sched: fix newidle smp group balancing
[linux-2.6.git] / kernel / sched.c
blobcdd09462fc98e8305e07d7422f64939afe2012cc
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
118 #ifdef CONFIG_SMP
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 #endif
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head queue[MAX_RT_PRIO];
159 struct rt_bandwidth {
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
167 static struct rt_bandwidth def_rt_bandwidth;
169 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183 if (!overrun)
184 break;
186 idle = do_sched_rt_period_timer(rt_b, overrun);
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
192 static
193 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
198 spin_lock_init(&rt_b->rt_runtime_lock);
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
206 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 ktime_t now;
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
227 spin_unlock(&rt_b->rt_runtime_lock);
230 #ifdef CONFIG_RT_GROUP_SCHED
231 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 hrtimer_cancel(&rt_b->rt_period_timer);
235 #endif
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
241 static DEFINE_MUTEX(sched_domains_mutex);
243 #ifdef CONFIG_GROUP_SCHED
245 #include <linux/cgroup.h>
247 struct cfs_rq;
249 static LIST_HEAD(task_groups);
251 /* task group related information */
252 struct task_group {
253 #ifdef CONFIG_CGROUP_SCHED
254 struct cgroup_subsys_state css;
255 #endif
257 #ifdef CONFIG_FAIR_GROUP_SCHED
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
263 #endif
265 #ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
269 struct rt_bandwidth rt_bandwidth;
270 #endif
272 struct rcu_head rcu;
273 struct list_head list;
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
280 #ifdef CONFIG_USER_SCHED
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
287 struct task_group root_task_group;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 /* Default task group's sched entity on each cpu */
291 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292 /* Default task group's cfs_rq on each cpu */
293 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294 #endif /* CONFIG_FAIR_GROUP_SCHED */
296 #ifdef CONFIG_RT_GROUP_SCHED
297 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 #endif /* CONFIG_RT_GROUP_SCHED */
300 #else /* !CONFIG_FAIR_GROUP_SCHED */
301 #define root_task_group init_task_group
302 #endif /* CONFIG_FAIR_GROUP_SCHED */
304 /* task_group_lock serializes add/remove of task groups and also changes to
305 * a task group's cpu shares.
307 static DEFINE_SPINLOCK(task_group_lock);
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310 #ifdef CONFIG_USER_SCHED
311 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
312 #else /* !CONFIG_USER_SCHED */
313 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
314 #endif /* CONFIG_USER_SCHED */
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
324 #define MIN_SHARES 2
325 #define MAX_SHARES (1UL << 18)
327 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328 #endif
330 /* Default task group.
331 * Every task in system belong to this group at bootup.
333 struct task_group init_task_group;
335 /* return group to which a task belongs */
336 static inline struct task_group *task_group(struct task_struct *p)
338 struct task_group *tg;
340 #ifdef CONFIG_USER_SCHED
341 tg = p->user->tg;
342 #elif defined(CONFIG_CGROUP_SCHED)
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
345 #else
346 tg = &init_task_group;
347 #endif
348 return tg;
351 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
352 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 #ifdef CONFIG_FAIR_GROUP_SCHED
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
357 #endif
359 #ifdef CONFIG_RT_GROUP_SCHED
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
362 #endif
365 #else
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 #endif /* CONFIG_GROUP_SCHED */
371 /* CFS-related fields in a runqueue */
372 struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
376 u64 exec_clock;
377 u64 min_vruntime;
378 u64 pair_start;
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
383 struct list_head tasks;
384 struct list_head *balance_iterator;
387 * 'curr' points to currently running entity on this cfs_rq.
388 * It is set to NULL otherwise (i.e when none are currently running).
390 struct sched_entity *curr, *next;
392 unsigned long nr_spread_over;
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
408 #ifdef CONFIG_SMP
410 * the part of load.weight contributed by tasks
412 unsigned long task_weight;
415 * h_load = weight * f(tg)
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
420 unsigned long h_load;
423 * this cpu's part of tg->shares
425 unsigned long shares;
426 #endif
427 #endif
430 /* Real-Time classes' related field in a runqueue: */
431 struct rt_rq {
432 struct rt_prio_array active;
433 unsigned long rt_nr_running;
434 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
435 int highest_prio; /* highest queued rt task prio */
436 #endif
437 #ifdef CONFIG_SMP
438 unsigned long rt_nr_migratory;
439 int overloaded;
440 #endif
441 int rt_throttled;
442 u64 rt_time;
443 u64 rt_runtime;
444 /* Nests inside the rq lock: */
445 spinlock_t rt_runtime_lock;
447 #ifdef CONFIG_RT_GROUP_SCHED
448 unsigned long rt_nr_boosted;
450 struct rq *rq;
451 struct list_head leaf_rt_rq_list;
452 struct task_group *tg;
453 struct sched_rt_entity *rt_se;
454 #endif
457 #ifdef CONFIG_SMP
460 * We add the notion of a root-domain which will be used to define per-domain
461 * variables. Each exclusive cpuset essentially defines an island domain by
462 * fully partitioning the member cpus from any other cpuset. Whenever a new
463 * exclusive cpuset is created, we also create and attach a new root-domain
464 * object.
467 struct root_domain {
468 atomic_t refcount;
469 cpumask_t span;
470 cpumask_t online;
473 * The "RT overload" flag: it gets set if a CPU has more than
474 * one runnable RT task.
476 cpumask_t rto_mask;
477 atomic_t rto_count;
478 #ifdef CONFIG_SMP
479 struct cpupri cpupri;
480 #endif
484 * By default the system creates a single root-domain with all cpus as
485 * members (mimicking the global state we have today).
487 static struct root_domain def_root_domain;
489 #endif
492 * This is the main, per-CPU runqueue data structure.
494 * Locking rule: those places that want to lock multiple runqueues
495 * (such as the load balancing or the thread migration code), lock
496 * acquire operations must be ordered by ascending &runqueue.
498 struct rq {
499 /* runqueue lock: */
500 spinlock_t lock;
503 * nr_running and cpu_load should be in the same cacheline because
504 * remote CPUs use both these fields when doing load calculation.
506 unsigned long nr_running;
507 #define CPU_LOAD_IDX_MAX 5
508 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509 unsigned char idle_at_tick;
510 #ifdef CONFIG_NO_HZ
511 unsigned long last_tick_seen;
512 unsigned char in_nohz_recently;
513 #endif
514 /* capture load from *all* tasks on this cpu: */
515 struct load_weight load;
516 unsigned long nr_load_updates;
517 u64 nr_switches;
519 struct cfs_rq cfs;
520 struct rt_rq rt;
522 #ifdef CONFIG_FAIR_GROUP_SCHED
523 /* list of leaf cfs_rq on this cpu: */
524 struct list_head leaf_cfs_rq_list;
525 #endif
526 #ifdef CONFIG_RT_GROUP_SCHED
527 struct list_head leaf_rt_rq_list;
528 #endif
531 * This is part of a global counter where only the total sum
532 * over all CPUs matters. A task can increase this counter on
533 * one CPU and if it got migrated afterwards it may decrease
534 * it on another CPU. Always updated under the runqueue lock:
536 unsigned long nr_uninterruptible;
538 struct task_struct *curr, *idle;
539 unsigned long next_balance;
540 struct mm_struct *prev_mm;
542 u64 clock;
544 atomic_t nr_iowait;
546 #ifdef CONFIG_SMP
547 struct root_domain *rd;
548 struct sched_domain *sd;
550 /* For active balancing */
551 int active_balance;
552 int push_cpu;
553 /* cpu of this runqueue: */
554 int cpu;
555 int online;
557 struct task_struct *migration_thread;
558 struct list_head migration_queue;
559 #endif
561 #ifdef CONFIG_SCHED_HRTICK
562 unsigned long hrtick_flags;
563 ktime_t hrtick_expire;
564 struct hrtimer hrtick_timer;
565 #endif
567 #ifdef CONFIG_SCHEDSTATS
568 /* latency stats */
569 struct sched_info rq_sched_info;
571 /* sys_sched_yield() stats */
572 unsigned int yld_exp_empty;
573 unsigned int yld_act_empty;
574 unsigned int yld_both_empty;
575 unsigned int yld_count;
577 /* schedule() stats */
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
582 /* try_to_wake_up() stats */
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
586 /* BKL stats */
587 unsigned int bkl_count;
588 #endif
589 struct lock_class_key rq_lock_key;
592 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
594 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
596 rq->curr->sched_class->check_preempt_curr(rq, p);
599 static inline int cpu_of(struct rq *rq)
601 #ifdef CONFIG_SMP
602 return rq->cpu;
603 #else
604 return 0;
605 #endif
609 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
610 * See detach_destroy_domains: synchronize_sched for details.
612 * The domain tree of any CPU may only be accessed from within
613 * preempt-disabled sections.
615 #define for_each_domain(cpu, __sd) \
616 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
618 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
619 #define this_rq() (&__get_cpu_var(runqueues))
620 #define task_rq(p) cpu_rq(task_cpu(p))
621 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
623 static inline void update_rq_clock(struct rq *rq)
625 rq->clock = sched_clock_cpu(cpu_of(rq));
629 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
631 #ifdef CONFIG_SCHED_DEBUG
632 # define const_debug __read_mostly
633 #else
634 # define const_debug static const
635 #endif
638 * Debugging: various feature bits
641 #define SCHED_FEAT(name, enabled) \
642 __SCHED_FEAT_##name ,
644 enum {
645 #include "sched_features.h"
648 #undef SCHED_FEAT
650 #define SCHED_FEAT(name, enabled) \
651 (1UL << __SCHED_FEAT_##name) * enabled |
653 const_debug unsigned int sysctl_sched_features =
654 #include "sched_features.h"
657 #undef SCHED_FEAT
659 #ifdef CONFIG_SCHED_DEBUG
660 #define SCHED_FEAT(name, enabled) \
661 #name ,
663 static __read_mostly char *sched_feat_names[] = {
664 #include "sched_features.h"
665 NULL
668 #undef SCHED_FEAT
670 static int sched_feat_open(struct inode *inode, struct file *filp)
672 filp->private_data = inode->i_private;
673 return 0;
676 static ssize_t
677 sched_feat_read(struct file *filp, char __user *ubuf,
678 size_t cnt, loff_t *ppos)
680 char *buf;
681 int r = 0;
682 int len = 0;
683 int i;
685 for (i = 0; sched_feat_names[i]; i++) {
686 len += strlen(sched_feat_names[i]);
687 len += 4;
690 buf = kmalloc(len + 2, GFP_KERNEL);
691 if (!buf)
692 return -ENOMEM;
694 for (i = 0; sched_feat_names[i]; i++) {
695 if (sysctl_sched_features & (1UL << i))
696 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
697 else
698 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
701 r += sprintf(buf + r, "\n");
702 WARN_ON(r >= len + 2);
704 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
706 kfree(buf);
708 return r;
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
720 if (cnt > 63)
721 cnt = 63;
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
726 buf[cnt] = 0;
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
745 if (!sched_feat_names[i])
746 return -EINVAL;
748 filp->f_pos += cnt;
750 return cnt;
753 static struct file_operations sched_feat_fops = {
754 .open = sched_feat_open,
755 .read = sched_feat_read,
756 .write = sched_feat_write,
759 static __init int sched_init_debug(void)
761 debugfs_create_file("sched_features", 0644, NULL, NULL,
762 &sched_feat_fops);
764 return 0;
766 late_initcall(sched_init_debug);
768 #endif
770 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
773 * Number of tasks to iterate in a single balance run.
774 * Limited because this is done with IRQs disabled.
776 const_debug unsigned int sysctl_sched_nr_migrate = 32;
779 * period over which we measure -rt task cpu usage in us.
780 * default: 1s
782 unsigned int sysctl_sched_rt_period = 1000000;
784 static __read_mostly int scheduler_running;
787 * part of the period that we allow rt tasks to run in us.
788 * default: 0.95s
790 int sysctl_sched_rt_runtime = 950000;
792 static inline u64 global_rt_period(void)
794 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
797 static inline u64 global_rt_runtime(void)
799 if (sysctl_sched_rt_period < 0)
800 return RUNTIME_INF;
802 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
805 #ifndef prepare_arch_switch
806 # define prepare_arch_switch(next) do { } while (0)
807 #endif
808 #ifndef finish_arch_switch
809 # define finish_arch_switch(prev) do { } while (0)
810 #endif
812 static inline int task_current(struct rq *rq, struct task_struct *p)
814 return rq->curr == p;
817 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
818 static inline int task_running(struct rq *rq, struct task_struct *p)
820 return task_current(rq, p);
823 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
827 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
829 #ifdef CONFIG_DEBUG_SPINLOCK
830 /* this is a valid case when another task releases the spinlock */
831 rq->lock.owner = current;
832 #endif
834 * If we are tracking spinlock dependencies then we have to
835 * fix up the runqueue lock - which gets 'carried over' from
836 * prev into current:
838 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
840 spin_unlock_irq(&rq->lock);
843 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
844 static inline int task_running(struct rq *rq, struct task_struct *p)
846 #ifdef CONFIG_SMP
847 return p->oncpu;
848 #else
849 return task_current(rq, p);
850 #endif
853 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
855 #ifdef CONFIG_SMP
857 * We can optimise this out completely for !SMP, because the
858 * SMP rebalancing from interrupt is the only thing that cares
859 * here.
861 next->oncpu = 1;
862 #endif
863 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
864 spin_unlock_irq(&rq->lock);
865 #else
866 spin_unlock(&rq->lock);
867 #endif
870 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
872 #ifdef CONFIG_SMP
874 * After ->oncpu is cleared, the task can be moved to a different CPU.
875 * We must ensure this doesn't happen until the switch is completely
876 * finished.
878 smp_wmb();
879 prev->oncpu = 0;
880 #endif
881 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 local_irq_enable();
883 #endif
885 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
888 * __task_rq_lock - lock the runqueue a given task resides on.
889 * Must be called interrupts disabled.
891 static inline struct rq *__task_rq_lock(struct task_struct *p)
892 __acquires(rq->lock)
894 for (;;) {
895 struct rq *rq = task_rq(p);
896 spin_lock(&rq->lock);
897 if (likely(rq == task_rq(p)))
898 return rq;
899 spin_unlock(&rq->lock);
904 * task_rq_lock - lock the runqueue a given task resides on and disable
905 * interrupts. Note the ordering: we can safely lookup the task_rq without
906 * explicitly disabling preemption.
908 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
909 __acquires(rq->lock)
911 struct rq *rq;
913 for (;;) {
914 local_irq_save(*flags);
915 rq = task_rq(p);
916 spin_lock(&rq->lock);
917 if (likely(rq == task_rq(p)))
918 return rq;
919 spin_unlock_irqrestore(&rq->lock, *flags);
923 static void __task_rq_unlock(struct rq *rq)
924 __releases(rq->lock)
926 spin_unlock(&rq->lock);
929 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
930 __releases(rq->lock)
932 spin_unlock_irqrestore(&rq->lock, *flags);
936 * this_rq_lock - lock this runqueue and disable interrupts.
938 static struct rq *this_rq_lock(void)
939 __acquires(rq->lock)
941 struct rq *rq;
943 local_irq_disable();
944 rq = this_rq();
945 spin_lock(&rq->lock);
947 return rq;
950 static void __resched_task(struct task_struct *p, int tif_bit);
952 static inline void resched_task(struct task_struct *p)
954 __resched_task(p, TIF_NEED_RESCHED);
957 #ifdef CONFIG_SCHED_HRTICK
959 * Use HR-timers to deliver accurate preemption points.
961 * Its all a bit involved since we cannot program an hrt while holding the
962 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
963 * reschedule event.
965 * When we get rescheduled we reprogram the hrtick_timer outside of the
966 * rq->lock.
968 static inline void resched_hrt(struct task_struct *p)
970 __resched_task(p, TIF_HRTICK_RESCHED);
973 static inline void resched_rq(struct rq *rq)
975 unsigned long flags;
977 spin_lock_irqsave(&rq->lock, flags);
978 resched_task(rq->curr);
979 spin_unlock_irqrestore(&rq->lock, flags);
982 enum {
983 HRTICK_SET, /* re-programm hrtick_timer */
984 HRTICK_RESET, /* not a new slice */
985 HRTICK_BLOCK, /* stop hrtick operations */
989 * Use hrtick when:
990 * - enabled by features
991 * - hrtimer is actually high res
993 static inline int hrtick_enabled(struct rq *rq)
995 if (!sched_feat(HRTICK))
996 return 0;
997 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
998 return 0;
999 return hrtimer_is_hres_active(&rq->hrtick_timer);
1003 * Called to set the hrtick timer state.
1005 * called with rq->lock held and irqs disabled
1007 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1009 assert_spin_locked(&rq->lock);
1012 * preempt at: now + delay
1014 rq->hrtick_expire =
1015 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1017 * indicate we need to program the timer
1019 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1020 if (reset)
1021 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1024 * New slices are called from the schedule path and don't need a
1025 * forced reschedule.
1027 if (reset)
1028 resched_hrt(rq->curr);
1031 static void hrtick_clear(struct rq *rq)
1033 if (hrtimer_active(&rq->hrtick_timer))
1034 hrtimer_cancel(&rq->hrtick_timer);
1038 * Update the timer from the possible pending state.
1040 static void hrtick_set(struct rq *rq)
1042 ktime_t time;
1043 int set, reset;
1044 unsigned long flags;
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048 spin_lock_irqsave(&rq->lock, flags);
1049 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1050 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1051 time = rq->hrtick_expire;
1052 clear_thread_flag(TIF_HRTICK_RESCHED);
1053 spin_unlock_irqrestore(&rq->lock, flags);
1055 if (set) {
1056 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1057 if (reset && !hrtimer_active(&rq->hrtick_timer))
1058 resched_rq(rq);
1059 } else
1060 hrtick_clear(rq);
1064 * High-resolution timer tick.
1065 * Runs from hardirq context with interrupts disabled.
1067 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1069 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1071 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1073 spin_lock(&rq->lock);
1074 update_rq_clock(rq);
1075 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1076 spin_unlock(&rq->lock);
1078 return HRTIMER_NORESTART;
1081 #ifdef CONFIG_SMP
1082 static void hotplug_hrtick_disable(int cpu)
1084 struct rq *rq = cpu_rq(cpu);
1085 unsigned long flags;
1087 spin_lock_irqsave(&rq->lock, flags);
1088 rq->hrtick_flags = 0;
1089 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1090 spin_unlock_irqrestore(&rq->lock, flags);
1092 hrtick_clear(rq);
1095 static void hotplug_hrtick_enable(int cpu)
1097 struct rq *rq = cpu_rq(cpu);
1098 unsigned long flags;
1100 spin_lock_irqsave(&rq->lock, flags);
1101 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1105 static int
1106 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1108 int cpu = (int)(long)hcpu;
1110 switch (action) {
1111 case CPU_UP_CANCELED:
1112 case CPU_UP_CANCELED_FROZEN:
1113 case CPU_DOWN_PREPARE:
1114 case CPU_DOWN_PREPARE_FROZEN:
1115 case CPU_DEAD:
1116 case CPU_DEAD_FROZEN:
1117 hotplug_hrtick_disable(cpu);
1118 return NOTIFY_OK;
1120 case CPU_UP_PREPARE:
1121 case CPU_UP_PREPARE_FROZEN:
1122 case CPU_DOWN_FAILED:
1123 case CPU_DOWN_FAILED_FROZEN:
1124 case CPU_ONLINE:
1125 case CPU_ONLINE_FROZEN:
1126 hotplug_hrtick_enable(cpu);
1127 return NOTIFY_OK;
1130 return NOTIFY_DONE;
1133 static void init_hrtick(void)
1135 hotcpu_notifier(hotplug_hrtick, 0);
1137 #endif /* CONFIG_SMP */
1139 static void init_rq_hrtick(struct rq *rq)
1141 rq->hrtick_flags = 0;
1142 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1143 rq->hrtick_timer.function = hrtick;
1144 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1147 void hrtick_resched(void)
1149 struct rq *rq;
1150 unsigned long flags;
1152 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1153 return;
1155 local_irq_save(flags);
1156 rq = cpu_rq(smp_processor_id());
1157 hrtick_set(rq);
1158 local_irq_restore(flags);
1160 #else
1161 static inline void hrtick_clear(struct rq *rq)
1165 static inline void hrtick_set(struct rq *rq)
1169 static inline void init_rq_hrtick(struct rq *rq)
1173 void hrtick_resched(void)
1177 static inline void init_hrtick(void)
1180 #endif
1183 * resched_task - mark a task 'to be rescheduled now'.
1185 * On UP this means the setting of the need_resched flag, on SMP it
1186 * might also involve a cross-CPU call to trigger the scheduler on
1187 * the target CPU.
1189 #ifdef CONFIG_SMP
1191 #ifndef tsk_is_polling
1192 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1193 #endif
1195 static void __resched_task(struct task_struct *p, int tif_bit)
1197 int cpu;
1199 assert_spin_locked(&task_rq(p)->lock);
1201 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1202 return;
1204 set_tsk_thread_flag(p, tif_bit);
1206 cpu = task_cpu(p);
1207 if (cpu == smp_processor_id())
1208 return;
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(p))
1213 smp_send_reschedule(cpu);
1216 static void resched_cpu(int cpu)
1218 struct rq *rq = cpu_rq(cpu);
1219 unsigned long flags;
1221 if (!spin_trylock_irqsave(&rq->lock, flags))
1222 return;
1223 resched_task(cpu_curr(cpu));
1224 spin_unlock_irqrestore(&rq->lock, flags);
1227 #ifdef CONFIG_NO_HZ
1229 * When add_timer_on() enqueues a timer into the timer wheel of an
1230 * idle CPU then this timer might expire before the next timer event
1231 * which is scheduled to wake up that CPU. In case of a completely
1232 * idle system the next event might even be infinite time into the
1233 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1234 * leaves the inner idle loop so the newly added timer is taken into
1235 * account when the CPU goes back to idle and evaluates the timer
1236 * wheel for the next timer event.
1238 void wake_up_idle_cpu(int cpu)
1240 struct rq *rq = cpu_rq(cpu);
1242 if (cpu == smp_processor_id())
1243 return;
1246 * This is safe, as this function is called with the timer
1247 * wheel base lock of (cpu) held. When the CPU is on the way
1248 * to idle and has not yet set rq->curr to idle then it will
1249 * be serialized on the timer wheel base lock and take the new
1250 * timer into account automatically.
1252 if (rq->curr != rq->idle)
1253 return;
1256 * We can set TIF_RESCHED on the idle task of the other CPU
1257 * lockless. The worst case is that the other CPU runs the
1258 * idle task through an additional NOOP schedule()
1260 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(rq->idle))
1265 smp_send_reschedule(cpu);
1267 #endif /* CONFIG_NO_HZ */
1269 #else /* !CONFIG_SMP */
1270 static void __resched_task(struct task_struct *p, int tif_bit)
1272 assert_spin_locked(&task_rq(p)->lock);
1273 set_tsk_thread_flag(p, tif_bit);
1275 #endif /* CONFIG_SMP */
1277 #if BITS_PER_LONG == 32
1278 # define WMULT_CONST (~0UL)
1279 #else
1280 # define WMULT_CONST (1UL << 32)
1281 #endif
1283 #define WMULT_SHIFT 32
1286 * Shift right and round:
1288 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1291 * delta *= weight / lw
1293 static unsigned long
1294 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1297 u64 tmp;
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1307 tmp = (u64)delta_exec * weight;
1309 * Check whether we'd overflow the 64-bit multiplication:
1311 if (unlikely(tmp > WMULT_CONST))
1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1313 WMULT_SHIFT/2);
1314 else
1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1322 lw->weight += inc;
1323 lw->inv_weight = 0;
1326 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1328 lw->weight -= dec;
1329 lw->inv_weight = 0;
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1341 #define WEIGHT_IDLEPRIO 2
1342 #define WMULT_IDLEPRIO (1 << 31)
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
1356 static const int prio_to_weight[40] = {
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1374 static const u32 prio_to_wmult[40] = {
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1385 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388 * runqueue iterator, to support SMP load-balancing between different
1389 * scheduling classes, without having to expose their internal data
1390 * structures to the load-balancing proper:
1392 struct rq_iterator {
1393 void *arg;
1394 struct task_struct *(*start)(void *);
1395 struct task_struct *(*next)(void *);
1398 #ifdef CONFIG_SMP
1399 static unsigned long
1400 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1401 unsigned long max_load_move, struct sched_domain *sd,
1402 enum cpu_idle_type idle, int *all_pinned,
1403 int *this_best_prio, struct rq_iterator *iterator);
1405 static int
1406 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 struct sched_domain *sd, enum cpu_idle_type idle,
1408 struct rq_iterator *iterator);
1409 #endif
1411 #ifdef CONFIG_CGROUP_CPUACCT
1412 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1413 #else
1414 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1415 #endif
1417 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1419 update_load_add(&rq->load, load);
1422 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1424 update_load_sub(&rq->load, load);
1427 #ifdef CONFIG_SMP
1428 static unsigned long source_load(int cpu, int type);
1429 static unsigned long target_load(int cpu, int type);
1430 static unsigned long cpu_avg_load_per_task(int cpu);
1431 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1433 #ifdef CONFIG_FAIR_GROUP_SCHED
1435 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1438 * Iterate the full tree, calling @down when first entering a node and @up when
1439 * leaving it for the final time.
1441 static void
1442 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1444 struct task_group *parent, *child;
1446 rcu_read_lock();
1447 parent = &root_task_group;
1448 down:
1449 (*down)(parent, cpu, sd);
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1455 continue;
1457 (*up)(parent, cpu, sd);
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
1463 rcu_read_unlock();
1466 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1469 * Calculate and set the cpu's group shares.
1471 static void
1472 __update_group_shares_cpu(struct task_group *tg, int cpu,
1473 unsigned long sd_shares, unsigned long sd_rq_weight)
1475 int boost = 0;
1476 unsigned long shares;
1477 unsigned long rq_weight;
1479 if (!tg->se[cpu])
1480 return;
1482 rq_weight = tg->cfs_rq[cpu]->load.weight;
1485 * If there are currently no tasks on the cpu pretend there is one of
1486 * average load so that when a new task gets to run here it will not
1487 * get delayed by group starvation.
1489 if (!rq_weight) {
1490 boost = 1;
1491 rq_weight = NICE_0_LOAD;
1494 if (unlikely(rq_weight > sd_rq_weight))
1495 rq_weight = sd_rq_weight;
1498 * \Sum shares * rq_weight
1499 * shares = -----------------------
1500 * \Sum rq_weight
1503 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1506 * record the actual number of shares, not the boosted amount.
1508 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1510 if (shares < MIN_SHARES)
1511 shares = MIN_SHARES;
1512 else if (shares > MAX_SHARES)
1513 shares = MAX_SHARES;
1515 __set_se_shares(tg->se[cpu], shares);
1519 * Re-compute the task group their per cpu shares over the given domain.
1520 * This needs to be done in a bottom-up fashion because the rq weight of a
1521 * parent group depends on the shares of its child groups.
1523 static void
1524 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1526 unsigned long rq_weight = 0;
1527 unsigned long shares = 0;
1528 int i;
1530 for_each_cpu_mask(i, sd->span) {
1531 rq_weight += tg->cfs_rq[i]->load.weight;
1532 shares += tg->cfs_rq[i]->shares;
1535 if ((!shares && rq_weight) || shares > tg->shares)
1536 shares = tg->shares;
1538 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1539 shares = tg->shares;
1541 for_each_cpu_mask(i, sd->span) {
1542 struct rq *rq = cpu_rq(i);
1543 unsigned long flags;
1545 spin_lock_irqsave(&rq->lock, flags);
1546 __update_group_shares_cpu(tg, i, shares, rq_weight);
1547 spin_unlock_irqrestore(&rq->lock, flags);
1552 * Compute the cpu's hierarchical load factor for each task group.
1553 * This needs to be done in a top-down fashion because the load of a child
1554 * group is a fraction of its parents load.
1556 static void
1557 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1559 unsigned long load;
1561 if (!tg->parent) {
1562 load = cpu_rq(cpu)->load.weight;
1563 } else {
1564 load = tg->parent->cfs_rq[cpu]->h_load;
1565 load *= tg->cfs_rq[cpu]->shares;
1566 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1569 tg->cfs_rq[cpu]->h_load = load;
1572 static void
1573 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1577 static void update_shares(struct sched_domain *sd)
1579 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1582 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1584 spin_unlock(&rq->lock);
1585 update_shares(sd);
1586 spin_lock(&rq->lock);
1589 static void update_h_load(int cpu)
1591 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1594 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1596 cfs_rq->shares = shares;
1599 #else
1601 static inline void update_shares(struct sched_domain *sd)
1605 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1609 #endif
1611 #endif
1613 #include "sched_stats.h"
1614 #include "sched_idletask.c"
1615 #include "sched_fair.c"
1616 #include "sched_rt.c"
1617 #ifdef CONFIG_SCHED_DEBUG
1618 # include "sched_debug.c"
1619 #endif
1621 #define sched_class_highest (&rt_sched_class)
1622 #define for_each_class(class) \
1623 for (class = sched_class_highest; class; class = class->next)
1625 static void inc_nr_running(struct rq *rq)
1627 rq->nr_running++;
1630 static void dec_nr_running(struct rq *rq)
1632 rq->nr_running--;
1635 static void set_load_weight(struct task_struct *p)
1637 if (task_has_rt_policy(p)) {
1638 p->se.load.weight = prio_to_weight[0] * 2;
1639 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1640 return;
1644 * SCHED_IDLE tasks get minimal weight:
1646 if (p->policy == SCHED_IDLE) {
1647 p->se.load.weight = WEIGHT_IDLEPRIO;
1648 p->se.load.inv_weight = WMULT_IDLEPRIO;
1649 return;
1652 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1653 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1656 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1658 sched_info_queued(p);
1659 p->sched_class->enqueue_task(rq, p, wakeup);
1660 p->se.on_rq = 1;
1663 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1665 p->sched_class->dequeue_task(rq, p, sleep);
1666 p->se.on_rq = 0;
1670 * __normal_prio - return the priority that is based on the static prio
1672 static inline int __normal_prio(struct task_struct *p)
1674 return p->static_prio;
1678 * Calculate the expected normal priority: i.e. priority
1679 * without taking RT-inheritance into account. Might be
1680 * boosted by interactivity modifiers. Changes upon fork,
1681 * setprio syscalls, and whenever the interactivity
1682 * estimator recalculates.
1684 static inline int normal_prio(struct task_struct *p)
1686 int prio;
1688 if (task_has_rt_policy(p))
1689 prio = MAX_RT_PRIO-1 - p->rt_priority;
1690 else
1691 prio = __normal_prio(p);
1692 return prio;
1696 * Calculate the current priority, i.e. the priority
1697 * taken into account by the scheduler. This value might
1698 * be boosted by RT tasks, or might be boosted by
1699 * interactivity modifiers. Will be RT if the task got
1700 * RT-boosted. If not then it returns p->normal_prio.
1702 static int effective_prio(struct task_struct *p)
1704 p->normal_prio = normal_prio(p);
1706 * If we are RT tasks or we were boosted to RT priority,
1707 * keep the priority unchanged. Otherwise, update priority
1708 * to the normal priority:
1710 if (!rt_prio(p->prio))
1711 return p->normal_prio;
1712 return p->prio;
1716 * activate_task - move a task to the runqueue.
1718 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1720 if (task_contributes_to_load(p))
1721 rq->nr_uninterruptible--;
1723 enqueue_task(rq, p, wakeup);
1724 inc_nr_running(rq);
1728 * deactivate_task - remove a task from the runqueue.
1730 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1732 if (task_contributes_to_load(p))
1733 rq->nr_uninterruptible++;
1735 dequeue_task(rq, p, sleep);
1736 dec_nr_running(rq);
1740 * task_curr - is this task currently executing on a CPU?
1741 * @p: the task in question.
1743 inline int task_curr(const struct task_struct *p)
1745 return cpu_curr(task_cpu(p)) == p;
1748 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1750 set_task_rq(p, cpu);
1751 #ifdef CONFIG_SMP
1753 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1754 * successfuly executed on another CPU. We must ensure that updates of
1755 * per-task data have been completed by this moment.
1757 smp_wmb();
1758 task_thread_info(p)->cpu = cpu;
1759 #endif
1762 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1763 const struct sched_class *prev_class,
1764 int oldprio, int running)
1766 if (prev_class != p->sched_class) {
1767 if (prev_class->switched_from)
1768 prev_class->switched_from(rq, p, running);
1769 p->sched_class->switched_to(rq, p, running);
1770 } else
1771 p->sched_class->prio_changed(rq, p, oldprio, running);
1774 #ifdef CONFIG_SMP
1776 /* Used instead of source_load when we know the type == 0 */
1777 static unsigned long weighted_cpuload(const int cpu)
1779 return cpu_rq(cpu)->load.weight;
1783 * Is this task likely cache-hot:
1785 static int
1786 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1788 s64 delta;
1791 * Buddy candidates are cache hot:
1793 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1794 return 1;
1796 if (p->sched_class != &fair_sched_class)
1797 return 0;
1799 if (sysctl_sched_migration_cost == -1)
1800 return 1;
1801 if (sysctl_sched_migration_cost == 0)
1802 return 0;
1804 delta = now - p->se.exec_start;
1806 return delta < (s64)sysctl_sched_migration_cost;
1810 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1812 int old_cpu = task_cpu(p);
1813 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1814 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1815 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1816 u64 clock_offset;
1818 clock_offset = old_rq->clock - new_rq->clock;
1820 #ifdef CONFIG_SCHEDSTATS
1821 if (p->se.wait_start)
1822 p->se.wait_start -= clock_offset;
1823 if (p->se.sleep_start)
1824 p->se.sleep_start -= clock_offset;
1825 if (p->se.block_start)
1826 p->se.block_start -= clock_offset;
1827 if (old_cpu != new_cpu) {
1828 schedstat_inc(p, se.nr_migrations);
1829 if (task_hot(p, old_rq->clock, NULL))
1830 schedstat_inc(p, se.nr_forced2_migrations);
1832 #endif
1833 p->se.vruntime -= old_cfsrq->min_vruntime -
1834 new_cfsrq->min_vruntime;
1836 __set_task_cpu(p, new_cpu);
1839 struct migration_req {
1840 struct list_head list;
1842 struct task_struct *task;
1843 int dest_cpu;
1845 struct completion done;
1849 * The task's runqueue lock must be held.
1850 * Returns true if you have to wait for migration thread.
1852 static int
1853 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1855 struct rq *rq = task_rq(p);
1858 * If the task is not on a runqueue (and not running), then
1859 * it is sufficient to simply update the task's cpu field.
1861 if (!p->se.on_rq && !task_running(rq, p)) {
1862 set_task_cpu(p, dest_cpu);
1863 return 0;
1866 init_completion(&req->done);
1867 req->task = p;
1868 req->dest_cpu = dest_cpu;
1869 list_add(&req->list, &rq->migration_queue);
1871 return 1;
1875 * wait_task_inactive - wait for a thread to unschedule.
1877 * The caller must ensure that the task *will* unschedule sometime soon,
1878 * else this function might spin for a *long* time. This function can't
1879 * be called with interrupts off, or it may introduce deadlock with
1880 * smp_call_function() if an IPI is sent by the same process we are
1881 * waiting to become inactive.
1883 void wait_task_inactive(struct task_struct *p)
1885 unsigned long flags;
1886 int running, on_rq;
1887 struct rq *rq;
1889 for (;;) {
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1896 rq = task_rq(p);
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1909 while (task_running(rq, p))
1910 cpu_relax();
1913 * Ok, time to look more closely! We need the rq
1914 * lock now, to be *sure*. If we're wrong, we'll
1915 * just go back and repeat.
1917 rq = task_rq_lock(p, &flags);
1918 running = task_running(rq, p);
1919 on_rq = p->se.on_rq;
1920 task_rq_unlock(rq, &flags);
1923 * Was it really running after all now that we
1924 * checked with the proper locks actually held?
1926 * Oops. Go back and try again..
1928 if (unlikely(running)) {
1929 cpu_relax();
1930 continue;
1934 * It's not enough that it's not actively running,
1935 * it must be off the runqueue _entirely_, and not
1936 * preempted!
1938 * So if it wa still runnable (but just not actively
1939 * running right now), it's preempted, and we should
1940 * yield - it could be a while.
1942 if (unlikely(on_rq)) {
1943 schedule_timeout_uninterruptible(1);
1944 continue;
1948 * Ahh, all good. It wasn't running, and it wasn't
1949 * runnable, which means that it will never become
1950 * running in the future either. We're all done!
1952 break;
1956 /***
1957 * kick_process - kick a running thread to enter/exit the kernel
1958 * @p: the to-be-kicked thread
1960 * Cause a process which is running on another CPU to enter
1961 * kernel-mode, without any delay. (to get signals handled.)
1963 * NOTE: this function doesnt have to take the runqueue lock,
1964 * because all it wants to ensure is that the remote task enters
1965 * the kernel. If the IPI races and the task has been migrated
1966 * to another CPU then no harm is done and the purpose has been
1967 * achieved as well.
1969 void kick_process(struct task_struct *p)
1971 int cpu;
1973 preempt_disable();
1974 cpu = task_cpu(p);
1975 if ((cpu != smp_processor_id()) && task_curr(p))
1976 smp_send_reschedule(cpu);
1977 preempt_enable();
1981 * Return a low guess at the load of a migration-source cpu weighted
1982 * according to the scheduling class and "nice" value.
1984 * We want to under-estimate the load of migration sources, to
1985 * balance conservatively.
1987 static unsigned long source_load(int cpu, int type)
1989 struct rq *rq = cpu_rq(cpu);
1990 unsigned long total = weighted_cpuload(cpu);
1992 if (type == 0)
1993 return total;
1995 return min(rq->cpu_load[type-1], total);
1999 * Return a high guess at the load of a migration-target cpu weighted
2000 * according to the scheduling class and "nice" value.
2002 static unsigned long target_load(int cpu, int type)
2004 struct rq *rq = cpu_rq(cpu);
2005 unsigned long total = weighted_cpuload(cpu);
2007 if (type == 0)
2008 return total;
2010 return max(rq->cpu_load[type-1], total);
2014 * Return the average load per task on the cpu's run queue
2016 static unsigned long cpu_avg_load_per_task(int cpu)
2018 struct rq *rq = cpu_rq(cpu);
2019 unsigned long total = weighted_cpuload(cpu);
2020 unsigned long n = rq->nr_running;
2022 return n ? total / n : SCHED_LOAD_SCALE;
2026 * find_idlest_group finds and returns the least busy CPU group within the
2027 * domain.
2029 static struct sched_group *
2030 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2032 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2033 unsigned long min_load = ULONG_MAX, this_load = 0;
2034 int load_idx = sd->forkexec_idx;
2035 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2037 do {
2038 unsigned long load, avg_load;
2039 int local_group;
2040 int i;
2042 /* Skip over this group if it has no CPUs allowed */
2043 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2044 continue;
2046 local_group = cpu_isset(this_cpu, group->cpumask);
2048 /* Tally up the load of all CPUs in the group */
2049 avg_load = 0;
2051 for_each_cpu_mask(i, group->cpumask) {
2052 /* Bias balancing toward cpus of our domain */
2053 if (local_group)
2054 load = source_load(i, load_idx);
2055 else
2056 load = target_load(i, load_idx);
2058 avg_load += load;
2061 /* Adjust by relative CPU power of the group */
2062 avg_load = sg_div_cpu_power(group,
2063 avg_load * SCHED_LOAD_SCALE);
2065 if (local_group) {
2066 this_load = avg_load;
2067 this = group;
2068 } else if (avg_load < min_load) {
2069 min_load = avg_load;
2070 idlest = group;
2072 } while (group = group->next, group != sd->groups);
2074 if (!idlest || 100*this_load < imbalance*min_load)
2075 return NULL;
2076 return idlest;
2080 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2082 static int
2083 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2084 cpumask_t *tmp)
2086 unsigned long load, min_load = ULONG_MAX;
2087 int idlest = -1;
2088 int i;
2090 /* Traverse only the allowed CPUs */
2091 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2093 for_each_cpu_mask(i, *tmp) {
2094 load = weighted_cpuload(i);
2096 if (load < min_load || (load == min_load && i == this_cpu)) {
2097 min_load = load;
2098 idlest = i;
2102 return idlest;
2106 * sched_balance_self: balance the current task (running on cpu) in domains
2107 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2108 * SD_BALANCE_EXEC.
2110 * Balance, ie. select the least loaded group.
2112 * Returns the target CPU number, or the same CPU if no balancing is needed.
2114 * preempt must be disabled.
2116 static int sched_balance_self(int cpu, int flag)
2118 struct task_struct *t = current;
2119 struct sched_domain *tmp, *sd = NULL;
2121 for_each_domain(cpu, tmp) {
2123 * If power savings logic is enabled for a domain, stop there.
2125 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2126 break;
2127 if (tmp->flags & flag)
2128 sd = tmp;
2131 while (sd) {
2132 cpumask_t span, tmpmask;
2133 struct sched_group *group;
2134 int new_cpu, weight;
2136 if (!(sd->flags & flag)) {
2137 sd = sd->child;
2138 continue;
2141 span = sd->span;
2142 group = find_idlest_group(sd, t, cpu);
2143 if (!group) {
2144 sd = sd->child;
2145 continue;
2148 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2149 if (new_cpu == -1 || new_cpu == cpu) {
2150 /* Now try balancing at a lower domain level of cpu */
2151 sd = sd->child;
2152 continue;
2155 /* Now try balancing at a lower domain level of new_cpu */
2156 cpu = new_cpu;
2157 sd = NULL;
2158 weight = cpus_weight(span);
2159 for_each_domain(cpu, tmp) {
2160 if (weight <= cpus_weight(tmp->span))
2161 break;
2162 if (tmp->flags & flag)
2163 sd = tmp;
2165 /* while loop will break here if sd == NULL */
2168 return cpu;
2171 #endif /* CONFIG_SMP */
2173 /***
2174 * try_to_wake_up - wake up a thread
2175 * @p: the to-be-woken-up thread
2176 * @state: the mask of task states that can be woken
2177 * @sync: do a synchronous wakeup?
2179 * Put it on the run-queue if it's not already there. The "current"
2180 * thread is always on the run-queue (except when the actual
2181 * re-schedule is in progress), and as such you're allowed to do
2182 * the simpler "current->state = TASK_RUNNING" to mark yourself
2183 * runnable without the overhead of this.
2185 * returns failure only if the task is already active.
2187 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2189 int cpu, orig_cpu, this_cpu, success = 0;
2190 unsigned long flags;
2191 long old_state;
2192 struct rq *rq;
2194 if (!sched_feat(SYNC_WAKEUPS))
2195 sync = 0;
2197 smp_wmb();
2198 rq = task_rq_lock(p, &flags);
2199 old_state = p->state;
2200 if (!(old_state & state))
2201 goto out;
2203 if (p->se.on_rq)
2204 goto out_running;
2206 cpu = task_cpu(p);
2207 orig_cpu = cpu;
2208 this_cpu = smp_processor_id();
2210 #ifdef CONFIG_SMP
2211 if (unlikely(task_running(rq, p)))
2212 goto out_activate;
2214 cpu = p->sched_class->select_task_rq(p, sync);
2215 if (cpu != orig_cpu) {
2216 set_task_cpu(p, cpu);
2217 task_rq_unlock(rq, &flags);
2218 /* might preempt at this point */
2219 rq = task_rq_lock(p, &flags);
2220 old_state = p->state;
2221 if (!(old_state & state))
2222 goto out;
2223 if (p->se.on_rq)
2224 goto out_running;
2226 this_cpu = smp_processor_id();
2227 cpu = task_cpu(p);
2230 #ifdef CONFIG_SCHEDSTATS
2231 schedstat_inc(rq, ttwu_count);
2232 if (cpu == this_cpu)
2233 schedstat_inc(rq, ttwu_local);
2234 else {
2235 struct sched_domain *sd;
2236 for_each_domain(this_cpu, sd) {
2237 if (cpu_isset(cpu, sd->span)) {
2238 schedstat_inc(sd, ttwu_wake_remote);
2239 break;
2243 #endif /* CONFIG_SCHEDSTATS */
2245 out_activate:
2246 #endif /* CONFIG_SMP */
2247 schedstat_inc(p, se.nr_wakeups);
2248 if (sync)
2249 schedstat_inc(p, se.nr_wakeups_sync);
2250 if (orig_cpu != cpu)
2251 schedstat_inc(p, se.nr_wakeups_migrate);
2252 if (cpu == this_cpu)
2253 schedstat_inc(p, se.nr_wakeups_local);
2254 else
2255 schedstat_inc(p, se.nr_wakeups_remote);
2256 update_rq_clock(rq);
2257 activate_task(rq, p, 1);
2258 success = 1;
2260 out_running:
2261 check_preempt_curr(rq, p);
2263 p->state = TASK_RUNNING;
2264 #ifdef CONFIG_SMP
2265 if (p->sched_class->task_wake_up)
2266 p->sched_class->task_wake_up(rq, p);
2267 #endif
2268 out:
2269 task_rq_unlock(rq, &flags);
2271 return success;
2274 int wake_up_process(struct task_struct *p)
2276 return try_to_wake_up(p, TASK_ALL, 0);
2278 EXPORT_SYMBOL(wake_up_process);
2280 int wake_up_state(struct task_struct *p, unsigned int state)
2282 return try_to_wake_up(p, state, 0);
2286 * Perform scheduler related setup for a newly forked process p.
2287 * p is forked by current.
2289 * __sched_fork() is basic setup used by init_idle() too:
2291 static void __sched_fork(struct task_struct *p)
2293 p->se.exec_start = 0;
2294 p->se.sum_exec_runtime = 0;
2295 p->se.prev_sum_exec_runtime = 0;
2296 p->se.last_wakeup = 0;
2297 p->se.avg_overlap = 0;
2299 #ifdef CONFIG_SCHEDSTATS
2300 p->se.wait_start = 0;
2301 p->se.sum_sleep_runtime = 0;
2302 p->se.sleep_start = 0;
2303 p->se.block_start = 0;
2304 p->se.sleep_max = 0;
2305 p->se.block_max = 0;
2306 p->se.exec_max = 0;
2307 p->se.slice_max = 0;
2308 p->se.wait_max = 0;
2309 #endif
2311 INIT_LIST_HEAD(&p->rt.run_list);
2312 p->se.on_rq = 0;
2313 INIT_LIST_HEAD(&p->se.group_node);
2315 #ifdef CONFIG_PREEMPT_NOTIFIERS
2316 INIT_HLIST_HEAD(&p->preempt_notifiers);
2317 #endif
2320 * We mark the process as running here, but have not actually
2321 * inserted it onto the runqueue yet. This guarantees that
2322 * nobody will actually run it, and a signal or other external
2323 * event cannot wake it up and insert it on the runqueue either.
2325 p->state = TASK_RUNNING;
2329 * fork()/clone()-time setup:
2331 void sched_fork(struct task_struct *p, int clone_flags)
2333 int cpu = get_cpu();
2335 __sched_fork(p);
2337 #ifdef CONFIG_SMP
2338 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2339 #endif
2340 set_task_cpu(p, cpu);
2343 * Make sure we do not leak PI boosting priority to the child:
2345 p->prio = current->normal_prio;
2346 if (!rt_prio(p->prio))
2347 p->sched_class = &fair_sched_class;
2349 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2350 if (likely(sched_info_on()))
2351 memset(&p->sched_info, 0, sizeof(p->sched_info));
2352 #endif
2353 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2354 p->oncpu = 0;
2355 #endif
2356 #ifdef CONFIG_PREEMPT
2357 /* Want to start with kernel preemption disabled. */
2358 task_thread_info(p)->preempt_count = 1;
2359 #endif
2360 put_cpu();
2364 * wake_up_new_task - wake up a newly created task for the first time.
2366 * This function will do some initial scheduler statistics housekeeping
2367 * that must be done for every newly created context, then puts the task
2368 * on the runqueue and wakes it.
2370 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2372 unsigned long flags;
2373 struct rq *rq;
2375 rq = task_rq_lock(p, &flags);
2376 BUG_ON(p->state != TASK_RUNNING);
2377 update_rq_clock(rq);
2379 p->prio = effective_prio(p);
2381 if (!p->sched_class->task_new || !current->se.on_rq) {
2382 activate_task(rq, p, 0);
2383 } else {
2385 * Let the scheduling class do new task startup
2386 * management (if any):
2388 p->sched_class->task_new(rq, p);
2389 inc_nr_running(rq);
2391 check_preempt_curr(rq, p);
2392 #ifdef CONFIG_SMP
2393 if (p->sched_class->task_wake_up)
2394 p->sched_class->task_wake_up(rq, p);
2395 #endif
2396 task_rq_unlock(rq, &flags);
2399 #ifdef CONFIG_PREEMPT_NOTIFIERS
2402 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2403 * @notifier: notifier struct to register
2405 void preempt_notifier_register(struct preempt_notifier *notifier)
2407 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2409 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2412 * preempt_notifier_unregister - no longer interested in preemption notifications
2413 * @notifier: notifier struct to unregister
2415 * This is safe to call from within a preemption notifier.
2417 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2419 hlist_del(&notifier->link);
2421 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2423 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2425 struct preempt_notifier *notifier;
2426 struct hlist_node *node;
2428 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2429 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2432 static void
2433 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2434 struct task_struct *next)
2436 struct preempt_notifier *notifier;
2437 struct hlist_node *node;
2439 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2440 notifier->ops->sched_out(notifier, next);
2443 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2445 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2449 static void
2450 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2451 struct task_struct *next)
2455 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2458 * prepare_task_switch - prepare to switch tasks
2459 * @rq: the runqueue preparing to switch
2460 * @prev: the current task that is being switched out
2461 * @next: the task we are going to switch to.
2463 * This is called with the rq lock held and interrupts off. It must
2464 * be paired with a subsequent finish_task_switch after the context
2465 * switch.
2467 * prepare_task_switch sets up locking and calls architecture specific
2468 * hooks.
2470 static inline void
2471 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2472 struct task_struct *next)
2474 fire_sched_out_preempt_notifiers(prev, next);
2475 prepare_lock_switch(rq, next);
2476 prepare_arch_switch(next);
2480 * finish_task_switch - clean up after a task-switch
2481 * @rq: runqueue associated with task-switch
2482 * @prev: the thread we just switched away from.
2484 * finish_task_switch must be called after the context switch, paired
2485 * with a prepare_task_switch call before the context switch.
2486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2487 * and do any other architecture-specific cleanup actions.
2489 * Note that we may have delayed dropping an mm in context_switch(). If
2490 * so, we finish that here outside of the runqueue lock. (Doing it
2491 * with the lock held can cause deadlocks; see schedule() for
2492 * details.)
2494 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2495 __releases(rq->lock)
2497 struct mm_struct *mm = rq->prev_mm;
2498 long prev_state;
2500 rq->prev_mm = NULL;
2503 * A task struct has one reference for the use as "current".
2504 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2505 * schedule one last time. The schedule call will never return, and
2506 * the scheduled task must drop that reference.
2507 * The test for TASK_DEAD must occur while the runqueue locks are
2508 * still held, otherwise prev could be scheduled on another cpu, die
2509 * there before we look at prev->state, and then the reference would
2510 * be dropped twice.
2511 * Manfred Spraul <manfred@colorfullife.com>
2513 prev_state = prev->state;
2514 finish_arch_switch(prev);
2515 finish_lock_switch(rq, prev);
2516 #ifdef CONFIG_SMP
2517 if (current->sched_class->post_schedule)
2518 current->sched_class->post_schedule(rq);
2519 #endif
2521 fire_sched_in_preempt_notifiers(current);
2522 if (mm)
2523 mmdrop(mm);
2524 if (unlikely(prev_state == TASK_DEAD)) {
2526 * Remove function-return probe instances associated with this
2527 * task and put them back on the free list.
2529 kprobe_flush_task(prev);
2530 put_task_struct(prev);
2535 * schedule_tail - first thing a freshly forked thread must call.
2536 * @prev: the thread we just switched away from.
2538 asmlinkage void schedule_tail(struct task_struct *prev)
2539 __releases(rq->lock)
2541 struct rq *rq = this_rq();
2543 finish_task_switch(rq, prev);
2544 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2545 /* In this case, finish_task_switch does not reenable preemption */
2546 preempt_enable();
2547 #endif
2548 if (current->set_child_tid)
2549 put_user(task_pid_vnr(current), current->set_child_tid);
2553 * context_switch - switch to the new MM and the new
2554 * thread's register state.
2556 static inline void
2557 context_switch(struct rq *rq, struct task_struct *prev,
2558 struct task_struct *next)
2560 struct mm_struct *mm, *oldmm;
2562 prepare_task_switch(rq, prev, next);
2563 mm = next->mm;
2564 oldmm = prev->active_mm;
2566 * For paravirt, this is coupled with an exit in switch_to to
2567 * combine the page table reload and the switch backend into
2568 * one hypercall.
2570 arch_enter_lazy_cpu_mode();
2572 if (unlikely(!mm)) {
2573 next->active_mm = oldmm;
2574 atomic_inc(&oldmm->mm_count);
2575 enter_lazy_tlb(oldmm, next);
2576 } else
2577 switch_mm(oldmm, mm, next);
2579 if (unlikely(!prev->mm)) {
2580 prev->active_mm = NULL;
2581 rq->prev_mm = oldmm;
2584 * Since the runqueue lock will be released by the next
2585 * task (which is an invalid locking op but in the case
2586 * of the scheduler it's an obvious special-case), so we
2587 * do an early lockdep release here:
2589 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2590 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2591 #endif
2593 /* Here we just switch the register state and the stack. */
2594 switch_to(prev, next, prev);
2596 barrier();
2598 * this_rq must be evaluated again because prev may have moved
2599 * CPUs since it called schedule(), thus the 'rq' on its stack
2600 * frame will be invalid.
2602 finish_task_switch(this_rq(), prev);
2606 * nr_running, nr_uninterruptible and nr_context_switches:
2608 * externally visible scheduler statistics: current number of runnable
2609 * threads, current number of uninterruptible-sleeping threads, total
2610 * number of context switches performed since bootup.
2612 unsigned long nr_running(void)
2614 unsigned long i, sum = 0;
2616 for_each_online_cpu(i)
2617 sum += cpu_rq(i)->nr_running;
2619 return sum;
2622 unsigned long nr_uninterruptible(void)
2624 unsigned long i, sum = 0;
2626 for_each_possible_cpu(i)
2627 sum += cpu_rq(i)->nr_uninterruptible;
2630 * Since we read the counters lockless, it might be slightly
2631 * inaccurate. Do not allow it to go below zero though:
2633 if (unlikely((long)sum < 0))
2634 sum = 0;
2636 return sum;
2639 unsigned long long nr_context_switches(void)
2641 int i;
2642 unsigned long long sum = 0;
2644 for_each_possible_cpu(i)
2645 sum += cpu_rq(i)->nr_switches;
2647 return sum;
2650 unsigned long nr_iowait(void)
2652 unsigned long i, sum = 0;
2654 for_each_possible_cpu(i)
2655 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2657 return sum;
2660 unsigned long nr_active(void)
2662 unsigned long i, running = 0, uninterruptible = 0;
2664 for_each_online_cpu(i) {
2665 running += cpu_rq(i)->nr_running;
2666 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2669 if (unlikely((long)uninterruptible < 0))
2670 uninterruptible = 0;
2672 return running + uninterruptible;
2676 * Update rq->cpu_load[] statistics. This function is usually called every
2677 * scheduler tick (TICK_NSEC).
2679 static void update_cpu_load(struct rq *this_rq)
2681 unsigned long this_load = this_rq->load.weight;
2682 int i, scale;
2684 this_rq->nr_load_updates++;
2686 /* Update our load: */
2687 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2688 unsigned long old_load, new_load;
2690 /* scale is effectively 1 << i now, and >> i divides by scale */
2692 old_load = this_rq->cpu_load[i];
2693 new_load = this_load;
2695 * Round up the averaging division if load is increasing. This
2696 * prevents us from getting stuck on 9 if the load is 10, for
2697 * example.
2699 if (new_load > old_load)
2700 new_load += scale-1;
2701 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2705 #ifdef CONFIG_SMP
2708 * double_rq_lock - safely lock two runqueues
2710 * Note this does not disable interrupts like task_rq_lock,
2711 * you need to do so manually before calling.
2713 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2714 __acquires(rq1->lock)
2715 __acquires(rq2->lock)
2717 BUG_ON(!irqs_disabled());
2718 if (rq1 == rq2) {
2719 spin_lock(&rq1->lock);
2720 __acquire(rq2->lock); /* Fake it out ;) */
2721 } else {
2722 if (rq1 < rq2) {
2723 spin_lock(&rq1->lock);
2724 spin_lock(&rq2->lock);
2725 } else {
2726 spin_lock(&rq2->lock);
2727 spin_lock(&rq1->lock);
2730 update_rq_clock(rq1);
2731 update_rq_clock(rq2);
2735 * double_rq_unlock - safely unlock two runqueues
2737 * Note this does not restore interrupts like task_rq_unlock,
2738 * you need to do so manually after calling.
2740 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2741 __releases(rq1->lock)
2742 __releases(rq2->lock)
2744 spin_unlock(&rq1->lock);
2745 if (rq1 != rq2)
2746 spin_unlock(&rq2->lock);
2747 else
2748 __release(rq2->lock);
2752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2754 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2755 __releases(this_rq->lock)
2756 __acquires(busiest->lock)
2757 __acquires(this_rq->lock)
2759 int ret = 0;
2761 if (unlikely(!irqs_disabled())) {
2762 /* printk() doesn't work good under rq->lock */
2763 spin_unlock(&this_rq->lock);
2764 BUG_ON(1);
2766 if (unlikely(!spin_trylock(&busiest->lock))) {
2767 if (busiest < this_rq) {
2768 spin_unlock(&this_rq->lock);
2769 spin_lock(&busiest->lock);
2770 spin_lock(&this_rq->lock);
2771 ret = 1;
2772 } else
2773 spin_lock(&busiest->lock);
2775 return ret;
2779 * If dest_cpu is allowed for this process, migrate the task to it.
2780 * This is accomplished by forcing the cpu_allowed mask to only
2781 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2782 * the cpu_allowed mask is restored.
2784 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2786 struct migration_req req;
2787 unsigned long flags;
2788 struct rq *rq;
2790 rq = task_rq_lock(p, &flags);
2791 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2792 || unlikely(cpu_is_offline(dest_cpu)))
2793 goto out;
2795 /* force the process onto the specified CPU */
2796 if (migrate_task(p, dest_cpu, &req)) {
2797 /* Need to wait for migration thread (might exit: take ref). */
2798 struct task_struct *mt = rq->migration_thread;
2800 get_task_struct(mt);
2801 task_rq_unlock(rq, &flags);
2802 wake_up_process(mt);
2803 put_task_struct(mt);
2804 wait_for_completion(&req.done);
2806 return;
2808 out:
2809 task_rq_unlock(rq, &flags);
2813 * sched_exec - execve() is a valuable balancing opportunity, because at
2814 * this point the task has the smallest effective memory and cache footprint.
2816 void sched_exec(void)
2818 int new_cpu, this_cpu = get_cpu();
2819 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2820 put_cpu();
2821 if (new_cpu != this_cpu)
2822 sched_migrate_task(current, new_cpu);
2826 * pull_task - move a task from a remote runqueue to the local runqueue.
2827 * Both runqueues must be locked.
2829 static void pull_task(struct rq *src_rq, struct task_struct *p,
2830 struct rq *this_rq, int this_cpu)
2832 deactivate_task(src_rq, p, 0);
2833 set_task_cpu(p, this_cpu);
2834 activate_task(this_rq, p, 0);
2836 * Note that idle threads have a prio of MAX_PRIO, for this test
2837 * to be always true for them.
2839 check_preempt_curr(this_rq, p);
2843 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2845 static
2846 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2847 struct sched_domain *sd, enum cpu_idle_type idle,
2848 int *all_pinned)
2851 * We do not migrate tasks that are:
2852 * 1) running (obviously), or
2853 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2854 * 3) are cache-hot on their current CPU.
2856 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2857 schedstat_inc(p, se.nr_failed_migrations_affine);
2858 return 0;
2860 *all_pinned = 0;
2862 if (task_running(rq, p)) {
2863 schedstat_inc(p, se.nr_failed_migrations_running);
2864 return 0;
2868 * Aggressive migration if:
2869 * 1) task is cache cold, or
2870 * 2) too many balance attempts have failed.
2873 if (!task_hot(p, rq->clock, sd) ||
2874 sd->nr_balance_failed > sd->cache_nice_tries) {
2875 #ifdef CONFIG_SCHEDSTATS
2876 if (task_hot(p, rq->clock, sd)) {
2877 schedstat_inc(sd, lb_hot_gained[idle]);
2878 schedstat_inc(p, se.nr_forced_migrations);
2880 #endif
2881 return 1;
2884 if (task_hot(p, rq->clock, sd)) {
2885 schedstat_inc(p, se.nr_failed_migrations_hot);
2886 return 0;
2888 return 1;
2891 static unsigned long
2892 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2893 unsigned long max_load_move, struct sched_domain *sd,
2894 enum cpu_idle_type idle, int *all_pinned,
2895 int *this_best_prio, struct rq_iterator *iterator)
2897 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2898 struct task_struct *p;
2899 long rem_load_move = max_load_move;
2901 if (max_load_move == 0)
2902 goto out;
2904 pinned = 1;
2907 * Start the load-balancing iterator:
2909 p = iterator->start(iterator->arg);
2910 next:
2911 if (!p || loops++ > sysctl_sched_nr_migrate)
2912 goto out;
2914 * To help distribute high priority tasks across CPUs we don't
2915 * skip a task if it will be the highest priority task (i.e. smallest
2916 * prio value) on its new queue regardless of its load weight
2918 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2919 SCHED_LOAD_SCALE_FUZZ;
2920 if ((skip_for_load && p->prio >= *this_best_prio) ||
2921 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2922 p = iterator->next(iterator->arg);
2923 goto next;
2926 pull_task(busiest, p, this_rq, this_cpu);
2927 pulled++;
2928 rem_load_move -= p->se.load.weight;
2931 * We only want to steal up to the prescribed amount of weighted load.
2933 if (rem_load_move > 0) {
2934 if (p->prio < *this_best_prio)
2935 *this_best_prio = p->prio;
2936 p = iterator->next(iterator->arg);
2937 goto next;
2939 out:
2941 * Right now, this is one of only two places pull_task() is called,
2942 * so we can safely collect pull_task() stats here rather than
2943 * inside pull_task().
2945 schedstat_add(sd, lb_gained[idle], pulled);
2947 if (all_pinned)
2948 *all_pinned = pinned;
2950 return max_load_move - rem_load_move;
2954 * move_tasks tries to move up to max_load_move weighted load from busiest to
2955 * this_rq, as part of a balancing operation within domain "sd".
2956 * Returns 1 if successful and 0 otherwise.
2958 * Called with both runqueues locked.
2960 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2961 unsigned long max_load_move,
2962 struct sched_domain *sd, enum cpu_idle_type idle,
2963 int *all_pinned)
2965 const struct sched_class *class = sched_class_highest;
2966 unsigned long total_load_moved = 0;
2967 int this_best_prio = this_rq->curr->prio;
2969 do {
2970 total_load_moved +=
2971 class->load_balance(this_rq, this_cpu, busiest,
2972 max_load_move - total_load_moved,
2973 sd, idle, all_pinned, &this_best_prio);
2974 class = class->next;
2975 } while (class && max_load_move > total_load_moved);
2977 return total_load_moved > 0;
2980 static int
2981 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2982 struct sched_domain *sd, enum cpu_idle_type idle,
2983 struct rq_iterator *iterator)
2985 struct task_struct *p = iterator->start(iterator->arg);
2986 int pinned = 0;
2988 while (p) {
2989 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2990 pull_task(busiest, p, this_rq, this_cpu);
2992 * Right now, this is only the second place pull_task()
2993 * is called, so we can safely collect pull_task()
2994 * stats here rather than inside pull_task().
2996 schedstat_inc(sd, lb_gained[idle]);
2998 return 1;
3000 p = iterator->next(iterator->arg);
3003 return 0;
3007 * move_one_task tries to move exactly one task from busiest to this_rq, as
3008 * part of active balancing operations within "domain".
3009 * Returns 1 if successful and 0 otherwise.
3011 * Called with both runqueues locked.
3013 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3014 struct sched_domain *sd, enum cpu_idle_type idle)
3016 const struct sched_class *class;
3018 for (class = sched_class_highest; class; class = class->next)
3019 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3020 return 1;
3022 return 0;
3026 * find_busiest_group finds and returns the busiest CPU group within the
3027 * domain. It calculates and returns the amount of weighted load which
3028 * should be moved to restore balance via the imbalance parameter.
3030 static struct sched_group *
3031 find_busiest_group(struct sched_domain *sd, int this_cpu,
3032 unsigned long *imbalance, enum cpu_idle_type idle,
3033 int *sd_idle, const cpumask_t *cpus, int *balance)
3035 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3036 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3037 unsigned long max_pull;
3038 unsigned long busiest_load_per_task, busiest_nr_running;
3039 unsigned long this_load_per_task, this_nr_running;
3040 int load_idx, group_imb = 0;
3041 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3042 int power_savings_balance = 1;
3043 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3044 unsigned long min_nr_running = ULONG_MAX;
3045 struct sched_group *group_min = NULL, *group_leader = NULL;
3046 #endif
3048 max_load = this_load = total_load = total_pwr = 0;
3049 busiest_load_per_task = busiest_nr_running = 0;
3050 this_load_per_task = this_nr_running = 0;
3051 if (idle == CPU_NOT_IDLE)
3052 load_idx = sd->busy_idx;
3053 else if (idle == CPU_NEWLY_IDLE)
3054 load_idx = sd->newidle_idx;
3055 else
3056 load_idx = sd->idle_idx;
3058 do {
3059 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3060 int local_group;
3061 int i;
3062 int __group_imb = 0;
3063 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3064 unsigned long sum_nr_running, sum_weighted_load;
3066 local_group = cpu_isset(this_cpu, group->cpumask);
3068 if (local_group)
3069 balance_cpu = first_cpu(group->cpumask);
3071 /* Tally up the load of all CPUs in the group */
3072 sum_weighted_load = sum_nr_running = avg_load = 0;
3073 max_cpu_load = 0;
3074 min_cpu_load = ~0UL;
3076 for_each_cpu_mask(i, group->cpumask) {
3077 struct rq *rq;
3079 if (!cpu_isset(i, *cpus))
3080 continue;
3082 rq = cpu_rq(i);
3084 if (*sd_idle && rq->nr_running)
3085 *sd_idle = 0;
3087 /* Bias balancing toward cpus of our domain */
3088 if (local_group) {
3089 if (idle_cpu(i) && !first_idle_cpu) {
3090 first_idle_cpu = 1;
3091 balance_cpu = i;
3094 load = target_load(i, load_idx);
3095 } else {
3096 load = source_load(i, load_idx);
3097 if (load > max_cpu_load)
3098 max_cpu_load = load;
3099 if (min_cpu_load > load)
3100 min_cpu_load = load;
3103 avg_load += load;
3104 sum_nr_running += rq->nr_running;
3105 sum_weighted_load += weighted_cpuload(i);
3109 * First idle cpu or the first cpu(busiest) in this sched group
3110 * is eligible for doing load balancing at this and above
3111 * domains. In the newly idle case, we will allow all the cpu's
3112 * to do the newly idle load balance.
3114 if (idle != CPU_NEWLY_IDLE && local_group &&
3115 balance_cpu != this_cpu && balance) {
3116 *balance = 0;
3117 goto ret;
3120 total_load += avg_load;
3121 total_pwr += group->__cpu_power;
3123 /* Adjust by relative CPU power of the group */
3124 avg_load = sg_div_cpu_power(group,
3125 avg_load * SCHED_LOAD_SCALE);
3127 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3128 __group_imb = 1;
3130 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3132 if (local_group) {
3133 this_load = avg_load;
3134 this = group;
3135 this_nr_running = sum_nr_running;
3136 this_load_per_task = sum_weighted_load;
3137 } else if (avg_load > max_load &&
3138 (sum_nr_running > group_capacity || __group_imb)) {
3139 max_load = avg_load;
3140 busiest = group;
3141 busiest_nr_running = sum_nr_running;
3142 busiest_load_per_task = sum_weighted_load;
3143 group_imb = __group_imb;
3146 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3148 * Busy processors will not participate in power savings
3149 * balance.
3151 if (idle == CPU_NOT_IDLE ||
3152 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3153 goto group_next;
3156 * If the local group is idle or completely loaded
3157 * no need to do power savings balance at this domain
3159 if (local_group && (this_nr_running >= group_capacity ||
3160 !this_nr_running))
3161 power_savings_balance = 0;
3164 * If a group is already running at full capacity or idle,
3165 * don't include that group in power savings calculations
3167 if (!power_savings_balance || sum_nr_running >= group_capacity
3168 || !sum_nr_running)
3169 goto group_next;
3172 * Calculate the group which has the least non-idle load.
3173 * This is the group from where we need to pick up the load
3174 * for saving power
3176 if ((sum_nr_running < min_nr_running) ||
3177 (sum_nr_running == min_nr_running &&
3178 first_cpu(group->cpumask) <
3179 first_cpu(group_min->cpumask))) {
3180 group_min = group;
3181 min_nr_running = sum_nr_running;
3182 min_load_per_task = sum_weighted_load /
3183 sum_nr_running;
3187 * Calculate the group which is almost near its
3188 * capacity but still has some space to pick up some load
3189 * from other group and save more power
3191 if (sum_nr_running <= group_capacity - 1) {
3192 if (sum_nr_running > leader_nr_running ||
3193 (sum_nr_running == leader_nr_running &&
3194 first_cpu(group->cpumask) >
3195 first_cpu(group_leader->cpumask))) {
3196 group_leader = group;
3197 leader_nr_running = sum_nr_running;
3200 group_next:
3201 #endif
3202 group = group->next;
3203 } while (group != sd->groups);
3205 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3206 goto out_balanced;
3208 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3210 if (this_load >= avg_load ||
3211 100*max_load <= sd->imbalance_pct*this_load)
3212 goto out_balanced;
3214 busiest_load_per_task /= busiest_nr_running;
3215 if (group_imb)
3216 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3219 * We're trying to get all the cpus to the average_load, so we don't
3220 * want to push ourselves above the average load, nor do we wish to
3221 * reduce the max loaded cpu below the average load, as either of these
3222 * actions would just result in more rebalancing later, and ping-pong
3223 * tasks around. Thus we look for the minimum possible imbalance.
3224 * Negative imbalances (*we* are more loaded than anyone else) will
3225 * be counted as no imbalance for these purposes -- we can't fix that
3226 * by pulling tasks to us. Be careful of negative numbers as they'll
3227 * appear as very large values with unsigned longs.
3229 if (max_load <= busiest_load_per_task)
3230 goto out_balanced;
3233 * In the presence of smp nice balancing, certain scenarios can have
3234 * max load less than avg load(as we skip the groups at or below
3235 * its cpu_power, while calculating max_load..)
3237 if (max_load < avg_load) {
3238 *imbalance = 0;
3239 goto small_imbalance;
3242 /* Don't want to pull so many tasks that a group would go idle */
3243 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3245 /* How much load to actually move to equalise the imbalance */
3246 *imbalance = min(max_pull * busiest->__cpu_power,
3247 (avg_load - this_load) * this->__cpu_power)
3248 / SCHED_LOAD_SCALE;
3251 * if *imbalance is less than the average load per runnable task
3252 * there is no gaurantee that any tasks will be moved so we'll have
3253 * a think about bumping its value to force at least one task to be
3254 * moved
3256 if (*imbalance < busiest_load_per_task) {
3257 unsigned long tmp, pwr_now, pwr_move;
3258 unsigned int imbn;
3260 small_imbalance:
3261 pwr_move = pwr_now = 0;
3262 imbn = 2;
3263 if (this_nr_running) {
3264 this_load_per_task /= this_nr_running;
3265 if (busiest_load_per_task > this_load_per_task)
3266 imbn = 1;
3267 } else
3268 this_load_per_task = SCHED_LOAD_SCALE;
3270 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3271 busiest_load_per_task * imbn) {
3272 *imbalance = busiest_load_per_task;
3273 return busiest;
3277 * OK, we don't have enough imbalance to justify moving tasks,
3278 * however we may be able to increase total CPU power used by
3279 * moving them.
3282 pwr_now += busiest->__cpu_power *
3283 min(busiest_load_per_task, max_load);
3284 pwr_now += this->__cpu_power *
3285 min(this_load_per_task, this_load);
3286 pwr_now /= SCHED_LOAD_SCALE;
3288 /* Amount of load we'd subtract */
3289 tmp = sg_div_cpu_power(busiest,
3290 busiest_load_per_task * SCHED_LOAD_SCALE);
3291 if (max_load > tmp)
3292 pwr_move += busiest->__cpu_power *
3293 min(busiest_load_per_task, max_load - tmp);
3295 /* Amount of load we'd add */
3296 if (max_load * busiest->__cpu_power <
3297 busiest_load_per_task * SCHED_LOAD_SCALE)
3298 tmp = sg_div_cpu_power(this,
3299 max_load * busiest->__cpu_power);
3300 else
3301 tmp = sg_div_cpu_power(this,
3302 busiest_load_per_task * SCHED_LOAD_SCALE);
3303 pwr_move += this->__cpu_power *
3304 min(this_load_per_task, this_load + tmp);
3305 pwr_move /= SCHED_LOAD_SCALE;
3307 /* Move if we gain throughput */
3308 if (pwr_move > pwr_now)
3309 *imbalance = busiest_load_per_task;
3312 return busiest;
3314 out_balanced:
3315 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3316 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3317 goto ret;
3319 if (this == group_leader && group_leader != group_min) {
3320 *imbalance = min_load_per_task;
3321 return group_min;
3323 #endif
3324 ret:
3325 *imbalance = 0;
3326 return NULL;
3330 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3332 static struct rq *
3333 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3334 unsigned long imbalance, const cpumask_t *cpus)
3336 struct rq *busiest = NULL, *rq;
3337 unsigned long max_load = 0;
3338 int i;
3340 for_each_cpu_mask(i, group->cpumask) {
3341 unsigned long wl;
3343 if (!cpu_isset(i, *cpus))
3344 continue;
3346 rq = cpu_rq(i);
3347 wl = weighted_cpuload(i);
3349 if (rq->nr_running == 1 && wl > imbalance)
3350 continue;
3352 if (wl > max_load) {
3353 max_load = wl;
3354 busiest = rq;
3358 return busiest;
3362 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3363 * so long as it is large enough.
3365 #define MAX_PINNED_INTERVAL 512
3368 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3369 * tasks if there is an imbalance.
3371 static int load_balance(int this_cpu, struct rq *this_rq,
3372 struct sched_domain *sd, enum cpu_idle_type idle,
3373 int *balance, cpumask_t *cpus)
3375 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3376 struct sched_group *group;
3377 unsigned long imbalance;
3378 struct rq *busiest;
3379 unsigned long flags;
3381 cpus_setall(*cpus);
3384 * When power savings policy is enabled for the parent domain, idle
3385 * sibling can pick up load irrespective of busy siblings. In this case,
3386 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3387 * portraying it as CPU_NOT_IDLE.
3389 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3390 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3391 sd_idle = 1;
3393 schedstat_inc(sd, lb_count[idle]);
3395 redo:
3396 update_shares(sd);
3397 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3398 cpus, balance);
3400 if (*balance == 0)
3401 goto out_balanced;
3403 if (!group) {
3404 schedstat_inc(sd, lb_nobusyg[idle]);
3405 goto out_balanced;
3408 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3409 if (!busiest) {
3410 schedstat_inc(sd, lb_nobusyq[idle]);
3411 goto out_balanced;
3414 BUG_ON(busiest == this_rq);
3416 schedstat_add(sd, lb_imbalance[idle], imbalance);
3418 ld_moved = 0;
3419 if (busiest->nr_running > 1) {
3421 * Attempt to move tasks. If find_busiest_group has found
3422 * an imbalance but busiest->nr_running <= 1, the group is
3423 * still unbalanced. ld_moved simply stays zero, so it is
3424 * correctly treated as an imbalance.
3426 local_irq_save(flags);
3427 double_rq_lock(this_rq, busiest);
3428 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3429 imbalance, sd, idle, &all_pinned);
3430 double_rq_unlock(this_rq, busiest);
3431 local_irq_restore(flags);
3434 * some other cpu did the load balance for us.
3436 if (ld_moved && this_cpu != smp_processor_id())
3437 resched_cpu(this_cpu);
3439 /* All tasks on this runqueue were pinned by CPU affinity */
3440 if (unlikely(all_pinned)) {
3441 cpu_clear(cpu_of(busiest), *cpus);
3442 if (!cpus_empty(*cpus))
3443 goto redo;
3444 goto out_balanced;
3448 if (!ld_moved) {
3449 schedstat_inc(sd, lb_failed[idle]);
3450 sd->nr_balance_failed++;
3452 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3454 spin_lock_irqsave(&busiest->lock, flags);
3456 /* don't kick the migration_thread, if the curr
3457 * task on busiest cpu can't be moved to this_cpu
3459 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3460 spin_unlock_irqrestore(&busiest->lock, flags);
3461 all_pinned = 1;
3462 goto out_one_pinned;
3465 if (!busiest->active_balance) {
3466 busiest->active_balance = 1;
3467 busiest->push_cpu = this_cpu;
3468 active_balance = 1;
3470 spin_unlock_irqrestore(&busiest->lock, flags);
3471 if (active_balance)
3472 wake_up_process(busiest->migration_thread);
3475 * We've kicked active balancing, reset the failure
3476 * counter.
3478 sd->nr_balance_failed = sd->cache_nice_tries+1;
3480 } else
3481 sd->nr_balance_failed = 0;
3483 if (likely(!active_balance)) {
3484 /* We were unbalanced, so reset the balancing interval */
3485 sd->balance_interval = sd->min_interval;
3486 } else {
3488 * If we've begun active balancing, start to back off. This
3489 * case may not be covered by the all_pinned logic if there
3490 * is only 1 task on the busy runqueue (because we don't call
3491 * move_tasks).
3493 if (sd->balance_interval < sd->max_interval)
3494 sd->balance_interval *= 2;
3497 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3498 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3499 ld_moved = -1;
3501 goto out;
3503 out_balanced:
3504 schedstat_inc(sd, lb_balanced[idle]);
3506 sd->nr_balance_failed = 0;
3508 out_one_pinned:
3509 /* tune up the balancing interval */
3510 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3511 (sd->balance_interval < sd->max_interval))
3512 sd->balance_interval *= 2;
3514 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3515 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3516 ld_moved = -1;
3517 else
3518 ld_moved = 0;
3519 out:
3520 if (ld_moved)
3521 update_shares(sd);
3522 return ld_moved;
3526 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3527 * tasks if there is an imbalance.
3529 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3530 * this_rq is locked.
3532 static int
3533 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3534 cpumask_t *cpus)
3536 struct sched_group *group;
3537 struct rq *busiest = NULL;
3538 unsigned long imbalance;
3539 int ld_moved = 0;
3540 int sd_idle = 0;
3541 int all_pinned = 0;
3543 cpus_setall(*cpus);
3546 * When power savings policy is enabled for the parent domain, idle
3547 * sibling can pick up load irrespective of busy siblings. In this case,
3548 * let the state of idle sibling percolate up as IDLE, instead of
3549 * portraying it as CPU_NOT_IDLE.
3551 if (sd->flags & SD_SHARE_CPUPOWER &&
3552 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3553 sd_idle = 1;
3555 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3556 redo:
3557 update_shares_locked(this_rq, sd);
3558 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3559 &sd_idle, cpus, NULL);
3560 if (!group) {
3561 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3562 goto out_balanced;
3565 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3566 if (!busiest) {
3567 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3568 goto out_balanced;
3571 BUG_ON(busiest == this_rq);
3573 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3575 ld_moved = 0;
3576 if (busiest->nr_running > 1) {
3577 /* Attempt to move tasks */
3578 double_lock_balance(this_rq, busiest);
3579 /* this_rq->clock is already updated */
3580 update_rq_clock(busiest);
3581 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3582 imbalance, sd, CPU_NEWLY_IDLE,
3583 &all_pinned);
3584 spin_unlock(&busiest->lock);
3586 if (unlikely(all_pinned)) {
3587 cpu_clear(cpu_of(busiest), *cpus);
3588 if (!cpus_empty(*cpus))
3589 goto redo;
3593 if (!ld_moved) {
3594 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3595 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3596 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3597 return -1;
3598 } else
3599 sd->nr_balance_failed = 0;
3601 update_shares_locked(this_rq, sd);
3602 return ld_moved;
3604 out_balanced:
3605 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3606 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3607 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3608 return -1;
3609 sd->nr_balance_failed = 0;
3611 return 0;
3615 * idle_balance is called by schedule() if this_cpu is about to become
3616 * idle. Attempts to pull tasks from other CPUs.
3618 static void idle_balance(int this_cpu, struct rq *this_rq)
3620 struct sched_domain *sd;
3621 int pulled_task = -1;
3622 unsigned long next_balance = jiffies + HZ;
3623 cpumask_t tmpmask;
3625 for_each_domain(this_cpu, sd) {
3626 unsigned long interval;
3628 if (!(sd->flags & SD_LOAD_BALANCE))
3629 continue;
3631 if (sd->flags & SD_BALANCE_NEWIDLE)
3632 /* If we've pulled tasks over stop searching: */
3633 pulled_task = load_balance_newidle(this_cpu, this_rq,
3634 sd, &tmpmask);
3636 interval = msecs_to_jiffies(sd->balance_interval);
3637 if (time_after(next_balance, sd->last_balance + interval))
3638 next_balance = sd->last_balance + interval;
3639 if (pulled_task)
3640 break;
3642 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3644 * We are going idle. next_balance may be set based on
3645 * a busy processor. So reset next_balance.
3647 this_rq->next_balance = next_balance;
3652 * active_load_balance is run by migration threads. It pushes running tasks
3653 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3654 * running on each physical CPU where possible, and avoids physical /
3655 * logical imbalances.
3657 * Called with busiest_rq locked.
3659 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3661 int target_cpu = busiest_rq->push_cpu;
3662 struct sched_domain *sd;
3663 struct rq *target_rq;
3665 /* Is there any task to move? */
3666 if (busiest_rq->nr_running <= 1)
3667 return;
3669 target_rq = cpu_rq(target_cpu);
3672 * This condition is "impossible", if it occurs
3673 * we need to fix it. Originally reported by
3674 * Bjorn Helgaas on a 128-cpu setup.
3676 BUG_ON(busiest_rq == target_rq);
3678 /* move a task from busiest_rq to target_rq */
3679 double_lock_balance(busiest_rq, target_rq);
3680 update_rq_clock(busiest_rq);
3681 update_rq_clock(target_rq);
3683 /* Search for an sd spanning us and the target CPU. */
3684 for_each_domain(target_cpu, sd) {
3685 if ((sd->flags & SD_LOAD_BALANCE) &&
3686 cpu_isset(busiest_cpu, sd->span))
3687 break;
3690 if (likely(sd)) {
3691 schedstat_inc(sd, alb_count);
3693 if (move_one_task(target_rq, target_cpu, busiest_rq,
3694 sd, CPU_IDLE))
3695 schedstat_inc(sd, alb_pushed);
3696 else
3697 schedstat_inc(sd, alb_failed);
3699 spin_unlock(&target_rq->lock);
3702 #ifdef CONFIG_NO_HZ
3703 static struct {
3704 atomic_t load_balancer;
3705 cpumask_t cpu_mask;
3706 } nohz ____cacheline_aligned = {
3707 .load_balancer = ATOMIC_INIT(-1),
3708 .cpu_mask = CPU_MASK_NONE,
3712 * This routine will try to nominate the ilb (idle load balancing)
3713 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3714 * load balancing on behalf of all those cpus. If all the cpus in the system
3715 * go into this tickless mode, then there will be no ilb owner (as there is
3716 * no need for one) and all the cpus will sleep till the next wakeup event
3717 * arrives...
3719 * For the ilb owner, tick is not stopped. And this tick will be used
3720 * for idle load balancing. ilb owner will still be part of
3721 * nohz.cpu_mask..
3723 * While stopping the tick, this cpu will become the ilb owner if there
3724 * is no other owner. And will be the owner till that cpu becomes busy
3725 * or if all cpus in the system stop their ticks at which point
3726 * there is no need for ilb owner.
3728 * When the ilb owner becomes busy, it nominates another owner, during the
3729 * next busy scheduler_tick()
3731 int select_nohz_load_balancer(int stop_tick)
3733 int cpu = smp_processor_id();
3735 if (stop_tick) {
3736 cpu_set(cpu, nohz.cpu_mask);
3737 cpu_rq(cpu)->in_nohz_recently = 1;
3740 * If we are going offline and still the leader, give up!
3742 if (cpu_is_offline(cpu) &&
3743 atomic_read(&nohz.load_balancer) == cpu) {
3744 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3745 BUG();
3746 return 0;
3749 /* time for ilb owner also to sleep */
3750 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3751 if (atomic_read(&nohz.load_balancer) == cpu)
3752 atomic_set(&nohz.load_balancer, -1);
3753 return 0;
3756 if (atomic_read(&nohz.load_balancer) == -1) {
3757 /* make me the ilb owner */
3758 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3759 return 1;
3760 } else if (atomic_read(&nohz.load_balancer) == cpu)
3761 return 1;
3762 } else {
3763 if (!cpu_isset(cpu, nohz.cpu_mask))
3764 return 0;
3766 cpu_clear(cpu, nohz.cpu_mask);
3768 if (atomic_read(&nohz.load_balancer) == cpu)
3769 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3770 BUG();
3772 return 0;
3774 #endif
3776 static DEFINE_SPINLOCK(balancing);
3779 * It checks each scheduling domain to see if it is due to be balanced,
3780 * and initiates a balancing operation if so.
3782 * Balancing parameters are set up in arch_init_sched_domains.
3784 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3786 int balance = 1;
3787 struct rq *rq = cpu_rq(cpu);
3788 unsigned long interval;
3789 struct sched_domain *sd;
3790 /* Earliest time when we have to do rebalance again */
3791 unsigned long next_balance = jiffies + 60*HZ;
3792 int update_next_balance = 0;
3793 int need_serialize;
3794 cpumask_t tmp;
3796 for_each_domain(cpu, sd) {
3797 if (!(sd->flags & SD_LOAD_BALANCE))
3798 continue;
3800 interval = sd->balance_interval;
3801 if (idle != CPU_IDLE)
3802 interval *= sd->busy_factor;
3804 /* scale ms to jiffies */
3805 interval = msecs_to_jiffies(interval);
3806 if (unlikely(!interval))
3807 interval = 1;
3808 if (interval > HZ*NR_CPUS/10)
3809 interval = HZ*NR_CPUS/10;
3811 need_serialize = sd->flags & SD_SERIALIZE;
3813 if (need_serialize) {
3814 if (!spin_trylock(&balancing))
3815 goto out;
3818 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3819 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3821 * We've pulled tasks over so either we're no
3822 * longer idle, or one of our SMT siblings is
3823 * not idle.
3825 idle = CPU_NOT_IDLE;
3827 sd->last_balance = jiffies;
3829 if (need_serialize)
3830 spin_unlock(&balancing);
3831 out:
3832 if (time_after(next_balance, sd->last_balance + interval)) {
3833 next_balance = sd->last_balance + interval;
3834 update_next_balance = 1;
3838 * Stop the load balance at this level. There is another
3839 * CPU in our sched group which is doing load balancing more
3840 * actively.
3842 if (!balance)
3843 break;
3847 * next_balance will be updated only when there is a need.
3848 * When the cpu is attached to null domain for ex, it will not be
3849 * updated.
3851 if (likely(update_next_balance))
3852 rq->next_balance = next_balance;
3856 * run_rebalance_domains is triggered when needed from the scheduler tick.
3857 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3858 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3860 static void run_rebalance_domains(struct softirq_action *h)
3862 int this_cpu = smp_processor_id();
3863 struct rq *this_rq = cpu_rq(this_cpu);
3864 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3865 CPU_IDLE : CPU_NOT_IDLE;
3867 rebalance_domains(this_cpu, idle);
3869 #ifdef CONFIG_NO_HZ
3871 * If this cpu is the owner for idle load balancing, then do the
3872 * balancing on behalf of the other idle cpus whose ticks are
3873 * stopped.
3875 if (this_rq->idle_at_tick &&
3876 atomic_read(&nohz.load_balancer) == this_cpu) {
3877 cpumask_t cpus = nohz.cpu_mask;
3878 struct rq *rq;
3879 int balance_cpu;
3881 cpu_clear(this_cpu, cpus);
3882 for_each_cpu_mask(balance_cpu, cpus) {
3884 * If this cpu gets work to do, stop the load balancing
3885 * work being done for other cpus. Next load
3886 * balancing owner will pick it up.
3888 if (need_resched())
3889 break;
3891 rebalance_domains(balance_cpu, CPU_IDLE);
3893 rq = cpu_rq(balance_cpu);
3894 if (time_after(this_rq->next_balance, rq->next_balance))
3895 this_rq->next_balance = rq->next_balance;
3898 #endif
3902 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3904 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3905 * idle load balancing owner or decide to stop the periodic load balancing,
3906 * if the whole system is idle.
3908 static inline void trigger_load_balance(struct rq *rq, int cpu)
3910 #ifdef CONFIG_NO_HZ
3912 * If we were in the nohz mode recently and busy at the current
3913 * scheduler tick, then check if we need to nominate new idle
3914 * load balancer.
3916 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3917 rq->in_nohz_recently = 0;
3919 if (atomic_read(&nohz.load_balancer) == cpu) {
3920 cpu_clear(cpu, nohz.cpu_mask);
3921 atomic_set(&nohz.load_balancer, -1);
3924 if (atomic_read(&nohz.load_balancer) == -1) {
3926 * simple selection for now: Nominate the
3927 * first cpu in the nohz list to be the next
3928 * ilb owner.
3930 * TBD: Traverse the sched domains and nominate
3931 * the nearest cpu in the nohz.cpu_mask.
3933 int ilb = first_cpu(nohz.cpu_mask);
3935 if (ilb < nr_cpu_ids)
3936 resched_cpu(ilb);
3941 * If this cpu is idle and doing idle load balancing for all the
3942 * cpus with ticks stopped, is it time for that to stop?
3944 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3945 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3946 resched_cpu(cpu);
3947 return;
3951 * If this cpu is idle and the idle load balancing is done by
3952 * someone else, then no need raise the SCHED_SOFTIRQ
3954 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3955 cpu_isset(cpu, nohz.cpu_mask))
3956 return;
3957 #endif
3958 if (time_after_eq(jiffies, rq->next_balance))
3959 raise_softirq(SCHED_SOFTIRQ);
3962 #else /* CONFIG_SMP */
3965 * on UP we do not need to balance between CPUs:
3967 static inline void idle_balance(int cpu, struct rq *rq)
3971 #endif
3973 DEFINE_PER_CPU(struct kernel_stat, kstat);
3975 EXPORT_PER_CPU_SYMBOL(kstat);
3978 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3979 * that have not yet been banked in case the task is currently running.
3981 unsigned long long task_sched_runtime(struct task_struct *p)
3983 unsigned long flags;
3984 u64 ns, delta_exec;
3985 struct rq *rq;
3987 rq = task_rq_lock(p, &flags);
3988 ns = p->se.sum_exec_runtime;
3989 if (task_current(rq, p)) {
3990 update_rq_clock(rq);
3991 delta_exec = rq->clock - p->se.exec_start;
3992 if ((s64)delta_exec > 0)
3993 ns += delta_exec;
3995 task_rq_unlock(rq, &flags);
3997 return ns;
4001 * Account user cpu time to a process.
4002 * @p: the process that the cpu time gets accounted to
4003 * @cputime: the cpu time spent in user space since the last update
4005 void account_user_time(struct task_struct *p, cputime_t cputime)
4007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4008 cputime64_t tmp;
4010 p->utime = cputime_add(p->utime, cputime);
4012 /* Add user time to cpustat. */
4013 tmp = cputime_to_cputime64(cputime);
4014 if (TASK_NICE(p) > 0)
4015 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4016 else
4017 cpustat->user = cputime64_add(cpustat->user, tmp);
4021 * Account guest cpu time to a process.
4022 * @p: the process that the cpu time gets accounted to
4023 * @cputime: the cpu time spent in virtual machine since the last update
4025 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4027 cputime64_t tmp;
4028 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4030 tmp = cputime_to_cputime64(cputime);
4032 p->utime = cputime_add(p->utime, cputime);
4033 p->gtime = cputime_add(p->gtime, cputime);
4035 cpustat->user = cputime64_add(cpustat->user, tmp);
4036 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4040 * Account scaled user cpu time to a process.
4041 * @p: the process that the cpu time gets accounted to
4042 * @cputime: the cpu time spent in user space since the last update
4044 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4046 p->utimescaled = cputime_add(p->utimescaled, cputime);
4050 * Account system cpu time to a process.
4051 * @p: the process that the cpu time gets accounted to
4052 * @hardirq_offset: the offset to subtract from hardirq_count()
4053 * @cputime: the cpu time spent in kernel space since the last update
4055 void account_system_time(struct task_struct *p, int hardirq_offset,
4056 cputime_t cputime)
4058 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4059 struct rq *rq = this_rq();
4060 cputime64_t tmp;
4062 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4063 account_guest_time(p, cputime);
4064 return;
4067 p->stime = cputime_add(p->stime, cputime);
4069 /* Add system time to cpustat. */
4070 tmp = cputime_to_cputime64(cputime);
4071 if (hardirq_count() - hardirq_offset)
4072 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4073 else if (softirq_count())
4074 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4075 else if (p != rq->idle)
4076 cpustat->system = cputime64_add(cpustat->system, tmp);
4077 else if (atomic_read(&rq->nr_iowait) > 0)
4078 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4079 else
4080 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4081 /* Account for system time used */
4082 acct_update_integrals(p);
4086 * Account scaled system cpu time to a process.
4087 * @p: the process that the cpu time gets accounted to
4088 * @hardirq_offset: the offset to subtract from hardirq_count()
4089 * @cputime: the cpu time spent in kernel space since the last update
4091 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4093 p->stimescaled = cputime_add(p->stimescaled, cputime);
4097 * Account for involuntary wait time.
4098 * @p: the process from which the cpu time has been stolen
4099 * @steal: the cpu time spent in involuntary wait
4101 void account_steal_time(struct task_struct *p, cputime_t steal)
4103 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4104 cputime64_t tmp = cputime_to_cputime64(steal);
4105 struct rq *rq = this_rq();
4107 if (p == rq->idle) {
4108 p->stime = cputime_add(p->stime, steal);
4109 if (atomic_read(&rq->nr_iowait) > 0)
4110 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4111 else
4112 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4113 } else
4114 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4118 * This function gets called by the timer code, with HZ frequency.
4119 * We call it with interrupts disabled.
4121 * It also gets called by the fork code, when changing the parent's
4122 * timeslices.
4124 void scheduler_tick(void)
4126 int cpu = smp_processor_id();
4127 struct rq *rq = cpu_rq(cpu);
4128 struct task_struct *curr = rq->curr;
4130 sched_clock_tick();
4132 spin_lock(&rq->lock);
4133 update_rq_clock(rq);
4134 update_cpu_load(rq);
4135 curr->sched_class->task_tick(rq, curr, 0);
4136 spin_unlock(&rq->lock);
4138 #ifdef CONFIG_SMP
4139 rq->idle_at_tick = idle_cpu(cpu);
4140 trigger_load_balance(rq, cpu);
4141 #endif
4144 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4146 void __kprobes add_preempt_count(int val)
4149 * Underflow?
4151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4152 return;
4153 preempt_count() += val;
4155 * Spinlock count overflowing soon?
4157 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4158 PREEMPT_MASK - 10);
4160 EXPORT_SYMBOL(add_preempt_count);
4162 void __kprobes sub_preempt_count(int val)
4165 * Underflow?
4167 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4168 return;
4170 * Is the spinlock portion underflowing?
4172 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4173 !(preempt_count() & PREEMPT_MASK)))
4174 return;
4176 preempt_count() -= val;
4178 EXPORT_SYMBOL(sub_preempt_count);
4180 #endif
4183 * Print scheduling while atomic bug:
4185 static noinline void __schedule_bug(struct task_struct *prev)
4187 struct pt_regs *regs = get_irq_regs();
4189 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4190 prev->comm, prev->pid, preempt_count());
4192 debug_show_held_locks(prev);
4193 print_modules();
4194 if (irqs_disabled())
4195 print_irqtrace_events(prev);
4197 if (regs)
4198 show_regs(regs);
4199 else
4200 dump_stack();
4204 * Various schedule()-time debugging checks and statistics:
4206 static inline void schedule_debug(struct task_struct *prev)
4209 * Test if we are atomic. Since do_exit() needs to call into
4210 * schedule() atomically, we ignore that path for now.
4211 * Otherwise, whine if we are scheduling when we should not be.
4213 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4214 __schedule_bug(prev);
4216 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4218 schedstat_inc(this_rq(), sched_count);
4219 #ifdef CONFIG_SCHEDSTATS
4220 if (unlikely(prev->lock_depth >= 0)) {
4221 schedstat_inc(this_rq(), bkl_count);
4222 schedstat_inc(prev, sched_info.bkl_count);
4224 #endif
4228 * Pick up the highest-prio task:
4230 static inline struct task_struct *
4231 pick_next_task(struct rq *rq, struct task_struct *prev)
4233 const struct sched_class *class;
4234 struct task_struct *p;
4237 * Optimization: we know that if all tasks are in
4238 * the fair class we can call that function directly:
4240 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4241 p = fair_sched_class.pick_next_task(rq);
4242 if (likely(p))
4243 return p;
4246 class = sched_class_highest;
4247 for ( ; ; ) {
4248 p = class->pick_next_task(rq);
4249 if (p)
4250 return p;
4252 * Will never be NULL as the idle class always
4253 * returns a non-NULL p:
4255 class = class->next;
4260 * schedule() is the main scheduler function.
4262 asmlinkage void __sched schedule(void)
4264 struct task_struct *prev, *next;
4265 unsigned long *switch_count;
4266 struct rq *rq;
4267 int cpu, hrtick = sched_feat(HRTICK);
4269 need_resched:
4270 preempt_disable();
4271 cpu = smp_processor_id();
4272 rq = cpu_rq(cpu);
4273 rcu_qsctr_inc(cpu);
4274 prev = rq->curr;
4275 switch_count = &prev->nivcsw;
4277 release_kernel_lock(prev);
4278 need_resched_nonpreemptible:
4280 schedule_debug(prev);
4282 if (hrtick)
4283 hrtick_clear(rq);
4286 * Do the rq-clock update outside the rq lock:
4288 local_irq_disable();
4289 update_rq_clock(rq);
4290 spin_lock(&rq->lock);
4291 clear_tsk_need_resched(prev);
4293 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4294 if (unlikely(signal_pending_state(prev->state, prev)))
4295 prev->state = TASK_RUNNING;
4296 else
4297 deactivate_task(rq, prev, 1);
4298 switch_count = &prev->nvcsw;
4301 #ifdef CONFIG_SMP
4302 if (prev->sched_class->pre_schedule)
4303 prev->sched_class->pre_schedule(rq, prev);
4304 #endif
4306 if (unlikely(!rq->nr_running))
4307 idle_balance(cpu, rq);
4309 prev->sched_class->put_prev_task(rq, prev);
4310 next = pick_next_task(rq, prev);
4312 if (likely(prev != next)) {
4313 sched_info_switch(prev, next);
4315 rq->nr_switches++;
4316 rq->curr = next;
4317 ++*switch_count;
4319 context_switch(rq, prev, next); /* unlocks the rq */
4321 * the context switch might have flipped the stack from under
4322 * us, hence refresh the local variables.
4324 cpu = smp_processor_id();
4325 rq = cpu_rq(cpu);
4326 } else
4327 spin_unlock_irq(&rq->lock);
4329 if (hrtick)
4330 hrtick_set(rq);
4332 if (unlikely(reacquire_kernel_lock(current) < 0))
4333 goto need_resched_nonpreemptible;
4335 preempt_enable_no_resched();
4336 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4337 goto need_resched;
4339 EXPORT_SYMBOL(schedule);
4341 #ifdef CONFIG_PREEMPT
4343 * this is the entry point to schedule() from in-kernel preemption
4344 * off of preempt_enable. Kernel preemptions off return from interrupt
4345 * occur there and call schedule directly.
4347 asmlinkage void __sched preempt_schedule(void)
4349 struct thread_info *ti = current_thread_info();
4352 * If there is a non-zero preempt_count or interrupts are disabled,
4353 * we do not want to preempt the current task. Just return..
4355 if (likely(ti->preempt_count || irqs_disabled()))
4356 return;
4358 do {
4359 add_preempt_count(PREEMPT_ACTIVE);
4360 schedule();
4361 sub_preempt_count(PREEMPT_ACTIVE);
4364 * Check again in case we missed a preemption opportunity
4365 * between schedule and now.
4367 barrier();
4368 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4370 EXPORT_SYMBOL(preempt_schedule);
4373 * this is the entry point to schedule() from kernel preemption
4374 * off of irq context.
4375 * Note, that this is called and return with irqs disabled. This will
4376 * protect us against recursive calling from irq.
4378 asmlinkage void __sched preempt_schedule_irq(void)
4380 struct thread_info *ti = current_thread_info();
4382 /* Catch callers which need to be fixed */
4383 BUG_ON(ti->preempt_count || !irqs_disabled());
4385 do {
4386 add_preempt_count(PREEMPT_ACTIVE);
4387 local_irq_enable();
4388 schedule();
4389 local_irq_disable();
4390 sub_preempt_count(PREEMPT_ACTIVE);
4393 * Check again in case we missed a preemption opportunity
4394 * between schedule and now.
4396 barrier();
4397 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4400 #endif /* CONFIG_PREEMPT */
4402 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4403 void *key)
4405 return try_to_wake_up(curr->private, mode, sync);
4407 EXPORT_SYMBOL(default_wake_function);
4410 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4411 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4412 * number) then we wake all the non-exclusive tasks and one exclusive task.
4414 * There are circumstances in which we can try to wake a task which has already
4415 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4416 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4418 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4419 int nr_exclusive, int sync, void *key)
4421 wait_queue_t *curr, *next;
4423 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4424 unsigned flags = curr->flags;
4426 if (curr->func(curr, mode, sync, key) &&
4427 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4428 break;
4433 * __wake_up - wake up threads blocked on a waitqueue.
4434 * @q: the waitqueue
4435 * @mode: which threads
4436 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4437 * @key: is directly passed to the wakeup function
4439 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4440 int nr_exclusive, void *key)
4442 unsigned long flags;
4444 spin_lock_irqsave(&q->lock, flags);
4445 __wake_up_common(q, mode, nr_exclusive, 0, key);
4446 spin_unlock_irqrestore(&q->lock, flags);
4448 EXPORT_SYMBOL(__wake_up);
4451 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4453 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4455 __wake_up_common(q, mode, 1, 0, NULL);
4459 * __wake_up_sync - wake up threads blocked on a waitqueue.
4460 * @q: the waitqueue
4461 * @mode: which threads
4462 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4464 * The sync wakeup differs that the waker knows that it will schedule
4465 * away soon, so while the target thread will be woken up, it will not
4466 * be migrated to another CPU - ie. the two threads are 'synchronized'
4467 * with each other. This can prevent needless bouncing between CPUs.
4469 * On UP it can prevent extra preemption.
4471 void
4472 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4474 unsigned long flags;
4475 int sync = 1;
4477 if (unlikely(!q))
4478 return;
4480 if (unlikely(!nr_exclusive))
4481 sync = 0;
4483 spin_lock_irqsave(&q->lock, flags);
4484 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4485 spin_unlock_irqrestore(&q->lock, flags);
4487 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4489 void complete(struct completion *x)
4491 unsigned long flags;
4493 spin_lock_irqsave(&x->wait.lock, flags);
4494 x->done++;
4495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4496 spin_unlock_irqrestore(&x->wait.lock, flags);
4498 EXPORT_SYMBOL(complete);
4500 void complete_all(struct completion *x)
4502 unsigned long flags;
4504 spin_lock_irqsave(&x->wait.lock, flags);
4505 x->done += UINT_MAX/2;
4506 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4507 spin_unlock_irqrestore(&x->wait.lock, flags);
4509 EXPORT_SYMBOL(complete_all);
4511 static inline long __sched
4512 do_wait_for_common(struct completion *x, long timeout, int state)
4514 if (!x->done) {
4515 DECLARE_WAITQUEUE(wait, current);
4517 wait.flags |= WQ_FLAG_EXCLUSIVE;
4518 __add_wait_queue_tail(&x->wait, &wait);
4519 do {
4520 if ((state == TASK_INTERRUPTIBLE &&
4521 signal_pending(current)) ||
4522 (state == TASK_KILLABLE &&
4523 fatal_signal_pending(current))) {
4524 timeout = -ERESTARTSYS;
4525 break;
4527 __set_current_state(state);
4528 spin_unlock_irq(&x->wait.lock);
4529 timeout = schedule_timeout(timeout);
4530 spin_lock_irq(&x->wait.lock);
4531 } while (!x->done && timeout);
4532 __remove_wait_queue(&x->wait, &wait);
4533 if (!x->done)
4534 return timeout;
4536 x->done--;
4537 return timeout ?: 1;
4540 static long __sched
4541 wait_for_common(struct completion *x, long timeout, int state)
4543 might_sleep();
4545 spin_lock_irq(&x->wait.lock);
4546 timeout = do_wait_for_common(x, timeout, state);
4547 spin_unlock_irq(&x->wait.lock);
4548 return timeout;
4551 void __sched wait_for_completion(struct completion *x)
4553 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4555 EXPORT_SYMBOL(wait_for_completion);
4557 unsigned long __sched
4558 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4560 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4562 EXPORT_SYMBOL(wait_for_completion_timeout);
4564 int __sched wait_for_completion_interruptible(struct completion *x)
4566 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4567 if (t == -ERESTARTSYS)
4568 return t;
4569 return 0;
4571 EXPORT_SYMBOL(wait_for_completion_interruptible);
4573 unsigned long __sched
4574 wait_for_completion_interruptible_timeout(struct completion *x,
4575 unsigned long timeout)
4577 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4579 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4581 int __sched wait_for_completion_killable(struct completion *x)
4583 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4584 if (t == -ERESTARTSYS)
4585 return t;
4586 return 0;
4588 EXPORT_SYMBOL(wait_for_completion_killable);
4590 static long __sched
4591 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4593 unsigned long flags;
4594 wait_queue_t wait;
4596 init_waitqueue_entry(&wait, current);
4598 __set_current_state(state);
4600 spin_lock_irqsave(&q->lock, flags);
4601 __add_wait_queue(q, &wait);
4602 spin_unlock(&q->lock);
4603 timeout = schedule_timeout(timeout);
4604 spin_lock_irq(&q->lock);
4605 __remove_wait_queue(q, &wait);
4606 spin_unlock_irqrestore(&q->lock, flags);
4608 return timeout;
4611 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4613 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4615 EXPORT_SYMBOL(interruptible_sleep_on);
4617 long __sched
4618 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4620 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4622 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4624 void __sched sleep_on(wait_queue_head_t *q)
4626 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4628 EXPORT_SYMBOL(sleep_on);
4630 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4632 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4634 EXPORT_SYMBOL(sleep_on_timeout);
4636 #ifdef CONFIG_RT_MUTEXES
4639 * rt_mutex_setprio - set the current priority of a task
4640 * @p: task
4641 * @prio: prio value (kernel-internal form)
4643 * This function changes the 'effective' priority of a task. It does
4644 * not touch ->normal_prio like __setscheduler().
4646 * Used by the rt_mutex code to implement priority inheritance logic.
4648 void rt_mutex_setprio(struct task_struct *p, int prio)
4650 unsigned long flags;
4651 int oldprio, on_rq, running;
4652 struct rq *rq;
4653 const struct sched_class *prev_class = p->sched_class;
4655 BUG_ON(prio < 0 || prio > MAX_PRIO);
4657 rq = task_rq_lock(p, &flags);
4658 update_rq_clock(rq);
4660 oldprio = p->prio;
4661 on_rq = p->se.on_rq;
4662 running = task_current(rq, p);
4663 if (on_rq)
4664 dequeue_task(rq, p, 0);
4665 if (running)
4666 p->sched_class->put_prev_task(rq, p);
4668 if (rt_prio(prio))
4669 p->sched_class = &rt_sched_class;
4670 else
4671 p->sched_class = &fair_sched_class;
4673 p->prio = prio;
4675 if (running)
4676 p->sched_class->set_curr_task(rq);
4677 if (on_rq) {
4678 enqueue_task(rq, p, 0);
4680 check_class_changed(rq, p, prev_class, oldprio, running);
4682 task_rq_unlock(rq, &flags);
4685 #endif
4687 void set_user_nice(struct task_struct *p, long nice)
4689 int old_prio, delta, on_rq;
4690 unsigned long flags;
4691 struct rq *rq;
4693 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4694 return;
4696 * We have to be careful, if called from sys_setpriority(),
4697 * the task might be in the middle of scheduling on another CPU.
4699 rq = task_rq_lock(p, &flags);
4700 update_rq_clock(rq);
4702 * The RT priorities are set via sched_setscheduler(), but we still
4703 * allow the 'normal' nice value to be set - but as expected
4704 * it wont have any effect on scheduling until the task is
4705 * SCHED_FIFO/SCHED_RR:
4707 if (task_has_rt_policy(p)) {
4708 p->static_prio = NICE_TO_PRIO(nice);
4709 goto out_unlock;
4711 on_rq = p->se.on_rq;
4712 if (on_rq)
4713 dequeue_task(rq, p, 0);
4715 p->static_prio = NICE_TO_PRIO(nice);
4716 set_load_weight(p);
4717 old_prio = p->prio;
4718 p->prio = effective_prio(p);
4719 delta = p->prio - old_prio;
4721 if (on_rq) {
4722 enqueue_task(rq, p, 0);
4724 * If the task increased its priority or is running and
4725 * lowered its priority, then reschedule its CPU:
4727 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4728 resched_task(rq->curr);
4730 out_unlock:
4731 task_rq_unlock(rq, &flags);
4733 EXPORT_SYMBOL(set_user_nice);
4736 * can_nice - check if a task can reduce its nice value
4737 * @p: task
4738 * @nice: nice value
4740 int can_nice(const struct task_struct *p, const int nice)
4742 /* convert nice value [19,-20] to rlimit style value [1,40] */
4743 int nice_rlim = 20 - nice;
4745 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4746 capable(CAP_SYS_NICE));
4749 #ifdef __ARCH_WANT_SYS_NICE
4752 * sys_nice - change the priority of the current process.
4753 * @increment: priority increment
4755 * sys_setpriority is a more generic, but much slower function that
4756 * does similar things.
4758 asmlinkage long sys_nice(int increment)
4760 long nice, retval;
4763 * Setpriority might change our priority at the same moment.
4764 * We don't have to worry. Conceptually one call occurs first
4765 * and we have a single winner.
4767 if (increment < -40)
4768 increment = -40;
4769 if (increment > 40)
4770 increment = 40;
4772 nice = PRIO_TO_NICE(current->static_prio) + increment;
4773 if (nice < -20)
4774 nice = -20;
4775 if (nice > 19)
4776 nice = 19;
4778 if (increment < 0 && !can_nice(current, nice))
4779 return -EPERM;
4781 retval = security_task_setnice(current, nice);
4782 if (retval)
4783 return retval;
4785 set_user_nice(current, nice);
4786 return 0;
4789 #endif
4792 * task_prio - return the priority value of a given task.
4793 * @p: the task in question.
4795 * This is the priority value as seen by users in /proc.
4796 * RT tasks are offset by -200. Normal tasks are centered
4797 * around 0, value goes from -16 to +15.
4799 int task_prio(const struct task_struct *p)
4801 return p->prio - MAX_RT_PRIO;
4805 * task_nice - return the nice value of a given task.
4806 * @p: the task in question.
4808 int task_nice(const struct task_struct *p)
4810 return TASK_NICE(p);
4812 EXPORT_SYMBOL(task_nice);
4815 * idle_cpu - is a given cpu idle currently?
4816 * @cpu: the processor in question.
4818 int idle_cpu(int cpu)
4820 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4824 * idle_task - return the idle task for a given cpu.
4825 * @cpu: the processor in question.
4827 struct task_struct *idle_task(int cpu)
4829 return cpu_rq(cpu)->idle;
4833 * find_process_by_pid - find a process with a matching PID value.
4834 * @pid: the pid in question.
4836 static struct task_struct *find_process_by_pid(pid_t pid)
4838 return pid ? find_task_by_vpid(pid) : current;
4841 /* Actually do priority change: must hold rq lock. */
4842 static void
4843 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4845 BUG_ON(p->se.on_rq);
4847 p->policy = policy;
4848 switch (p->policy) {
4849 case SCHED_NORMAL:
4850 case SCHED_BATCH:
4851 case SCHED_IDLE:
4852 p->sched_class = &fair_sched_class;
4853 break;
4854 case SCHED_FIFO:
4855 case SCHED_RR:
4856 p->sched_class = &rt_sched_class;
4857 break;
4860 p->rt_priority = prio;
4861 p->normal_prio = normal_prio(p);
4862 /* we are holding p->pi_lock already */
4863 p->prio = rt_mutex_getprio(p);
4864 set_load_weight(p);
4868 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4869 * @p: the task in question.
4870 * @policy: new policy.
4871 * @param: structure containing the new RT priority.
4873 * NOTE that the task may be already dead.
4875 int sched_setscheduler(struct task_struct *p, int policy,
4876 struct sched_param *param)
4878 int retval, oldprio, oldpolicy = -1, on_rq, running;
4879 unsigned long flags;
4880 const struct sched_class *prev_class = p->sched_class;
4881 struct rq *rq;
4883 /* may grab non-irq protected spin_locks */
4884 BUG_ON(in_interrupt());
4885 recheck:
4886 /* double check policy once rq lock held */
4887 if (policy < 0)
4888 policy = oldpolicy = p->policy;
4889 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4890 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4891 policy != SCHED_IDLE)
4892 return -EINVAL;
4894 * Valid priorities for SCHED_FIFO and SCHED_RR are
4895 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4896 * SCHED_BATCH and SCHED_IDLE is 0.
4898 if (param->sched_priority < 0 ||
4899 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4900 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4901 return -EINVAL;
4902 if (rt_policy(policy) != (param->sched_priority != 0))
4903 return -EINVAL;
4906 * Allow unprivileged RT tasks to decrease priority:
4908 if (!capable(CAP_SYS_NICE)) {
4909 if (rt_policy(policy)) {
4910 unsigned long rlim_rtprio;
4912 if (!lock_task_sighand(p, &flags))
4913 return -ESRCH;
4914 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4915 unlock_task_sighand(p, &flags);
4917 /* can't set/change the rt policy */
4918 if (policy != p->policy && !rlim_rtprio)
4919 return -EPERM;
4921 /* can't increase priority */
4922 if (param->sched_priority > p->rt_priority &&
4923 param->sched_priority > rlim_rtprio)
4924 return -EPERM;
4927 * Like positive nice levels, dont allow tasks to
4928 * move out of SCHED_IDLE either:
4930 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4931 return -EPERM;
4933 /* can't change other user's priorities */
4934 if ((current->euid != p->euid) &&
4935 (current->euid != p->uid))
4936 return -EPERM;
4939 #ifdef CONFIG_RT_GROUP_SCHED
4941 * Do not allow realtime tasks into groups that have no runtime
4942 * assigned.
4944 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4945 return -EPERM;
4946 #endif
4948 retval = security_task_setscheduler(p, policy, param);
4949 if (retval)
4950 return retval;
4952 * make sure no PI-waiters arrive (or leave) while we are
4953 * changing the priority of the task:
4955 spin_lock_irqsave(&p->pi_lock, flags);
4957 * To be able to change p->policy safely, the apropriate
4958 * runqueue lock must be held.
4960 rq = __task_rq_lock(p);
4961 /* recheck policy now with rq lock held */
4962 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4963 policy = oldpolicy = -1;
4964 __task_rq_unlock(rq);
4965 spin_unlock_irqrestore(&p->pi_lock, flags);
4966 goto recheck;
4968 update_rq_clock(rq);
4969 on_rq = p->se.on_rq;
4970 running = task_current(rq, p);
4971 if (on_rq)
4972 deactivate_task(rq, p, 0);
4973 if (running)
4974 p->sched_class->put_prev_task(rq, p);
4976 oldprio = p->prio;
4977 __setscheduler(rq, p, policy, param->sched_priority);
4979 if (running)
4980 p->sched_class->set_curr_task(rq);
4981 if (on_rq) {
4982 activate_task(rq, p, 0);
4984 check_class_changed(rq, p, prev_class, oldprio, running);
4986 __task_rq_unlock(rq);
4987 spin_unlock_irqrestore(&p->pi_lock, flags);
4989 rt_mutex_adjust_pi(p);
4991 return 0;
4993 EXPORT_SYMBOL_GPL(sched_setscheduler);
4995 static int
4996 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4998 struct sched_param lparam;
4999 struct task_struct *p;
5000 int retval;
5002 if (!param || pid < 0)
5003 return -EINVAL;
5004 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5005 return -EFAULT;
5007 rcu_read_lock();
5008 retval = -ESRCH;
5009 p = find_process_by_pid(pid);
5010 if (p != NULL)
5011 retval = sched_setscheduler(p, policy, &lparam);
5012 rcu_read_unlock();
5014 return retval;
5018 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5019 * @pid: the pid in question.
5020 * @policy: new policy.
5021 * @param: structure containing the new RT priority.
5023 asmlinkage long
5024 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5026 /* negative values for policy are not valid */
5027 if (policy < 0)
5028 return -EINVAL;
5030 return do_sched_setscheduler(pid, policy, param);
5034 * sys_sched_setparam - set/change the RT priority of a thread
5035 * @pid: the pid in question.
5036 * @param: structure containing the new RT priority.
5038 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5040 return do_sched_setscheduler(pid, -1, param);
5044 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5045 * @pid: the pid in question.
5047 asmlinkage long sys_sched_getscheduler(pid_t pid)
5049 struct task_struct *p;
5050 int retval;
5052 if (pid < 0)
5053 return -EINVAL;
5055 retval = -ESRCH;
5056 read_lock(&tasklist_lock);
5057 p = find_process_by_pid(pid);
5058 if (p) {
5059 retval = security_task_getscheduler(p);
5060 if (!retval)
5061 retval = p->policy;
5063 read_unlock(&tasklist_lock);
5064 return retval;
5068 * sys_sched_getscheduler - get the RT priority of a thread
5069 * @pid: the pid in question.
5070 * @param: structure containing the RT priority.
5072 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5074 struct sched_param lp;
5075 struct task_struct *p;
5076 int retval;
5078 if (!param || pid < 0)
5079 return -EINVAL;
5081 read_lock(&tasklist_lock);
5082 p = find_process_by_pid(pid);
5083 retval = -ESRCH;
5084 if (!p)
5085 goto out_unlock;
5087 retval = security_task_getscheduler(p);
5088 if (retval)
5089 goto out_unlock;
5091 lp.sched_priority = p->rt_priority;
5092 read_unlock(&tasklist_lock);
5095 * This one might sleep, we cannot do it with a spinlock held ...
5097 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5099 return retval;
5101 out_unlock:
5102 read_unlock(&tasklist_lock);
5103 return retval;
5106 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5108 cpumask_t cpus_allowed;
5109 cpumask_t new_mask = *in_mask;
5110 struct task_struct *p;
5111 int retval;
5113 get_online_cpus();
5114 read_lock(&tasklist_lock);
5116 p = find_process_by_pid(pid);
5117 if (!p) {
5118 read_unlock(&tasklist_lock);
5119 put_online_cpus();
5120 return -ESRCH;
5124 * It is not safe to call set_cpus_allowed with the
5125 * tasklist_lock held. We will bump the task_struct's
5126 * usage count and then drop tasklist_lock.
5128 get_task_struct(p);
5129 read_unlock(&tasklist_lock);
5131 retval = -EPERM;
5132 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5133 !capable(CAP_SYS_NICE))
5134 goto out_unlock;
5136 retval = security_task_setscheduler(p, 0, NULL);
5137 if (retval)
5138 goto out_unlock;
5140 cpuset_cpus_allowed(p, &cpus_allowed);
5141 cpus_and(new_mask, new_mask, cpus_allowed);
5142 again:
5143 retval = set_cpus_allowed_ptr(p, &new_mask);
5145 if (!retval) {
5146 cpuset_cpus_allowed(p, &cpus_allowed);
5147 if (!cpus_subset(new_mask, cpus_allowed)) {
5149 * We must have raced with a concurrent cpuset
5150 * update. Just reset the cpus_allowed to the
5151 * cpuset's cpus_allowed
5153 new_mask = cpus_allowed;
5154 goto again;
5157 out_unlock:
5158 put_task_struct(p);
5159 put_online_cpus();
5160 return retval;
5163 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5164 cpumask_t *new_mask)
5166 if (len < sizeof(cpumask_t)) {
5167 memset(new_mask, 0, sizeof(cpumask_t));
5168 } else if (len > sizeof(cpumask_t)) {
5169 len = sizeof(cpumask_t);
5171 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5175 * sys_sched_setaffinity - set the cpu affinity of a process
5176 * @pid: pid of the process
5177 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5178 * @user_mask_ptr: user-space pointer to the new cpu mask
5180 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5181 unsigned long __user *user_mask_ptr)
5183 cpumask_t new_mask;
5184 int retval;
5186 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5187 if (retval)
5188 return retval;
5190 return sched_setaffinity(pid, &new_mask);
5193 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5195 struct task_struct *p;
5196 int retval;
5198 get_online_cpus();
5199 read_lock(&tasklist_lock);
5201 retval = -ESRCH;
5202 p = find_process_by_pid(pid);
5203 if (!p)
5204 goto out_unlock;
5206 retval = security_task_getscheduler(p);
5207 if (retval)
5208 goto out_unlock;
5210 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5212 out_unlock:
5213 read_unlock(&tasklist_lock);
5214 put_online_cpus();
5216 return retval;
5220 * sys_sched_getaffinity - get the cpu affinity of a process
5221 * @pid: pid of the process
5222 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5223 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5225 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5226 unsigned long __user *user_mask_ptr)
5228 int ret;
5229 cpumask_t mask;
5231 if (len < sizeof(cpumask_t))
5232 return -EINVAL;
5234 ret = sched_getaffinity(pid, &mask);
5235 if (ret < 0)
5236 return ret;
5238 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5239 return -EFAULT;
5241 return sizeof(cpumask_t);
5245 * sys_sched_yield - yield the current processor to other threads.
5247 * This function yields the current CPU to other tasks. If there are no
5248 * other threads running on this CPU then this function will return.
5250 asmlinkage long sys_sched_yield(void)
5252 struct rq *rq = this_rq_lock();
5254 schedstat_inc(rq, yld_count);
5255 current->sched_class->yield_task(rq);
5258 * Since we are going to call schedule() anyway, there's
5259 * no need to preempt or enable interrupts:
5261 __release(rq->lock);
5262 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5263 _raw_spin_unlock(&rq->lock);
5264 preempt_enable_no_resched();
5266 schedule();
5268 return 0;
5271 static void __cond_resched(void)
5273 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5274 __might_sleep(__FILE__, __LINE__);
5275 #endif
5277 * The BKS might be reacquired before we have dropped
5278 * PREEMPT_ACTIVE, which could trigger a second
5279 * cond_resched() call.
5281 do {
5282 add_preempt_count(PREEMPT_ACTIVE);
5283 schedule();
5284 sub_preempt_count(PREEMPT_ACTIVE);
5285 } while (need_resched());
5288 int __sched _cond_resched(void)
5290 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5291 system_state == SYSTEM_RUNNING) {
5292 __cond_resched();
5293 return 1;
5295 return 0;
5297 EXPORT_SYMBOL(_cond_resched);
5300 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5301 * call schedule, and on return reacquire the lock.
5303 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5304 * operations here to prevent schedule() from being called twice (once via
5305 * spin_unlock(), once by hand).
5307 int cond_resched_lock(spinlock_t *lock)
5309 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5310 int ret = 0;
5312 if (spin_needbreak(lock) || resched) {
5313 spin_unlock(lock);
5314 if (resched && need_resched())
5315 __cond_resched();
5316 else
5317 cpu_relax();
5318 ret = 1;
5319 spin_lock(lock);
5321 return ret;
5323 EXPORT_SYMBOL(cond_resched_lock);
5325 int __sched cond_resched_softirq(void)
5327 BUG_ON(!in_softirq());
5329 if (need_resched() && system_state == SYSTEM_RUNNING) {
5330 local_bh_enable();
5331 __cond_resched();
5332 local_bh_disable();
5333 return 1;
5335 return 0;
5337 EXPORT_SYMBOL(cond_resched_softirq);
5340 * yield - yield the current processor to other threads.
5342 * This is a shortcut for kernel-space yielding - it marks the
5343 * thread runnable and calls sys_sched_yield().
5345 void __sched yield(void)
5347 set_current_state(TASK_RUNNING);
5348 sys_sched_yield();
5350 EXPORT_SYMBOL(yield);
5353 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5354 * that process accounting knows that this is a task in IO wait state.
5356 * But don't do that if it is a deliberate, throttling IO wait (this task
5357 * has set its backing_dev_info: the queue against which it should throttle)
5359 void __sched io_schedule(void)
5361 struct rq *rq = &__raw_get_cpu_var(runqueues);
5363 delayacct_blkio_start();
5364 atomic_inc(&rq->nr_iowait);
5365 schedule();
5366 atomic_dec(&rq->nr_iowait);
5367 delayacct_blkio_end();
5369 EXPORT_SYMBOL(io_schedule);
5371 long __sched io_schedule_timeout(long timeout)
5373 struct rq *rq = &__raw_get_cpu_var(runqueues);
5374 long ret;
5376 delayacct_blkio_start();
5377 atomic_inc(&rq->nr_iowait);
5378 ret = schedule_timeout(timeout);
5379 atomic_dec(&rq->nr_iowait);
5380 delayacct_blkio_end();
5381 return ret;
5385 * sys_sched_get_priority_max - return maximum RT priority.
5386 * @policy: scheduling class.
5388 * this syscall returns the maximum rt_priority that can be used
5389 * by a given scheduling class.
5391 asmlinkage long sys_sched_get_priority_max(int policy)
5393 int ret = -EINVAL;
5395 switch (policy) {
5396 case SCHED_FIFO:
5397 case SCHED_RR:
5398 ret = MAX_USER_RT_PRIO-1;
5399 break;
5400 case SCHED_NORMAL:
5401 case SCHED_BATCH:
5402 case SCHED_IDLE:
5403 ret = 0;
5404 break;
5406 return ret;
5410 * sys_sched_get_priority_min - return minimum RT priority.
5411 * @policy: scheduling class.
5413 * this syscall returns the minimum rt_priority that can be used
5414 * by a given scheduling class.
5416 asmlinkage long sys_sched_get_priority_min(int policy)
5418 int ret = -EINVAL;
5420 switch (policy) {
5421 case SCHED_FIFO:
5422 case SCHED_RR:
5423 ret = 1;
5424 break;
5425 case SCHED_NORMAL:
5426 case SCHED_BATCH:
5427 case SCHED_IDLE:
5428 ret = 0;
5430 return ret;
5434 * sys_sched_rr_get_interval - return the default timeslice of a process.
5435 * @pid: pid of the process.
5436 * @interval: userspace pointer to the timeslice value.
5438 * this syscall writes the default timeslice value of a given process
5439 * into the user-space timespec buffer. A value of '0' means infinity.
5441 asmlinkage
5442 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5444 struct task_struct *p;
5445 unsigned int time_slice;
5446 int retval;
5447 struct timespec t;
5449 if (pid < 0)
5450 return -EINVAL;
5452 retval = -ESRCH;
5453 read_lock(&tasklist_lock);
5454 p = find_process_by_pid(pid);
5455 if (!p)
5456 goto out_unlock;
5458 retval = security_task_getscheduler(p);
5459 if (retval)
5460 goto out_unlock;
5463 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5464 * tasks that are on an otherwise idle runqueue:
5466 time_slice = 0;
5467 if (p->policy == SCHED_RR) {
5468 time_slice = DEF_TIMESLICE;
5469 } else if (p->policy != SCHED_FIFO) {
5470 struct sched_entity *se = &p->se;
5471 unsigned long flags;
5472 struct rq *rq;
5474 rq = task_rq_lock(p, &flags);
5475 if (rq->cfs.load.weight)
5476 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5477 task_rq_unlock(rq, &flags);
5479 read_unlock(&tasklist_lock);
5480 jiffies_to_timespec(time_slice, &t);
5481 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5482 return retval;
5484 out_unlock:
5485 read_unlock(&tasklist_lock);
5486 return retval;
5489 static const char stat_nam[] = "RSDTtZX";
5491 void sched_show_task(struct task_struct *p)
5493 unsigned long free = 0;
5494 unsigned state;
5496 state = p->state ? __ffs(p->state) + 1 : 0;
5497 printk(KERN_INFO "%-13.13s %c", p->comm,
5498 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5499 #if BITS_PER_LONG == 32
5500 if (state == TASK_RUNNING)
5501 printk(KERN_CONT " running ");
5502 else
5503 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5504 #else
5505 if (state == TASK_RUNNING)
5506 printk(KERN_CONT " running task ");
5507 else
5508 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5509 #endif
5510 #ifdef CONFIG_DEBUG_STACK_USAGE
5512 unsigned long *n = end_of_stack(p);
5513 while (!*n)
5514 n++;
5515 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5517 #endif
5518 printk(KERN_CONT "%5lu %5d %6d\n", free,
5519 task_pid_nr(p), task_pid_nr(p->real_parent));
5521 show_stack(p, NULL);
5524 void show_state_filter(unsigned long state_filter)
5526 struct task_struct *g, *p;
5528 #if BITS_PER_LONG == 32
5529 printk(KERN_INFO
5530 " task PC stack pid father\n");
5531 #else
5532 printk(KERN_INFO
5533 " task PC stack pid father\n");
5534 #endif
5535 read_lock(&tasklist_lock);
5536 do_each_thread(g, p) {
5538 * reset the NMI-timeout, listing all files on a slow
5539 * console might take alot of time:
5541 touch_nmi_watchdog();
5542 if (!state_filter || (p->state & state_filter))
5543 sched_show_task(p);
5544 } while_each_thread(g, p);
5546 touch_all_softlockup_watchdogs();
5548 #ifdef CONFIG_SCHED_DEBUG
5549 sysrq_sched_debug_show();
5550 #endif
5551 read_unlock(&tasklist_lock);
5553 * Only show locks if all tasks are dumped:
5555 if (state_filter == -1)
5556 debug_show_all_locks();
5559 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5561 idle->sched_class = &idle_sched_class;
5565 * init_idle - set up an idle thread for a given CPU
5566 * @idle: task in question
5567 * @cpu: cpu the idle task belongs to
5569 * NOTE: this function does not set the idle thread's NEED_RESCHED
5570 * flag, to make booting more robust.
5572 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5574 struct rq *rq = cpu_rq(cpu);
5575 unsigned long flags;
5577 __sched_fork(idle);
5578 idle->se.exec_start = sched_clock();
5580 idle->prio = idle->normal_prio = MAX_PRIO;
5581 idle->cpus_allowed = cpumask_of_cpu(cpu);
5582 __set_task_cpu(idle, cpu);
5584 spin_lock_irqsave(&rq->lock, flags);
5585 rq->curr = rq->idle = idle;
5586 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5587 idle->oncpu = 1;
5588 #endif
5589 spin_unlock_irqrestore(&rq->lock, flags);
5591 /* Set the preempt count _outside_ the spinlocks! */
5592 #if defined(CONFIG_PREEMPT)
5593 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5594 #else
5595 task_thread_info(idle)->preempt_count = 0;
5596 #endif
5598 * The idle tasks have their own, simple scheduling class:
5600 idle->sched_class = &idle_sched_class;
5604 * In a system that switches off the HZ timer nohz_cpu_mask
5605 * indicates which cpus entered this state. This is used
5606 * in the rcu update to wait only for active cpus. For system
5607 * which do not switch off the HZ timer nohz_cpu_mask should
5608 * always be CPU_MASK_NONE.
5610 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5613 * Increase the granularity value when there are more CPUs,
5614 * because with more CPUs the 'effective latency' as visible
5615 * to users decreases. But the relationship is not linear,
5616 * so pick a second-best guess by going with the log2 of the
5617 * number of CPUs.
5619 * This idea comes from the SD scheduler of Con Kolivas:
5621 static inline void sched_init_granularity(void)
5623 unsigned int factor = 1 + ilog2(num_online_cpus());
5624 const unsigned long limit = 200000000;
5626 sysctl_sched_min_granularity *= factor;
5627 if (sysctl_sched_min_granularity > limit)
5628 sysctl_sched_min_granularity = limit;
5630 sysctl_sched_latency *= factor;
5631 if (sysctl_sched_latency > limit)
5632 sysctl_sched_latency = limit;
5634 sysctl_sched_wakeup_granularity *= factor;
5637 #ifdef CONFIG_SMP
5639 * This is how migration works:
5641 * 1) we queue a struct migration_req structure in the source CPU's
5642 * runqueue and wake up that CPU's migration thread.
5643 * 2) we down() the locked semaphore => thread blocks.
5644 * 3) migration thread wakes up (implicitly it forces the migrated
5645 * thread off the CPU)
5646 * 4) it gets the migration request and checks whether the migrated
5647 * task is still in the wrong runqueue.
5648 * 5) if it's in the wrong runqueue then the migration thread removes
5649 * it and puts it into the right queue.
5650 * 6) migration thread up()s the semaphore.
5651 * 7) we wake up and the migration is done.
5655 * Change a given task's CPU affinity. Migrate the thread to a
5656 * proper CPU and schedule it away if the CPU it's executing on
5657 * is removed from the allowed bitmask.
5659 * NOTE: the caller must have a valid reference to the task, the
5660 * task must not exit() & deallocate itself prematurely. The
5661 * call is not atomic; no spinlocks may be held.
5663 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5665 struct migration_req req;
5666 unsigned long flags;
5667 struct rq *rq;
5668 int ret = 0;
5670 rq = task_rq_lock(p, &flags);
5671 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5672 ret = -EINVAL;
5673 goto out;
5676 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5677 !cpus_equal(p->cpus_allowed, *new_mask))) {
5678 ret = -EINVAL;
5679 goto out;
5682 if (p->sched_class->set_cpus_allowed)
5683 p->sched_class->set_cpus_allowed(p, new_mask);
5684 else {
5685 p->cpus_allowed = *new_mask;
5686 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5689 /* Can the task run on the task's current CPU? If so, we're done */
5690 if (cpu_isset(task_cpu(p), *new_mask))
5691 goto out;
5693 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5694 /* Need help from migration thread: drop lock and wait. */
5695 task_rq_unlock(rq, &flags);
5696 wake_up_process(rq->migration_thread);
5697 wait_for_completion(&req.done);
5698 tlb_migrate_finish(p->mm);
5699 return 0;
5701 out:
5702 task_rq_unlock(rq, &flags);
5704 return ret;
5706 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5709 * Move (not current) task off this cpu, onto dest cpu. We're doing
5710 * this because either it can't run here any more (set_cpus_allowed()
5711 * away from this CPU, or CPU going down), or because we're
5712 * attempting to rebalance this task on exec (sched_exec).
5714 * So we race with normal scheduler movements, but that's OK, as long
5715 * as the task is no longer on this CPU.
5717 * Returns non-zero if task was successfully migrated.
5719 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5721 struct rq *rq_dest, *rq_src;
5722 int ret = 0, on_rq;
5724 if (unlikely(cpu_is_offline(dest_cpu)))
5725 return ret;
5727 rq_src = cpu_rq(src_cpu);
5728 rq_dest = cpu_rq(dest_cpu);
5730 double_rq_lock(rq_src, rq_dest);
5731 /* Already moved. */
5732 if (task_cpu(p) != src_cpu)
5733 goto out;
5734 /* Affinity changed (again). */
5735 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5736 goto out;
5738 on_rq = p->se.on_rq;
5739 if (on_rq)
5740 deactivate_task(rq_src, p, 0);
5742 set_task_cpu(p, dest_cpu);
5743 if (on_rq) {
5744 activate_task(rq_dest, p, 0);
5745 check_preempt_curr(rq_dest, p);
5747 ret = 1;
5748 out:
5749 double_rq_unlock(rq_src, rq_dest);
5750 return ret;
5754 * migration_thread - this is a highprio system thread that performs
5755 * thread migration by bumping thread off CPU then 'pushing' onto
5756 * another runqueue.
5758 static int migration_thread(void *data)
5760 int cpu = (long)data;
5761 struct rq *rq;
5763 rq = cpu_rq(cpu);
5764 BUG_ON(rq->migration_thread != current);
5766 set_current_state(TASK_INTERRUPTIBLE);
5767 while (!kthread_should_stop()) {
5768 struct migration_req *req;
5769 struct list_head *head;
5771 spin_lock_irq(&rq->lock);
5773 if (cpu_is_offline(cpu)) {
5774 spin_unlock_irq(&rq->lock);
5775 goto wait_to_die;
5778 if (rq->active_balance) {
5779 active_load_balance(rq, cpu);
5780 rq->active_balance = 0;
5783 head = &rq->migration_queue;
5785 if (list_empty(head)) {
5786 spin_unlock_irq(&rq->lock);
5787 schedule();
5788 set_current_state(TASK_INTERRUPTIBLE);
5789 continue;
5791 req = list_entry(head->next, struct migration_req, list);
5792 list_del_init(head->next);
5794 spin_unlock(&rq->lock);
5795 __migrate_task(req->task, cpu, req->dest_cpu);
5796 local_irq_enable();
5798 complete(&req->done);
5800 __set_current_state(TASK_RUNNING);
5801 return 0;
5803 wait_to_die:
5804 /* Wait for kthread_stop */
5805 set_current_state(TASK_INTERRUPTIBLE);
5806 while (!kthread_should_stop()) {
5807 schedule();
5808 set_current_state(TASK_INTERRUPTIBLE);
5810 __set_current_state(TASK_RUNNING);
5811 return 0;
5814 #ifdef CONFIG_HOTPLUG_CPU
5816 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5818 int ret;
5820 local_irq_disable();
5821 ret = __migrate_task(p, src_cpu, dest_cpu);
5822 local_irq_enable();
5823 return ret;
5827 * Figure out where task on dead CPU should go, use force if necessary.
5828 * NOTE: interrupts should be disabled by the caller
5830 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5832 unsigned long flags;
5833 cpumask_t mask;
5834 struct rq *rq;
5835 int dest_cpu;
5837 do {
5838 /* On same node? */
5839 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5840 cpus_and(mask, mask, p->cpus_allowed);
5841 dest_cpu = any_online_cpu(mask);
5843 /* On any allowed CPU? */
5844 if (dest_cpu >= nr_cpu_ids)
5845 dest_cpu = any_online_cpu(p->cpus_allowed);
5847 /* No more Mr. Nice Guy. */
5848 if (dest_cpu >= nr_cpu_ids) {
5849 cpumask_t cpus_allowed;
5851 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5853 * Try to stay on the same cpuset, where the
5854 * current cpuset may be a subset of all cpus.
5855 * The cpuset_cpus_allowed_locked() variant of
5856 * cpuset_cpus_allowed() will not block. It must be
5857 * called within calls to cpuset_lock/cpuset_unlock.
5859 rq = task_rq_lock(p, &flags);
5860 p->cpus_allowed = cpus_allowed;
5861 dest_cpu = any_online_cpu(p->cpus_allowed);
5862 task_rq_unlock(rq, &flags);
5865 * Don't tell them about moving exiting tasks or
5866 * kernel threads (both mm NULL), since they never
5867 * leave kernel.
5869 if (p->mm && printk_ratelimit()) {
5870 printk(KERN_INFO "process %d (%s) no "
5871 "longer affine to cpu%d\n",
5872 task_pid_nr(p), p->comm, dead_cpu);
5875 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5879 * While a dead CPU has no uninterruptible tasks queued at this point,
5880 * it might still have a nonzero ->nr_uninterruptible counter, because
5881 * for performance reasons the counter is not stricly tracking tasks to
5882 * their home CPUs. So we just add the counter to another CPU's counter,
5883 * to keep the global sum constant after CPU-down:
5885 static void migrate_nr_uninterruptible(struct rq *rq_src)
5887 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5888 unsigned long flags;
5890 local_irq_save(flags);
5891 double_rq_lock(rq_src, rq_dest);
5892 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5893 rq_src->nr_uninterruptible = 0;
5894 double_rq_unlock(rq_src, rq_dest);
5895 local_irq_restore(flags);
5898 /* Run through task list and migrate tasks from the dead cpu. */
5899 static void migrate_live_tasks(int src_cpu)
5901 struct task_struct *p, *t;
5903 read_lock(&tasklist_lock);
5905 do_each_thread(t, p) {
5906 if (p == current)
5907 continue;
5909 if (task_cpu(p) == src_cpu)
5910 move_task_off_dead_cpu(src_cpu, p);
5911 } while_each_thread(t, p);
5913 read_unlock(&tasklist_lock);
5917 * Schedules idle task to be the next runnable task on current CPU.
5918 * It does so by boosting its priority to highest possible.
5919 * Used by CPU offline code.
5921 void sched_idle_next(void)
5923 int this_cpu = smp_processor_id();
5924 struct rq *rq = cpu_rq(this_cpu);
5925 struct task_struct *p = rq->idle;
5926 unsigned long flags;
5928 /* cpu has to be offline */
5929 BUG_ON(cpu_online(this_cpu));
5932 * Strictly not necessary since rest of the CPUs are stopped by now
5933 * and interrupts disabled on the current cpu.
5935 spin_lock_irqsave(&rq->lock, flags);
5937 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5939 update_rq_clock(rq);
5940 activate_task(rq, p, 0);
5942 spin_unlock_irqrestore(&rq->lock, flags);
5946 * Ensures that the idle task is using init_mm right before its cpu goes
5947 * offline.
5949 void idle_task_exit(void)
5951 struct mm_struct *mm = current->active_mm;
5953 BUG_ON(cpu_online(smp_processor_id()));
5955 if (mm != &init_mm)
5956 switch_mm(mm, &init_mm, current);
5957 mmdrop(mm);
5960 /* called under rq->lock with disabled interrupts */
5961 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5963 struct rq *rq = cpu_rq(dead_cpu);
5965 /* Must be exiting, otherwise would be on tasklist. */
5966 BUG_ON(!p->exit_state);
5968 /* Cannot have done final schedule yet: would have vanished. */
5969 BUG_ON(p->state == TASK_DEAD);
5971 get_task_struct(p);
5974 * Drop lock around migration; if someone else moves it,
5975 * that's OK. No task can be added to this CPU, so iteration is
5976 * fine.
5978 spin_unlock_irq(&rq->lock);
5979 move_task_off_dead_cpu(dead_cpu, p);
5980 spin_lock_irq(&rq->lock);
5982 put_task_struct(p);
5985 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5986 static void migrate_dead_tasks(unsigned int dead_cpu)
5988 struct rq *rq = cpu_rq(dead_cpu);
5989 struct task_struct *next;
5991 for ( ; ; ) {
5992 if (!rq->nr_running)
5993 break;
5994 update_rq_clock(rq);
5995 next = pick_next_task(rq, rq->curr);
5996 if (!next)
5997 break;
5998 migrate_dead(dead_cpu, next);
6002 #endif /* CONFIG_HOTPLUG_CPU */
6004 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6006 static struct ctl_table sd_ctl_dir[] = {
6008 .procname = "sched_domain",
6009 .mode = 0555,
6011 {0, },
6014 static struct ctl_table sd_ctl_root[] = {
6016 .ctl_name = CTL_KERN,
6017 .procname = "kernel",
6018 .mode = 0555,
6019 .child = sd_ctl_dir,
6021 {0, },
6024 static struct ctl_table *sd_alloc_ctl_entry(int n)
6026 struct ctl_table *entry =
6027 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6029 return entry;
6032 static void sd_free_ctl_entry(struct ctl_table **tablep)
6034 struct ctl_table *entry;
6037 * In the intermediate directories, both the child directory and
6038 * procname are dynamically allocated and could fail but the mode
6039 * will always be set. In the lowest directory the names are
6040 * static strings and all have proc handlers.
6042 for (entry = *tablep; entry->mode; entry++) {
6043 if (entry->child)
6044 sd_free_ctl_entry(&entry->child);
6045 if (entry->proc_handler == NULL)
6046 kfree(entry->procname);
6049 kfree(*tablep);
6050 *tablep = NULL;
6053 static void
6054 set_table_entry(struct ctl_table *entry,
6055 const char *procname, void *data, int maxlen,
6056 mode_t mode, proc_handler *proc_handler)
6058 entry->procname = procname;
6059 entry->data = data;
6060 entry->maxlen = maxlen;
6061 entry->mode = mode;
6062 entry->proc_handler = proc_handler;
6065 static struct ctl_table *
6066 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6068 struct ctl_table *table = sd_alloc_ctl_entry(12);
6070 if (table == NULL)
6071 return NULL;
6073 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6074 sizeof(long), 0644, proc_doulongvec_minmax);
6075 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6076 sizeof(long), 0644, proc_doulongvec_minmax);
6077 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6078 sizeof(int), 0644, proc_dointvec_minmax);
6079 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6080 sizeof(int), 0644, proc_dointvec_minmax);
6081 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6082 sizeof(int), 0644, proc_dointvec_minmax);
6083 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6084 sizeof(int), 0644, proc_dointvec_minmax);
6085 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6086 sizeof(int), 0644, proc_dointvec_minmax);
6087 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6088 sizeof(int), 0644, proc_dointvec_minmax);
6089 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6090 sizeof(int), 0644, proc_dointvec_minmax);
6091 set_table_entry(&table[9], "cache_nice_tries",
6092 &sd->cache_nice_tries,
6093 sizeof(int), 0644, proc_dointvec_minmax);
6094 set_table_entry(&table[10], "flags", &sd->flags,
6095 sizeof(int), 0644, proc_dointvec_minmax);
6096 /* &table[11] is terminator */
6098 return table;
6101 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6103 struct ctl_table *entry, *table;
6104 struct sched_domain *sd;
6105 int domain_num = 0, i;
6106 char buf[32];
6108 for_each_domain(cpu, sd)
6109 domain_num++;
6110 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6111 if (table == NULL)
6112 return NULL;
6114 i = 0;
6115 for_each_domain(cpu, sd) {
6116 snprintf(buf, 32, "domain%d", i);
6117 entry->procname = kstrdup(buf, GFP_KERNEL);
6118 entry->mode = 0555;
6119 entry->child = sd_alloc_ctl_domain_table(sd);
6120 entry++;
6121 i++;
6123 return table;
6126 static struct ctl_table_header *sd_sysctl_header;
6127 static void register_sched_domain_sysctl(void)
6129 int i, cpu_num = num_online_cpus();
6130 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6131 char buf[32];
6133 WARN_ON(sd_ctl_dir[0].child);
6134 sd_ctl_dir[0].child = entry;
6136 if (entry == NULL)
6137 return;
6139 for_each_online_cpu(i) {
6140 snprintf(buf, 32, "cpu%d", i);
6141 entry->procname = kstrdup(buf, GFP_KERNEL);
6142 entry->mode = 0555;
6143 entry->child = sd_alloc_ctl_cpu_table(i);
6144 entry++;
6147 WARN_ON(sd_sysctl_header);
6148 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6151 /* may be called multiple times per register */
6152 static void unregister_sched_domain_sysctl(void)
6154 if (sd_sysctl_header)
6155 unregister_sysctl_table(sd_sysctl_header);
6156 sd_sysctl_header = NULL;
6157 if (sd_ctl_dir[0].child)
6158 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6160 #else
6161 static void register_sched_domain_sysctl(void)
6164 static void unregister_sched_domain_sysctl(void)
6167 #endif
6169 static void set_rq_online(struct rq *rq)
6171 if (!rq->online) {
6172 const struct sched_class *class;
6174 cpu_set(rq->cpu, rq->rd->online);
6175 rq->online = 1;
6177 for_each_class(class) {
6178 if (class->rq_online)
6179 class->rq_online(rq);
6184 static void set_rq_offline(struct rq *rq)
6186 if (rq->online) {
6187 const struct sched_class *class;
6189 for_each_class(class) {
6190 if (class->rq_offline)
6191 class->rq_offline(rq);
6194 cpu_clear(rq->cpu, rq->rd->online);
6195 rq->online = 0;
6200 * migration_call - callback that gets triggered when a CPU is added.
6201 * Here we can start up the necessary migration thread for the new CPU.
6203 static int __cpuinit
6204 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6206 struct task_struct *p;
6207 int cpu = (long)hcpu;
6208 unsigned long flags;
6209 struct rq *rq;
6211 switch (action) {
6213 case CPU_UP_PREPARE:
6214 case CPU_UP_PREPARE_FROZEN:
6215 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6216 if (IS_ERR(p))
6217 return NOTIFY_BAD;
6218 kthread_bind(p, cpu);
6219 /* Must be high prio: stop_machine expects to yield to it. */
6220 rq = task_rq_lock(p, &flags);
6221 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6222 task_rq_unlock(rq, &flags);
6223 cpu_rq(cpu)->migration_thread = p;
6224 break;
6226 case CPU_ONLINE:
6227 case CPU_ONLINE_FROZEN:
6228 /* Strictly unnecessary, as first user will wake it. */
6229 wake_up_process(cpu_rq(cpu)->migration_thread);
6231 /* Update our root-domain */
6232 rq = cpu_rq(cpu);
6233 spin_lock_irqsave(&rq->lock, flags);
6234 if (rq->rd) {
6235 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6237 set_rq_online(rq);
6239 spin_unlock_irqrestore(&rq->lock, flags);
6240 break;
6242 #ifdef CONFIG_HOTPLUG_CPU
6243 case CPU_UP_CANCELED:
6244 case CPU_UP_CANCELED_FROZEN:
6245 if (!cpu_rq(cpu)->migration_thread)
6246 break;
6247 /* Unbind it from offline cpu so it can run. Fall thru. */
6248 kthread_bind(cpu_rq(cpu)->migration_thread,
6249 any_online_cpu(cpu_online_map));
6250 kthread_stop(cpu_rq(cpu)->migration_thread);
6251 cpu_rq(cpu)->migration_thread = NULL;
6252 break;
6254 case CPU_DEAD:
6255 case CPU_DEAD_FROZEN:
6256 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6257 migrate_live_tasks(cpu);
6258 rq = cpu_rq(cpu);
6259 kthread_stop(rq->migration_thread);
6260 rq->migration_thread = NULL;
6261 /* Idle task back to normal (off runqueue, low prio) */
6262 spin_lock_irq(&rq->lock);
6263 update_rq_clock(rq);
6264 deactivate_task(rq, rq->idle, 0);
6265 rq->idle->static_prio = MAX_PRIO;
6266 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6267 rq->idle->sched_class = &idle_sched_class;
6268 migrate_dead_tasks(cpu);
6269 spin_unlock_irq(&rq->lock);
6270 cpuset_unlock();
6271 migrate_nr_uninterruptible(rq);
6272 BUG_ON(rq->nr_running != 0);
6275 * No need to migrate the tasks: it was best-effort if
6276 * they didn't take sched_hotcpu_mutex. Just wake up
6277 * the requestors.
6279 spin_lock_irq(&rq->lock);
6280 while (!list_empty(&rq->migration_queue)) {
6281 struct migration_req *req;
6283 req = list_entry(rq->migration_queue.next,
6284 struct migration_req, list);
6285 list_del_init(&req->list);
6286 complete(&req->done);
6288 spin_unlock_irq(&rq->lock);
6289 break;
6291 case CPU_DYING:
6292 case CPU_DYING_FROZEN:
6293 /* Update our root-domain */
6294 rq = cpu_rq(cpu);
6295 spin_lock_irqsave(&rq->lock, flags);
6296 if (rq->rd) {
6297 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6298 set_rq_offline(rq);
6300 spin_unlock_irqrestore(&rq->lock, flags);
6301 break;
6302 #endif
6304 return NOTIFY_OK;
6307 /* Register at highest priority so that task migration (migrate_all_tasks)
6308 * happens before everything else.
6310 static struct notifier_block __cpuinitdata migration_notifier = {
6311 .notifier_call = migration_call,
6312 .priority = 10
6315 void __init migration_init(void)
6317 void *cpu = (void *)(long)smp_processor_id();
6318 int err;
6320 /* Start one for the boot CPU: */
6321 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6322 BUG_ON(err == NOTIFY_BAD);
6323 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6324 register_cpu_notifier(&migration_notifier);
6326 #endif
6328 #ifdef CONFIG_SMP
6330 #ifdef CONFIG_SCHED_DEBUG
6332 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6334 switch (lvl) {
6335 case SD_LV_NONE:
6336 return "NONE";
6337 case SD_LV_SIBLING:
6338 return "SIBLING";
6339 case SD_LV_MC:
6340 return "MC";
6341 case SD_LV_CPU:
6342 return "CPU";
6343 case SD_LV_NODE:
6344 return "NODE";
6345 case SD_LV_ALLNODES:
6346 return "ALLNODES";
6347 case SD_LV_MAX:
6348 return "MAX";
6351 return "MAX";
6354 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6355 cpumask_t *groupmask)
6357 struct sched_group *group = sd->groups;
6358 char str[256];
6360 cpulist_scnprintf(str, sizeof(str), sd->span);
6361 cpus_clear(*groupmask);
6363 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6365 if (!(sd->flags & SD_LOAD_BALANCE)) {
6366 printk("does not load-balance\n");
6367 if (sd->parent)
6368 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6369 " has parent");
6370 return -1;
6373 printk(KERN_CONT "span %s level %s\n",
6374 str, sd_level_to_string(sd->level));
6376 if (!cpu_isset(cpu, sd->span)) {
6377 printk(KERN_ERR "ERROR: domain->span does not contain "
6378 "CPU%d\n", cpu);
6380 if (!cpu_isset(cpu, group->cpumask)) {
6381 printk(KERN_ERR "ERROR: domain->groups does not contain"
6382 " CPU%d\n", cpu);
6385 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6386 do {
6387 if (!group) {
6388 printk("\n");
6389 printk(KERN_ERR "ERROR: group is NULL\n");
6390 break;
6393 if (!group->__cpu_power) {
6394 printk(KERN_CONT "\n");
6395 printk(KERN_ERR "ERROR: domain->cpu_power not "
6396 "set\n");
6397 break;
6400 if (!cpus_weight(group->cpumask)) {
6401 printk(KERN_CONT "\n");
6402 printk(KERN_ERR "ERROR: empty group\n");
6403 break;
6406 if (cpus_intersects(*groupmask, group->cpumask)) {
6407 printk(KERN_CONT "\n");
6408 printk(KERN_ERR "ERROR: repeated CPUs\n");
6409 break;
6412 cpus_or(*groupmask, *groupmask, group->cpumask);
6414 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6415 printk(KERN_CONT " %s", str);
6417 group = group->next;
6418 } while (group != sd->groups);
6419 printk(KERN_CONT "\n");
6421 if (!cpus_equal(sd->span, *groupmask))
6422 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6424 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6425 printk(KERN_ERR "ERROR: parent span is not a superset "
6426 "of domain->span\n");
6427 return 0;
6430 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6432 cpumask_t *groupmask;
6433 int level = 0;
6435 if (!sd) {
6436 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6437 return;
6440 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6442 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6443 if (!groupmask) {
6444 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6445 return;
6448 for (;;) {
6449 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6450 break;
6451 level++;
6452 sd = sd->parent;
6453 if (!sd)
6454 break;
6456 kfree(groupmask);
6458 #else /* !CONFIG_SCHED_DEBUG */
6459 # define sched_domain_debug(sd, cpu) do { } while (0)
6460 #endif /* CONFIG_SCHED_DEBUG */
6462 static int sd_degenerate(struct sched_domain *sd)
6464 if (cpus_weight(sd->span) == 1)
6465 return 1;
6467 /* Following flags need at least 2 groups */
6468 if (sd->flags & (SD_LOAD_BALANCE |
6469 SD_BALANCE_NEWIDLE |
6470 SD_BALANCE_FORK |
6471 SD_BALANCE_EXEC |
6472 SD_SHARE_CPUPOWER |
6473 SD_SHARE_PKG_RESOURCES)) {
6474 if (sd->groups != sd->groups->next)
6475 return 0;
6478 /* Following flags don't use groups */
6479 if (sd->flags & (SD_WAKE_IDLE |
6480 SD_WAKE_AFFINE |
6481 SD_WAKE_BALANCE))
6482 return 0;
6484 return 1;
6487 static int
6488 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6490 unsigned long cflags = sd->flags, pflags = parent->flags;
6492 if (sd_degenerate(parent))
6493 return 1;
6495 if (!cpus_equal(sd->span, parent->span))
6496 return 0;
6498 /* Does parent contain flags not in child? */
6499 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6500 if (cflags & SD_WAKE_AFFINE)
6501 pflags &= ~SD_WAKE_BALANCE;
6502 /* Flags needing groups don't count if only 1 group in parent */
6503 if (parent->groups == parent->groups->next) {
6504 pflags &= ~(SD_LOAD_BALANCE |
6505 SD_BALANCE_NEWIDLE |
6506 SD_BALANCE_FORK |
6507 SD_BALANCE_EXEC |
6508 SD_SHARE_CPUPOWER |
6509 SD_SHARE_PKG_RESOURCES);
6511 if (~cflags & pflags)
6512 return 0;
6514 return 1;
6517 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6519 unsigned long flags;
6521 spin_lock_irqsave(&rq->lock, flags);
6523 if (rq->rd) {
6524 struct root_domain *old_rd = rq->rd;
6526 if (cpu_isset(rq->cpu, old_rd->online))
6527 set_rq_offline(rq);
6529 cpu_clear(rq->cpu, old_rd->span);
6531 if (atomic_dec_and_test(&old_rd->refcount))
6532 kfree(old_rd);
6535 atomic_inc(&rd->refcount);
6536 rq->rd = rd;
6538 cpu_set(rq->cpu, rd->span);
6539 if (cpu_isset(rq->cpu, cpu_online_map))
6540 set_rq_online(rq);
6542 spin_unlock_irqrestore(&rq->lock, flags);
6545 static void init_rootdomain(struct root_domain *rd)
6547 memset(rd, 0, sizeof(*rd));
6549 cpus_clear(rd->span);
6550 cpus_clear(rd->online);
6552 cpupri_init(&rd->cpupri);
6555 static void init_defrootdomain(void)
6557 init_rootdomain(&def_root_domain);
6558 atomic_set(&def_root_domain.refcount, 1);
6561 static struct root_domain *alloc_rootdomain(void)
6563 struct root_domain *rd;
6565 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6566 if (!rd)
6567 return NULL;
6569 init_rootdomain(rd);
6571 return rd;
6575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6576 * hold the hotplug lock.
6578 static void
6579 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6581 struct rq *rq = cpu_rq(cpu);
6582 struct sched_domain *tmp;
6584 /* Remove the sched domains which do not contribute to scheduling. */
6585 for (tmp = sd; tmp; tmp = tmp->parent) {
6586 struct sched_domain *parent = tmp->parent;
6587 if (!parent)
6588 break;
6589 if (sd_parent_degenerate(tmp, parent)) {
6590 tmp->parent = parent->parent;
6591 if (parent->parent)
6592 parent->parent->child = tmp;
6596 if (sd && sd_degenerate(sd)) {
6597 sd = sd->parent;
6598 if (sd)
6599 sd->child = NULL;
6602 sched_domain_debug(sd, cpu);
6604 rq_attach_root(rq, rd);
6605 rcu_assign_pointer(rq->sd, sd);
6608 /* cpus with isolated domains */
6609 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6611 /* Setup the mask of cpus configured for isolated domains */
6612 static int __init isolated_cpu_setup(char *str)
6614 int ints[NR_CPUS], i;
6616 str = get_options(str, ARRAY_SIZE(ints), ints);
6617 cpus_clear(cpu_isolated_map);
6618 for (i = 1; i <= ints[0]; i++)
6619 if (ints[i] < NR_CPUS)
6620 cpu_set(ints[i], cpu_isolated_map);
6621 return 1;
6624 __setup("isolcpus=", isolated_cpu_setup);
6627 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6628 * to a function which identifies what group(along with sched group) a CPU
6629 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6630 * (due to the fact that we keep track of groups covered with a cpumask_t).
6632 * init_sched_build_groups will build a circular linked list of the groups
6633 * covered by the given span, and will set each group's ->cpumask correctly,
6634 * and ->cpu_power to 0.
6636 static void
6637 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6638 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6639 struct sched_group **sg,
6640 cpumask_t *tmpmask),
6641 cpumask_t *covered, cpumask_t *tmpmask)
6643 struct sched_group *first = NULL, *last = NULL;
6644 int i;
6646 cpus_clear(*covered);
6648 for_each_cpu_mask(i, *span) {
6649 struct sched_group *sg;
6650 int group = group_fn(i, cpu_map, &sg, tmpmask);
6651 int j;
6653 if (cpu_isset(i, *covered))
6654 continue;
6656 cpus_clear(sg->cpumask);
6657 sg->__cpu_power = 0;
6659 for_each_cpu_mask(j, *span) {
6660 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6661 continue;
6663 cpu_set(j, *covered);
6664 cpu_set(j, sg->cpumask);
6666 if (!first)
6667 first = sg;
6668 if (last)
6669 last->next = sg;
6670 last = sg;
6672 last->next = first;
6675 #define SD_NODES_PER_DOMAIN 16
6677 #ifdef CONFIG_NUMA
6680 * find_next_best_node - find the next node to include in a sched_domain
6681 * @node: node whose sched_domain we're building
6682 * @used_nodes: nodes already in the sched_domain
6684 * Find the next node to include in a given scheduling domain. Simply
6685 * finds the closest node not already in the @used_nodes map.
6687 * Should use nodemask_t.
6689 static int find_next_best_node(int node, nodemask_t *used_nodes)
6691 int i, n, val, min_val, best_node = 0;
6693 min_val = INT_MAX;
6695 for (i = 0; i < MAX_NUMNODES; i++) {
6696 /* Start at @node */
6697 n = (node + i) % MAX_NUMNODES;
6699 if (!nr_cpus_node(n))
6700 continue;
6702 /* Skip already used nodes */
6703 if (node_isset(n, *used_nodes))
6704 continue;
6706 /* Simple min distance search */
6707 val = node_distance(node, n);
6709 if (val < min_val) {
6710 min_val = val;
6711 best_node = n;
6715 node_set(best_node, *used_nodes);
6716 return best_node;
6720 * sched_domain_node_span - get a cpumask for a node's sched_domain
6721 * @node: node whose cpumask we're constructing
6722 * @span: resulting cpumask
6724 * Given a node, construct a good cpumask for its sched_domain to span. It
6725 * should be one that prevents unnecessary balancing, but also spreads tasks
6726 * out optimally.
6728 static void sched_domain_node_span(int node, cpumask_t *span)
6730 nodemask_t used_nodes;
6731 node_to_cpumask_ptr(nodemask, node);
6732 int i;
6734 cpus_clear(*span);
6735 nodes_clear(used_nodes);
6737 cpus_or(*span, *span, *nodemask);
6738 node_set(node, used_nodes);
6740 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6741 int next_node = find_next_best_node(node, &used_nodes);
6743 node_to_cpumask_ptr_next(nodemask, next_node);
6744 cpus_or(*span, *span, *nodemask);
6747 #endif /* CONFIG_NUMA */
6749 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6752 * SMT sched-domains:
6754 #ifdef CONFIG_SCHED_SMT
6755 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6756 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6758 static int
6759 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6760 cpumask_t *unused)
6762 if (sg)
6763 *sg = &per_cpu(sched_group_cpus, cpu);
6764 return cpu;
6766 #endif /* CONFIG_SCHED_SMT */
6769 * multi-core sched-domains:
6771 #ifdef CONFIG_SCHED_MC
6772 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6773 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6774 #endif /* CONFIG_SCHED_MC */
6776 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6777 static int
6778 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6779 cpumask_t *mask)
6781 int group;
6783 *mask = per_cpu(cpu_sibling_map, cpu);
6784 cpus_and(*mask, *mask, *cpu_map);
6785 group = first_cpu(*mask);
6786 if (sg)
6787 *sg = &per_cpu(sched_group_core, group);
6788 return group;
6790 #elif defined(CONFIG_SCHED_MC)
6791 static int
6792 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6793 cpumask_t *unused)
6795 if (sg)
6796 *sg = &per_cpu(sched_group_core, cpu);
6797 return cpu;
6799 #endif
6801 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6802 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6804 static int
6805 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6806 cpumask_t *mask)
6808 int group;
6809 #ifdef CONFIG_SCHED_MC
6810 *mask = cpu_coregroup_map(cpu);
6811 cpus_and(*mask, *mask, *cpu_map);
6812 group = first_cpu(*mask);
6813 #elif defined(CONFIG_SCHED_SMT)
6814 *mask = per_cpu(cpu_sibling_map, cpu);
6815 cpus_and(*mask, *mask, *cpu_map);
6816 group = first_cpu(*mask);
6817 #else
6818 group = cpu;
6819 #endif
6820 if (sg)
6821 *sg = &per_cpu(sched_group_phys, group);
6822 return group;
6825 #ifdef CONFIG_NUMA
6827 * The init_sched_build_groups can't handle what we want to do with node
6828 * groups, so roll our own. Now each node has its own list of groups which
6829 * gets dynamically allocated.
6831 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6832 static struct sched_group ***sched_group_nodes_bycpu;
6834 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6835 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6837 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6838 struct sched_group **sg, cpumask_t *nodemask)
6840 int group;
6842 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6843 cpus_and(*nodemask, *nodemask, *cpu_map);
6844 group = first_cpu(*nodemask);
6846 if (sg)
6847 *sg = &per_cpu(sched_group_allnodes, group);
6848 return group;
6851 static void init_numa_sched_groups_power(struct sched_group *group_head)
6853 struct sched_group *sg = group_head;
6854 int j;
6856 if (!sg)
6857 return;
6858 do {
6859 for_each_cpu_mask(j, sg->cpumask) {
6860 struct sched_domain *sd;
6862 sd = &per_cpu(phys_domains, j);
6863 if (j != first_cpu(sd->groups->cpumask)) {
6865 * Only add "power" once for each
6866 * physical package.
6868 continue;
6871 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6873 sg = sg->next;
6874 } while (sg != group_head);
6876 #endif /* CONFIG_NUMA */
6878 #ifdef CONFIG_NUMA
6879 /* Free memory allocated for various sched_group structures */
6880 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6882 int cpu, i;
6884 for_each_cpu_mask(cpu, *cpu_map) {
6885 struct sched_group **sched_group_nodes
6886 = sched_group_nodes_bycpu[cpu];
6888 if (!sched_group_nodes)
6889 continue;
6891 for (i = 0; i < MAX_NUMNODES; i++) {
6892 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6894 *nodemask = node_to_cpumask(i);
6895 cpus_and(*nodemask, *nodemask, *cpu_map);
6896 if (cpus_empty(*nodemask))
6897 continue;
6899 if (sg == NULL)
6900 continue;
6901 sg = sg->next;
6902 next_sg:
6903 oldsg = sg;
6904 sg = sg->next;
6905 kfree(oldsg);
6906 if (oldsg != sched_group_nodes[i])
6907 goto next_sg;
6909 kfree(sched_group_nodes);
6910 sched_group_nodes_bycpu[cpu] = NULL;
6913 #else /* !CONFIG_NUMA */
6914 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6917 #endif /* CONFIG_NUMA */
6920 * Initialize sched groups cpu_power.
6922 * cpu_power indicates the capacity of sched group, which is used while
6923 * distributing the load between different sched groups in a sched domain.
6924 * Typically cpu_power for all the groups in a sched domain will be same unless
6925 * there are asymmetries in the topology. If there are asymmetries, group
6926 * having more cpu_power will pickup more load compared to the group having
6927 * less cpu_power.
6929 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6930 * the maximum number of tasks a group can handle in the presence of other idle
6931 * or lightly loaded groups in the same sched domain.
6933 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6935 struct sched_domain *child;
6936 struct sched_group *group;
6938 WARN_ON(!sd || !sd->groups);
6940 if (cpu != first_cpu(sd->groups->cpumask))
6941 return;
6943 child = sd->child;
6945 sd->groups->__cpu_power = 0;
6948 * For perf policy, if the groups in child domain share resources
6949 * (for example cores sharing some portions of the cache hierarchy
6950 * or SMT), then set this domain groups cpu_power such that each group
6951 * can handle only one task, when there are other idle groups in the
6952 * same sched domain.
6954 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6955 (child->flags &
6956 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6957 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6958 return;
6962 * add cpu_power of each child group to this groups cpu_power
6964 group = child->groups;
6965 do {
6966 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6967 group = group->next;
6968 } while (group != child->groups);
6972 * Initializers for schedule domains
6973 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6976 #define SD_INIT(sd, type) sd_init_##type(sd)
6977 #define SD_INIT_FUNC(type) \
6978 static noinline void sd_init_##type(struct sched_domain *sd) \
6980 memset(sd, 0, sizeof(*sd)); \
6981 *sd = SD_##type##_INIT; \
6982 sd->level = SD_LV_##type; \
6985 SD_INIT_FUNC(CPU)
6986 #ifdef CONFIG_NUMA
6987 SD_INIT_FUNC(ALLNODES)
6988 SD_INIT_FUNC(NODE)
6989 #endif
6990 #ifdef CONFIG_SCHED_SMT
6991 SD_INIT_FUNC(SIBLING)
6992 #endif
6993 #ifdef CONFIG_SCHED_MC
6994 SD_INIT_FUNC(MC)
6995 #endif
6998 * To minimize stack usage kmalloc room for cpumasks and share the
6999 * space as the usage in build_sched_domains() dictates. Used only
7000 * if the amount of space is significant.
7002 struct allmasks {
7003 cpumask_t tmpmask; /* make this one first */
7004 union {
7005 cpumask_t nodemask;
7006 cpumask_t this_sibling_map;
7007 cpumask_t this_core_map;
7009 cpumask_t send_covered;
7011 #ifdef CONFIG_NUMA
7012 cpumask_t domainspan;
7013 cpumask_t covered;
7014 cpumask_t notcovered;
7015 #endif
7018 #if NR_CPUS > 128
7019 #define SCHED_CPUMASK_ALLOC 1
7020 #define SCHED_CPUMASK_FREE(v) kfree(v)
7021 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7022 #else
7023 #define SCHED_CPUMASK_ALLOC 0
7024 #define SCHED_CPUMASK_FREE(v)
7025 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7026 #endif
7028 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7029 ((unsigned long)(a) + offsetof(struct allmasks, v))
7031 static int default_relax_domain_level = -1;
7033 static int __init setup_relax_domain_level(char *str)
7035 unsigned long val;
7037 val = simple_strtoul(str, NULL, 0);
7038 if (val < SD_LV_MAX)
7039 default_relax_domain_level = val;
7041 return 1;
7043 __setup("relax_domain_level=", setup_relax_domain_level);
7045 static void set_domain_attribute(struct sched_domain *sd,
7046 struct sched_domain_attr *attr)
7048 int request;
7050 if (!attr || attr->relax_domain_level < 0) {
7051 if (default_relax_domain_level < 0)
7052 return;
7053 else
7054 request = default_relax_domain_level;
7055 } else
7056 request = attr->relax_domain_level;
7057 if (request < sd->level) {
7058 /* turn off idle balance on this domain */
7059 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7060 } else {
7061 /* turn on idle balance on this domain */
7062 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7067 * Build sched domains for a given set of cpus and attach the sched domains
7068 * to the individual cpus
7070 static int __build_sched_domains(const cpumask_t *cpu_map,
7071 struct sched_domain_attr *attr)
7073 int i;
7074 struct root_domain *rd;
7075 SCHED_CPUMASK_DECLARE(allmasks);
7076 cpumask_t *tmpmask;
7077 #ifdef CONFIG_NUMA
7078 struct sched_group **sched_group_nodes = NULL;
7079 int sd_allnodes = 0;
7082 * Allocate the per-node list of sched groups
7084 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
7085 GFP_KERNEL);
7086 if (!sched_group_nodes) {
7087 printk(KERN_WARNING "Can not alloc sched group node list\n");
7088 return -ENOMEM;
7090 #endif
7092 rd = alloc_rootdomain();
7093 if (!rd) {
7094 printk(KERN_WARNING "Cannot alloc root domain\n");
7095 #ifdef CONFIG_NUMA
7096 kfree(sched_group_nodes);
7097 #endif
7098 return -ENOMEM;
7101 #if SCHED_CPUMASK_ALLOC
7102 /* get space for all scratch cpumask variables */
7103 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7104 if (!allmasks) {
7105 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7106 kfree(rd);
7107 #ifdef CONFIG_NUMA
7108 kfree(sched_group_nodes);
7109 #endif
7110 return -ENOMEM;
7112 #endif
7113 tmpmask = (cpumask_t *)allmasks;
7116 #ifdef CONFIG_NUMA
7117 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7118 #endif
7121 * Set up domains for cpus specified by the cpu_map.
7123 for_each_cpu_mask(i, *cpu_map) {
7124 struct sched_domain *sd = NULL, *p;
7125 SCHED_CPUMASK_VAR(nodemask, allmasks);
7127 *nodemask = node_to_cpumask(cpu_to_node(i));
7128 cpus_and(*nodemask, *nodemask, *cpu_map);
7130 #ifdef CONFIG_NUMA
7131 if (cpus_weight(*cpu_map) >
7132 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7133 sd = &per_cpu(allnodes_domains, i);
7134 SD_INIT(sd, ALLNODES);
7135 set_domain_attribute(sd, attr);
7136 sd->span = *cpu_map;
7137 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7138 p = sd;
7139 sd_allnodes = 1;
7140 } else
7141 p = NULL;
7143 sd = &per_cpu(node_domains, i);
7144 SD_INIT(sd, NODE);
7145 set_domain_attribute(sd, attr);
7146 sched_domain_node_span(cpu_to_node(i), &sd->span);
7147 sd->parent = p;
7148 if (p)
7149 p->child = sd;
7150 cpus_and(sd->span, sd->span, *cpu_map);
7151 #endif
7153 p = sd;
7154 sd = &per_cpu(phys_domains, i);
7155 SD_INIT(sd, CPU);
7156 set_domain_attribute(sd, attr);
7157 sd->span = *nodemask;
7158 sd->parent = p;
7159 if (p)
7160 p->child = sd;
7161 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7163 #ifdef CONFIG_SCHED_MC
7164 p = sd;
7165 sd = &per_cpu(core_domains, i);
7166 SD_INIT(sd, MC);
7167 set_domain_attribute(sd, attr);
7168 sd->span = cpu_coregroup_map(i);
7169 cpus_and(sd->span, sd->span, *cpu_map);
7170 sd->parent = p;
7171 p->child = sd;
7172 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7173 #endif
7175 #ifdef CONFIG_SCHED_SMT
7176 p = sd;
7177 sd = &per_cpu(cpu_domains, i);
7178 SD_INIT(sd, SIBLING);
7179 set_domain_attribute(sd, attr);
7180 sd->span = per_cpu(cpu_sibling_map, i);
7181 cpus_and(sd->span, sd->span, *cpu_map);
7182 sd->parent = p;
7183 p->child = sd;
7184 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7185 #endif
7188 #ifdef CONFIG_SCHED_SMT
7189 /* Set up CPU (sibling) groups */
7190 for_each_cpu_mask(i, *cpu_map) {
7191 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7192 SCHED_CPUMASK_VAR(send_covered, allmasks);
7194 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7195 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7196 if (i != first_cpu(*this_sibling_map))
7197 continue;
7199 init_sched_build_groups(this_sibling_map, cpu_map,
7200 &cpu_to_cpu_group,
7201 send_covered, tmpmask);
7203 #endif
7205 #ifdef CONFIG_SCHED_MC
7206 /* Set up multi-core groups */
7207 for_each_cpu_mask(i, *cpu_map) {
7208 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7209 SCHED_CPUMASK_VAR(send_covered, allmasks);
7211 *this_core_map = cpu_coregroup_map(i);
7212 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7213 if (i != first_cpu(*this_core_map))
7214 continue;
7216 init_sched_build_groups(this_core_map, cpu_map,
7217 &cpu_to_core_group,
7218 send_covered, tmpmask);
7220 #endif
7222 /* Set up physical groups */
7223 for (i = 0; i < MAX_NUMNODES; i++) {
7224 SCHED_CPUMASK_VAR(nodemask, allmasks);
7225 SCHED_CPUMASK_VAR(send_covered, allmasks);
7227 *nodemask = node_to_cpumask(i);
7228 cpus_and(*nodemask, *nodemask, *cpu_map);
7229 if (cpus_empty(*nodemask))
7230 continue;
7232 init_sched_build_groups(nodemask, cpu_map,
7233 &cpu_to_phys_group,
7234 send_covered, tmpmask);
7237 #ifdef CONFIG_NUMA
7238 /* Set up node groups */
7239 if (sd_allnodes) {
7240 SCHED_CPUMASK_VAR(send_covered, allmasks);
7242 init_sched_build_groups(cpu_map, cpu_map,
7243 &cpu_to_allnodes_group,
7244 send_covered, tmpmask);
7247 for (i = 0; i < MAX_NUMNODES; i++) {
7248 /* Set up node groups */
7249 struct sched_group *sg, *prev;
7250 SCHED_CPUMASK_VAR(nodemask, allmasks);
7251 SCHED_CPUMASK_VAR(domainspan, allmasks);
7252 SCHED_CPUMASK_VAR(covered, allmasks);
7253 int j;
7255 *nodemask = node_to_cpumask(i);
7256 cpus_clear(*covered);
7258 cpus_and(*nodemask, *nodemask, *cpu_map);
7259 if (cpus_empty(*nodemask)) {
7260 sched_group_nodes[i] = NULL;
7261 continue;
7264 sched_domain_node_span(i, domainspan);
7265 cpus_and(*domainspan, *domainspan, *cpu_map);
7267 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7268 if (!sg) {
7269 printk(KERN_WARNING "Can not alloc domain group for "
7270 "node %d\n", i);
7271 goto error;
7273 sched_group_nodes[i] = sg;
7274 for_each_cpu_mask(j, *nodemask) {
7275 struct sched_domain *sd;
7277 sd = &per_cpu(node_domains, j);
7278 sd->groups = sg;
7280 sg->__cpu_power = 0;
7281 sg->cpumask = *nodemask;
7282 sg->next = sg;
7283 cpus_or(*covered, *covered, *nodemask);
7284 prev = sg;
7286 for (j = 0; j < MAX_NUMNODES; j++) {
7287 SCHED_CPUMASK_VAR(notcovered, allmasks);
7288 int n = (i + j) % MAX_NUMNODES;
7289 node_to_cpumask_ptr(pnodemask, n);
7291 cpus_complement(*notcovered, *covered);
7292 cpus_and(*tmpmask, *notcovered, *cpu_map);
7293 cpus_and(*tmpmask, *tmpmask, *domainspan);
7294 if (cpus_empty(*tmpmask))
7295 break;
7297 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7298 if (cpus_empty(*tmpmask))
7299 continue;
7301 sg = kmalloc_node(sizeof(struct sched_group),
7302 GFP_KERNEL, i);
7303 if (!sg) {
7304 printk(KERN_WARNING
7305 "Can not alloc domain group for node %d\n", j);
7306 goto error;
7308 sg->__cpu_power = 0;
7309 sg->cpumask = *tmpmask;
7310 sg->next = prev->next;
7311 cpus_or(*covered, *covered, *tmpmask);
7312 prev->next = sg;
7313 prev = sg;
7316 #endif
7318 /* Calculate CPU power for physical packages and nodes */
7319 #ifdef CONFIG_SCHED_SMT
7320 for_each_cpu_mask(i, *cpu_map) {
7321 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7323 init_sched_groups_power(i, sd);
7325 #endif
7326 #ifdef CONFIG_SCHED_MC
7327 for_each_cpu_mask(i, *cpu_map) {
7328 struct sched_domain *sd = &per_cpu(core_domains, i);
7330 init_sched_groups_power(i, sd);
7332 #endif
7334 for_each_cpu_mask(i, *cpu_map) {
7335 struct sched_domain *sd = &per_cpu(phys_domains, i);
7337 init_sched_groups_power(i, sd);
7340 #ifdef CONFIG_NUMA
7341 for (i = 0; i < MAX_NUMNODES; i++)
7342 init_numa_sched_groups_power(sched_group_nodes[i]);
7344 if (sd_allnodes) {
7345 struct sched_group *sg;
7347 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7348 tmpmask);
7349 init_numa_sched_groups_power(sg);
7351 #endif
7353 /* Attach the domains */
7354 for_each_cpu_mask(i, *cpu_map) {
7355 struct sched_domain *sd;
7356 #ifdef CONFIG_SCHED_SMT
7357 sd = &per_cpu(cpu_domains, i);
7358 #elif defined(CONFIG_SCHED_MC)
7359 sd = &per_cpu(core_domains, i);
7360 #else
7361 sd = &per_cpu(phys_domains, i);
7362 #endif
7363 cpu_attach_domain(sd, rd, i);
7366 SCHED_CPUMASK_FREE((void *)allmasks);
7367 return 0;
7369 #ifdef CONFIG_NUMA
7370 error:
7371 free_sched_groups(cpu_map, tmpmask);
7372 SCHED_CPUMASK_FREE((void *)allmasks);
7373 return -ENOMEM;
7374 #endif
7377 static int build_sched_domains(const cpumask_t *cpu_map)
7379 return __build_sched_domains(cpu_map, NULL);
7382 static cpumask_t *doms_cur; /* current sched domains */
7383 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7384 static struct sched_domain_attr *dattr_cur;
7385 /* attribues of custom domains in 'doms_cur' */
7388 * Special case: If a kmalloc of a doms_cur partition (array of
7389 * cpumask_t) fails, then fallback to a single sched domain,
7390 * as determined by the single cpumask_t fallback_doms.
7392 static cpumask_t fallback_doms;
7394 void __attribute__((weak)) arch_update_cpu_topology(void)
7399 * Free current domain masks.
7400 * Called after all cpus are attached to NULL domain.
7402 static void free_sched_domains(void)
7404 ndoms_cur = 0;
7405 if (doms_cur != &fallback_doms)
7406 kfree(doms_cur);
7407 doms_cur = &fallback_doms;
7411 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7412 * For now this just excludes isolated cpus, but could be used to
7413 * exclude other special cases in the future.
7415 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7417 int err;
7419 arch_update_cpu_topology();
7420 ndoms_cur = 1;
7421 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7422 if (!doms_cur)
7423 doms_cur = &fallback_doms;
7424 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7425 dattr_cur = NULL;
7426 err = build_sched_domains(doms_cur);
7427 register_sched_domain_sysctl();
7429 return err;
7432 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7433 cpumask_t *tmpmask)
7435 free_sched_groups(cpu_map, tmpmask);
7439 * Detach sched domains from a group of cpus specified in cpu_map
7440 * These cpus will now be attached to the NULL domain
7442 static void detach_destroy_domains(const cpumask_t *cpu_map)
7444 cpumask_t tmpmask;
7445 int i;
7447 unregister_sched_domain_sysctl();
7449 for_each_cpu_mask(i, *cpu_map)
7450 cpu_attach_domain(NULL, &def_root_domain, i);
7451 synchronize_sched();
7452 arch_destroy_sched_domains(cpu_map, &tmpmask);
7455 /* handle null as "default" */
7456 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7457 struct sched_domain_attr *new, int idx_new)
7459 struct sched_domain_attr tmp;
7461 /* fast path */
7462 if (!new && !cur)
7463 return 1;
7465 tmp = SD_ATTR_INIT;
7466 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7467 new ? (new + idx_new) : &tmp,
7468 sizeof(struct sched_domain_attr));
7472 * Partition sched domains as specified by the 'ndoms_new'
7473 * cpumasks in the array doms_new[] of cpumasks. This compares
7474 * doms_new[] to the current sched domain partitioning, doms_cur[].
7475 * It destroys each deleted domain and builds each new domain.
7477 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7478 * The masks don't intersect (don't overlap.) We should setup one
7479 * sched domain for each mask. CPUs not in any of the cpumasks will
7480 * not be load balanced. If the same cpumask appears both in the
7481 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7482 * it as it is.
7484 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7485 * ownership of it and will kfree it when done with it. If the caller
7486 * failed the kmalloc call, then it can pass in doms_new == NULL,
7487 * and partition_sched_domains() will fallback to the single partition
7488 * 'fallback_doms'.
7490 * Call with hotplug lock held
7492 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7493 struct sched_domain_attr *dattr_new)
7495 int i, j;
7497 mutex_lock(&sched_domains_mutex);
7499 /* always unregister in case we don't destroy any domains */
7500 unregister_sched_domain_sysctl();
7502 if (doms_new == NULL) {
7503 ndoms_new = 1;
7504 doms_new = &fallback_doms;
7505 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7506 dattr_new = NULL;
7509 /* Destroy deleted domains */
7510 for (i = 0; i < ndoms_cur; i++) {
7511 for (j = 0; j < ndoms_new; j++) {
7512 if (cpus_equal(doms_cur[i], doms_new[j])
7513 && dattrs_equal(dattr_cur, i, dattr_new, j))
7514 goto match1;
7516 /* no match - a current sched domain not in new doms_new[] */
7517 detach_destroy_domains(doms_cur + i);
7518 match1:
7522 /* Build new domains */
7523 for (i = 0; i < ndoms_new; i++) {
7524 for (j = 0; j < ndoms_cur; j++) {
7525 if (cpus_equal(doms_new[i], doms_cur[j])
7526 && dattrs_equal(dattr_new, i, dattr_cur, j))
7527 goto match2;
7529 /* no match - add a new doms_new */
7530 __build_sched_domains(doms_new + i,
7531 dattr_new ? dattr_new + i : NULL);
7532 match2:
7536 /* Remember the new sched domains */
7537 if (doms_cur != &fallback_doms)
7538 kfree(doms_cur);
7539 kfree(dattr_cur); /* kfree(NULL) is safe */
7540 doms_cur = doms_new;
7541 dattr_cur = dattr_new;
7542 ndoms_cur = ndoms_new;
7544 register_sched_domain_sysctl();
7546 mutex_unlock(&sched_domains_mutex);
7549 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7550 int arch_reinit_sched_domains(void)
7552 int err;
7554 get_online_cpus();
7555 mutex_lock(&sched_domains_mutex);
7556 detach_destroy_domains(&cpu_online_map);
7557 free_sched_domains();
7558 err = arch_init_sched_domains(&cpu_online_map);
7559 mutex_unlock(&sched_domains_mutex);
7560 put_online_cpus();
7562 return err;
7565 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7567 int ret;
7569 if (buf[0] != '0' && buf[0] != '1')
7570 return -EINVAL;
7572 if (smt)
7573 sched_smt_power_savings = (buf[0] == '1');
7574 else
7575 sched_mc_power_savings = (buf[0] == '1');
7577 ret = arch_reinit_sched_domains();
7579 return ret ? ret : count;
7582 #ifdef CONFIG_SCHED_MC
7583 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7585 return sprintf(page, "%u\n", sched_mc_power_savings);
7587 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7588 const char *buf, size_t count)
7590 return sched_power_savings_store(buf, count, 0);
7592 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7593 sched_mc_power_savings_store);
7594 #endif
7596 #ifdef CONFIG_SCHED_SMT
7597 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7599 return sprintf(page, "%u\n", sched_smt_power_savings);
7601 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7602 const char *buf, size_t count)
7604 return sched_power_savings_store(buf, count, 1);
7606 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7607 sched_smt_power_savings_store);
7608 #endif
7610 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7612 int err = 0;
7614 #ifdef CONFIG_SCHED_SMT
7615 if (smt_capable())
7616 err = sysfs_create_file(&cls->kset.kobj,
7617 &attr_sched_smt_power_savings.attr);
7618 #endif
7619 #ifdef CONFIG_SCHED_MC
7620 if (!err && mc_capable())
7621 err = sysfs_create_file(&cls->kset.kobj,
7622 &attr_sched_mc_power_savings.attr);
7623 #endif
7624 return err;
7626 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7629 * Force a reinitialization of the sched domains hierarchy. The domains
7630 * and groups cannot be updated in place without racing with the balancing
7631 * code, so we temporarily attach all running cpus to the NULL domain
7632 * which will prevent rebalancing while the sched domains are recalculated.
7634 static int update_sched_domains(struct notifier_block *nfb,
7635 unsigned long action, void *hcpu)
7637 int cpu = (int)(long)hcpu;
7639 switch (action) {
7640 case CPU_DOWN_PREPARE:
7641 case CPU_DOWN_PREPARE_FROZEN:
7642 disable_runtime(cpu_rq(cpu));
7643 /* fall-through */
7644 case CPU_UP_PREPARE:
7645 case CPU_UP_PREPARE_FROZEN:
7646 detach_destroy_domains(&cpu_online_map);
7647 free_sched_domains();
7648 return NOTIFY_OK;
7651 case CPU_DOWN_FAILED:
7652 case CPU_DOWN_FAILED_FROZEN:
7653 case CPU_ONLINE:
7654 case CPU_ONLINE_FROZEN:
7655 enable_runtime(cpu_rq(cpu));
7656 /* fall-through */
7657 case CPU_UP_CANCELED:
7658 case CPU_UP_CANCELED_FROZEN:
7659 case CPU_DEAD:
7660 case CPU_DEAD_FROZEN:
7662 * Fall through and re-initialise the domains.
7664 break;
7665 default:
7666 return NOTIFY_DONE;
7669 #ifndef CONFIG_CPUSETS
7671 * Create default domain partitioning if cpusets are disabled.
7672 * Otherwise we let cpusets rebuild the domains based on the
7673 * current setup.
7676 /* The hotplug lock is already held by cpu_up/cpu_down */
7677 arch_init_sched_domains(&cpu_online_map);
7678 #endif
7680 return NOTIFY_OK;
7683 void __init sched_init_smp(void)
7685 cpumask_t non_isolated_cpus;
7687 #if defined(CONFIG_NUMA)
7688 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7689 GFP_KERNEL);
7690 BUG_ON(sched_group_nodes_bycpu == NULL);
7691 #endif
7692 get_online_cpus();
7693 mutex_lock(&sched_domains_mutex);
7694 arch_init_sched_domains(&cpu_online_map);
7695 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7696 if (cpus_empty(non_isolated_cpus))
7697 cpu_set(smp_processor_id(), non_isolated_cpus);
7698 mutex_unlock(&sched_domains_mutex);
7699 put_online_cpus();
7700 /* XXX: Theoretical race here - CPU may be hotplugged now */
7701 hotcpu_notifier(update_sched_domains, 0);
7702 init_hrtick();
7704 /* Move init over to a non-isolated CPU */
7705 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7706 BUG();
7707 sched_init_granularity();
7709 #else
7710 void __init sched_init_smp(void)
7712 sched_init_granularity();
7714 #endif /* CONFIG_SMP */
7716 int in_sched_functions(unsigned long addr)
7718 return in_lock_functions(addr) ||
7719 (addr >= (unsigned long)__sched_text_start
7720 && addr < (unsigned long)__sched_text_end);
7723 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7725 cfs_rq->tasks_timeline = RB_ROOT;
7726 INIT_LIST_HEAD(&cfs_rq->tasks);
7727 #ifdef CONFIG_FAIR_GROUP_SCHED
7728 cfs_rq->rq = rq;
7729 #endif
7730 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7733 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7735 struct rt_prio_array *array;
7736 int i;
7738 array = &rt_rq->active;
7739 for (i = 0; i < MAX_RT_PRIO; i++) {
7740 INIT_LIST_HEAD(array->queue + i);
7741 __clear_bit(i, array->bitmap);
7743 /* delimiter for bitsearch: */
7744 __set_bit(MAX_RT_PRIO, array->bitmap);
7746 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7747 rt_rq->highest_prio = MAX_RT_PRIO;
7748 #endif
7749 #ifdef CONFIG_SMP
7750 rt_rq->rt_nr_migratory = 0;
7751 rt_rq->overloaded = 0;
7752 #endif
7754 rt_rq->rt_time = 0;
7755 rt_rq->rt_throttled = 0;
7756 rt_rq->rt_runtime = 0;
7757 spin_lock_init(&rt_rq->rt_runtime_lock);
7759 #ifdef CONFIG_RT_GROUP_SCHED
7760 rt_rq->rt_nr_boosted = 0;
7761 rt_rq->rq = rq;
7762 #endif
7765 #ifdef CONFIG_FAIR_GROUP_SCHED
7766 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7767 struct sched_entity *se, int cpu, int add,
7768 struct sched_entity *parent)
7770 struct rq *rq = cpu_rq(cpu);
7771 tg->cfs_rq[cpu] = cfs_rq;
7772 init_cfs_rq(cfs_rq, rq);
7773 cfs_rq->tg = tg;
7774 if (add)
7775 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7777 tg->se[cpu] = se;
7778 /* se could be NULL for init_task_group */
7779 if (!se)
7780 return;
7782 if (!parent)
7783 se->cfs_rq = &rq->cfs;
7784 else
7785 se->cfs_rq = parent->my_q;
7787 se->my_q = cfs_rq;
7788 se->load.weight = tg->shares;
7789 se->load.inv_weight = 0;
7790 se->parent = parent;
7792 #endif
7794 #ifdef CONFIG_RT_GROUP_SCHED
7795 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7796 struct sched_rt_entity *rt_se, int cpu, int add,
7797 struct sched_rt_entity *parent)
7799 struct rq *rq = cpu_rq(cpu);
7801 tg->rt_rq[cpu] = rt_rq;
7802 init_rt_rq(rt_rq, rq);
7803 rt_rq->tg = tg;
7804 rt_rq->rt_se = rt_se;
7805 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7806 if (add)
7807 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7809 tg->rt_se[cpu] = rt_se;
7810 if (!rt_se)
7811 return;
7813 if (!parent)
7814 rt_se->rt_rq = &rq->rt;
7815 else
7816 rt_se->rt_rq = parent->my_q;
7818 rt_se->my_q = rt_rq;
7819 rt_se->parent = parent;
7820 INIT_LIST_HEAD(&rt_se->run_list);
7822 #endif
7824 void __init sched_init(void)
7826 int i, j;
7827 unsigned long alloc_size = 0, ptr;
7829 #ifdef CONFIG_FAIR_GROUP_SCHED
7830 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7831 #endif
7832 #ifdef CONFIG_RT_GROUP_SCHED
7833 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7834 #endif
7835 #ifdef CONFIG_USER_SCHED
7836 alloc_size *= 2;
7837 #endif
7839 * As sched_init() is called before page_alloc is setup,
7840 * we use alloc_bootmem().
7842 if (alloc_size) {
7843 ptr = (unsigned long)alloc_bootmem(alloc_size);
7845 #ifdef CONFIG_FAIR_GROUP_SCHED
7846 init_task_group.se = (struct sched_entity **)ptr;
7847 ptr += nr_cpu_ids * sizeof(void **);
7849 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7850 ptr += nr_cpu_ids * sizeof(void **);
7852 #ifdef CONFIG_USER_SCHED
7853 root_task_group.se = (struct sched_entity **)ptr;
7854 ptr += nr_cpu_ids * sizeof(void **);
7856 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7857 ptr += nr_cpu_ids * sizeof(void **);
7858 #endif /* CONFIG_USER_SCHED */
7859 #endif /* CONFIG_FAIR_GROUP_SCHED */
7860 #ifdef CONFIG_RT_GROUP_SCHED
7861 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7862 ptr += nr_cpu_ids * sizeof(void **);
7864 init_task_group.rt_rq = (struct rt_rq **)ptr;
7865 ptr += nr_cpu_ids * sizeof(void **);
7867 #ifdef CONFIG_USER_SCHED
7868 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7869 ptr += nr_cpu_ids * sizeof(void **);
7871 root_task_group.rt_rq = (struct rt_rq **)ptr;
7872 ptr += nr_cpu_ids * sizeof(void **);
7873 #endif /* CONFIG_USER_SCHED */
7874 #endif /* CONFIG_RT_GROUP_SCHED */
7877 #ifdef CONFIG_SMP
7878 init_defrootdomain();
7879 #endif
7881 init_rt_bandwidth(&def_rt_bandwidth,
7882 global_rt_period(), global_rt_runtime());
7884 #ifdef CONFIG_RT_GROUP_SCHED
7885 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7886 global_rt_period(), global_rt_runtime());
7887 #ifdef CONFIG_USER_SCHED
7888 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7889 global_rt_period(), RUNTIME_INF);
7890 #endif /* CONFIG_USER_SCHED */
7891 #endif /* CONFIG_RT_GROUP_SCHED */
7893 #ifdef CONFIG_GROUP_SCHED
7894 list_add(&init_task_group.list, &task_groups);
7895 INIT_LIST_HEAD(&init_task_group.children);
7897 #ifdef CONFIG_USER_SCHED
7898 INIT_LIST_HEAD(&root_task_group.children);
7899 init_task_group.parent = &root_task_group;
7900 list_add(&init_task_group.siblings, &root_task_group.children);
7901 #endif /* CONFIG_USER_SCHED */
7902 #endif /* CONFIG_GROUP_SCHED */
7904 for_each_possible_cpu(i) {
7905 struct rq *rq;
7907 rq = cpu_rq(i);
7908 spin_lock_init(&rq->lock);
7909 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7910 rq->nr_running = 0;
7911 init_cfs_rq(&rq->cfs, rq);
7912 init_rt_rq(&rq->rt, rq);
7913 #ifdef CONFIG_FAIR_GROUP_SCHED
7914 init_task_group.shares = init_task_group_load;
7915 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7916 #ifdef CONFIG_CGROUP_SCHED
7918 * How much cpu bandwidth does init_task_group get?
7920 * In case of task-groups formed thr' the cgroup filesystem, it
7921 * gets 100% of the cpu resources in the system. This overall
7922 * system cpu resource is divided among the tasks of
7923 * init_task_group and its child task-groups in a fair manner,
7924 * based on each entity's (task or task-group's) weight
7925 * (se->load.weight).
7927 * In other words, if init_task_group has 10 tasks of weight
7928 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7929 * then A0's share of the cpu resource is:
7931 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7933 * We achieve this by letting init_task_group's tasks sit
7934 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7936 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7937 #elif defined CONFIG_USER_SCHED
7938 root_task_group.shares = NICE_0_LOAD;
7939 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7941 * In case of task-groups formed thr' the user id of tasks,
7942 * init_task_group represents tasks belonging to root user.
7943 * Hence it forms a sibling of all subsequent groups formed.
7944 * In this case, init_task_group gets only a fraction of overall
7945 * system cpu resource, based on the weight assigned to root
7946 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7947 * by letting tasks of init_task_group sit in a separate cfs_rq
7948 * (init_cfs_rq) and having one entity represent this group of
7949 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7951 init_tg_cfs_entry(&init_task_group,
7952 &per_cpu(init_cfs_rq, i),
7953 &per_cpu(init_sched_entity, i), i, 1,
7954 root_task_group.se[i]);
7956 #endif
7957 #endif /* CONFIG_FAIR_GROUP_SCHED */
7959 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7960 #ifdef CONFIG_RT_GROUP_SCHED
7961 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7962 #ifdef CONFIG_CGROUP_SCHED
7963 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7964 #elif defined CONFIG_USER_SCHED
7965 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7966 init_tg_rt_entry(&init_task_group,
7967 &per_cpu(init_rt_rq, i),
7968 &per_cpu(init_sched_rt_entity, i), i, 1,
7969 root_task_group.rt_se[i]);
7970 #endif
7971 #endif
7973 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7974 rq->cpu_load[j] = 0;
7975 #ifdef CONFIG_SMP
7976 rq->sd = NULL;
7977 rq->rd = NULL;
7978 rq->active_balance = 0;
7979 rq->next_balance = jiffies;
7980 rq->push_cpu = 0;
7981 rq->cpu = i;
7982 rq->online = 0;
7983 rq->migration_thread = NULL;
7984 INIT_LIST_HEAD(&rq->migration_queue);
7985 rq_attach_root(rq, &def_root_domain);
7986 #endif
7987 init_rq_hrtick(rq);
7988 atomic_set(&rq->nr_iowait, 0);
7991 set_load_weight(&init_task);
7993 #ifdef CONFIG_PREEMPT_NOTIFIERS
7994 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7995 #endif
7997 #ifdef CONFIG_SMP
7998 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7999 #endif
8001 #ifdef CONFIG_RT_MUTEXES
8002 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8003 #endif
8006 * The boot idle thread does lazy MMU switching as well:
8008 atomic_inc(&init_mm.mm_count);
8009 enter_lazy_tlb(&init_mm, current);
8012 * Make us the idle thread. Technically, schedule() should not be
8013 * called from this thread, however somewhere below it might be,
8014 * but because we are the idle thread, we just pick up running again
8015 * when this runqueue becomes "idle".
8017 init_idle(current, smp_processor_id());
8019 * During early bootup we pretend to be a normal task:
8021 current->sched_class = &fair_sched_class;
8023 scheduler_running = 1;
8026 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8027 void __might_sleep(char *file, int line)
8029 #ifdef in_atomic
8030 static unsigned long prev_jiffy; /* ratelimiting */
8032 if ((in_atomic() || irqs_disabled()) &&
8033 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8034 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8035 return;
8036 prev_jiffy = jiffies;
8037 printk(KERN_ERR "BUG: sleeping function called from invalid"
8038 " context at %s:%d\n", file, line);
8039 printk("in_atomic():%d, irqs_disabled():%d\n",
8040 in_atomic(), irqs_disabled());
8041 debug_show_held_locks(current);
8042 if (irqs_disabled())
8043 print_irqtrace_events(current);
8044 dump_stack();
8046 #endif
8048 EXPORT_SYMBOL(__might_sleep);
8049 #endif
8051 #ifdef CONFIG_MAGIC_SYSRQ
8052 static void normalize_task(struct rq *rq, struct task_struct *p)
8054 int on_rq;
8056 update_rq_clock(rq);
8057 on_rq = p->se.on_rq;
8058 if (on_rq)
8059 deactivate_task(rq, p, 0);
8060 __setscheduler(rq, p, SCHED_NORMAL, 0);
8061 if (on_rq) {
8062 activate_task(rq, p, 0);
8063 resched_task(rq->curr);
8067 void normalize_rt_tasks(void)
8069 struct task_struct *g, *p;
8070 unsigned long flags;
8071 struct rq *rq;
8073 read_lock_irqsave(&tasklist_lock, flags);
8074 do_each_thread(g, p) {
8076 * Only normalize user tasks:
8078 if (!p->mm)
8079 continue;
8081 p->se.exec_start = 0;
8082 #ifdef CONFIG_SCHEDSTATS
8083 p->se.wait_start = 0;
8084 p->se.sleep_start = 0;
8085 p->se.block_start = 0;
8086 #endif
8088 if (!rt_task(p)) {
8090 * Renice negative nice level userspace
8091 * tasks back to 0:
8093 if (TASK_NICE(p) < 0 && p->mm)
8094 set_user_nice(p, 0);
8095 continue;
8098 spin_lock(&p->pi_lock);
8099 rq = __task_rq_lock(p);
8101 normalize_task(rq, p);
8103 __task_rq_unlock(rq);
8104 spin_unlock(&p->pi_lock);
8105 } while_each_thread(g, p);
8107 read_unlock_irqrestore(&tasklist_lock, flags);
8110 #endif /* CONFIG_MAGIC_SYSRQ */
8112 #ifdef CONFIG_IA64
8114 * These functions are only useful for the IA64 MCA handling.
8116 * They can only be called when the whole system has been
8117 * stopped - every CPU needs to be quiescent, and no scheduling
8118 * activity can take place. Using them for anything else would
8119 * be a serious bug, and as a result, they aren't even visible
8120 * under any other configuration.
8124 * curr_task - return the current task for a given cpu.
8125 * @cpu: the processor in question.
8127 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8129 struct task_struct *curr_task(int cpu)
8131 return cpu_curr(cpu);
8135 * set_curr_task - set the current task for a given cpu.
8136 * @cpu: the processor in question.
8137 * @p: the task pointer to set.
8139 * Description: This function must only be used when non-maskable interrupts
8140 * are serviced on a separate stack. It allows the architecture to switch the
8141 * notion of the current task on a cpu in a non-blocking manner. This function
8142 * must be called with all CPU's synchronized, and interrupts disabled, the
8143 * and caller must save the original value of the current task (see
8144 * curr_task() above) and restore that value before reenabling interrupts and
8145 * re-starting the system.
8147 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8149 void set_curr_task(int cpu, struct task_struct *p)
8151 cpu_curr(cpu) = p;
8154 #endif
8156 #ifdef CONFIG_FAIR_GROUP_SCHED
8157 static void free_fair_sched_group(struct task_group *tg)
8159 int i;
8161 for_each_possible_cpu(i) {
8162 if (tg->cfs_rq)
8163 kfree(tg->cfs_rq[i]);
8164 if (tg->se)
8165 kfree(tg->se[i]);
8168 kfree(tg->cfs_rq);
8169 kfree(tg->se);
8172 static
8173 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8175 struct cfs_rq *cfs_rq;
8176 struct sched_entity *se, *parent_se;
8177 struct rq *rq;
8178 int i;
8180 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8181 if (!tg->cfs_rq)
8182 goto err;
8183 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8184 if (!tg->se)
8185 goto err;
8187 tg->shares = NICE_0_LOAD;
8189 for_each_possible_cpu(i) {
8190 rq = cpu_rq(i);
8192 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8193 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8194 if (!cfs_rq)
8195 goto err;
8197 se = kmalloc_node(sizeof(struct sched_entity),
8198 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8199 if (!se)
8200 goto err;
8202 parent_se = parent ? parent->se[i] : NULL;
8203 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8206 return 1;
8208 err:
8209 return 0;
8212 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8214 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8215 &cpu_rq(cpu)->leaf_cfs_rq_list);
8218 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8220 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8222 #else /* !CONFG_FAIR_GROUP_SCHED */
8223 static inline void free_fair_sched_group(struct task_group *tg)
8227 static inline
8228 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8230 return 1;
8233 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8237 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8240 #endif /* CONFIG_FAIR_GROUP_SCHED */
8242 #ifdef CONFIG_RT_GROUP_SCHED
8243 static void free_rt_sched_group(struct task_group *tg)
8245 int i;
8247 destroy_rt_bandwidth(&tg->rt_bandwidth);
8249 for_each_possible_cpu(i) {
8250 if (tg->rt_rq)
8251 kfree(tg->rt_rq[i]);
8252 if (tg->rt_se)
8253 kfree(tg->rt_se[i]);
8256 kfree(tg->rt_rq);
8257 kfree(tg->rt_se);
8260 static
8261 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8263 struct rt_rq *rt_rq;
8264 struct sched_rt_entity *rt_se, *parent_se;
8265 struct rq *rq;
8266 int i;
8268 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8269 if (!tg->rt_rq)
8270 goto err;
8271 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8272 if (!tg->rt_se)
8273 goto err;
8275 init_rt_bandwidth(&tg->rt_bandwidth,
8276 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8278 for_each_possible_cpu(i) {
8279 rq = cpu_rq(i);
8281 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8282 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8283 if (!rt_rq)
8284 goto err;
8286 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8287 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8288 if (!rt_se)
8289 goto err;
8291 parent_se = parent ? parent->rt_se[i] : NULL;
8292 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8295 return 1;
8297 err:
8298 return 0;
8301 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8303 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8304 &cpu_rq(cpu)->leaf_rt_rq_list);
8307 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8309 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8311 #else /* !CONFIG_RT_GROUP_SCHED */
8312 static inline void free_rt_sched_group(struct task_group *tg)
8316 static inline
8317 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8319 return 1;
8322 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8326 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8329 #endif /* CONFIG_RT_GROUP_SCHED */
8331 #ifdef CONFIG_GROUP_SCHED
8332 static void free_sched_group(struct task_group *tg)
8334 free_fair_sched_group(tg);
8335 free_rt_sched_group(tg);
8336 kfree(tg);
8339 /* allocate runqueue etc for a new task group */
8340 struct task_group *sched_create_group(struct task_group *parent)
8342 struct task_group *tg;
8343 unsigned long flags;
8344 int i;
8346 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8347 if (!tg)
8348 return ERR_PTR(-ENOMEM);
8350 if (!alloc_fair_sched_group(tg, parent))
8351 goto err;
8353 if (!alloc_rt_sched_group(tg, parent))
8354 goto err;
8356 spin_lock_irqsave(&task_group_lock, flags);
8357 for_each_possible_cpu(i) {
8358 register_fair_sched_group(tg, i);
8359 register_rt_sched_group(tg, i);
8361 list_add_rcu(&tg->list, &task_groups);
8363 WARN_ON(!parent); /* root should already exist */
8365 tg->parent = parent;
8366 list_add_rcu(&tg->siblings, &parent->children);
8367 INIT_LIST_HEAD(&tg->children);
8368 spin_unlock_irqrestore(&task_group_lock, flags);
8370 return tg;
8372 err:
8373 free_sched_group(tg);
8374 return ERR_PTR(-ENOMEM);
8377 /* rcu callback to free various structures associated with a task group */
8378 static void free_sched_group_rcu(struct rcu_head *rhp)
8380 /* now it should be safe to free those cfs_rqs */
8381 free_sched_group(container_of(rhp, struct task_group, rcu));
8384 /* Destroy runqueue etc associated with a task group */
8385 void sched_destroy_group(struct task_group *tg)
8387 unsigned long flags;
8388 int i;
8390 spin_lock_irqsave(&task_group_lock, flags);
8391 for_each_possible_cpu(i) {
8392 unregister_fair_sched_group(tg, i);
8393 unregister_rt_sched_group(tg, i);
8395 list_del_rcu(&tg->list);
8396 list_del_rcu(&tg->siblings);
8397 spin_unlock_irqrestore(&task_group_lock, flags);
8399 /* wait for possible concurrent references to cfs_rqs complete */
8400 call_rcu(&tg->rcu, free_sched_group_rcu);
8403 /* change task's runqueue when it moves between groups.
8404 * The caller of this function should have put the task in its new group
8405 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8406 * reflect its new group.
8408 void sched_move_task(struct task_struct *tsk)
8410 int on_rq, running;
8411 unsigned long flags;
8412 struct rq *rq;
8414 rq = task_rq_lock(tsk, &flags);
8416 update_rq_clock(rq);
8418 running = task_current(rq, tsk);
8419 on_rq = tsk->se.on_rq;
8421 if (on_rq)
8422 dequeue_task(rq, tsk, 0);
8423 if (unlikely(running))
8424 tsk->sched_class->put_prev_task(rq, tsk);
8426 set_task_rq(tsk, task_cpu(tsk));
8428 #ifdef CONFIG_FAIR_GROUP_SCHED
8429 if (tsk->sched_class->moved_group)
8430 tsk->sched_class->moved_group(tsk);
8431 #endif
8433 if (unlikely(running))
8434 tsk->sched_class->set_curr_task(rq);
8435 if (on_rq)
8436 enqueue_task(rq, tsk, 0);
8438 task_rq_unlock(rq, &flags);
8440 #endif /* CONFIG_GROUP_SCHED */
8442 #ifdef CONFIG_FAIR_GROUP_SCHED
8443 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8445 struct cfs_rq *cfs_rq = se->cfs_rq;
8446 int on_rq;
8448 on_rq = se->on_rq;
8449 if (on_rq)
8450 dequeue_entity(cfs_rq, se, 0);
8452 se->load.weight = shares;
8453 se->load.inv_weight = 0;
8455 if (on_rq)
8456 enqueue_entity(cfs_rq, se, 0);
8459 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8461 struct cfs_rq *cfs_rq = se->cfs_rq;
8462 struct rq *rq = cfs_rq->rq;
8463 unsigned long flags;
8465 spin_lock_irqsave(&rq->lock, flags);
8466 __set_se_shares(se, shares);
8467 spin_unlock_irqrestore(&rq->lock, flags);
8470 static DEFINE_MUTEX(shares_mutex);
8472 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8474 int i;
8475 unsigned long flags;
8478 * We can't change the weight of the root cgroup.
8480 if (!tg->se[0])
8481 return -EINVAL;
8483 if (shares < MIN_SHARES)
8484 shares = MIN_SHARES;
8485 else if (shares > MAX_SHARES)
8486 shares = MAX_SHARES;
8488 mutex_lock(&shares_mutex);
8489 if (tg->shares == shares)
8490 goto done;
8492 spin_lock_irqsave(&task_group_lock, flags);
8493 for_each_possible_cpu(i)
8494 unregister_fair_sched_group(tg, i);
8495 list_del_rcu(&tg->siblings);
8496 spin_unlock_irqrestore(&task_group_lock, flags);
8498 /* wait for any ongoing reference to this group to finish */
8499 synchronize_sched();
8502 * Now we are free to modify the group's share on each cpu
8503 * w/o tripping rebalance_share or load_balance_fair.
8505 tg->shares = shares;
8506 for_each_possible_cpu(i) {
8508 * force a rebalance
8510 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8511 set_se_shares(tg->se[i], shares);
8515 * Enable load balance activity on this group, by inserting it back on
8516 * each cpu's rq->leaf_cfs_rq_list.
8518 spin_lock_irqsave(&task_group_lock, flags);
8519 for_each_possible_cpu(i)
8520 register_fair_sched_group(tg, i);
8521 list_add_rcu(&tg->siblings, &tg->parent->children);
8522 spin_unlock_irqrestore(&task_group_lock, flags);
8523 done:
8524 mutex_unlock(&shares_mutex);
8525 return 0;
8528 unsigned long sched_group_shares(struct task_group *tg)
8530 return tg->shares;
8532 #endif
8534 #ifdef CONFIG_RT_GROUP_SCHED
8536 * Ensure that the real time constraints are schedulable.
8538 static DEFINE_MUTEX(rt_constraints_mutex);
8540 static unsigned long to_ratio(u64 period, u64 runtime)
8542 if (runtime == RUNTIME_INF)
8543 return 1ULL << 16;
8545 return div64_u64(runtime << 16, period);
8548 #ifdef CONFIG_CGROUP_SCHED
8549 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8551 struct task_group *tgi, *parent = tg->parent;
8552 unsigned long total = 0;
8554 if (!parent) {
8555 if (global_rt_period() < period)
8556 return 0;
8558 return to_ratio(period, runtime) <
8559 to_ratio(global_rt_period(), global_rt_runtime());
8562 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8563 return 0;
8565 rcu_read_lock();
8566 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8567 if (tgi == tg)
8568 continue;
8570 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8571 tgi->rt_bandwidth.rt_runtime);
8573 rcu_read_unlock();
8575 return total + to_ratio(period, runtime) <=
8576 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8577 parent->rt_bandwidth.rt_runtime);
8579 #elif defined CONFIG_USER_SCHED
8580 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8582 struct task_group *tgi;
8583 unsigned long total = 0;
8584 unsigned long global_ratio =
8585 to_ratio(global_rt_period(), global_rt_runtime());
8587 rcu_read_lock();
8588 list_for_each_entry_rcu(tgi, &task_groups, list) {
8589 if (tgi == tg)
8590 continue;
8592 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8593 tgi->rt_bandwidth.rt_runtime);
8595 rcu_read_unlock();
8597 return total + to_ratio(period, runtime) < global_ratio;
8599 #endif
8601 /* Must be called with tasklist_lock held */
8602 static inline int tg_has_rt_tasks(struct task_group *tg)
8604 struct task_struct *g, *p;
8605 do_each_thread(g, p) {
8606 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8607 return 1;
8608 } while_each_thread(g, p);
8609 return 0;
8612 static int tg_set_bandwidth(struct task_group *tg,
8613 u64 rt_period, u64 rt_runtime)
8615 int i, err = 0;
8617 mutex_lock(&rt_constraints_mutex);
8618 read_lock(&tasklist_lock);
8619 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8620 err = -EBUSY;
8621 goto unlock;
8623 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8624 err = -EINVAL;
8625 goto unlock;
8628 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8629 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8630 tg->rt_bandwidth.rt_runtime = rt_runtime;
8632 for_each_possible_cpu(i) {
8633 struct rt_rq *rt_rq = tg->rt_rq[i];
8635 spin_lock(&rt_rq->rt_runtime_lock);
8636 rt_rq->rt_runtime = rt_runtime;
8637 spin_unlock(&rt_rq->rt_runtime_lock);
8639 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8640 unlock:
8641 read_unlock(&tasklist_lock);
8642 mutex_unlock(&rt_constraints_mutex);
8644 return err;
8647 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8649 u64 rt_runtime, rt_period;
8651 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8652 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8653 if (rt_runtime_us < 0)
8654 rt_runtime = RUNTIME_INF;
8656 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8659 long sched_group_rt_runtime(struct task_group *tg)
8661 u64 rt_runtime_us;
8663 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8664 return -1;
8666 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8667 do_div(rt_runtime_us, NSEC_PER_USEC);
8668 return rt_runtime_us;
8671 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8673 u64 rt_runtime, rt_period;
8675 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8676 rt_runtime = tg->rt_bandwidth.rt_runtime;
8678 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8681 long sched_group_rt_period(struct task_group *tg)
8683 u64 rt_period_us;
8685 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8686 do_div(rt_period_us, NSEC_PER_USEC);
8687 return rt_period_us;
8690 static int sched_rt_global_constraints(void)
8692 struct task_group *tg = &root_task_group;
8693 u64 rt_runtime, rt_period;
8694 int ret = 0;
8696 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8697 rt_runtime = tg->rt_bandwidth.rt_runtime;
8699 mutex_lock(&rt_constraints_mutex);
8700 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8701 ret = -EINVAL;
8702 mutex_unlock(&rt_constraints_mutex);
8704 return ret;
8706 #else /* !CONFIG_RT_GROUP_SCHED */
8707 static int sched_rt_global_constraints(void)
8709 unsigned long flags;
8710 int i;
8712 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8713 for_each_possible_cpu(i) {
8714 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8716 spin_lock(&rt_rq->rt_runtime_lock);
8717 rt_rq->rt_runtime = global_rt_runtime();
8718 spin_unlock(&rt_rq->rt_runtime_lock);
8720 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8722 return 0;
8724 #endif /* CONFIG_RT_GROUP_SCHED */
8726 int sched_rt_handler(struct ctl_table *table, int write,
8727 struct file *filp, void __user *buffer, size_t *lenp,
8728 loff_t *ppos)
8730 int ret;
8731 int old_period, old_runtime;
8732 static DEFINE_MUTEX(mutex);
8734 mutex_lock(&mutex);
8735 old_period = sysctl_sched_rt_period;
8736 old_runtime = sysctl_sched_rt_runtime;
8738 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8740 if (!ret && write) {
8741 ret = sched_rt_global_constraints();
8742 if (ret) {
8743 sysctl_sched_rt_period = old_period;
8744 sysctl_sched_rt_runtime = old_runtime;
8745 } else {
8746 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8747 def_rt_bandwidth.rt_period =
8748 ns_to_ktime(global_rt_period());
8751 mutex_unlock(&mutex);
8753 return ret;
8756 #ifdef CONFIG_CGROUP_SCHED
8758 /* return corresponding task_group object of a cgroup */
8759 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8761 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8762 struct task_group, css);
8765 static struct cgroup_subsys_state *
8766 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8768 struct task_group *tg, *parent;
8770 if (!cgrp->parent) {
8771 /* This is early initialization for the top cgroup */
8772 init_task_group.css.cgroup = cgrp;
8773 return &init_task_group.css;
8776 parent = cgroup_tg(cgrp->parent);
8777 tg = sched_create_group(parent);
8778 if (IS_ERR(tg))
8779 return ERR_PTR(-ENOMEM);
8781 /* Bind the cgroup to task_group object we just created */
8782 tg->css.cgroup = cgrp;
8784 return &tg->css;
8787 static void
8788 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8790 struct task_group *tg = cgroup_tg(cgrp);
8792 sched_destroy_group(tg);
8795 static int
8796 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8797 struct task_struct *tsk)
8799 #ifdef CONFIG_RT_GROUP_SCHED
8800 /* Don't accept realtime tasks when there is no way for them to run */
8801 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8802 return -EINVAL;
8803 #else
8804 /* We don't support RT-tasks being in separate groups */
8805 if (tsk->sched_class != &fair_sched_class)
8806 return -EINVAL;
8807 #endif
8809 return 0;
8812 static void
8813 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8814 struct cgroup *old_cont, struct task_struct *tsk)
8816 sched_move_task(tsk);
8819 #ifdef CONFIG_FAIR_GROUP_SCHED
8820 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8821 u64 shareval)
8823 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8826 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8828 struct task_group *tg = cgroup_tg(cgrp);
8830 return (u64) tg->shares;
8832 #endif /* CONFIG_FAIR_GROUP_SCHED */
8834 #ifdef CONFIG_RT_GROUP_SCHED
8835 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8836 s64 val)
8838 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8841 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8843 return sched_group_rt_runtime(cgroup_tg(cgrp));
8846 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8847 u64 rt_period_us)
8849 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8852 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8854 return sched_group_rt_period(cgroup_tg(cgrp));
8856 #endif /* CONFIG_RT_GROUP_SCHED */
8858 static struct cftype cpu_files[] = {
8859 #ifdef CONFIG_FAIR_GROUP_SCHED
8861 .name = "shares",
8862 .read_u64 = cpu_shares_read_u64,
8863 .write_u64 = cpu_shares_write_u64,
8865 #endif
8866 #ifdef CONFIG_RT_GROUP_SCHED
8868 .name = "rt_runtime_us",
8869 .read_s64 = cpu_rt_runtime_read,
8870 .write_s64 = cpu_rt_runtime_write,
8873 .name = "rt_period_us",
8874 .read_u64 = cpu_rt_period_read_uint,
8875 .write_u64 = cpu_rt_period_write_uint,
8877 #endif
8880 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8882 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8885 struct cgroup_subsys cpu_cgroup_subsys = {
8886 .name = "cpu",
8887 .create = cpu_cgroup_create,
8888 .destroy = cpu_cgroup_destroy,
8889 .can_attach = cpu_cgroup_can_attach,
8890 .attach = cpu_cgroup_attach,
8891 .populate = cpu_cgroup_populate,
8892 .subsys_id = cpu_cgroup_subsys_id,
8893 .early_init = 1,
8896 #endif /* CONFIG_CGROUP_SCHED */
8898 #ifdef CONFIG_CGROUP_CPUACCT
8901 * CPU accounting code for task groups.
8903 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8904 * (balbir@in.ibm.com).
8907 /* track cpu usage of a group of tasks */
8908 struct cpuacct {
8909 struct cgroup_subsys_state css;
8910 /* cpuusage holds pointer to a u64-type object on every cpu */
8911 u64 *cpuusage;
8914 struct cgroup_subsys cpuacct_subsys;
8916 /* return cpu accounting group corresponding to this container */
8917 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8919 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8920 struct cpuacct, css);
8923 /* return cpu accounting group to which this task belongs */
8924 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8926 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8927 struct cpuacct, css);
8930 /* create a new cpu accounting group */
8931 static struct cgroup_subsys_state *cpuacct_create(
8932 struct cgroup_subsys *ss, struct cgroup *cgrp)
8934 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8936 if (!ca)
8937 return ERR_PTR(-ENOMEM);
8939 ca->cpuusage = alloc_percpu(u64);
8940 if (!ca->cpuusage) {
8941 kfree(ca);
8942 return ERR_PTR(-ENOMEM);
8945 return &ca->css;
8948 /* destroy an existing cpu accounting group */
8949 static void
8950 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8952 struct cpuacct *ca = cgroup_ca(cgrp);
8954 free_percpu(ca->cpuusage);
8955 kfree(ca);
8958 /* return total cpu usage (in nanoseconds) of a group */
8959 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8961 struct cpuacct *ca = cgroup_ca(cgrp);
8962 u64 totalcpuusage = 0;
8963 int i;
8965 for_each_possible_cpu(i) {
8966 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8969 * Take rq->lock to make 64-bit addition safe on 32-bit
8970 * platforms.
8972 spin_lock_irq(&cpu_rq(i)->lock);
8973 totalcpuusage += *cpuusage;
8974 spin_unlock_irq(&cpu_rq(i)->lock);
8977 return totalcpuusage;
8980 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8981 u64 reset)
8983 struct cpuacct *ca = cgroup_ca(cgrp);
8984 int err = 0;
8985 int i;
8987 if (reset) {
8988 err = -EINVAL;
8989 goto out;
8992 for_each_possible_cpu(i) {
8993 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8995 spin_lock_irq(&cpu_rq(i)->lock);
8996 *cpuusage = 0;
8997 spin_unlock_irq(&cpu_rq(i)->lock);
8999 out:
9000 return err;
9003 static struct cftype files[] = {
9005 .name = "usage",
9006 .read_u64 = cpuusage_read,
9007 .write_u64 = cpuusage_write,
9011 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9013 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9017 * charge this task's execution time to its accounting group.
9019 * called with rq->lock held.
9021 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9023 struct cpuacct *ca;
9025 if (!cpuacct_subsys.active)
9026 return;
9028 ca = task_ca(tsk);
9029 if (ca) {
9030 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9032 *cpuusage += cputime;
9036 struct cgroup_subsys cpuacct_subsys = {
9037 .name = "cpuacct",
9038 .create = cpuacct_create,
9039 .destroy = cpuacct_destroy,
9040 .populate = cpuacct_populate,
9041 .subsys_id = cpuacct_subsys_id,
9043 #endif /* CONFIG_CGROUP_CPUACCT */