Merge branch 'cpuinit_phase2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg...
[linux-2.6.git] / fs / ext4 / indirect.c
blob87b30cd357e7f1962b55bf9d452f839376187302
1 /*
2 * linux/fs/ext4/indirect.c
4 * from
6 * linux/fs/ext4/inode.c
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
13 * from
15 * linux/fs/minix/inode.c
17 * Copyright (C) 1991, 1992 Linus Torvalds
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */
28 #include <trace/events/ext4.h>
30 typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34 } Indirect;
36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 p->key = *(p->p = v);
39 p->bh = bh;
42 /**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
73 static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
143 static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
150 int ret = -EIO;
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
161 goto failure;
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
181 return NULL;
183 failure:
184 *err = ret;
185 no_block:
186 return p;
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
207 * Caller must make sure that @ind is valid and will stay that way.
209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
229 return ext4_inode_to_goal_block(inode);
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
246 ext4_fsblk_t goal;
249 * XXX need to get goal block from mballoc's data structures
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
272 unsigned int count = 0;
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
292 return count;
296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
322 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
323 ext4_lblk_t iblock, int indirect_blks,
324 int *blks, ext4_fsblk_t goal,
325 ext4_lblk_t *offsets, Indirect *branch)
327 struct ext4_allocation_request ar;
328 struct buffer_head * bh;
329 ext4_fsblk_t b, new_blocks[4];
330 __le32 *p;
331 int i, j, err, len = 1;
334 * Set up for the direct block allocation
336 memset(&ar, 0, sizeof(ar));
337 ar.inode = inode;
338 ar.len = *blks;
339 ar.logical = iblock;
340 if (S_ISREG(inode->i_mode))
341 ar.flags = EXT4_MB_HINT_DATA;
343 for (i = 0; i <= indirect_blks; i++) {
344 if (i == indirect_blks) {
345 ar.goal = goal;
346 new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
347 } else
348 goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
349 goal, 0, NULL, &err);
350 if (err) {
351 i--;
352 goto failed;
354 branch[i].key = cpu_to_le32(new_blocks[i]);
355 if (i == 0)
356 continue;
358 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
359 if (unlikely(!bh)) {
360 err = -ENOMEM;
361 goto failed;
363 lock_buffer(bh);
364 BUFFER_TRACE(bh, "call get_create_access");
365 err = ext4_journal_get_create_access(handle, bh);
366 if (err) {
367 unlock_buffer(bh);
368 goto failed;
371 memset(bh->b_data, 0, bh->b_size);
372 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373 b = new_blocks[i];
375 if (i == indirect_blks)
376 len = ar.len;
377 for (j = 0; j < len; j++)
378 *p++ = cpu_to_le32(b++);
380 BUFFER_TRACE(bh, "marking uptodate");
381 set_buffer_uptodate(bh);
382 unlock_buffer(bh);
384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385 err = ext4_handle_dirty_metadata(handle, inode, bh);
386 if (err)
387 goto failed;
389 *blks = ar.len;
390 return 0;
391 failed:
392 for (; i >= 0; i--) {
393 if (i != indirect_blks && branch[i].bh)
394 ext4_forget(handle, 1, inode, branch[i].bh,
395 branch[i].bh->b_blocknr);
396 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
397 (i == indirect_blks) ? ar.len : 1, 0);
399 return err;
403 * ext4_splice_branch - splice the allocated branch onto inode.
404 * @handle: handle for this transaction
405 * @inode: owner
406 * @block: (logical) number of block we are adding
407 * @chain: chain of indirect blocks (with a missing link - see
408 * ext4_alloc_branch)
409 * @where: location of missing link
410 * @num: number of indirect blocks we are adding
411 * @blks: number of direct blocks we are adding
413 * This function fills the missing link and does all housekeeping needed in
414 * inode (->i_blocks, etc.). In case of success we end up with the full
415 * chain to new block and return 0.
417 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
418 ext4_lblk_t block, Indirect *where, int num,
419 int blks)
421 int i;
422 int err = 0;
423 ext4_fsblk_t current_block;
426 * If we're splicing into a [td]indirect block (as opposed to the
427 * inode) then we need to get write access to the [td]indirect block
428 * before the splice.
430 if (where->bh) {
431 BUFFER_TRACE(where->bh, "get_write_access");
432 err = ext4_journal_get_write_access(handle, where->bh);
433 if (err)
434 goto err_out;
436 /* That's it */
438 *where->p = where->key;
441 * Update the host buffer_head or inode to point to more just allocated
442 * direct blocks blocks
444 if (num == 0 && blks > 1) {
445 current_block = le32_to_cpu(where->key) + 1;
446 for (i = 1; i < blks; i++)
447 *(where->p + i) = cpu_to_le32(current_block++);
450 /* We are done with atomic stuff, now do the rest of housekeeping */
451 /* had we spliced it onto indirect block? */
452 if (where->bh) {
454 * If we spliced it onto an indirect block, we haven't
455 * altered the inode. Note however that if it is being spliced
456 * onto an indirect block at the very end of the file (the
457 * file is growing) then we *will* alter the inode to reflect
458 * the new i_size. But that is not done here - it is done in
459 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
461 jbd_debug(5, "splicing indirect only\n");
462 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
463 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
464 if (err)
465 goto err_out;
466 } else {
468 * OK, we spliced it into the inode itself on a direct block.
470 ext4_mark_inode_dirty(handle, inode);
471 jbd_debug(5, "splicing direct\n");
473 return err;
475 err_out:
476 for (i = 1; i <= num; i++) {
478 * branch[i].bh is newly allocated, so there is no
479 * need to revoke the block, which is why we don't
480 * need to set EXT4_FREE_BLOCKS_METADATA.
482 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
483 EXT4_FREE_BLOCKS_FORGET);
485 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
486 blks, 0);
488 return err;
492 * The ext4_ind_map_blocks() function handles non-extents inodes
493 * (i.e., using the traditional indirect/double-indirect i_blocks
494 * scheme) for ext4_map_blocks().
496 * Allocation strategy is simple: if we have to allocate something, we will
497 * have to go the whole way to leaf. So let's do it before attaching anything
498 * to tree, set linkage between the newborn blocks, write them if sync is
499 * required, recheck the path, free and repeat if check fails, otherwise
500 * set the last missing link (that will protect us from any truncate-generated
501 * removals - all blocks on the path are immune now) and possibly force the
502 * write on the parent block.
503 * That has a nice additional property: no special recovery from the failed
504 * allocations is needed - we simply release blocks and do not touch anything
505 * reachable from inode.
507 * `handle' can be NULL if create == 0.
509 * return > 0, # of blocks mapped or allocated.
510 * return = 0, if plain lookup failed.
511 * return < 0, error case.
513 * The ext4_ind_get_blocks() function should be called with
514 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
515 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
516 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
517 * blocks.
519 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
520 struct ext4_map_blocks *map,
521 int flags)
523 int err = -EIO;
524 ext4_lblk_t offsets[4];
525 Indirect chain[4];
526 Indirect *partial;
527 ext4_fsblk_t goal;
528 int indirect_blks;
529 int blocks_to_boundary = 0;
530 int depth;
531 int count = 0;
532 ext4_fsblk_t first_block = 0;
534 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
535 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
536 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
537 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
538 &blocks_to_boundary);
540 if (depth == 0)
541 goto out;
543 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
545 /* Simplest case - block found, no allocation needed */
546 if (!partial) {
547 first_block = le32_to_cpu(chain[depth - 1].key);
548 count++;
549 /*map more blocks*/
550 while (count < map->m_len && count <= blocks_to_boundary) {
551 ext4_fsblk_t blk;
553 blk = le32_to_cpu(*(chain[depth-1].p + count));
555 if (blk == first_block + count)
556 count++;
557 else
558 break;
560 goto got_it;
563 /* Next simple case - plain lookup or failed read of indirect block */
564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
565 goto cleanup;
568 * Okay, we need to do block allocation.
570 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
571 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
572 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
573 "non-extent mapped inodes with bigalloc");
574 return -ENOSPC;
577 goal = ext4_find_goal(inode, map->m_lblk, partial);
579 /* the number of blocks need to allocate for [d,t]indirect blocks */
580 indirect_blks = (chain + depth) - partial - 1;
583 * Next look up the indirect map to count the totoal number of
584 * direct blocks to allocate for this branch.
586 count = ext4_blks_to_allocate(partial, indirect_blks,
587 map->m_len, blocks_to_boundary);
589 * Block out ext4_truncate while we alter the tree
591 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
592 &count, goal,
593 offsets + (partial - chain), partial);
596 * The ext4_splice_branch call will free and forget any buffers
597 * on the new chain if there is a failure, but that risks using
598 * up transaction credits, especially for bitmaps where the
599 * credits cannot be returned. Can we handle this somehow? We
600 * may need to return -EAGAIN upwards in the worst case. --sct
602 if (!err)
603 err = ext4_splice_branch(handle, inode, map->m_lblk,
604 partial, indirect_blks, count);
605 if (err)
606 goto cleanup;
608 map->m_flags |= EXT4_MAP_NEW;
610 ext4_update_inode_fsync_trans(handle, inode, 1);
611 got_it:
612 map->m_flags |= EXT4_MAP_MAPPED;
613 map->m_pblk = le32_to_cpu(chain[depth-1].key);
614 map->m_len = count;
615 if (count > blocks_to_boundary)
616 map->m_flags |= EXT4_MAP_BOUNDARY;
617 err = count;
618 /* Clean up and exit */
619 partial = chain + depth - 1; /* the whole chain */
620 cleanup:
621 while (partial > chain) {
622 BUFFER_TRACE(partial->bh, "call brelse");
623 brelse(partial->bh);
624 partial--;
626 out:
627 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
628 return err;
632 * O_DIRECT for ext3 (or indirect map) based files
634 * If the O_DIRECT write will extend the file then add this inode to the
635 * orphan list. So recovery will truncate it back to the original size
636 * if the machine crashes during the write.
638 * If the O_DIRECT write is intantiating holes inside i_size and the machine
639 * crashes then stale disk data _may_ be exposed inside the file. But current
640 * VFS code falls back into buffered path in that case so we are safe.
642 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
643 const struct iovec *iov, loff_t offset,
644 unsigned long nr_segs)
646 struct file *file = iocb->ki_filp;
647 struct inode *inode = file->f_mapping->host;
648 struct ext4_inode_info *ei = EXT4_I(inode);
649 handle_t *handle;
650 ssize_t ret;
651 int orphan = 0;
652 size_t count = iov_length(iov, nr_segs);
653 int retries = 0;
655 if (rw == WRITE) {
656 loff_t final_size = offset + count;
658 if (final_size > inode->i_size) {
659 /* Credits for sb + inode write */
660 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
661 if (IS_ERR(handle)) {
662 ret = PTR_ERR(handle);
663 goto out;
665 ret = ext4_orphan_add(handle, inode);
666 if (ret) {
667 ext4_journal_stop(handle);
668 goto out;
670 orphan = 1;
671 ei->i_disksize = inode->i_size;
672 ext4_journal_stop(handle);
676 retry:
677 if (rw == READ && ext4_should_dioread_nolock(inode)) {
679 * Nolock dioread optimization may be dynamically disabled
680 * via ext4_inode_block_unlocked_dio(). Check inode's state
681 * while holding extra i_dio_count ref.
683 atomic_inc(&inode->i_dio_count);
684 smp_mb();
685 if (unlikely(ext4_test_inode_state(inode,
686 EXT4_STATE_DIOREAD_LOCK))) {
687 inode_dio_done(inode);
688 goto locked;
690 ret = __blockdev_direct_IO(rw, iocb, inode,
691 inode->i_sb->s_bdev, iov,
692 offset, nr_segs,
693 ext4_get_block, NULL, NULL, 0);
694 inode_dio_done(inode);
695 } else {
696 locked:
697 ret = blockdev_direct_IO(rw, iocb, inode, iov,
698 offset, nr_segs, ext4_get_block);
700 if (unlikely((rw & WRITE) && ret < 0)) {
701 loff_t isize = i_size_read(inode);
702 loff_t end = offset + iov_length(iov, nr_segs);
704 if (end > isize)
705 ext4_truncate_failed_write(inode);
708 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
709 goto retry;
711 if (orphan) {
712 int err;
714 /* Credits for sb + inode write */
715 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
716 if (IS_ERR(handle)) {
717 /* This is really bad luck. We've written the data
718 * but cannot extend i_size. Bail out and pretend
719 * the write failed... */
720 ret = PTR_ERR(handle);
721 if (inode->i_nlink)
722 ext4_orphan_del(NULL, inode);
724 goto out;
726 if (inode->i_nlink)
727 ext4_orphan_del(handle, inode);
728 if (ret > 0) {
729 loff_t end = offset + ret;
730 if (end > inode->i_size) {
731 ei->i_disksize = end;
732 i_size_write(inode, end);
734 * We're going to return a positive `ret'
735 * here due to non-zero-length I/O, so there's
736 * no way of reporting error returns from
737 * ext4_mark_inode_dirty() to userspace. So
738 * ignore it.
740 ext4_mark_inode_dirty(handle, inode);
743 err = ext4_journal_stop(handle);
744 if (ret == 0)
745 ret = err;
747 out:
748 return ret;
752 * Calculate the number of metadata blocks need to reserve
753 * to allocate a new block at @lblocks for non extent file based file
755 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
757 struct ext4_inode_info *ei = EXT4_I(inode);
758 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
759 int blk_bits;
761 if (lblock < EXT4_NDIR_BLOCKS)
762 return 0;
764 lblock -= EXT4_NDIR_BLOCKS;
766 if (ei->i_da_metadata_calc_len &&
767 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
768 ei->i_da_metadata_calc_len++;
769 return 0;
771 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
772 ei->i_da_metadata_calc_len = 1;
773 blk_bits = order_base_2(lblock);
774 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
778 * Calculate number of indirect blocks touched by mapping @nrblocks logically
779 * contiguous blocks
781 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
784 * With N contiguous data blocks, we need at most
785 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
786 * 2 dindirect blocks, and 1 tindirect block
788 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
792 * Truncate transactions can be complex and absolutely huge. So we need to
793 * be able to restart the transaction at a conventient checkpoint to make
794 * sure we don't overflow the journal.
796 * Try to extend this transaction for the purposes of truncation. If
797 * extend fails, we need to propagate the failure up and restart the
798 * transaction in the top-level truncate loop. --sct
800 * Returns 0 if we managed to create more room. If we can't create more
801 * room, and the transaction must be restarted we return 1.
803 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
805 if (!ext4_handle_valid(handle))
806 return 0;
807 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
808 return 0;
809 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
810 return 0;
811 return 1;
815 * Probably it should be a library function... search for first non-zero word
816 * or memcmp with zero_page, whatever is better for particular architecture.
817 * Linus?
819 static inline int all_zeroes(__le32 *p, __le32 *q)
821 while (p < q)
822 if (*p++)
823 return 0;
824 return 1;
828 * ext4_find_shared - find the indirect blocks for partial truncation.
829 * @inode: inode in question
830 * @depth: depth of the affected branch
831 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
832 * @chain: place to store the pointers to partial indirect blocks
833 * @top: place to the (detached) top of branch
835 * This is a helper function used by ext4_truncate().
837 * When we do truncate() we may have to clean the ends of several
838 * indirect blocks but leave the blocks themselves alive. Block is
839 * partially truncated if some data below the new i_size is referred
840 * from it (and it is on the path to the first completely truncated
841 * data block, indeed). We have to free the top of that path along
842 * with everything to the right of the path. Since no allocation
843 * past the truncation point is possible until ext4_truncate()
844 * finishes, we may safely do the latter, but top of branch may
845 * require special attention - pageout below the truncation point
846 * might try to populate it.
848 * We atomically detach the top of branch from the tree, store the
849 * block number of its root in *@top, pointers to buffer_heads of
850 * partially truncated blocks - in @chain[].bh and pointers to
851 * their last elements that should not be removed - in
852 * @chain[].p. Return value is the pointer to last filled element
853 * of @chain.
855 * The work left to caller to do the actual freeing of subtrees:
856 * a) free the subtree starting from *@top
857 * b) free the subtrees whose roots are stored in
858 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
859 * c) free the subtrees growing from the inode past the @chain[0].
860 * (no partially truncated stuff there). */
862 static Indirect *ext4_find_shared(struct inode *inode, int depth,
863 ext4_lblk_t offsets[4], Indirect chain[4],
864 __le32 *top)
866 Indirect *partial, *p;
867 int k, err;
869 *top = 0;
870 /* Make k index the deepest non-null offset + 1 */
871 for (k = depth; k > 1 && !offsets[k-1]; k--)
873 partial = ext4_get_branch(inode, k, offsets, chain, &err);
874 /* Writer: pointers */
875 if (!partial)
876 partial = chain + k-1;
878 * If the branch acquired continuation since we've looked at it -
879 * fine, it should all survive and (new) top doesn't belong to us.
881 if (!partial->key && *partial->p)
882 /* Writer: end */
883 goto no_top;
884 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
887 * OK, we've found the last block that must survive. The rest of our
888 * branch should be detached before unlocking. However, if that rest
889 * of branch is all ours and does not grow immediately from the inode
890 * it's easier to cheat and just decrement partial->p.
892 if (p == chain + k - 1 && p > chain) {
893 p->p--;
894 } else {
895 *top = *p->p;
896 /* Nope, don't do this in ext4. Must leave the tree intact */
897 #if 0
898 *p->p = 0;
899 #endif
901 /* Writer: end */
903 while (partial > p) {
904 brelse(partial->bh);
905 partial--;
907 no_top:
908 return partial;
912 * Zero a number of block pointers in either an inode or an indirect block.
913 * If we restart the transaction we must again get write access to the
914 * indirect block for further modification.
916 * We release `count' blocks on disk, but (last - first) may be greater
917 * than `count' because there can be holes in there.
919 * Return 0 on success, 1 on invalid block range
920 * and < 0 on fatal error.
922 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
923 struct buffer_head *bh,
924 ext4_fsblk_t block_to_free,
925 unsigned long count, __le32 *first,
926 __le32 *last)
928 __le32 *p;
929 int flags = EXT4_FREE_BLOCKS_VALIDATED;
930 int err;
932 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
933 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
934 else if (ext4_should_journal_data(inode))
935 flags |= EXT4_FREE_BLOCKS_FORGET;
937 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
938 count)) {
939 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
940 "blocks %llu len %lu",
941 (unsigned long long) block_to_free, count);
942 return 1;
945 if (try_to_extend_transaction(handle, inode)) {
946 if (bh) {
947 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
948 err = ext4_handle_dirty_metadata(handle, inode, bh);
949 if (unlikely(err))
950 goto out_err;
952 err = ext4_mark_inode_dirty(handle, inode);
953 if (unlikely(err))
954 goto out_err;
955 err = ext4_truncate_restart_trans(handle, inode,
956 ext4_blocks_for_truncate(inode));
957 if (unlikely(err))
958 goto out_err;
959 if (bh) {
960 BUFFER_TRACE(bh, "retaking write access");
961 err = ext4_journal_get_write_access(handle, bh);
962 if (unlikely(err))
963 goto out_err;
967 for (p = first; p < last; p++)
968 *p = 0;
970 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
971 return 0;
972 out_err:
973 ext4_std_error(inode->i_sb, err);
974 return err;
978 * ext4_free_data - free a list of data blocks
979 * @handle: handle for this transaction
980 * @inode: inode we are dealing with
981 * @this_bh: indirect buffer_head which contains *@first and *@last
982 * @first: array of block numbers
983 * @last: points immediately past the end of array
985 * We are freeing all blocks referred from that array (numbers are stored as
986 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
988 * We accumulate contiguous runs of blocks to free. Conveniently, if these
989 * blocks are contiguous then releasing them at one time will only affect one
990 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
991 * actually use a lot of journal space.
993 * @this_bh will be %NULL if @first and @last point into the inode's direct
994 * block pointers.
996 static void ext4_free_data(handle_t *handle, struct inode *inode,
997 struct buffer_head *this_bh,
998 __le32 *first, __le32 *last)
1000 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1001 unsigned long count = 0; /* Number of blocks in the run */
1002 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1003 corresponding to
1004 block_to_free */
1005 ext4_fsblk_t nr; /* Current block # */
1006 __le32 *p; /* Pointer into inode/ind
1007 for current block */
1008 int err = 0;
1010 if (this_bh) { /* For indirect block */
1011 BUFFER_TRACE(this_bh, "get_write_access");
1012 err = ext4_journal_get_write_access(handle, this_bh);
1013 /* Important: if we can't update the indirect pointers
1014 * to the blocks, we can't free them. */
1015 if (err)
1016 return;
1019 for (p = first; p < last; p++) {
1020 nr = le32_to_cpu(*p);
1021 if (nr) {
1022 /* accumulate blocks to free if they're contiguous */
1023 if (count == 0) {
1024 block_to_free = nr;
1025 block_to_free_p = p;
1026 count = 1;
1027 } else if (nr == block_to_free + count) {
1028 count++;
1029 } else {
1030 err = ext4_clear_blocks(handle, inode, this_bh,
1031 block_to_free, count,
1032 block_to_free_p, p);
1033 if (err)
1034 break;
1035 block_to_free = nr;
1036 block_to_free_p = p;
1037 count = 1;
1042 if (!err && count > 0)
1043 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1044 count, block_to_free_p, p);
1045 if (err < 0)
1046 /* fatal error */
1047 return;
1049 if (this_bh) {
1050 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1053 * The buffer head should have an attached journal head at this
1054 * point. However, if the data is corrupted and an indirect
1055 * block pointed to itself, it would have been detached when
1056 * the block was cleared. Check for this instead of OOPSing.
1058 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1059 ext4_handle_dirty_metadata(handle, inode, this_bh);
1060 else
1061 EXT4_ERROR_INODE(inode,
1062 "circular indirect block detected at "
1063 "block %llu",
1064 (unsigned long long) this_bh->b_blocknr);
1069 * ext4_free_branches - free an array of branches
1070 * @handle: JBD handle for this transaction
1071 * @inode: inode we are dealing with
1072 * @parent_bh: the buffer_head which contains *@first and *@last
1073 * @first: array of block numbers
1074 * @last: pointer immediately past the end of array
1075 * @depth: depth of the branches to free
1077 * We are freeing all blocks referred from these branches (numbers are
1078 * stored as little-endian 32-bit) and updating @inode->i_blocks
1079 * appropriately.
1081 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1082 struct buffer_head *parent_bh,
1083 __le32 *first, __le32 *last, int depth)
1085 ext4_fsblk_t nr;
1086 __le32 *p;
1088 if (ext4_handle_is_aborted(handle))
1089 return;
1091 if (depth--) {
1092 struct buffer_head *bh;
1093 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1094 p = last;
1095 while (--p >= first) {
1096 nr = le32_to_cpu(*p);
1097 if (!nr)
1098 continue; /* A hole */
1100 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1101 nr, 1)) {
1102 EXT4_ERROR_INODE(inode,
1103 "invalid indirect mapped "
1104 "block %lu (level %d)",
1105 (unsigned long) nr, depth);
1106 break;
1109 /* Go read the buffer for the next level down */
1110 bh = sb_bread(inode->i_sb, nr);
1113 * A read failure? Report error and clear slot
1114 * (should be rare).
1116 if (!bh) {
1117 EXT4_ERROR_INODE_BLOCK(inode, nr,
1118 "Read failure");
1119 continue;
1122 /* This zaps the entire block. Bottom up. */
1123 BUFFER_TRACE(bh, "free child branches");
1124 ext4_free_branches(handle, inode, bh,
1125 (__le32 *) bh->b_data,
1126 (__le32 *) bh->b_data + addr_per_block,
1127 depth);
1128 brelse(bh);
1131 * Everything below this this pointer has been
1132 * released. Now let this top-of-subtree go.
1134 * We want the freeing of this indirect block to be
1135 * atomic in the journal with the updating of the
1136 * bitmap block which owns it. So make some room in
1137 * the journal.
1139 * We zero the parent pointer *after* freeing its
1140 * pointee in the bitmaps, so if extend_transaction()
1141 * for some reason fails to put the bitmap changes and
1142 * the release into the same transaction, recovery
1143 * will merely complain about releasing a free block,
1144 * rather than leaking blocks.
1146 if (ext4_handle_is_aborted(handle))
1147 return;
1148 if (try_to_extend_transaction(handle, inode)) {
1149 ext4_mark_inode_dirty(handle, inode);
1150 ext4_truncate_restart_trans(handle, inode,
1151 ext4_blocks_for_truncate(inode));
1155 * The forget flag here is critical because if
1156 * we are journaling (and not doing data
1157 * journaling), we have to make sure a revoke
1158 * record is written to prevent the journal
1159 * replay from overwriting the (former)
1160 * indirect block if it gets reallocated as a
1161 * data block. This must happen in the same
1162 * transaction where the data blocks are
1163 * actually freed.
1165 ext4_free_blocks(handle, inode, NULL, nr, 1,
1166 EXT4_FREE_BLOCKS_METADATA|
1167 EXT4_FREE_BLOCKS_FORGET);
1169 if (parent_bh) {
1171 * The block which we have just freed is
1172 * pointed to by an indirect block: journal it
1174 BUFFER_TRACE(parent_bh, "get_write_access");
1175 if (!ext4_journal_get_write_access(handle,
1176 parent_bh)){
1177 *p = 0;
1178 BUFFER_TRACE(parent_bh,
1179 "call ext4_handle_dirty_metadata");
1180 ext4_handle_dirty_metadata(handle,
1181 inode,
1182 parent_bh);
1186 } else {
1187 /* We have reached the bottom of the tree. */
1188 BUFFER_TRACE(parent_bh, "free data blocks");
1189 ext4_free_data(handle, inode, parent_bh, first, last);
1193 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1195 struct ext4_inode_info *ei = EXT4_I(inode);
1196 __le32 *i_data = ei->i_data;
1197 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1198 ext4_lblk_t offsets[4];
1199 Indirect chain[4];
1200 Indirect *partial;
1201 __le32 nr = 0;
1202 int n = 0;
1203 ext4_lblk_t last_block, max_block;
1204 unsigned blocksize = inode->i_sb->s_blocksize;
1206 last_block = (inode->i_size + blocksize-1)
1207 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1208 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1209 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1211 if (last_block != max_block) {
1212 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1213 if (n == 0)
1214 return;
1217 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1220 * The orphan list entry will now protect us from any crash which
1221 * occurs before the truncate completes, so it is now safe to propagate
1222 * the new, shorter inode size (held for now in i_size) into the
1223 * on-disk inode. We do this via i_disksize, which is the value which
1224 * ext4 *really* writes onto the disk inode.
1226 ei->i_disksize = inode->i_size;
1228 if (last_block == max_block) {
1230 * It is unnecessary to free any data blocks if last_block is
1231 * equal to the indirect block limit.
1233 return;
1234 } else if (n == 1) { /* direct blocks */
1235 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1236 i_data + EXT4_NDIR_BLOCKS);
1237 goto do_indirects;
1240 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1241 /* Kill the top of shared branch (not detached) */
1242 if (nr) {
1243 if (partial == chain) {
1244 /* Shared branch grows from the inode */
1245 ext4_free_branches(handle, inode, NULL,
1246 &nr, &nr+1, (chain+n-1) - partial);
1247 *partial->p = 0;
1249 * We mark the inode dirty prior to restart,
1250 * and prior to stop. No need for it here.
1252 } else {
1253 /* Shared branch grows from an indirect block */
1254 BUFFER_TRACE(partial->bh, "get_write_access");
1255 ext4_free_branches(handle, inode, partial->bh,
1256 partial->p,
1257 partial->p+1, (chain+n-1) - partial);
1260 /* Clear the ends of indirect blocks on the shared branch */
1261 while (partial > chain) {
1262 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1263 (__le32*)partial->bh->b_data+addr_per_block,
1264 (chain+n-1) - partial);
1265 BUFFER_TRACE(partial->bh, "call brelse");
1266 brelse(partial->bh);
1267 partial--;
1269 do_indirects:
1270 /* Kill the remaining (whole) subtrees */
1271 switch (offsets[0]) {
1272 default:
1273 nr = i_data[EXT4_IND_BLOCK];
1274 if (nr) {
1275 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1276 i_data[EXT4_IND_BLOCK] = 0;
1278 case EXT4_IND_BLOCK:
1279 nr = i_data[EXT4_DIND_BLOCK];
1280 if (nr) {
1281 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1282 i_data[EXT4_DIND_BLOCK] = 0;
1284 case EXT4_DIND_BLOCK:
1285 nr = i_data[EXT4_TIND_BLOCK];
1286 if (nr) {
1287 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1288 i_data[EXT4_TIND_BLOCK] = 0;
1290 case EXT4_TIND_BLOCK:
1295 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1296 struct buffer_head *parent_bh, __le32 *i_data,
1297 int level, ext4_lblk_t first,
1298 ext4_lblk_t count, int max)
1300 struct buffer_head *bh = NULL;
1301 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1302 int ret = 0;
1303 int i, inc;
1304 ext4_lblk_t offset;
1305 __le32 blk;
1307 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1308 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1309 if (offset >= count + first)
1310 break;
1311 if (*i_data == 0 || (offset + inc) <= first)
1312 continue;
1313 blk = *i_data;
1314 if (level > 0) {
1315 ext4_lblk_t first2;
1316 bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1317 if (!bh) {
1318 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1319 "Read failure");
1320 return -EIO;
1322 first2 = (first > offset) ? first - offset : 0;
1323 ret = free_hole_blocks(handle, inode, bh,
1324 (__le32 *)bh->b_data, level - 1,
1325 first2, count - offset,
1326 inode->i_sb->s_blocksize >> 2);
1327 if (ret) {
1328 brelse(bh);
1329 goto err;
1332 if (level == 0 ||
1333 (bh && all_zeroes((__le32 *)bh->b_data,
1334 (__le32 *)bh->b_data + addr_per_block))) {
1335 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1336 *i_data = 0;
1338 brelse(bh);
1339 bh = NULL;
1342 err:
1343 return ret;
1346 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1347 ext4_lblk_t first, ext4_lblk_t stop)
1349 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1350 int level, ret = 0;
1351 int num = EXT4_NDIR_BLOCKS;
1352 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1353 __le32 *i_data = EXT4_I(inode)->i_data;
1355 count = stop - first;
1356 for (level = 0; level < 4; level++, max *= addr_per_block) {
1357 if (first < max) {
1358 ret = free_hole_blocks(handle, inode, NULL, i_data,
1359 level, first, count, num);
1360 if (ret)
1361 goto err;
1362 if (count > max - first)
1363 count -= max - first;
1364 else
1365 break;
1366 first = 0;
1367 } else {
1368 first -= max;
1370 i_data += num;
1371 if (level == 0) {
1372 num = 1;
1373 max = 1;
1377 err:
1378 return ret;