cpufreq: arm-big-little: call CPUFREQ_POSTCHANGE notfier in error cases
[linux-2.6.git] / net / mac80211 / rx.c
blob8e29526202568f0223401659f4301500d5f9d424
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
35 * monitor mode reception
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
59 return skb;
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
87 int len;
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 9;
92 /* allocate extra bitmap */
93 if (status->vendor_radiotap_len)
94 len += 4;
96 if (ieee80211_have_rx_timestamp(status)) {
97 len = ALIGN(len, 8);
98 len += 8;
100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
101 len += 1;
103 /* padding for RX_FLAGS if necessary */
104 len = ALIGN(len, 2);
106 if (status->flag & RX_FLAG_HT) /* HT info */
107 len += 3;
109 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 len = ALIGN(len, 4);
111 len += 8;
114 if (status->flag & RX_FLAG_VHT) {
115 len = ALIGN(len, 2);
116 len += 12;
119 if (status->vendor_radiotap_len) {
120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
121 status->vendor_radiotap_align = 1;
122 /* align standard part of vendor namespace */
123 len = ALIGN(len, 2);
124 /* allocate standard part of vendor namespace */
125 len += 6;
126 /* align vendor-defined part */
127 len = ALIGN(len, status->vendor_radiotap_align);
128 /* vendor-defined part is already in skb */
131 return len;
135 * ieee80211_add_rx_radiotap_header - add radiotap header
137 * add a radiotap header containing all the fields which the hardware provided.
139 static void
140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
141 struct sk_buff *skb,
142 struct ieee80211_rate *rate,
143 int rtap_len, bool has_fcs)
145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
146 struct ieee80211_radiotap_header *rthdr;
147 unsigned char *pos;
148 u16 rx_flags = 0;
149 int mpdulen;
151 mpdulen = skb->len;
152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
153 mpdulen += FCS_LEN;
155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
156 memset(rthdr, 0, rtap_len);
158 /* radiotap header, set always present flags */
159 rthdr->it_present =
160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
161 (1 << IEEE80211_RADIOTAP_CHANNEL) |
162 (1 << IEEE80211_RADIOTAP_ANTENNA) |
163 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
166 pos = (unsigned char *)(rthdr + 1);
168 if (status->vendor_radiotap_len) {
169 rthdr->it_present |=
170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) |
171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT));
172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos);
173 pos += 4;
176 /* the order of the following fields is important */
178 /* IEEE80211_RADIOTAP_TSFT */
179 if (ieee80211_have_rx_timestamp(status)) {
180 /* padding */
181 while ((pos - (u8 *)rthdr) & 7)
182 *pos++ = 0;
183 put_unaligned_le64(
184 ieee80211_calculate_rx_timestamp(local, status,
185 mpdulen, 0),
186 pos);
187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
188 pos += 8;
191 /* IEEE80211_RADIOTAP_FLAGS */
192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
193 *pos |= IEEE80211_RADIOTAP_F_FCS;
194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
195 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
196 if (status->flag & RX_FLAG_SHORTPRE)
197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
198 pos++;
200 /* IEEE80211_RADIOTAP_RATE */
201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
203 * Without rate information don't add it. If we have,
204 * MCS information is a separate field in radiotap,
205 * added below. The byte here is needed as padding
206 * for the channel though, so initialise it to 0.
208 *pos = 0;
209 } else {
210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
211 *pos = rate->bitrate / 5;
213 pos++;
215 /* IEEE80211_RADIOTAP_CHANNEL */
216 put_unaligned_le16(status->freq, pos);
217 pos += 2;
218 if (status->band == IEEE80211_BAND_5GHZ)
219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
220 pos);
221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
223 pos);
224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
226 pos);
227 else if (rate)
228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
229 pos);
230 else
231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
232 pos += 2;
234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
237 *pos = status->signal;
238 rthdr->it_present |=
239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
240 pos++;
243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
245 /* IEEE80211_RADIOTAP_ANTENNA */
246 *pos = status->antenna;
247 pos++;
249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
251 /* IEEE80211_RADIOTAP_RX_FLAGS */
252 /* ensure 2 byte alignment for the 2 byte field as required */
253 if ((pos - (u8 *)rthdr) & 1)
254 *pos++ = 0;
255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
257 put_unaligned_le16(rx_flags, pos);
258 pos += 2;
260 if (status->flag & RX_FLAG_HT) {
261 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
262 *pos++ = local->hw.radiotap_mcs_details;
263 *pos = 0;
264 if (status->flag & RX_FLAG_SHORT_GI)
265 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
266 if (status->flag & RX_FLAG_40MHZ)
267 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
268 if (status->flag & RX_FLAG_HT_GF)
269 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
270 pos++;
271 *pos++ = status->rate_idx;
274 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
275 u16 flags = 0;
277 /* ensure 4 byte alignment */
278 while ((pos - (u8 *)rthdr) & 3)
279 pos++;
280 rthdr->it_present |=
281 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
282 put_unaligned_le32(status->ampdu_reference, pos);
283 pos += 4;
284 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
285 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
286 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
287 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
288 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
289 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
290 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
292 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
293 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
294 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
295 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
296 put_unaligned_le16(flags, pos);
297 pos += 2;
298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
299 *pos++ = status->ampdu_delimiter_crc;
300 else
301 *pos++ = 0;
302 *pos++ = 0;
305 if (status->flag & RX_FLAG_VHT) {
306 u16 known = local->hw.radiotap_vht_details;
308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
309 /* known field - how to handle 80+80? */
310 if (status->flag & RX_FLAG_80P80MHZ)
311 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
312 put_unaligned_le16(known, pos);
313 pos += 2;
314 /* flags */
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
317 pos++;
318 /* bandwidth */
319 if (status->flag & RX_FLAG_80MHZ)
320 *pos++ = 4;
321 else if (status->flag & RX_FLAG_80P80MHZ)
322 *pos++ = 0; /* marked not known above */
323 else if (status->flag & RX_FLAG_160MHZ)
324 *pos++ = 11;
325 else if (status->flag & RX_FLAG_40MHZ)
326 *pos++ = 1;
327 else /* 20 MHz */
328 *pos++ = 0;
329 /* MCS/NSS */
330 *pos = (status->rate_idx << 4) | status->vht_nss;
331 pos += 4;
332 /* coding field */
333 pos++;
334 /* group ID */
335 pos++;
336 /* partial_aid */
337 pos += 2;
340 if (status->vendor_radiotap_len) {
341 /* ensure 2 byte alignment for the vendor field as required */
342 if ((pos - (u8 *)rthdr) & 1)
343 *pos++ = 0;
344 *pos++ = status->vendor_radiotap_oui[0];
345 *pos++ = status->vendor_radiotap_oui[1];
346 *pos++ = status->vendor_radiotap_oui[2];
347 *pos++ = status->vendor_radiotap_subns;
348 put_unaligned_le16(status->vendor_radiotap_len, pos);
349 pos += 2;
350 /* align the actual payload as requested */
351 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
352 *pos++ = 0;
357 * This function copies a received frame to all monitor interfaces and
358 * returns a cleaned-up SKB that no longer includes the FCS nor the
359 * radiotap header the driver might have added.
361 static struct sk_buff *
362 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
363 struct ieee80211_rate *rate)
365 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
366 struct ieee80211_sub_if_data *sdata;
367 int needed_headroom;
368 struct sk_buff *skb, *skb2;
369 struct net_device *prev_dev = NULL;
370 int present_fcs_len = 0;
373 * First, we may need to make a copy of the skb because
374 * (1) we need to modify it for radiotap (if not present), and
375 * (2) the other RX handlers will modify the skb we got.
377 * We don't need to, of course, if we aren't going to return
378 * the SKB because it has a bad FCS/PLCP checksum.
381 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
382 present_fcs_len = FCS_LEN;
384 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
385 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
386 dev_kfree_skb(origskb);
387 return NULL;
390 if (!local->monitors) {
391 if (should_drop_frame(origskb, present_fcs_len)) {
392 dev_kfree_skb(origskb);
393 return NULL;
396 return remove_monitor_info(local, origskb);
399 /* room for the radiotap header based on driver features */
400 needed_headroom = ieee80211_rx_radiotap_space(local, status);
402 if (should_drop_frame(origskb, present_fcs_len)) {
403 /* only need to expand headroom if necessary */
404 skb = origskb;
405 origskb = NULL;
408 * This shouldn't trigger often because most devices have an
409 * RX header they pull before we get here, and that should
410 * be big enough for our radiotap information. We should
411 * probably export the length to drivers so that we can have
412 * them allocate enough headroom to start with.
414 if (skb_headroom(skb) < needed_headroom &&
415 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
416 dev_kfree_skb(skb);
417 return NULL;
419 } else {
421 * Need to make a copy and possibly remove radiotap header
422 * and FCS from the original.
424 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
426 origskb = remove_monitor_info(local, origskb);
428 if (!skb)
429 return origskb;
432 /* prepend radiotap information */
433 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
434 true);
436 skb_reset_mac_header(skb);
437 skb->ip_summed = CHECKSUM_UNNECESSARY;
438 skb->pkt_type = PACKET_OTHERHOST;
439 skb->protocol = htons(ETH_P_802_2);
441 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
442 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
443 continue;
445 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
446 continue;
448 if (!ieee80211_sdata_running(sdata))
449 continue;
451 if (prev_dev) {
452 skb2 = skb_clone(skb, GFP_ATOMIC);
453 if (skb2) {
454 skb2->dev = prev_dev;
455 netif_receive_skb(skb2);
459 prev_dev = sdata->dev;
460 sdata->dev->stats.rx_packets++;
461 sdata->dev->stats.rx_bytes += skb->len;
464 if (prev_dev) {
465 skb->dev = prev_dev;
466 netif_receive_skb(skb);
467 } else
468 dev_kfree_skb(skb);
470 return origskb;
473 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
476 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
477 int tid, seqno_idx, security_idx;
479 /* does the frame have a qos control field? */
480 if (ieee80211_is_data_qos(hdr->frame_control)) {
481 u8 *qc = ieee80211_get_qos_ctl(hdr);
482 /* frame has qos control */
483 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
484 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
485 status->rx_flags |= IEEE80211_RX_AMSDU;
487 seqno_idx = tid;
488 security_idx = tid;
489 } else {
491 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
493 * Sequence numbers for management frames, QoS data
494 * frames with a broadcast/multicast address in the
495 * Address 1 field, and all non-QoS data frames sent
496 * by QoS STAs are assigned using an additional single
497 * modulo-4096 counter, [...]
499 * We also use that counter for non-QoS STAs.
501 seqno_idx = IEEE80211_NUM_TIDS;
502 security_idx = 0;
503 if (ieee80211_is_mgmt(hdr->frame_control))
504 security_idx = IEEE80211_NUM_TIDS;
505 tid = 0;
508 rx->seqno_idx = seqno_idx;
509 rx->security_idx = security_idx;
510 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
511 * For now, set skb->priority to 0 for other cases. */
512 rx->skb->priority = (tid > 7) ? 0 : tid;
516 * DOC: Packet alignment
518 * Drivers always need to pass packets that are aligned to two-byte boundaries
519 * to the stack.
521 * Additionally, should, if possible, align the payload data in a way that
522 * guarantees that the contained IP header is aligned to a four-byte
523 * boundary. In the case of regular frames, this simply means aligning the
524 * payload to a four-byte boundary (because either the IP header is directly
525 * contained, or IV/RFC1042 headers that have a length divisible by four are
526 * in front of it). If the payload data is not properly aligned and the
527 * architecture doesn't support efficient unaligned operations, mac80211
528 * will align the data.
530 * With A-MSDU frames, however, the payload data address must yield two modulo
531 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
532 * push the IP header further back to a multiple of four again. Thankfully, the
533 * specs were sane enough this time around to require padding each A-MSDU
534 * subframe to a length that is a multiple of four.
536 * Padding like Atheros hardware adds which is between the 802.11 header and
537 * the payload is not supported, the driver is required to move the 802.11
538 * header to be directly in front of the payload in that case.
540 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
542 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
543 WARN_ONCE((unsigned long)rx->skb->data & 1,
544 "unaligned packet at 0x%p\n", rx->skb->data);
545 #endif
549 /* rx handlers */
551 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
555 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
556 return 0;
558 return ieee80211_is_robust_mgmt_frame(hdr);
562 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
564 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
566 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
567 return 0;
569 return ieee80211_is_robust_mgmt_frame(hdr);
573 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
574 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
576 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
577 struct ieee80211_mmie *mmie;
579 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
580 return -1;
582 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
583 return -1; /* not a robust management frame */
585 mmie = (struct ieee80211_mmie *)
586 (skb->data + skb->len - sizeof(*mmie));
587 if (mmie->element_id != WLAN_EID_MMIE ||
588 mmie->length != sizeof(*mmie) - 2)
589 return -1;
591 return le16_to_cpu(mmie->key_id);
594 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 char *dev_addr = rx->sdata->vif.addr;
599 if (ieee80211_is_data(hdr->frame_control)) {
600 if (is_multicast_ether_addr(hdr->addr1)) {
601 if (ieee80211_has_tods(hdr->frame_control) ||
602 !ieee80211_has_fromds(hdr->frame_control))
603 return RX_DROP_MONITOR;
604 if (ether_addr_equal(hdr->addr3, dev_addr))
605 return RX_DROP_MONITOR;
606 } else {
607 if (!ieee80211_has_a4(hdr->frame_control))
608 return RX_DROP_MONITOR;
609 if (ether_addr_equal(hdr->addr4, dev_addr))
610 return RX_DROP_MONITOR;
614 /* If there is not an established peer link and this is not a peer link
615 * establisment frame, beacon or probe, drop the frame.
618 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
619 struct ieee80211_mgmt *mgmt;
621 if (!ieee80211_is_mgmt(hdr->frame_control))
622 return RX_DROP_MONITOR;
624 if (ieee80211_is_action(hdr->frame_control)) {
625 u8 category;
627 /* make sure category field is present */
628 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
629 return RX_DROP_MONITOR;
631 mgmt = (struct ieee80211_mgmt *)hdr;
632 category = mgmt->u.action.category;
633 if (category != WLAN_CATEGORY_MESH_ACTION &&
634 category != WLAN_CATEGORY_SELF_PROTECTED)
635 return RX_DROP_MONITOR;
636 return RX_CONTINUE;
639 if (ieee80211_is_probe_req(hdr->frame_control) ||
640 ieee80211_is_probe_resp(hdr->frame_control) ||
641 ieee80211_is_beacon(hdr->frame_control) ||
642 ieee80211_is_auth(hdr->frame_control))
643 return RX_CONTINUE;
645 return RX_DROP_MONITOR;
648 return RX_CONTINUE;
651 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
652 struct tid_ampdu_rx *tid_agg_rx,
653 int index,
654 struct sk_buff_head *frames)
656 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
657 struct ieee80211_rx_status *status;
659 lockdep_assert_held(&tid_agg_rx->reorder_lock);
661 if (!skb)
662 goto no_frame;
664 /* release the frame from the reorder ring buffer */
665 tid_agg_rx->stored_mpdu_num--;
666 tid_agg_rx->reorder_buf[index] = NULL;
667 status = IEEE80211_SKB_RXCB(skb);
668 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
669 __skb_queue_tail(frames, skb);
671 no_frame:
672 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
675 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
676 struct tid_ampdu_rx *tid_agg_rx,
677 u16 head_seq_num,
678 struct sk_buff_head *frames)
680 int index;
682 lockdep_assert_held(&tid_agg_rx->reorder_lock);
684 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
685 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
686 tid_agg_rx->ssn) %
687 tid_agg_rx->buf_size;
688 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
689 frames);
694 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
695 * the skb was added to the buffer longer than this time ago, the earlier
696 * frames that have not yet been received are assumed to be lost and the skb
697 * can be released for processing. This may also release other skb's from the
698 * reorder buffer if there are no additional gaps between the frames.
700 * Callers must hold tid_agg_rx->reorder_lock.
702 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
704 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
705 struct tid_ampdu_rx *tid_agg_rx,
706 struct sk_buff_head *frames)
708 int index, j;
710 lockdep_assert_held(&tid_agg_rx->reorder_lock);
712 /* release the buffer until next missing frame */
713 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
714 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
715 if (!tid_agg_rx->reorder_buf[index] &&
716 tid_agg_rx->stored_mpdu_num) {
718 * No buffers ready to be released, but check whether any
719 * frames in the reorder buffer have timed out.
721 int skipped = 1;
722 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
723 j = (j + 1) % tid_agg_rx->buf_size) {
724 if (!tid_agg_rx->reorder_buf[j]) {
725 skipped++;
726 continue;
728 if (skipped &&
729 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
730 HT_RX_REORDER_BUF_TIMEOUT))
731 goto set_release_timer;
733 ht_dbg_ratelimited(sdata,
734 "release an RX reorder frame due to timeout on earlier frames\n");
735 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
736 frames);
739 * Increment the head seq# also for the skipped slots.
741 tid_agg_rx->head_seq_num =
742 (tid_agg_rx->head_seq_num +
743 skipped) & IEEE80211_SN_MASK;
744 skipped = 0;
746 } else while (tid_agg_rx->reorder_buf[index]) {
747 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
748 frames);
749 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
750 tid_agg_rx->ssn) %
751 tid_agg_rx->buf_size;
754 if (tid_agg_rx->stored_mpdu_num) {
755 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
756 tid_agg_rx->ssn) %
757 tid_agg_rx->buf_size;
759 for (; j != (index - 1) % tid_agg_rx->buf_size;
760 j = (j + 1) % tid_agg_rx->buf_size) {
761 if (tid_agg_rx->reorder_buf[j])
762 break;
765 set_release_timer:
767 mod_timer(&tid_agg_rx->reorder_timer,
768 tid_agg_rx->reorder_time[j] + 1 +
769 HT_RX_REORDER_BUF_TIMEOUT);
770 } else {
771 del_timer(&tid_agg_rx->reorder_timer);
776 * As this function belongs to the RX path it must be under
777 * rcu_read_lock protection. It returns false if the frame
778 * can be processed immediately, true if it was consumed.
780 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
781 struct tid_ampdu_rx *tid_agg_rx,
782 struct sk_buff *skb,
783 struct sk_buff_head *frames)
785 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
786 u16 sc = le16_to_cpu(hdr->seq_ctrl);
787 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
788 u16 head_seq_num, buf_size;
789 int index;
790 bool ret = true;
792 spin_lock(&tid_agg_rx->reorder_lock);
794 buf_size = tid_agg_rx->buf_size;
795 head_seq_num = tid_agg_rx->head_seq_num;
797 /* frame with out of date sequence number */
798 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
799 dev_kfree_skb(skb);
800 goto out;
804 * If frame the sequence number exceeds our buffering window
805 * size release some previous frames to make room for this one.
807 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
808 head_seq_num = ieee80211_sn_inc(
809 ieee80211_sn_sub(mpdu_seq_num, buf_size));
810 /* release stored frames up to new head to stack */
811 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
812 head_seq_num, frames);
815 /* Now the new frame is always in the range of the reordering buffer */
817 index = ieee80211_sn_sub(mpdu_seq_num,
818 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
820 /* check if we already stored this frame */
821 if (tid_agg_rx->reorder_buf[index]) {
822 dev_kfree_skb(skb);
823 goto out;
827 * If the current MPDU is in the right order and nothing else
828 * is stored we can process it directly, no need to buffer it.
829 * If it is first but there's something stored, we may be able
830 * to release frames after this one.
832 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
833 tid_agg_rx->stored_mpdu_num == 0) {
834 tid_agg_rx->head_seq_num =
835 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
836 ret = false;
837 goto out;
840 /* put the frame in the reordering buffer */
841 tid_agg_rx->reorder_buf[index] = skb;
842 tid_agg_rx->reorder_time[index] = jiffies;
843 tid_agg_rx->stored_mpdu_num++;
844 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
846 out:
847 spin_unlock(&tid_agg_rx->reorder_lock);
848 return ret;
852 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
853 * true if the MPDU was buffered, false if it should be processed.
855 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
856 struct sk_buff_head *frames)
858 struct sk_buff *skb = rx->skb;
859 struct ieee80211_local *local = rx->local;
860 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
861 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
862 struct sta_info *sta = rx->sta;
863 struct tid_ampdu_rx *tid_agg_rx;
864 u16 sc;
865 u8 tid, ack_policy;
867 if (!ieee80211_is_data_qos(hdr->frame_control))
868 goto dont_reorder;
871 * filter the QoS data rx stream according to
872 * STA/TID and check if this STA/TID is on aggregation
875 if (!sta)
876 goto dont_reorder;
878 ack_policy = *ieee80211_get_qos_ctl(hdr) &
879 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
880 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
882 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
883 if (!tid_agg_rx)
884 goto dont_reorder;
886 /* qos null data frames are excluded */
887 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
888 goto dont_reorder;
890 /* not part of a BA session */
891 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
892 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
893 goto dont_reorder;
895 /* not actually part of this BA session */
896 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
897 goto dont_reorder;
899 /* new, potentially un-ordered, ampdu frame - process it */
901 /* reset session timer */
902 if (tid_agg_rx->timeout)
903 tid_agg_rx->last_rx = jiffies;
905 /* if this mpdu is fragmented - terminate rx aggregation session */
906 sc = le16_to_cpu(hdr->seq_ctrl);
907 if (sc & IEEE80211_SCTL_FRAG) {
908 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
909 skb_queue_tail(&rx->sdata->skb_queue, skb);
910 ieee80211_queue_work(&local->hw, &rx->sdata->work);
911 return;
915 * No locking needed -- we will only ever process one
916 * RX packet at a time, and thus own tid_agg_rx. All
917 * other code manipulating it needs to (and does) make
918 * sure that we cannot get to it any more before doing
919 * anything with it.
921 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
922 frames))
923 return;
925 dont_reorder:
926 __skb_queue_tail(frames, skb);
929 static ieee80211_rx_result debug_noinline
930 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
932 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
933 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
935 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
936 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
937 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
938 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
939 hdr->seq_ctrl)) {
940 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
941 rx->local->dot11FrameDuplicateCount++;
942 rx->sta->num_duplicates++;
944 return RX_DROP_UNUSABLE;
945 } else
946 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
949 if (unlikely(rx->skb->len < 16)) {
950 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
951 return RX_DROP_MONITOR;
954 /* Drop disallowed frame classes based on STA auth/assoc state;
955 * IEEE 802.11, Chap 5.5.
957 * mac80211 filters only based on association state, i.e. it drops
958 * Class 3 frames from not associated stations. hostapd sends
959 * deauth/disassoc frames when needed. In addition, hostapd is
960 * responsible for filtering on both auth and assoc states.
963 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
964 return ieee80211_rx_mesh_check(rx);
966 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
967 ieee80211_is_pspoll(hdr->frame_control)) &&
968 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
969 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
970 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
972 * accept port control frames from the AP even when it's not
973 * yet marked ASSOC to prevent a race where we don't set the
974 * assoc bit quickly enough before it sends the first frame
976 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
977 ieee80211_is_data_present(hdr->frame_control)) {
978 unsigned int hdrlen;
979 __be16 ethertype;
981 hdrlen = ieee80211_hdrlen(hdr->frame_control);
983 if (rx->skb->len < hdrlen + 8)
984 return RX_DROP_MONITOR;
986 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
987 if (ethertype == rx->sdata->control_port_protocol)
988 return RX_CONTINUE;
991 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
992 cfg80211_rx_spurious_frame(rx->sdata->dev,
993 hdr->addr2,
994 GFP_ATOMIC))
995 return RX_DROP_UNUSABLE;
997 return RX_DROP_MONITOR;
1000 return RX_CONTINUE;
1004 static ieee80211_rx_result debug_noinline
1005 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1007 struct sk_buff *skb = rx->skb;
1008 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1009 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1010 int keyidx;
1011 int hdrlen;
1012 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1013 struct ieee80211_key *sta_ptk = NULL;
1014 int mmie_keyidx = -1;
1015 __le16 fc;
1018 * Key selection 101
1020 * There are four types of keys:
1021 * - GTK (group keys)
1022 * - IGTK (group keys for management frames)
1023 * - PTK (pairwise keys)
1024 * - STK (station-to-station pairwise keys)
1026 * When selecting a key, we have to distinguish between multicast
1027 * (including broadcast) and unicast frames, the latter can only
1028 * use PTKs and STKs while the former always use GTKs and IGTKs.
1029 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1030 * unicast frames can also use key indices like GTKs. Hence, if we
1031 * don't have a PTK/STK we check the key index for a WEP key.
1033 * Note that in a regular BSS, multicast frames are sent by the
1034 * AP only, associated stations unicast the frame to the AP first
1035 * which then multicasts it on their behalf.
1037 * There is also a slight problem in IBSS mode: GTKs are negotiated
1038 * with each station, that is something we don't currently handle.
1039 * The spec seems to expect that one negotiates the same key with
1040 * every station but there's no such requirement; VLANs could be
1041 * possible.
1045 * No point in finding a key and decrypting if the frame is neither
1046 * addressed to us nor a multicast frame.
1048 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1049 return RX_CONTINUE;
1051 /* start without a key */
1052 rx->key = NULL;
1054 if (rx->sta)
1055 sta_ptk = rcu_dereference(rx->sta->ptk);
1057 fc = hdr->frame_control;
1059 if (!ieee80211_has_protected(fc))
1060 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1062 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1063 rx->key = sta_ptk;
1064 if ((status->flag & RX_FLAG_DECRYPTED) &&
1065 (status->flag & RX_FLAG_IV_STRIPPED))
1066 return RX_CONTINUE;
1067 /* Skip decryption if the frame is not protected. */
1068 if (!ieee80211_has_protected(fc))
1069 return RX_CONTINUE;
1070 } else if (mmie_keyidx >= 0) {
1071 /* Broadcast/multicast robust management frame / BIP */
1072 if ((status->flag & RX_FLAG_DECRYPTED) &&
1073 (status->flag & RX_FLAG_IV_STRIPPED))
1074 return RX_CONTINUE;
1076 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1077 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1078 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1079 if (rx->sta)
1080 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1081 if (!rx->key)
1082 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1083 } else if (!ieee80211_has_protected(fc)) {
1085 * The frame was not protected, so skip decryption. However, we
1086 * need to set rx->key if there is a key that could have been
1087 * used so that the frame may be dropped if encryption would
1088 * have been expected.
1090 struct ieee80211_key *key = NULL;
1091 struct ieee80211_sub_if_data *sdata = rx->sdata;
1092 int i;
1094 if (ieee80211_is_mgmt(fc) &&
1095 is_multicast_ether_addr(hdr->addr1) &&
1096 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1097 rx->key = key;
1098 else {
1099 if (rx->sta) {
1100 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1101 key = rcu_dereference(rx->sta->gtk[i]);
1102 if (key)
1103 break;
1106 if (!key) {
1107 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1108 key = rcu_dereference(sdata->keys[i]);
1109 if (key)
1110 break;
1113 if (key)
1114 rx->key = key;
1116 return RX_CONTINUE;
1117 } else {
1118 u8 keyid;
1120 * The device doesn't give us the IV so we won't be
1121 * able to look up the key. That's ok though, we
1122 * don't need to decrypt the frame, we just won't
1123 * be able to keep statistics accurate.
1124 * Except for key threshold notifications, should
1125 * we somehow allow the driver to tell us which key
1126 * the hardware used if this flag is set?
1128 if ((status->flag & RX_FLAG_DECRYPTED) &&
1129 (status->flag & RX_FLAG_IV_STRIPPED))
1130 return RX_CONTINUE;
1132 hdrlen = ieee80211_hdrlen(fc);
1134 if (rx->skb->len < 8 + hdrlen)
1135 return RX_DROP_UNUSABLE; /* TODO: count this? */
1138 * no need to call ieee80211_wep_get_keyidx,
1139 * it verifies a bunch of things we've done already
1141 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1142 keyidx = keyid >> 6;
1144 /* check per-station GTK first, if multicast packet */
1145 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1146 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1148 /* if not found, try default key */
1149 if (!rx->key) {
1150 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1153 * RSNA-protected unicast frames should always be
1154 * sent with pairwise or station-to-station keys,
1155 * but for WEP we allow using a key index as well.
1157 if (rx->key &&
1158 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1159 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1160 !is_multicast_ether_addr(hdr->addr1))
1161 rx->key = NULL;
1165 if (rx->key) {
1166 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1167 return RX_DROP_MONITOR;
1169 rx->key->tx_rx_count++;
1170 /* TODO: add threshold stuff again */
1171 } else {
1172 return RX_DROP_MONITOR;
1175 switch (rx->key->conf.cipher) {
1176 case WLAN_CIPHER_SUITE_WEP40:
1177 case WLAN_CIPHER_SUITE_WEP104:
1178 result = ieee80211_crypto_wep_decrypt(rx);
1179 break;
1180 case WLAN_CIPHER_SUITE_TKIP:
1181 result = ieee80211_crypto_tkip_decrypt(rx);
1182 break;
1183 case WLAN_CIPHER_SUITE_CCMP:
1184 result = ieee80211_crypto_ccmp_decrypt(rx);
1185 break;
1186 case WLAN_CIPHER_SUITE_AES_CMAC:
1187 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1188 break;
1189 default:
1191 * We can reach here only with HW-only algorithms
1192 * but why didn't it decrypt the frame?!
1194 return RX_DROP_UNUSABLE;
1197 /* the hdr variable is invalid after the decrypt handlers */
1199 /* either the frame has been decrypted or will be dropped */
1200 status->flag |= RX_FLAG_DECRYPTED;
1202 return result;
1205 static ieee80211_rx_result debug_noinline
1206 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1208 struct ieee80211_local *local;
1209 struct ieee80211_hdr *hdr;
1210 struct sk_buff *skb;
1212 local = rx->local;
1213 skb = rx->skb;
1214 hdr = (struct ieee80211_hdr *) skb->data;
1216 if (!local->pspolling)
1217 return RX_CONTINUE;
1219 if (!ieee80211_has_fromds(hdr->frame_control))
1220 /* this is not from AP */
1221 return RX_CONTINUE;
1223 if (!ieee80211_is_data(hdr->frame_control))
1224 return RX_CONTINUE;
1226 if (!ieee80211_has_moredata(hdr->frame_control)) {
1227 /* AP has no more frames buffered for us */
1228 local->pspolling = false;
1229 return RX_CONTINUE;
1232 /* more data bit is set, let's request a new frame from the AP */
1233 ieee80211_send_pspoll(local, rx->sdata);
1235 return RX_CONTINUE;
1238 static void sta_ps_start(struct sta_info *sta)
1240 struct ieee80211_sub_if_data *sdata = sta->sdata;
1241 struct ieee80211_local *local = sdata->local;
1242 struct ps_data *ps;
1244 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1245 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1246 ps = &sdata->bss->ps;
1247 else
1248 return;
1250 atomic_inc(&ps->num_sta_ps);
1251 set_sta_flag(sta, WLAN_STA_PS_STA);
1252 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1253 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1254 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1255 sta->sta.addr, sta->sta.aid);
1258 static void sta_ps_end(struct sta_info *sta)
1260 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1261 sta->sta.addr, sta->sta.aid);
1263 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1264 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1265 sta->sta.addr, sta->sta.aid);
1266 return;
1269 ieee80211_sta_ps_deliver_wakeup(sta);
1272 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1274 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1275 bool in_ps;
1277 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1279 /* Don't let the same PS state be set twice */
1280 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1281 if ((start && in_ps) || (!start && !in_ps))
1282 return -EINVAL;
1284 if (start)
1285 sta_ps_start(sta_inf);
1286 else
1287 sta_ps_end(sta_inf);
1289 return 0;
1291 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1293 static ieee80211_rx_result debug_noinline
1294 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1296 struct ieee80211_sub_if_data *sdata = rx->sdata;
1297 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1298 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1299 int tid, ac;
1301 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1302 return RX_CONTINUE;
1304 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1305 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1306 return RX_CONTINUE;
1309 * The device handles station powersave, so don't do anything about
1310 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1311 * it to mac80211 since they're handled.)
1313 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1314 return RX_CONTINUE;
1317 * Don't do anything if the station isn't already asleep. In
1318 * the uAPSD case, the station will probably be marked asleep,
1319 * in the PS-Poll case the station must be confused ...
1321 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1322 return RX_CONTINUE;
1324 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1325 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1326 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1327 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1328 else
1329 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1332 /* Free PS Poll skb here instead of returning RX_DROP that would
1333 * count as an dropped frame. */
1334 dev_kfree_skb(rx->skb);
1336 return RX_QUEUED;
1337 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1338 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1339 ieee80211_has_pm(hdr->frame_control) &&
1340 (ieee80211_is_data_qos(hdr->frame_control) ||
1341 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1342 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1343 ac = ieee802_1d_to_ac[tid & 7];
1346 * If this AC is not trigger-enabled do nothing.
1348 * NB: This could/should check a separate bitmap of trigger-
1349 * enabled queues, but for now we only implement uAPSD w/o
1350 * TSPEC changes to the ACs, so they're always the same.
1352 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1353 return RX_CONTINUE;
1355 /* if we are in a service period, do nothing */
1356 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1357 return RX_CONTINUE;
1359 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1360 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1361 else
1362 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1365 return RX_CONTINUE;
1368 static ieee80211_rx_result debug_noinline
1369 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1371 struct sta_info *sta = rx->sta;
1372 struct sk_buff *skb = rx->skb;
1373 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1374 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1376 if (!sta)
1377 return RX_CONTINUE;
1380 * Update last_rx only for IBSS packets which are for the current
1381 * BSSID and for station already AUTHORIZED to avoid keeping the
1382 * current IBSS network alive in cases where other STAs start
1383 * using different BSSID. This will also give the station another
1384 * chance to restart the authentication/authorization in case
1385 * something went wrong the first time.
1387 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1388 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1389 NL80211_IFTYPE_ADHOC);
1390 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1391 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1392 sta->last_rx = jiffies;
1393 if (ieee80211_is_data(hdr->frame_control)) {
1394 sta->last_rx_rate_idx = status->rate_idx;
1395 sta->last_rx_rate_flag = status->flag;
1396 sta->last_rx_rate_vht_nss = status->vht_nss;
1399 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1401 * Mesh beacons will update last_rx when if they are found to
1402 * match the current local configuration when processed.
1404 sta->last_rx = jiffies;
1405 if (ieee80211_is_data(hdr->frame_control)) {
1406 sta->last_rx_rate_idx = status->rate_idx;
1407 sta->last_rx_rate_flag = status->flag;
1408 sta->last_rx_rate_vht_nss = status->vht_nss;
1412 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1413 return RX_CONTINUE;
1415 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1416 ieee80211_sta_rx_notify(rx->sdata, hdr);
1418 sta->rx_fragments++;
1419 sta->rx_bytes += rx->skb->len;
1420 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1421 sta->last_signal = status->signal;
1422 ewma_add(&sta->avg_signal, -status->signal);
1426 * Change STA power saving mode only at the end of a frame
1427 * exchange sequence.
1429 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1430 !ieee80211_has_morefrags(hdr->frame_control) &&
1431 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1432 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1433 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1434 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1436 * Ignore doze->wake transitions that are
1437 * indicated by non-data frames, the standard
1438 * is unclear here, but for example going to
1439 * PS mode and then scanning would cause a
1440 * doze->wake transition for the probe request,
1441 * and that is clearly undesirable.
1443 if (ieee80211_is_data(hdr->frame_control) &&
1444 !ieee80211_has_pm(hdr->frame_control))
1445 sta_ps_end(sta);
1446 } else {
1447 if (ieee80211_has_pm(hdr->frame_control))
1448 sta_ps_start(sta);
1452 /* mesh power save support */
1453 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1454 ieee80211_mps_rx_h_sta_process(sta, hdr);
1457 * Drop (qos-)data::nullfunc frames silently, since they
1458 * are used only to control station power saving mode.
1460 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1461 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1462 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1465 * If we receive a 4-addr nullfunc frame from a STA
1466 * that was not moved to a 4-addr STA vlan yet send
1467 * the event to userspace and for older hostapd drop
1468 * the frame to the monitor interface.
1470 if (ieee80211_has_a4(hdr->frame_control) &&
1471 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1472 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1473 !rx->sdata->u.vlan.sta))) {
1474 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1475 cfg80211_rx_unexpected_4addr_frame(
1476 rx->sdata->dev, sta->sta.addr,
1477 GFP_ATOMIC);
1478 return RX_DROP_MONITOR;
1481 * Update counter and free packet here to avoid
1482 * counting this as a dropped packed.
1484 sta->rx_packets++;
1485 dev_kfree_skb(rx->skb);
1486 return RX_QUEUED;
1489 return RX_CONTINUE;
1490 } /* ieee80211_rx_h_sta_process */
1492 static inline struct ieee80211_fragment_entry *
1493 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1494 unsigned int frag, unsigned int seq, int rx_queue,
1495 struct sk_buff **skb)
1497 struct ieee80211_fragment_entry *entry;
1499 entry = &sdata->fragments[sdata->fragment_next++];
1500 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1501 sdata->fragment_next = 0;
1503 if (!skb_queue_empty(&entry->skb_list))
1504 __skb_queue_purge(&entry->skb_list);
1506 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1507 *skb = NULL;
1508 entry->first_frag_time = jiffies;
1509 entry->seq = seq;
1510 entry->rx_queue = rx_queue;
1511 entry->last_frag = frag;
1512 entry->ccmp = 0;
1513 entry->extra_len = 0;
1515 return entry;
1518 static inline struct ieee80211_fragment_entry *
1519 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1520 unsigned int frag, unsigned int seq,
1521 int rx_queue, struct ieee80211_hdr *hdr)
1523 struct ieee80211_fragment_entry *entry;
1524 int i, idx;
1526 idx = sdata->fragment_next;
1527 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1528 struct ieee80211_hdr *f_hdr;
1530 idx--;
1531 if (idx < 0)
1532 idx = IEEE80211_FRAGMENT_MAX - 1;
1534 entry = &sdata->fragments[idx];
1535 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1536 entry->rx_queue != rx_queue ||
1537 entry->last_frag + 1 != frag)
1538 continue;
1540 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1543 * Check ftype and addresses are equal, else check next fragment
1545 if (((hdr->frame_control ^ f_hdr->frame_control) &
1546 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1547 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1548 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1549 continue;
1551 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1552 __skb_queue_purge(&entry->skb_list);
1553 continue;
1555 return entry;
1558 return NULL;
1561 static ieee80211_rx_result debug_noinline
1562 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1564 struct ieee80211_hdr *hdr;
1565 u16 sc;
1566 __le16 fc;
1567 unsigned int frag, seq;
1568 struct ieee80211_fragment_entry *entry;
1569 struct sk_buff *skb;
1570 struct ieee80211_rx_status *status;
1572 hdr = (struct ieee80211_hdr *)rx->skb->data;
1573 fc = hdr->frame_control;
1575 if (ieee80211_is_ctl(fc))
1576 return RX_CONTINUE;
1578 sc = le16_to_cpu(hdr->seq_ctrl);
1579 frag = sc & IEEE80211_SCTL_FRAG;
1581 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1582 is_multicast_ether_addr(hdr->addr1))) {
1583 /* not fragmented */
1584 goto out;
1586 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1588 if (skb_linearize(rx->skb))
1589 return RX_DROP_UNUSABLE;
1592 * skb_linearize() might change the skb->data and
1593 * previously cached variables (in this case, hdr) need to
1594 * be refreshed with the new data.
1596 hdr = (struct ieee80211_hdr *)rx->skb->data;
1597 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1599 if (frag == 0) {
1600 /* This is the first fragment of a new frame. */
1601 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1602 rx->seqno_idx, &(rx->skb));
1603 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1604 ieee80211_has_protected(fc)) {
1605 int queue = rx->security_idx;
1606 /* Store CCMP PN so that we can verify that the next
1607 * fragment has a sequential PN value. */
1608 entry->ccmp = 1;
1609 memcpy(entry->last_pn,
1610 rx->key->u.ccmp.rx_pn[queue],
1611 CCMP_PN_LEN);
1613 return RX_QUEUED;
1616 /* This is a fragment for a frame that should already be pending in
1617 * fragment cache. Add this fragment to the end of the pending entry.
1619 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1620 rx->seqno_idx, hdr);
1621 if (!entry) {
1622 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1623 return RX_DROP_MONITOR;
1626 /* Verify that MPDUs within one MSDU have sequential PN values.
1627 * (IEEE 802.11i, 8.3.3.4.5) */
1628 if (entry->ccmp) {
1629 int i;
1630 u8 pn[CCMP_PN_LEN], *rpn;
1631 int queue;
1632 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1633 return RX_DROP_UNUSABLE;
1634 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1635 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1636 pn[i]++;
1637 if (pn[i])
1638 break;
1640 queue = rx->security_idx;
1641 rpn = rx->key->u.ccmp.rx_pn[queue];
1642 if (memcmp(pn, rpn, CCMP_PN_LEN))
1643 return RX_DROP_UNUSABLE;
1644 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1647 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1648 __skb_queue_tail(&entry->skb_list, rx->skb);
1649 entry->last_frag = frag;
1650 entry->extra_len += rx->skb->len;
1651 if (ieee80211_has_morefrags(fc)) {
1652 rx->skb = NULL;
1653 return RX_QUEUED;
1656 rx->skb = __skb_dequeue(&entry->skb_list);
1657 if (skb_tailroom(rx->skb) < entry->extra_len) {
1658 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1659 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1660 GFP_ATOMIC))) {
1661 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1662 __skb_queue_purge(&entry->skb_list);
1663 return RX_DROP_UNUSABLE;
1666 while ((skb = __skb_dequeue(&entry->skb_list))) {
1667 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1668 dev_kfree_skb(skb);
1671 /* Complete frame has been reassembled - process it now */
1672 status = IEEE80211_SKB_RXCB(rx->skb);
1673 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1675 out:
1676 if (rx->sta)
1677 rx->sta->rx_packets++;
1678 if (is_multicast_ether_addr(hdr->addr1))
1679 rx->local->dot11MulticastReceivedFrameCount++;
1680 else
1681 ieee80211_led_rx(rx->local);
1682 return RX_CONTINUE;
1685 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1687 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1688 return -EACCES;
1690 return 0;
1693 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1695 struct sk_buff *skb = rx->skb;
1696 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1699 * Pass through unencrypted frames if the hardware has
1700 * decrypted them already.
1702 if (status->flag & RX_FLAG_DECRYPTED)
1703 return 0;
1705 /* Drop unencrypted frames if key is set. */
1706 if (unlikely(!ieee80211_has_protected(fc) &&
1707 !ieee80211_is_nullfunc(fc) &&
1708 ieee80211_is_data(fc) &&
1709 (rx->key || rx->sdata->drop_unencrypted)))
1710 return -EACCES;
1712 return 0;
1715 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1717 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1718 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1719 __le16 fc = hdr->frame_control;
1722 * Pass through unencrypted frames if the hardware has
1723 * decrypted them already.
1725 if (status->flag & RX_FLAG_DECRYPTED)
1726 return 0;
1728 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1729 if (unlikely(!ieee80211_has_protected(fc) &&
1730 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1731 rx->key)) {
1732 if (ieee80211_is_deauth(fc))
1733 cfg80211_send_unprot_deauth(rx->sdata->dev,
1734 rx->skb->data,
1735 rx->skb->len);
1736 else if (ieee80211_is_disassoc(fc))
1737 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1738 rx->skb->data,
1739 rx->skb->len);
1740 return -EACCES;
1742 /* BIP does not use Protected field, so need to check MMIE */
1743 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1744 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1745 if (ieee80211_is_deauth(fc))
1746 cfg80211_send_unprot_deauth(rx->sdata->dev,
1747 rx->skb->data,
1748 rx->skb->len);
1749 else if (ieee80211_is_disassoc(fc))
1750 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1751 rx->skb->data,
1752 rx->skb->len);
1753 return -EACCES;
1756 * When using MFP, Action frames are not allowed prior to
1757 * having configured keys.
1759 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1760 ieee80211_is_robust_mgmt_frame(
1761 (struct ieee80211_hdr *) rx->skb->data)))
1762 return -EACCES;
1765 return 0;
1768 static int
1769 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1771 struct ieee80211_sub_if_data *sdata = rx->sdata;
1772 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1773 bool check_port_control = false;
1774 struct ethhdr *ehdr;
1775 int ret;
1777 *port_control = false;
1778 if (ieee80211_has_a4(hdr->frame_control) &&
1779 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1780 return -1;
1782 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1783 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1785 if (!sdata->u.mgd.use_4addr)
1786 return -1;
1787 else
1788 check_port_control = true;
1791 if (is_multicast_ether_addr(hdr->addr1) &&
1792 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1793 return -1;
1795 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1796 if (ret < 0)
1797 return ret;
1799 ehdr = (struct ethhdr *) rx->skb->data;
1800 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1801 *port_control = true;
1802 else if (check_port_control)
1803 return -1;
1805 return 0;
1809 * requires that rx->skb is a frame with ethernet header
1811 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1813 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1814 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1815 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1818 * Allow EAPOL frames to us/the PAE group address regardless
1819 * of whether the frame was encrypted or not.
1821 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1822 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1823 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1824 return true;
1826 if (ieee80211_802_1x_port_control(rx) ||
1827 ieee80211_drop_unencrypted(rx, fc))
1828 return false;
1830 return true;
1834 * requires that rx->skb is a frame with ethernet header
1836 static void
1837 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1839 struct ieee80211_sub_if_data *sdata = rx->sdata;
1840 struct net_device *dev = sdata->dev;
1841 struct sk_buff *skb, *xmit_skb;
1842 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1843 struct sta_info *dsta;
1844 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1846 skb = rx->skb;
1847 xmit_skb = NULL;
1849 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1850 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1851 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1852 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1853 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1854 if (is_multicast_ether_addr(ehdr->h_dest)) {
1856 * send multicast frames both to higher layers in
1857 * local net stack and back to the wireless medium
1859 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1860 if (!xmit_skb)
1861 net_info_ratelimited("%s: failed to clone multicast frame\n",
1862 dev->name);
1863 } else {
1864 dsta = sta_info_get(sdata, skb->data);
1865 if (dsta) {
1867 * The destination station is associated to
1868 * this AP (in this VLAN), so send the frame
1869 * directly to it and do not pass it to local
1870 * net stack.
1872 xmit_skb = skb;
1873 skb = NULL;
1878 if (skb) {
1879 int align __maybe_unused;
1881 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1883 * 'align' will only take the values 0 or 2 here
1884 * since all frames are required to be aligned
1885 * to 2-byte boundaries when being passed to
1886 * mac80211; the code here works just as well if
1887 * that isn't true, but mac80211 assumes it can
1888 * access fields as 2-byte aligned (e.g. for
1889 * compare_ether_addr)
1891 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1892 if (align) {
1893 if (WARN_ON(skb_headroom(skb) < 3)) {
1894 dev_kfree_skb(skb);
1895 skb = NULL;
1896 } else {
1897 u8 *data = skb->data;
1898 size_t len = skb_headlen(skb);
1899 skb->data -= align;
1900 memmove(skb->data, data, len);
1901 skb_set_tail_pointer(skb, len);
1904 #endif
1906 if (skb) {
1907 /* deliver to local stack */
1908 skb->protocol = eth_type_trans(skb, dev);
1909 memset(skb->cb, 0, sizeof(skb->cb));
1910 netif_receive_skb(skb);
1914 if (xmit_skb) {
1916 * Send to wireless media and increase priority by 256 to
1917 * keep the received priority instead of reclassifying
1918 * the frame (see cfg80211_classify8021d).
1920 xmit_skb->priority += 256;
1921 xmit_skb->protocol = htons(ETH_P_802_3);
1922 skb_reset_network_header(xmit_skb);
1923 skb_reset_mac_header(xmit_skb);
1924 dev_queue_xmit(xmit_skb);
1928 static ieee80211_rx_result debug_noinline
1929 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1931 struct net_device *dev = rx->sdata->dev;
1932 struct sk_buff *skb = rx->skb;
1933 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1934 __le16 fc = hdr->frame_control;
1935 struct sk_buff_head frame_list;
1936 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1938 if (unlikely(!ieee80211_is_data(fc)))
1939 return RX_CONTINUE;
1941 if (unlikely(!ieee80211_is_data_present(fc)))
1942 return RX_DROP_MONITOR;
1944 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1945 return RX_CONTINUE;
1947 if (ieee80211_has_a4(hdr->frame_control) &&
1948 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1949 !rx->sdata->u.vlan.sta)
1950 return RX_DROP_UNUSABLE;
1952 if (is_multicast_ether_addr(hdr->addr1) &&
1953 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1954 rx->sdata->u.vlan.sta) ||
1955 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1956 rx->sdata->u.mgd.use_4addr)))
1957 return RX_DROP_UNUSABLE;
1959 skb->dev = dev;
1960 __skb_queue_head_init(&frame_list);
1962 if (skb_linearize(skb))
1963 return RX_DROP_UNUSABLE;
1965 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1966 rx->sdata->vif.type,
1967 rx->local->hw.extra_tx_headroom, true);
1969 while (!skb_queue_empty(&frame_list)) {
1970 rx->skb = __skb_dequeue(&frame_list);
1972 if (!ieee80211_frame_allowed(rx, fc)) {
1973 dev_kfree_skb(rx->skb);
1974 continue;
1976 dev->stats.rx_packets++;
1977 dev->stats.rx_bytes += rx->skb->len;
1979 ieee80211_deliver_skb(rx);
1982 return RX_QUEUED;
1985 #ifdef CONFIG_MAC80211_MESH
1986 static ieee80211_rx_result
1987 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1989 struct ieee80211_hdr *fwd_hdr, *hdr;
1990 struct ieee80211_tx_info *info;
1991 struct ieee80211s_hdr *mesh_hdr;
1992 struct sk_buff *skb = rx->skb, *fwd_skb;
1993 struct ieee80211_local *local = rx->local;
1994 struct ieee80211_sub_if_data *sdata = rx->sdata;
1995 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1996 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1997 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
1998 u16 q, hdrlen;
2000 hdr = (struct ieee80211_hdr *) skb->data;
2001 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2003 /* make sure fixed part of mesh header is there, also checks skb len */
2004 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2005 return RX_DROP_MONITOR;
2007 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2009 /* make sure full mesh header is there, also checks skb len */
2010 if (!pskb_may_pull(rx->skb,
2011 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2012 return RX_DROP_MONITOR;
2014 /* reload pointers */
2015 hdr = (struct ieee80211_hdr *) skb->data;
2016 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2018 /* frame is in RMC, don't forward */
2019 if (ieee80211_is_data(hdr->frame_control) &&
2020 is_multicast_ether_addr(hdr->addr1) &&
2021 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2022 return RX_DROP_MONITOR;
2024 if (!ieee80211_is_data(hdr->frame_control) ||
2025 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2026 return RX_CONTINUE;
2028 if (!mesh_hdr->ttl)
2029 return RX_DROP_MONITOR;
2031 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2032 struct mesh_path *mppath;
2033 char *proxied_addr;
2034 char *mpp_addr;
2036 if (is_multicast_ether_addr(hdr->addr1)) {
2037 mpp_addr = hdr->addr3;
2038 proxied_addr = mesh_hdr->eaddr1;
2039 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2040 /* has_a4 already checked in ieee80211_rx_mesh_check */
2041 mpp_addr = hdr->addr4;
2042 proxied_addr = mesh_hdr->eaddr2;
2043 } else {
2044 return RX_DROP_MONITOR;
2047 rcu_read_lock();
2048 mppath = mpp_path_lookup(sdata, proxied_addr);
2049 if (!mppath) {
2050 mpp_path_add(sdata, proxied_addr, mpp_addr);
2051 } else {
2052 spin_lock_bh(&mppath->state_lock);
2053 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2054 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2055 spin_unlock_bh(&mppath->state_lock);
2057 rcu_read_unlock();
2060 /* Frame has reached destination. Don't forward */
2061 if (!is_multicast_ether_addr(hdr->addr1) &&
2062 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2063 return RX_CONTINUE;
2065 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2066 if (ieee80211_queue_stopped(&local->hw, q)) {
2067 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2068 return RX_DROP_MONITOR;
2070 skb_set_queue_mapping(skb, q);
2072 if (!--mesh_hdr->ttl) {
2073 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2074 goto out;
2077 if (!ifmsh->mshcfg.dot11MeshForwarding)
2078 goto out;
2080 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2081 if (!fwd_skb) {
2082 net_info_ratelimited("%s: failed to clone mesh frame\n",
2083 sdata->name);
2084 goto out;
2087 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2088 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2089 info = IEEE80211_SKB_CB(fwd_skb);
2090 memset(info, 0, sizeof(*info));
2091 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2092 info->control.vif = &rx->sdata->vif;
2093 info->control.jiffies = jiffies;
2094 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2095 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2096 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2097 /* update power mode indication when forwarding */
2098 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2099 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2100 /* mesh power mode flags updated in mesh_nexthop_lookup */
2101 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2102 } else {
2103 /* unable to resolve next hop */
2104 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2105 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2106 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2107 kfree_skb(fwd_skb);
2108 return RX_DROP_MONITOR;
2111 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2112 ieee80211_add_pending_skb(local, fwd_skb);
2113 out:
2114 if (is_multicast_ether_addr(hdr->addr1) ||
2115 sdata->dev->flags & IFF_PROMISC)
2116 return RX_CONTINUE;
2117 else
2118 return RX_DROP_MONITOR;
2120 #endif
2122 static ieee80211_rx_result debug_noinline
2123 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2125 struct ieee80211_sub_if_data *sdata = rx->sdata;
2126 struct ieee80211_local *local = rx->local;
2127 struct net_device *dev = sdata->dev;
2128 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2129 __le16 fc = hdr->frame_control;
2130 bool port_control;
2131 int err;
2133 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2134 return RX_CONTINUE;
2136 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2137 return RX_DROP_MONITOR;
2140 * Send unexpected-4addr-frame event to hostapd. For older versions,
2141 * also drop the frame to cooked monitor interfaces.
2143 if (ieee80211_has_a4(hdr->frame_control) &&
2144 sdata->vif.type == NL80211_IFTYPE_AP) {
2145 if (rx->sta &&
2146 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2147 cfg80211_rx_unexpected_4addr_frame(
2148 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2149 return RX_DROP_MONITOR;
2152 err = __ieee80211_data_to_8023(rx, &port_control);
2153 if (unlikely(err))
2154 return RX_DROP_UNUSABLE;
2156 if (!ieee80211_frame_allowed(rx, fc))
2157 return RX_DROP_MONITOR;
2159 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2160 unlikely(port_control) && sdata->bss) {
2161 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2162 u.ap);
2163 dev = sdata->dev;
2164 rx->sdata = sdata;
2167 rx->skb->dev = dev;
2169 dev->stats.rx_packets++;
2170 dev->stats.rx_bytes += rx->skb->len;
2172 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2173 !is_multicast_ether_addr(
2174 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2175 (!local->scanning &&
2176 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2177 mod_timer(&local->dynamic_ps_timer, jiffies +
2178 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2181 ieee80211_deliver_skb(rx);
2183 return RX_QUEUED;
2186 static ieee80211_rx_result debug_noinline
2187 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2189 struct sk_buff *skb = rx->skb;
2190 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2191 struct tid_ampdu_rx *tid_agg_rx;
2192 u16 start_seq_num;
2193 u16 tid;
2195 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2196 return RX_CONTINUE;
2198 if (ieee80211_is_back_req(bar->frame_control)) {
2199 struct {
2200 __le16 control, start_seq_num;
2201 } __packed bar_data;
2203 if (!rx->sta)
2204 return RX_DROP_MONITOR;
2206 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2207 &bar_data, sizeof(bar_data)))
2208 return RX_DROP_MONITOR;
2210 tid = le16_to_cpu(bar_data.control) >> 12;
2212 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2213 if (!tid_agg_rx)
2214 return RX_DROP_MONITOR;
2216 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2218 /* reset session timer */
2219 if (tid_agg_rx->timeout)
2220 mod_timer(&tid_agg_rx->session_timer,
2221 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2223 spin_lock(&tid_agg_rx->reorder_lock);
2224 /* release stored frames up to start of BAR */
2225 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2226 start_seq_num, frames);
2227 spin_unlock(&tid_agg_rx->reorder_lock);
2229 kfree_skb(skb);
2230 return RX_QUEUED;
2234 * After this point, we only want management frames,
2235 * so we can drop all remaining control frames to
2236 * cooked monitor interfaces.
2238 return RX_DROP_MONITOR;
2241 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2242 struct ieee80211_mgmt *mgmt,
2243 size_t len)
2245 struct ieee80211_local *local = sdata->local;
2246 struct sk_buff *skb;
2247 struct ieee80211_mgmt *resp;
2249 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2250 /* Not to own unicast address */
2251 return;
2254 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2255 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2256 /* Not from the current AP or not associated yet. */
2257 return;
2260 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2261 /* Too short SA Query request frame */
2262 return;
2265 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2266 if (skb == NULL)
2267 return;
2269 skb_reserve(skb, local->hw.extra_tx_headroom);
2270 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2271 memset(resp, 0, 24);
2272 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2273 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2274 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2275 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2276 IEEE80211_STYPE_ACTION);
2277 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2278 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2279 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2280 memcpy(resp->u.action.u.sa_query.trans_id,
2281 mgmt->u.action.u.sa_query.trans_id,
2282 WLAN_SA_QUERY_TR_ID_LEN);
2284 ieee80211_tx_skb(sdata, skb);
2287 static ieee80211_rx_result debug_noinline
2288 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2290 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2291 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2294 * From here on, look only at management frames.
2295 * Data and control frames are already handled,
2296 * and unknown (reserved) frames are useless.
2298 if (rx->skb->len < 24)
2299 return RX_DROP_MONITOR;
2301 if (!ieee80211_is_mgmt(mgmt->frame_control))
2302 return RX_DROP_MONITOR;
2304 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2305 ieee80211_is_beacon(mgmt->frame_control) &&
2306 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2307 int sig = 0;
2309 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2310 sig = status->signal;
2312 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2313 rx->skb->data, rx->skb->len,
2314 status->freq, sig);
2315 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2318 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2319 return RX_DROP_MONITOR;
2321 if (ieee80211_drop_unencrypted_mgmt(rx))
2322 return RX_DROP_UNUSABLE;
2324 return RX_CONTINUE;
2327 static ieee80211_rx_result debug_noinline
2328 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2330 struct ieee80211_local *local = rx->local;
2331 struct ieee80211_sub_if_data *sdata = rx->sdata;
2332 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2334 int len = rx->skb->len;
2336 if (!ieee80211_is_action(mgmt->frame_control))
2337 return RX_CONTINUE;
2339 /* drop too small frames */
2340 if (len < IEEE80211_MIN_ACTION_SIZE)
2341 return RX_DROP_UNUSABLE;
2343 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2344 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED)
2345 return RX_DROP_UNUSABLE;
2347 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2348 return RX_DROP_UNUSABLE;
2350 switch (mgmt->u.action.category) {
2351 case WLAN_CATEGORY_HT:
2352 /* reject HT action frames from stations not supporting HT */
2353 if (!rx->sta->sta.ht_cap.ht_supported)
2354 goto invalid;
2356 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2357 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2358 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2359 sdata->vif.type != NL80211_IFTYPE_AP &&
2360 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2361 break;
2363 /* verify action & smps_control/chanwidth are present */
2364 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2365 goto invalid;
2367 switch (mgmt->u.action.u.ht_smps.action) {
2368 case WLAN_HT_ACTION_SMPS: {
2369 struct ieee80211_supported_band *sband;
2370 enum ieee80211_smps_mode smps_mode;
2372 /* convert to HT capability */
2373 switch (mgmt->u.action.u.ht_smps.smps_control) {
2374 case WLAN_HT_SMPS_CONTROL_DISABLED:
2375 smps_mode = IEEE80211_SMPS_OFF;
2376 break;
2377 case WLAN_HT_SMPS_CONTROL_STATIC:
2378 smps_mode = IEEE80211_SMPS_STATIC;
2379 break;
2380 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2381 smps_mode = IEEE80211_SMPS_DYNAMIC;
2382 break;
2383 default:
2384 goto invalid;
2387 /* if no change do nothing */
2388 if (rx->sta->sta.smps_mode == smps_mode)
2389 goto handled;
2390 rx->sta->sta.smps_mode = smps_mode;
2392 sband = rx->local->hw.wiphy->bands[status->band];
2394 rate_control_rate_update(local, sband, rx->sta,
2395 IEEE80211_RC_SMPS_CHANGED);
2396 goto handled;
2398 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2399 struct ieee80211_supported_band *sband;
2400 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2401 enum ieee80211_sta_rx_bandwidth new_bw;
2403 /* If it doesn't support 40 MHz it can't change ... */
2404 if (!(rx->sta->sta.ht_cap.cap &
2405 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2406 goto handled;
2408 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2409 new_bw = IEEE80211_STA_RX_BW_20;
2410 else
2411 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2413 if (rx->sta->sta.bandwidth == new_bw)
2414 goto handled;
2416 sband = rx->local->hw.wiphy->bands[status->band];
2418 rate_control_rate_update(local, sband, rx->sta,
2419 IEEE80211_RC_BW_CHANGED);
2420 goto handled;
2422 default:
2423 goto invalid;
2426 break;
2427 case WLAN_CATEGORY_PUBLIC:
2428 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2429 goto invalid;
2430 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2431 break;
2432 if (!rx->sta)
2433 break;
2434 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2435 break;
2436 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2437 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2438 break;
2439 if (len < offsetof(struct ieee80211_mgmt,
2440 u.action.u.ext_chan_switch.variable))
2441 goto invalid;
2442 goto queue;
2443 case WLAN_CATEGORY_VHT:
2444 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2445 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2446 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2447 sdata->vif.type != NL80211_IFTYPE_AP &&
2448 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2449 break;
2451 /* verify action code is present */
2452 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2453 goto invalid;
2455 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2456 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2457 u8 opmode;
2459 /* verify opmode is present */
2460 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2461 goto invalid;
2463 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2465 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2466 opmode, status->band,
2467 false);
2468 goto handled;
2470 default:
2471 break;
2473 break;
2474 case WLAN_CATEGORY_BACK:
2475 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2476 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2477 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2478 sdata->vif.type != NL80211_IFTYPE_AP &&
2479 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2480 break;
2482 /* verify action_code is present */
2483 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2484 break;
2486 switch (mgmt->u.action.u.addba_req.action_code) {
2487 case WLAN_ACTION_ADDBA_REQ:
2488 if (len < (IEEE80211_MIN_ACTION_SIZE +
2489 sizeof(mgmt->u.action.u.addba_req)))
2490 goto invalid;
2491 break;
2492 case WLAN_ACTION_ADDBA_RESP:
2493 if (len < (IEEE80211_MIN_ACTION_SIZE +
2494 sizeof(mgmt->u.action.u.addba_resp)))
2495 goto invalid;
2496 break;
2497 case WLAN_ACTION_DELBA:
2498 if (len < (IEEE80211_MIN_ACTION_SIZE +
2499 sizeof(mgmt->u.action.u.delba)))
2500 goto invalid;
2501 break;
2502 default:
2503 goto invalid;
2506 goto queue;
2507 case WLAN_CATEGORY_SPECTRUM_MGMT:
2508 if (status->band != IEEE80211_BAND_5GHZ)
2509 break;
2511 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2512 break;
2514 /* verify action_code is present */
2515 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2516 break;
2518 switch (mgmt->u.action.u.measurement.action_code) {
2519 case WLAN_ACTION_SPCT_MSR_REQ:
2520 if (len < (IEEE80211_MIN_ACTION_SIZE +
2521 sizeof(mgmt->u.action.u.measurement)))
2522 break;
2523 ieee80211_process_measurement_req(sdata, mgmt, len);
2524 goto handled;
2525 case WLAN_ACTION_SPCT_CHL_SWITCH:
2526 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2527 break;
2529 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2530 break;
2532 goto queue;
2534 break;
2535 case WLAN_CATEGORY_SA_QUERY:
2536 if (len < (IEEE80211_MIN_ACTION_SIZE +
2537 sizeof(mgmt->u.action.u.sa_query)))
2538 break;
2540 switch (mgmt->u.action.u.sa_query.action) {
2541 case WLAN_ACTION_SA_QUERY_REQUEST:
2542 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2543 break;
2544 ieee80211_process_sa_query_req(sdata, mgmt, len);
2545 goto handled;
2547 break;
2548 case WLAN_CATEGORY_SELF_PROTECTED:
2549 if (len < (IEEE80211_MIN_ACTION_SIZE +
2550 sizeof(mgmt->u.action.u.self_prot.action_code)))
2551 break;
2553 switch (mgmt->u.action.u.self_prot.action_code) {
2554 case WLAN_SP_MESH_PEERING_OPEN:
2555 case WLAN_SP_MESH_PEERING_CLOSE:
2556 case WLAN_SP_MESH_PEERING_CONFIRM:
2557 if (!ieee80211_vif_is_mesh(&sdata->vif))
2558 goto invalid;
2559 if (sdata->u.mesh.user_mpm)
2560 /* userspace handles this frame */
2561 break;
2562 goto queue;
2563 case WLAN_SP_MGK_INFORM:
2564 case WLAN_SP_MGK_ACK:
2565 if (!ieee80211_vif_is_mesh(&sdata->vif))
2566 goto invalid;
2567 break;
2569 break;
2570 case WLAN_CATEGORY_MESH_ACTION:
2571 if (len < (IEEE80211_MIN_ACTION_SIZE +
2572 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2573 break;
2575 if (!ieee80211_vif_is_mesh(&sdata->vif))
2576 break;
2577 if (mesh_action_is_path_sel(mgmt) &&
2578 !mesh_path_sel_is_hwmp(sdata))
2579 break;
2580 goto queue;
2583 return RX_CONTINUE;
2585 invalid:
2586 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2587 /* will return in the next handlers */
2588 return RX_CONTINUE;
2590 handled:
2591 if (rx->sta)
2592 rx->sta->rx_packets++;
2593 dev_kfree_skb(rx->skb);
2594 return RX_QUEUED;
2596 queue:
2597 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2598 skb_queue_tail(&sdata->skb_queue, rx->skb);
2599 ieee80211_queue_work(&local->hw, &sdata->work);
2600 if (rx->sta)
2601 rx->sta->rx_packets++;
2602 return RX_QUEUED;
2605 static ieee80211_rx_result debug_noinline
2606 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2608 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2609 int sig = 0;
2611 /* skip known-bad action frames and return them in the next handler */
2612 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2613 return RX_CONTINUE;
2616 * Getting here means the kernel doesn't know how to handle
2617 * it, but maybe userspace does ... include returned frames
2618 * so userspace can register for those to know whether ones
2619 * it transmitted were processed or returned.
2622 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2623 sig = status->signal;
2625 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2626 rx->skb->data, rx->skb->len,
2627 GFP_ATOMIC)) {
2628 if (rx->sta)
2629 rx->sta->rx_packets++;
2630 dev_kfree_skb(rx->skb);
2631 return RX_QUEUED;
2634 return RX_CONTINUE;
2637 static ieee80211_rx_result debug_noinline
2638 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2640 struct ieee80211_local *local = rx->local;
2641 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2642 struct sk_buff *nskb;
2643 struct ieee80211_sub_if_data *sdata = rx->sdata;
2644 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2646 if (!ieee80211_is_action(mgmt->frame_control))
2647 return RX_CONTINUE;
2650 * For AP mode, hostapd is responsible for handling any action
2651 * frames that we didn't handle, including returning unknown
2652 * ones. For all other modes we will return them to the sender,
2653 * setting the 0x80 bit in the action category, as required by
2654 * 802.11-2012 9.24.4.
2655 * Newer versions of hostapd shall also use the management frame
2656 * registration mechanisms, but older ones still use cooked
2657 * monitor interfaces so push all frames there.
2659 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2660 (sdata->vif.type == NL80211_IFTYPE_AP ||
2661 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2662 return RX_DROP_MONITOR;
2664 if (is_multicast_ether_addr(mgmt->da))
2665 return RX_DROP_MONITOR;
2667 /* do not return rejected action frames */
2668 if (mgmt->u.action.category & 0x80)
2669 return RX_DROP_UNUSABLE;
2671 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2672 GFP_ATOMIC);
2673 if (nskb) {
2674 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2676 nmgmt->u.action.category |= 0x80;
2677 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2678 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2680 memset(nskb->cb, 0, sizeof(nskb->cb));
2682 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2683 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2685 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2686 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2687 IEEE80211_TX_CTL_NO_CCK_RATE;
2688 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2689 info->hw_queue =
2690 local->hw.offchannel_tx_hw_queue;
2693 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2694 status->band);
2696 dev_kfree_skb(rx->skb);
2697 return RX_QUEUED;
2700 static ieee80211_rx_result debug_noinline
2701 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2703 struct ieee80211_sub_if_data *sdata = rx->sdata;
2704 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2705 __le16 stype;
2707 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2709 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2710 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2711 sdata->vif.type != NL80211_IFTYPE_STATION)
2712 return RX_DROP_MONITOR;
2714 switch (stype) {
2715 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2716 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2717 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2718 /* process for all: mesh, mlme, ibss */
2719 break;
2720 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2721 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2722 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2723 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2724 if (is_multicast_ether_addr(mgmt->da) &&
2725 !is_broadcast_ether_addr(mgmt->da))
2726 return RX_DROP_MONITOR;
2728 /* process only for station */
2729 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2730 return RX_DROP_MONITOR;
2731 break;
2732 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2733 /* process only for ibss and mesh */
2734 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2735 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2736 return RX_DROP_MONITOR;
2737 break;
2738 default:
2739 return RX_DROP_MONITOR;
2742 /* queue up frame and kick off work to process it */
2743 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2744 skb_queue_tail(&sdata->skb_queue, rx->skb);
2745 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2746 if (rx->sta)
2747 rx->sta->rx_packets++;
2749 return RX_QUEUED;
2752 /* TODO: use IEEE80211_RX_FRAGMENTED */
2753 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2754 struct ieee80211_rate *rate)
2756 struct ieee80211_sub_if_data *sdata;
2757 struct ieee80211_local *local = rx->local;
2758 struct sk_buff *skb = rx->skb, *skb2;
2759 struct net_device *prev_dev = NULL;
2760 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2761 int needed_headroom;
2764 * If cooked monitor has been processed already, then
2765 * don't do it again. If not, set the flag.
2767 if (rx->flags & IEEE80211_RX_CMNTR)
2768 goto out_free_skb;
2769 rx->flags |= IEEE80211_RX_CMNTR;
2771 /* If there are no cooked monitor interfaces, just free the SKB */
2772 if (!local->cooked_mntrs)
2773 goto out_free_skb;
2775 /* room for the radiotap header based on driver features */
2776 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2778 if (skb_headroom(skb) < needed_headroom &&
2779 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2780 goto out_free_skb;
2782 /* prepend radiotap information */
2783 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2784 false);
2786 skb_set_mac_header(skb, 0);
2787 skb->ip_summed = CHECKSUM_UNNECESSARY;
2788 skb->pkt_type = PACKET_OTHERHOST;
2789 skb->protocol = htons(ETH_P_802_2);
2791 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2792 if (!ieee80211_sdata_running(sdata))
2793 continue;
2795 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2796 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2797 continue;
2799 if (prev_dev) {
2800 skb2 = skb_clone(skb, GFP_ATOMIC);
2801 if (skb2) {
2802 skb2->dev = prev_dev;
2803 netif_receive_skb(skb2);
2807 prev_dev = sdata->dev;
2808 sdata->dev->stats.rx_packets++;
2809 sdata->dev->stats.rx_bytes += skb->len;
2812 if (prev_dev) {
2813 skb->dev = prev_dev;
2814 netif_receive_skb(skb);
2815 return;
2818 out_free_skb:
2819 dev_kfree_skb(skb);
2822 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2823 ieee80211_rx_result res)
2825 switch (res) {
2826 case RX_DROP_MONITOR:
2827 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2828 if (rx->sta)
2829 rx->sta->rx_dropped++;
2830 /* fall through */
2831 case RX_CONTINUE: {
2832 struct ieee80211_rate *rate = NULL;
2833 struct ieee80211_supported_band *sband;
2834 struct ieee80211_rx_status *status;
2836 status = IEEE80211_SKB_RXCB((rx->skb));
2838 sband = rx->local->hw.wiphy->bands[status->band];
2839 if (!(status->flag & RX_FLAG_HT) &&
2840 !(status->flag & RX_FLAG_VHT))
2841 rate = &sband->bitrates[status->rate_idx];
2843 ieee80211_rx_cooked_monitor(rx, rate);
2844 break;
2846 case RX_DROP_UNUSABLE:
2847 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2848 if (rx->sta)
2849 rx->sta->rx_dropped++;
2850 dev_kfree_skb(rx->skb);
2851 break;
2852 case RX_QUEUED:
2853 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2854 break;
2858 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2859 struct sk_buff_head *frames)
2861 ieee80211_rx_result res = RX_DROP_MONITOR;
2862 struct sk_buff *skb;
2864 #define CALL_RXH(rxh) \
2865 do { \
2866 res = rxh(rx); \
2867 if (res != RX_CONTINUE) \
2868 goto rxh_next; \
2869 } while (0);
2871 spin_lock_bh(&rx->local->rx_path_lock);
2873 while ((skb = __skb_dequeue(frames))) {
2875 * all the other fields are valid across frames
2876 * that belong to an aMPDU since they are on the
2877 * same TID from the same station
2879 rx->skb = skb;
2881 CALL_RXH(ieee80211_rx_h_decrypt)
2882 CALL_RXH(ieee80211_rx_h_check_more_data)
2883 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2884 CALL_RXH(ieee80211_rx_h_sta_process)
2885 CALL_RXH(ieee80211_rx_h_defragment)
2886 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2887 /* must be after MMIC verify so header is counted in MPDU mic */
2888 #ifdef CONFIG_MAC80211_MESH
2889 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2890 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2891 #endif
2892 CALL_RXH(ieee80211_rx_h_amsdu)
2893 CALL_RXH(ieee80211_rx_h_data)
2895 /* special treatment -- needs the queue */
2896 res = ieee80211_rx_h_ctrl(rx, frames);
2897 if (res != RX_CONTINUE)
2898 goto rxh_next;
2900 CALL_RXH(ieee80211_rx_h_mgmt_check)
2901 CALL_RXH(ieee80211_rx_h_action)
2902 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2903 CALL_RXH(ieee80211_rx_h_action_return)
2904 CALL_RXH(ieee80211_rx_h_mgmt)
2906 rxh_next:
2907 ieee80211_rx_handlers_result(rx, res);
2909 #undef CALL_RXH
2912 spin_unlock_bh(&rx->local->rx_path_lock);
2915 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2917 struct sk_buff_head reorder_release;
2918 ieee80211_rx_result res = RX_DROP_MONITOR;
2920 __skb_queue_head_init(&reorder_release);
2922 #define CALL_RXH(rxh) \
2923 do { \
2924 res = rxh(rx); \
2925 if (res != RX_CONTINUE) \
2926 goto rxh_next; \
2927 } while (0);
2929 CALL_RXH(ieee80211_rx_h_check)
2931 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2933 ieee80211_rx_handlers(rx, &reorder_release);
2934 return;
2936 rxh_next:
2937 ieee80211_rx_handlers_result(rx, res);
2939 #undef CALL_RXH
2943 * This function makes calls into the RX path, therefore
2944 * it has to be invoked under RCU read lock.
2946 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2948 struct sk_buff_head frames;
2949 struct ieee80211_rx_data rx = {
2950 .sta = sta,
2951 .sdata = sta->sdata,
2952 .local = sta->local,
2953 /* This is OK -- must be QoS data frame */
2954 .security_idx = tid,
2955 .seqno_idx = tid,
2956 .flags = 0,
2958 struct tid_ampdu_rx *tid_agg_rx;
2960 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2961 if (!tid_agg_rx)
2962 return;
2964 __skb_queue_head_init(&frames);
2966 spin_lock(&tid_agg_rx->reorder_lock);
2967 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
2968 spin_unlock(&tid_agg_rx->reorder_lock);
2970 ieee80211_rx_handlers(&rx, &frames);
2973 /* main receive path */
2975 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2976 struct ieee80211_hdr *hdr)
2978 struct ieee80211_sub_if_data *sdata = rx->sdata;
2979 struct sk_buff *skb = rx->skb;
2980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2981 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2982 int multicast = is_multicast_ether_addr(hdr->addr1);
2984 switch (sdata->vif.type) {
2985 case NL80211_IFTYPE_STATION:
2986 if (!bssid && !sdata->u.mgd.use_4addr)
2987 return 0;
2988 if (!multicast &&
2989 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2990 if (!(sdata->dev->flags & IFF_PROMISC) ||
2991 sdata->u.mgd.use_4addr)
2992 return 0;
2993 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2995 break;
2996 case NL80211_IFTYPE_ADHOC:
2997 if (!bssid)
2998 return 0;
2999 if (ieee80211_is_beacon(hdr->frame_control)) {
3000 return 1;
3001 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3002 return 0;
3003 } else if (!multicast &&
3004 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3005 if (!(sdata->dev->flags & IFF_PROMISC))
3006 return 0;
3007 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3008 } else if (!rx->sta) {
3009 int rate_idx;
3010 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3011 rate_idx = 0; /* TODO: HT/VHT rates */
3012 else
3013 rate_idx = status->rate_idx;
3014 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3015 BIT(rate_idx));
3017 break;
3018 case NL80211_IFTYPE_MESH_POINT:
3019 if (!multicast &&
3020 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3021 if (!(sdata->dev->flags & IFF_PROMISC))
3022 return 0;
3024 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3026 break;
3027 case NL80211_IFTYPE_AP_VLAN:
3028 case NL80211_IFTYPE_AP:
3029 if (!bssid) {
3030 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3031 return 0;
3032 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3034 * Accept public action frames even when the
3035 * BSSID doesn't match, this is used for P2P
3036 * and location updates. Note that mac80211
3037 * itself never looks at these frames.
3039 if (!multicast &&
3040 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3041 return 0;
3042 if (ieee80211_is_public_action(hdr, skb->len))
3043 return 1;
3044 if (!ieee80211_is_beacon(hdr->frame_control))
3045 return 0;
3046 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3048 break;
3049 case NL80211_IFTYPE_WDS:
3050 if (bssid || !ieee80211_is_data(hdr->frame_control))
3051 return 0;
3052 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3053 return 0;
3054 break;
3055 case NL80211_IFTYPE_P2P_DEVICE:
3056 if (!ieee80211_is_public_action(hdr, skb->len) &&
3057 !ieee80211_is_probe_req(hdr->frame_control) &&
3058 !ieee80211_is_probe_resp(hdr->frame_control) &&
3059 !ieee80211_is_beacon(hdr->frame_control))
3060 return 0;
3061 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3062 !multicast)
3063 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3064 break;
3065 default:
3066 /* should never get here */
3067 WARN_ON_ONCE(1);
3068 break;
3071 return 1;
3075 * This function returns whether or not the SKB
3076 * was destined for RX processing or not, which,
3077 * if consume is true, is equivalent to whether
3078 * or not the skb was consumed.
3080 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3081 struct sk_buff *skb, bool consume)
3083 struct ieee80211_local *local = rx->local;
3084 struct ieee80211_sub_if_data *sdata = rx->sdata;
3085 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3086 struct ieee80211_hdr *hdr = (void *)skb->data;
3087 int prepares;
3089 rx->skb = skb;
3090 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3091 prepares = prepare_for_handlers(rx, hdr);
3093 if (!prepares)
3094 return false;
3096 if (!consume) {
3097 skb = skb_copy(skb, GFP_ATOMIC);
3098 if (!skb) {
3099 if (net_ratelimit())
3100 wiphy_debug(local->hw.wiphy,
3101 "failed to copy skb for %s\n",
3102 sdata->name);
3103 return true;
3106 rx->skb = skb;
3109 ieee80211_invoke_rx_handlers(rx);
3110 return true;
3114 * This is the actual Rx frames handler. as it blongs to Rx path it must
3115 * be called with rcu_read_lock protection.
3117 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3118 struct sk_buff *skb)
3120 struct ieee80211_local *local = hw_to_local(hw);
3121 struct ieee80211_sub_if_data *sdata;
3122 struct ieee80211_hdr *hdr;
3123 __le16 fc;
3124 struct ieee80211_rx_data rx;
3125 struct ieee80211_sub_if_data *prev;
3126 struct sta_info *sta, *tmp, *prev_sta;
3127 int err = 0;
3129 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3130 memset(&rx, 0, sizeof(rx));
3131 rx.skb = skb;
3132 rx.local = local;
3134 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3135 local->dot11ReceivedFragmentCount++;
3137 if (ieee80211_is_mgmt(fc)) {
3138 /* drop frame if too short for header */
3139 if (skb->len < ieee80211_hdrlen(fc))
3140 err = -ENOBUFS;
3141 else
3142 err = skb_linearize(skb);
3143 } else {
3144 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3147 if (err) {
3148 dev_kfree_skb(skb);
3149 return;
3152 hdr = (struct ieee80211_hdr *)skb->data;
3153 ieee80211_parse_qos(&rx);
3154 ieee80211_verify_alignment(&rx);
3156 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3157 ieee80211_is_beacon(hdr->frame_control)))
3158 ieee80211_scan_rx(local, skb);
3160 if (ieee80211_is_data(fc)) {
3161 prev_sta = NULL;
3163 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3164 if (!prev_sta) {
3165 prev_sta = sta;
3166 continue;
3169 rx.sta = prev_sta;
3170 rx.sdata = prev_sta->sdata;
3171 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3173 prev_sta = sta;
3176 if (prev_sta) {
3177 rx.sta = prev_sta;
3178 rx.sdata = prev_sta->sdata;
3180 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3181 return;
3182 goto out;
3186 prev = NULL;
3188 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3189 if (!ieee80211_sdata_running(sdata))
3190 continue;
3192 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3193 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3194 continue;
3197 * frame is destined for this interface, but if it's
3198 * not also for the previous one we handle that after
3199 * the loop to avoid copying the SKB once too much
3202 if (!prev) {
3203 prev = sdata;
3204 continue;
3207 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3208 rx.sdata = prev;
3209 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3211 prev = sdata;
3214 if (prev) {
3215 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3216 rx.sdata = prev;
3218 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3219 return;
3222 out:
3223 dev_kfree_skb(skb);
3227 * This is the receive path handler. It is called by a low level driver when an
3228 * 802.11 MPDU is received from the hardware.
3230 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3232 struct ieee80211_local *local = hw_to_local(hw);
3233 struct ieee80211_rate *rate = NULL;
3234 struct ieee80211_supported_band *sband;
3235 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3237 WARN_ON_ONCE(softirq_count() == 0);
3239 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3240 goto drop;
3242 sband = local->hw.wiphy->bands[status->band];
3243 if (WARN_ON(!sband))
3244 goto drop;
3247 * If we're suspending, it is possible although not too likely
3248 * that we'd be receiving frames after having already partially
3249 * quiesced the stack. We can't process such frames then since
3250 * that might, for example, cause stations to be added or other
3251 * driver callbacks be invoked.
3253 if (unlikely(local->quiescing || local->suspended))
3254 goto drop;
3256 /* We might be during a HW reconfig, prevent Rx for the same reason */
3257 if (unlikely(local->in_reconfig))
3258 goto drop;
3261 * The same happens when we're not even started,
3262 * but that's worth a warning.
3264 if (WARN_ON(!local->started))
3265 goto drop;
3267 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3269 * Validate the rate, unless a PLCP error means that
3270 * we probably can't have a valid rate here anyway.
3273 if (status->flag & RX_FLAG_HT) {
3275 * rate_idx is MCS index, which can be [0-76]
3276 * as documented on:
3278 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3280 * Anything else would be some sort of driver or
3281 * hardware error. The driver should catch hardware
3282 * errors.
3284 if (WARN(status->rate_idx > 76,
3285 "Rate marked as an HT rate but passed "
3286 "status->rate_idx is not "
3287 "an MCS index [0-76]: %d (0x%02x)\n",
3288 status->rate_idx,
3289 status->rate_idx))
3290 goto drop;
3291 } else if (status->flag & RX_FLAG_VHT) {
3292 if (WARN_ONCE(status->rate_idx > 9 ||
3293 !status->vht_nss ||
3294 status->vht_nss > 8,
3295 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3296 status->rate_idx, status->vht_nss))
3297 goto drop;
3298 } else {
3299 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3300 goto drop;
3301 rate = &sband->bitrates[status->rate_idx];
3305 status->rx_flags = 0;
3308 * key references and virtual interfaces are protected using RCU
3309 * and this requires that we are in a read-side RCU section during
3310 * receive processing
3312 rcu_read_lock();
3315 * Frames with failed FCS/PLCP checksum are not returned,
3316 * all other frames are returned without radiotap header
3317 * if it was previously present.
3318 * Also, frames with less than 16 bytes are dropped.
3320 skb = ieee80211_rx_monitor(local, skb, rate);
3321 if (!skb) {
3322 rcu_read_unlock();
3323 return;
3326 ieee80211_tpt_led_trig_rx(local,
3327 ((struct ieee80211_hdr *)skb->data)->frame_control,
3328 skb->len);
3329 __ieee80211_rx_handle_packet(hw, skb);
3331 rcu_read_unlock();
3333 return;
3334 drop:
3335 kfree_skb(skb);
3337 EXPORT_SYMBOL(ieee80211_rx);
3339 /* This is a version of the rx handler that can be called from hard irq
3340 * context. Post the skb on the queue and schedule the tasklet */
3341 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3343 struct ieee80211_local *local = hw_to_local(hw);
3345 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3347 skb->pkt_type = IEEE80211_RX_MSG;
3348 skb_queue_tail(&local->skb_queue, skb);
3349 tasklet_schedule(&local->tasklet);
3351 EXPORT_SYMBOL(ieee80211_rx_irqsafe);