
701 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
702 we_locked
= trylock_page(page
);
708 if (unlikely(PageKsm(page
)))
709 referenced
+= page_referenced_ksm(page
, mem_cont
,
711 else if (PageAnon(page
))
712 referenced
+= page_referenced_anon(page
, mem_cont
,
714 else if (page
->mapping
)
715 referenced
+= page_referenced_file(page
, mem_cont
,
721 if (page_test_and_clear_young(page
))
727 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
728 unsigned long address
)
730 struct mm_struct
*mm
= vma
->vm_mm
;
735 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
739 if (pte_dirty(*pte
) || pte_write(*pte
)) {
742 flush_cache_page(vma
, address
, pte_pfn(*pte
));
743 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
744 entry
= pte_wrprotect(entry
);
745 entry
= pte_mkclean(entry
);
746 set_pte_at(mm
, address
, pte
, entry
);
750 pte_unmap_unlock(pte
, ptl
);
755 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
757 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
758 struct vm_area_struct
*vma
;
759 struct prio_tree_iter iter
;
762 BUG_ON(PageAnon(page
));
764 spin_lock(&mapping
->i_mmap_lock
);
765 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
766 if (vma
->vm_flags
& VM_SHARED
) {
767 unsigned long address
= vma_address(page
, vma
);
768 if (address
== -EFAULT
)
770 ret
+= page_mkclean_one(page
, vma
, address
);
773 spin_unlock(&mapping
->i_mmap_lock
);
777 int page_mkclean(struct page
*page
)
781 BUG_ON(!PageLocked(page
));
783 if (page_mapped(page
)) {
784 struct address_space
*mapping
= page_mapping(page
);
786 ret
= page_mkclean_file(mapping
, page
);
787 if (page_test_dirty(page
)) {
788 page_clear_dirty(page
, 1);
796 EXPORT_SYMBOL_GPL(page_mkclean
);
799 * page_move_anon_rmap - move a page to our anon_vma
800 * @page: the page to move to our anon_vma
801 * @vma: the vma the page belongs to
802 * @address: the user virtual address mapped
804 * When a page belongs exclusively to one process after a COW event,
805 * that page can be moved into the anon_vma that belongs to just that
806 * process, so the rmap code will not search the parent or sibling
809 void page_move_anon_rmap(struct page
*page
,
810 struct vm_area_struct
*vma
, unsigned long address
)
812 struct anon_vma
*anon_vma
= vma
->anon_vma
;
814 VM_BUG_ON(!PageLocked(page
));
815 VM_BUG_ON(!anon_vma
);
816 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
818 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
819 page
->mapping
= (struct address_space
*) anon_vma
;
823 * __page_set_anon_rmap - set up new anonymous rmap
824 * @page: Page to add to rmap
825 * @vma: VM area to add page to.
826 * @address: User virtual address of the mapping
827 * @exclusive: the page is exclusively owned by the current process
829 static void __page_set_anon_rmap(struct page
*page
,
830 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
832 struct anon_vma
*anon_vma
= vma
->anon_vma
;
840 * If the page isn't exclusively mapped into this vma,
841 * we must use the _oldest_ possible anon_vma for the
845 anon_vma
= anon_vma
->root
;
847 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
848 page
->mapping
= (struct address_space
*) anon_vma
;
849 page
->index
= linear_page_index(vma
, address
);
853 * __page_check_anon_rmap - sanity check anonymous rmap addition
854 * @page: the page to add the mapping to
855 * @vma: the vm area in which the mapping is added
856 * @address: the user virtual address mapped
858 static void __page_check_anon_rmap(struct page
*page
,
859 struct vm_area_struct
*vma
, unsigned long address
)
861 #ifdef CONFIG_DEBUG_VM
863 * The page's anon-rmap details (mapping and index) are guaranteed to
864 * be set up correctly at this point.
866 * We have exclusion against page_add_anon_rmap because the caller
867 * always holds the page locked, except if called from page_dup_rmap,
868 * in which case the page is already known to be setup.
870 * We have exclusion against page_add_new_anon_rmap because those pages
871 * are initially only visible via the pagetables, and the pte is locked
872 * over the call to page_add_new_anon_rmap.
874 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
875 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
880 * page_add_anon_rmap - add pte mapping to an anonymous page
881 * @page: the page to add the mapping to
882 * @vma: the vm area in which the mapping is added
883 * @address: the user virtual address mapped
885 * The caller needs to hold the pte lock, and the page must be locked in
886 * the anon_vma case: to serialize mapping,index checking after setting,
887 * and to ensure that PageAnon is not being upgraded racily to PageKsm
888 * (but PageKsm is never downgraded to PageAnon).
890 void page_add_anon_rmap(struct page
*page
,
891 struct vm_area_struct
*vma
, unsigned long address
)
893 do_page_add_anon_rmap(page
, vma
, address
, 0);
897 * Special version of the above for do_swap_page, which often runs
898 * into pages that are exclusively owned by the current process.
899 * Everybody else should continue to use page_add_anon_rmap above.
901 void do_page_add_anon_rmap(struct page
*page
,
902 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
904 int first
= atomic_inc_and_test(&page
->_mapcount
);
906 if (!PageTransHuge(page
))
907 __inc_zone_page_state(page
, NR_ANON_PAGES
);
909 __inc_zone_page_state(page
,
910 NR_ANON_TRANSPARENT_HUGEPAGES
);
912 if (unlikely(PageKsm(page
)))
915 VM_BUG_ON(!PageLocked(page
));
916 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
918 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
920 __page_check_anon_rmap(page
, vma
, address
);
924 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
925 * @page: the page to add the mapping to
926 * @vma: the vm area in which the mapping is added
927 * @address: the user virtual address mapped
929 * Same as page_add_anon_rmap but must only be called on *new* pages.
930 * This means the inc-and-test can be bypassed.
931 * Page does not have to be locked.
933 void page_add_new_anon_rmap(struct page
*page
,
934 struct vm_area_struct
*vma
, unsigned long address
)
936 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
937 SetPageSwapBacked(page
);
938 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
939 if (!PageTransHuge(page
))
940 __inc_zone_page_state(page
, NR_ANON_PAGES
);
942 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
943 __page_set_anon_rmap(page
, vma
, address
, 1);
944 if (page_evictable(page
, vma
))
945 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
947 add_page_to_unevictable_list(page
);
951 * page_add_file_rmap - add pte mapping to a file page
952 * @page: the page to add the mapping to
954 * The caller needs to hold the pte lock.
956 void page_add_file_rmap(struct page
*page
)
958 if (atomic_inc_and_test(&page
->_mapcount
)) {
959 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
960 mem_cgroup_inc_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
965 * page_remove_rmap - take down pte mapping from a page
966 * @page: page to remove mapping from
968 * The caller needs to hold the pte lock.
970 void page_remove_rmap(struct page
*page
)
972 /* page still mapped by someone else? */
973 if (!atomic_add_negative(-1, &page
->_mapcount
))
977 * Now that the last pte has gone, s390 must transfer dirty
978 * flag from storage key to struct page. We can usually skip
979 * this if the page is anon, so about to be freed; but perhaps
980 * not if it's in swapcache - there might be another pte slot
981 * containing the swap entry, but page not yet written to swap.
983 if ((!PageAnon(page
) || PageSwapCache(page
)) && page_test_dirty(page
)) {
984 page_clear_dirty(page
, 1);
985 set_page_dirty(page
);
988 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
989 * and not charged by memcg for now.
991 if (unlikely(PageHuge(page
)))
993 if (PageAnon(page
)) {
994 mem_cgroup_uncharge_page(page
);
995 if (!PageTransHuge(page
))
996 __dec_zone_page_state(page
, NR_ANON_PAGES
);
998 __dec_zone_page_state(page
,
999 NR_ANON_TRANSPARENT_HUGEPAGES
);
1001 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1002 mem_cgroup_dec_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1005 * It would be tidy to reset the PageAnon mapping here,
1006 * but that might overwrite a racing page_add_anon_rmap
1007 * which increments mapcount after us but sets mapping
1008 * before us: so leave the reset to free_hot_cold_page,
1009 * and remember that it's only reliable while mapped.
1010 * Leaving it set also helps swapoff to reinstate ptes
1011 * faster for those pages still in swapcache.
1016 * Subfunctions of try_to_unmap: try_to_unmap_one called
1017 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1019 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1020 unsigned long address
, enum ttu_flags flags
)
1022 struct mm_struct
*mm
= vma
->vm_mm
;
1026 int ret
= SWAP_AGAIN
;
1028 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1033 * If the page is mlock()d, we cannot swap it out.
1034 * If it's recently referenced (perhaps page_referenced
1035 * skipped over this mm) then we should reactivate it.
1037 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1038 if (vma
->vm_flags
& VM_LOCKED
)
1041 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1044 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1045 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1051 /* Nuke the page table entry. */
1052 flush_cache_page(vma
, address
, page_to_pfn(page
));
1053 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1055 /* Move the dirty bit to the physical page now the pte is gone. */
1056 if (pte_dirty(pteval
))
1057 set_page_dirty(page
);
1059 /* Update high watermark before we lower rss */
1060 update_hiwater_rss(mm
);
1062 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1064 dec_mm_counter(mm
, MM_ANONPAGES
);
1066 dec_mm_counter(mm
, MM_FILEPAGES
);
1067 set_pte_at(mm
, address
, pte
,
1068 swp_entry_to_pte(make_hwpoison_entry(page
)));
1069 } else if (PageAnon(page
)) {
1070 swp_entry_t entry
= { .val
= page_private(page
) };
1072 if (PageSwapCache(page
)) {
1074 * Store the swap location in the pte.
1075 * See handle_pte_fault() ...
1077 if (swap_duplicate(entry
) < 0) {
1078 set_pte_at(mm
, address
, pte
, pteval
);
1082 if (list_empty(&mm
->mmlist
)) {
1083 spin_lock(&mmlist_lock
);
1084 if (list_empty(&mm
->mmlist
))
1085 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1086 spin_unlock(&mmlist_lock
);
1088 dec_mm_counter(mm
, MM_ANONPAGES
);
1089 inc_mm_counter(mm
, MM_SWAPENTS
);
1090 } else if (PAGE_MIGRATION
) {
1092 * Store the pfn of the page in a special migration
1093 * pte. do_swap_page() will wait until the migration
1094 * pte is removed and then restart fault handling.
1096 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1097 entry
= make_migration_entry(page
, pte_write(pteval
));
1099 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1100 BUG_ON(pte_file(*pte
));
1101 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1102 /* Establish migration entry for a file page */
1104 entry
= make_migration_entry(page
, pte_write(pteval
));
1105 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1107 dec_mm_counter(mm
, MM_FILEPAGES
);
1109 page_remove_rmap(page
);
1110 page_cache_release(page
);
1113 pte_unmap_unlock(pte
, ptl
);
1118 pte_unmap_unlock(pte
, ptl
);
1122 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1123 * unstable result and race. Plus, We can't wait here because
1124 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1125 * if trylock failed, the page remain in evictable lru and later
1126 * vmscan could retry to move the page to unevictable lru if the
1127 * page is actually mlocked.
1129 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1130 if (vma
->vm_flags
& VM_LOCKED
) {
1131 mlock_vma_page(page
);
1134 up_read(&vma
->vm_mm
->mmap_sem
);
1140 * objrmap doesn't work for nonlinear VMAs because the assumption that
1141 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1142 * Consequently, given a particular page and its ->index, we cannot locate the
1143 * ptes which are mapping that page without an exhaustive linear search.
1145 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1146 * maps the file to which the target page belongs. The ->vm_private_data field
1147 * holds the current cursor into that scan. Successive searches will circulate
1148 * around the vma's virtual address space.
1150 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1151 * more scanning pressure is placed against them as well. Eventually pages
1152 * will become fully unmapped and are eligible for eviction.
1154 * For very sparsely populated VMAs this is a little inefficient - chances are
1155 * there there won't be many ptes located within the scan cluster. In this case
1156 * maybe we could scan further - to the end of the pte page, perhaps.
1158 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1159 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1160 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1161 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1163 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1164 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1166 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1167 struct vm_area_struct
*vma
, struct page
*check_page
)
1169 struct mm_struct
*mm
= vma
->vm_mm
;
1177 unsigned long address
;
1179 int ret
= SWAP_AGAIN
;
1182 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1183 end
= address
+ CLUSTER_SIZE
;
1184 if (address
< vma
->vm_start
)
1185 address
= vma
->vm_start
;
1186 if (end
> vma
->vm_end
)
1189 pgd
= pgd_offset(mm
, address
);
1190 if (!pgd_present(*pgd
))
1193 pud
= pud_offset(pgd
, address
);
1194 if (!pud_present(*pud
))
1197 pmd
= pmd_offset(pud
, address
);
1198 if (!pmd_present(*pmd
))
1202 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1203 * keep the sem while scanning the cluster for mlocking pages.
1205 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1206 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1208 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1211 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1213 /* Update high watermark before we lower rss */
1214 update_hiwater_rss(mm
);
1216 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1217 if (!pte_present(*pte
))
1219 page
= vm_normal_page(vma
, address
, *pte
);
1220 BUG_ON(!page
|| PageAnon(page
));
1223 mlock_vma_page(page
); /* no-op if already mlocked */
1224 if (page
== check_page
)
1226 continue; /* don't unmap */
1229 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1232 /* Nuke the page table entry. */
1233 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1234 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1236 /* If nonlinear, store the file page offset in the pte. */
1237 if (page
->index
!= linear_page_index(vma
, address
))
1238 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1240 /* Move the dirty bit to the physical page now the pte is gone. */
1241 if (pte_dirty(pteval
))
1242 set_page_dirty(page
);
1244 page_remove_rmap(page
);
1245 page_cache_release(page
);
1246 dec_mm_counter(mm
, MM_FILEPAGES
);
1249 pte_unmap_unlock(pte
- 1, ptl
);
1251 up_read(&vma
->vm_mm
->mmap_sem
);
1255 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1257 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1262 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1263 VM_STACK_INCOMPLETE_SETUP
)
1270 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1272 * @page: the page to unmap/unlock
1273 * @flags: action and flags
1275 * Find all the mappings of a page using the mapping pointer and the vma chains
1276 * contained in the anon_vma struct it points to.
1278 * This function is only called from try_to_unmap/try_to_munlock for
1280 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1281 * where the page was found will be held for write. So, we won't recheck
1282 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1285 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1287 struct anon_vma
*anon_vma
;
1288 struct anon_vma_chain
*avc
;
1289 int ret
= SWAP_AGAIN
;
1291 anon_vma
= page_lock_anon_vma(page
);
1295 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1296 struct vm_area_struct
*vma
= avc
->vma
;
1297 unsigned long address
;
1300 * During exec, a temporary VMA is setup and later moved.
1301 * The VMA is moved under the anon_vma lock but not the
1302 * page tables leading to a race where migration cannot
1303 * find the migration ptes. Rather than increasing the
1304 * locking requirements of exec(), migration skips
1305 * temporary VMAs until after exec() completes.
1307 if (PAGE_MIGRATION
&& (flags
& TTU_MIGRATION
) &&
1308 is_vma_temporary_stack(vma
))
1311 address
= vma_address(page
, vma
);
1312 if (address
== -EFAULT
)
1314 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1315 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1319 page_unlock_anon_vma(anon_vma
);
1324 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1325 * @page: the page to unmap/unlock
1326 * @flags: action and flags
1328 * Find all the mappings of a page using the mapping pointer and the vma chains
1329 * contained in the address_space struct it points to.
1331 * This function is only called from try_to_unmap/try_to_munlock for
1332 * object-based pages.
1333 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1334 * where the page was found will be held for write. So, we won't recheck
1335 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1338 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1340 struct address_space
*mapping
= page
->mapping
;
1341 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1342 struct vm_area_struct
*vma
;
1343 struct prio_tree_iter iter
;
1344 int ret
= SWAP_AGAIN
;
1345 unsigned long cursor
;
1346 unsigned long max_nl_cursor
= 0;
1347 unsigned long max_nl_size
= 0;
1348 unsigned int mapcount
;
1350 spin_lock(&mapping
->i_mmap_lock
);
1351 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1352 unsigned long address
= vma_address(page
, vma
);
1353 if (address
== -EFAULT
)
1355 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1356 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1360 if (list_empty(&mapping
->i_mmap_nonlinear
))
1364 * We don't bother to try to find the munlocked page in nonlinears.
1365 * It's costly. Instead, later, page reclaim logic may call
1366 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1368 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1371 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1372 shared
.vm_set
.list
) {
1373 cursor
= (unsigned long) vma
->vm_private_data
;
1374 if (cursor
> max_nl_cursor
)
1375 max_nl_cursor
= cursor
;
1376 cursor
= vma
->vm_end
- vma
->vm_start
;
1377 if (cursor
> max_nl_size
)
1378 max_nl_size
= cursor
;
1381 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1387 * We don't try to search for this page in the nonlinear vmas,
1388 * and page_referenced wouldn't have found it anyway. Instead
1389 * just walk the nonlinear vmas trying to age and unmap some.
1390 * The mapcount of the page we came in with is irrelevant,
1391 * but even so use it as a guide to how hard we should try?
1393 mapcount
= page_mapcount(page
);
1396 cond_resched_lock(&mapping
->i_mmap_lock
);
1398 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1399 if (max_nl_cursor
== 0)
1400 max_nl_cursor
= CLUSTER_SIZE
;
1403 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1404 shared
.vm_set
.list
) {
1405 cursor
= (unsigned long) vma
->vm_private_data
;
1406 while ( cursor
< max_nl_cursor
&&
1407 cursor
< vma
->vm_end
- vma
->vm_start
) {
1408 if (try_to_unmap_cluster(cursor
, &mapcount
,
1409 vma
, page
) == SWAP_MLOCK
)
1411 cursor
+= CLUSTER_SIZE
;
1412 vma
->vm_private_data
= (void *) cursor
;
1413 if ((int)mapcount
<= 0)
1416 vma
->vm_private_data
= (void *) max_nl_cursor
;
1418 cond_resched_lock(&mapping
->i_mmap_lock
);
1419 max_nl_cursor
+= CLUSTER_SIZE
;
1420 } while (max_nl_cursor
<= max_nl_size
);
1423 * Don't loop forever (perhaps all the remaining pages are
1424 * in locked vmas). Reset cursor on all unreserved nonlinear
1425 * vmas, now forgetting on which ones it had fallen behind.
1427 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1428 vma
->vm_private_data
= NULL
;
1430 spin_unlock(&mapping
->i_mmap_lock
);
1435 * try_to_unmap - try to remove all page table mappings to a page
1436 * @page: the page to get unmapped
1437 * @flags: action and flags
1439 * Tries to remove all the page table entries which are mapping this
1440 * page, used in the pageout path. Caller must hold the page lock.
1441 * Return values are:
1443 * SWAP_SUCCESS - we succeeded in removing all mappings
1444 * SWAP_AGAIN - we missed a mapping, try again later
1445 * SWAP_FAIL - the page is unswappable
1446 * SWAP_MLOCK - page is mlocked.
1448 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1452 BUG_ON(!PageLocked(page
));
1453 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1455 if (unlikely(PageKsm(page
)))
1456 ret
= try_to_unmap_ksm(page
, flags
);
1457 else if (PageAnon(page
))
1458 ret
= try_to_unmap_anon(page
, flags
);
1460 ret
= try_to_unmap_file(page
, flags
);
1461 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1467 * try_to_munlock - try to munlock a page
1468 * @page: the page to be munlocked
1470 * Called from munlock code. Checks all of the VMAs mapping the page
1471 * to make sure nobody else has this page mlocked. The page will be
1472 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1474 * Return values are:
1476 * SWAP_AGAIN - no vma is holding page mlocked, or,
1477 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1478 * SWAP_FAIL - page cannot be located at present
1479 * SWAP_MLOCK - page is now mlocked.
1481 int try_to_munlock(struct page
*page
)
1483 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1485 if (unlikely(PageKsm(page
)))
1486 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1487 else if (PageAnon(page
))
1488 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1490 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1493 void __put_anon_vma(struct anon_vma
*anon_vma
)
1495 struct anon_vma
*root
= anon_vma
->root
;
1497 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1498 anon_vma_free(root
);
1500 anon_vma_free(anon_vma
);
1503 #ifdef CONFIG_MIGRATION
1505 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1506 * Called by migrate.c to remove migration ptes, but might be used more later.
1508 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1509 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1511 struct anon_vma
*anon_vma
;
1512 struct anon_vma_chain
*avc
;
1513 int ret
= SWAP_AGAIN
;
1516 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1517 * because that depends on page_mapped(); but not all its usages
1518 * are holding mmap_sem. Users without mmap_sem are required to
1519 * take a reference count to prevent the anon_vma disappearing
1521 anon_vma
= page_anon_vma(page
);
1524 anon_vma_lock(anon_vma
);
1525 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1526 struct vm_area_struct
*vma
= avc
->vma
;
1527 unsigned long address
= vma_address(page
, vma
);
1528 if (address
== -EFAULT
)
1530 ret
= rmap_one(page
, vma
, address
, arg
);
1531 if (ret
!= SWAP_AGAIN
)
1534 anon_vma_unlock(anon_vma
);
1538 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1539 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1541 struct address_space
*mapping
= page
->mapping
;
1542 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1543 struct vm_area_struct
*vma
;
1544 struct prio_tree_iter iter
;
1545 int ret
= SWAP_AGAIN
;
1549 spin_lock(&mapping
->i_mmap_lock
);
1550 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1551 unsigned long address
= vma_address(page
, vma
);
1552 if (address
== -EFAULT
)
1554 ret
= rmap_one(page
, vma
, address
, arg
);
1555 if (ret
!= SWAP_AGAIN
)
1559 * No nonlinear handling: being always shared, nonlinear vmas
1560 * never contain migration ptes. Decide what to do about this
1561 * limitation to linear when we need rmap_walk() on nonlinear.
1563 spin_unlock(&mapping
->i_mmap_lock
);
1567 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1568 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1570 VM_BUG_ON(!PageLocked(page
));
1572 if (unlikely(PageKsm(page
)))
1573 return rmap_walk_ksm(page
, rmap_one
, arg
);
1574 else if (PageAnon(page
))
1575 return rmap_walk_anon(page
, rmap_one
, arg
);
1577 return rmap_walk_file(page
, rmap_one
, arg
);
1579 #endif /* CONFIG_MIGRATION */
1581 #ifdef CONFIG_HUGETLB_PAGE
1583 * The following three functions are for anonymous (private mapped) hugepages.
1584 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1585 * and no lru code, because we handle hugepages differently from common pages.
1587 static void __hugepage_set_anon_rmap(struct page
*page
,
1588 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1590 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1597 anon_vma
= anon_vma
->root
;
1599 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1600 page
->mapping
= (struct address_space
*) anon_vma
;
1601 page
->index
= linear_page_index(vma
, address
);
1604 void hugepage_add_anon_rmap(struct page
*page
,
1605 struct vm_area_struct
*vma
, unsigned long address
)
1607 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1610 BUG_ON(!PageLocked(page
));
1612 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1613 first
= atomic_inc_and_test(&page
->_mapcount
);
1615 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1618 void hugepage_add_new_anon_rmap(struct page
*page
,
1619 struct vm_area_struct
*vma
, unsigned long address
)
1621 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1622 atomic_set(&page
->_mapcount
, 0);
1623 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1625 #endif /* CONFIG_HUGETLB_PAGE */