target: remove the transport_lun_active field in struct se_cmd
[linux-2.6.git] / drivers / target / target_core_transport.c
blob78ea638aa3b3d1ec7bc75c867539401de183ccc6
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
57 static int sub_api_initialized;
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
83 int init_se_kmem_caches(void)
85 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87 0, NULL);
88 if (!se_tmr_req_cache) {
89 pr_err("kmem_cache_create() for struct se_tmr_req"
90 " failed\n");
91 goto out;
93 se_sess_cache = kmem_cache_create("se_sess_cache",
94 sizeof(struct se_session), __alignof__(struct se_session),
95 0, NULL);
96 if (!se_sess_cache) {
97 pr_err("kmem_cache_create() for struct se_session"
98 " failed\n");
99 goto out_free_tmr_req_cache;
101 se_ua_cache = kmem_cache_create("se_ua_cache",
102 sizeof(struct se_ua), __alignof__(struct se_ua),
103 0, NULL);
104 if (!se_ua_cache) {
105 pr_err("kmem_cache_create() for struct se_ua failed\n");
106 goto out_free_sess_cache;
108 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109 sizeof(struct t10_pr_registration),
110 __alignof__(struct t10_pr_registration), 0, NULL);
111 if (!t10_pr_reg_cache) {
112 pr_err("kmem_cache_create() for struct t10_pr_registration"
113 " failed\n");
114 goto out_free_ua_cache;
116 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118 0, NULL);
119 if (!t10_alua_lu_gp_cache) {
120 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121 " failed\n");
122 goto out_free_pr_reg_cache;
124 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125 sizeof(struct t10_alua_lu_gp_member),
126 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 if (!t10_alua_lu_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129 "cache failed\n");
130 goto out_free_lu_gp_cache;
132 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133 sizeof(struct t10_alua_tg_pt_gp),
134 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 if (!t10_alua_tg_pt_gp_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "cache failed\n");
138 goto out_free_lu_gp_mem_cache;
140 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141 "t10_alua_tg_pt_gp_mem_cache",
142 sizeof(struct t10_alua_tg_pt_gp_member),
143 __alignof__(struct t10_alua_tg_pt_gp_member),
144 0, NULL);
145 if (!t10_alua_tg_pt_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 "mem_t failed\n");
148 goto out_free_tg_pt_gp_cache;
151 target_completion_wq = alloc_workqueue("target_completion",
152 WQ_MEM_RECLAIM, 0);
153 if (!target_completion_wq)
154 goto out_free_tg_pt_gp_mem_cache;
156 return 0;
158 out_free_tg_pt_gp_mem_cache:
159 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165 kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167 kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169 kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171 kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173 kmem_cache_destroy(se_tmr_req_cache);
174 out:
175 return -ENOMEM;
178 void release_se_kmem_caches(void)
180 destroy_workqueue(target_completion_wq);
181 kmem_cache_destroy(se_tmr_req_cache);
182 kmem_cache_destroy(se_sess_cache);
183 kmem_cache_destroy(se_ua_cache);
184 kmem_cache_destroy(t10_pr_reg_cache);
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
196 * Allocate a new row index for the entry type specified
198 u32 scsi_get_new_index(scsi_index_t type)
200 u32 new_index;
202 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
204 spin_lock(&scsi_mib_index_lock);
205 new_index = ++scsi_mib_index[type];
206 spin_unlock(&scsi_mib_index_lock);
208 return new_index;
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
213 atomic_set(&qobj->queue_cnt, 0);
214 INIT_LIST_HEAD(&qobj->qobj_list);
215 init_waitqueue_head(&qobj->thread_wq);
216 spin_lock_init(&qobj->cmd_queue_lock);
219 void transport_subsystem_check_init(void)
221 int ret;
223 if (sub_api_initialized)
224 return;
226 ret = request_module("target_core_iblock");
227 if (ret != 0)
228 pr_err("Unable to load target_core_iblock\n");
230 ret = request_module("target_core_file");
231 if (ret != 0)
232 pr_err("Unable to load target_core_file\n");
234 ret = request_module("target_core_pscsi");
235 if (ret != 0)
236 pr_err("Unable to load target_core_pscsi\n");
238 ret = request_module("target_core_stgt");
239 if (ret != 0)
240 pr_err("Unable to load target_core_stgt\n");
242 sub_api_initialized = 1;
243 return;
246 struct se_session *transport_init_session(void)
248 struct se_session *se_sess;
250 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 if (!se_sess) {
252 pr_err("Unable to allocate struct se_session from"
253 " se_sess_cache\n");
254 return ERR_PTR(-ENOMEM);
256 INIT_LIST_HEAD(&se_sess->sess_list);
257 INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259 INIT_LIST_HEAD(&se_sess->sess_wait_list);
260 spin_lock_init(&se_sess->sess_cmd_lock);
262 return se_sess;
264 EXPORT_SYMBOL(transport_init_session);
267 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
269 void __transport_register_session(
270 struct se_portal_group *se_tpg,
271 struct se_node_acl *se_nacl,
272 struct se_session *se_sess,
273 void *fabric_sess_ptr)
275 unsigned char buf[PR_REG_ISID_LEN];
277 se_sess->se_tpg = se_tpg;
278 se_sess->fabric_sess_ptr = fabric_sess_ptr;
280 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
282 * Only set for struct se_session's that will actually be moving I/O.
283 * eg: *NOT* discovery sessions.
285 if (se_nacl) {
287 * If the fabric module supports an ISID based TransportID,
288 * save this value in binary from the fabric I_T Nexus now.
290 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291 memset(&buf[0], 0, PR_REG_ISID_LEN);
292 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 &buf[0], PR_REG_ISID_LEN);
294 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
296 spin_lock_irq(&se_nacl->nacl_sess_lock);
298 * The se_nacl->nacl_sess pointer will be set to the
299 * last active I_T Nexus for each struct se_node_acl.
301 se_nacl->nacl_sess = se_sess;
303 list_add_tail(&se_sess->sess_acl_list,
304 &se_nacl->acl_sess_list);
305 spin_unlock_irq(&se_nacl->nacl_sess_lock);
307 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
309 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
312 EXPORT_SYMBOL(__transport_register_session);
314 void transport_register_session(
315 struct se_portal_group *se_tpg,
316 struct se_node_acl *se_nacl,
317 struct se_session *se_sess,
318 void *fabric_sess_ptr)
320 spin_lock_bh(&se_tpg->session_lock);
321 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322 spin_unlock_bh(&se_tpg->session_lock);
324 EXPORT_SYMBOL(transport_register_session);
326 void transport_deregister_session_configfs(struct se_session *se_sess)
328 struct se_node_acl *se_nacl;
329 unsigned long flags;
331 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
333 se_nacl = se_sess->se_node_acl;
334 if (se_nacl) {
335 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 list_del(&se_sess->sess_acl_list);
338 * If the session list is empty, then clear the pointer.
339 * Otherwise, set the struct se_session pointer from the tail
340 * element of the per struct se_node_acl active session list.
342 if (list_empty(&se_nacl->acl_sess_list))
343 se_nacl->nacl_sess = NULL;
344 else {
345 se_nacl->nacl_sess = container_of(
346 se_nacl->acl_sess_list.prev,
347 struct se_session, sess_acl_list);
349 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
354 void transport_free_session(struct se_session *se_sess)
356 kmem_cache_free(se_sess_cache, se_sess);
358 EXPORT_SYMBOL(transport_free_session);
360 void transport_deregister_session(struct se_session *se_sess)
362 struct se_portal_group *se_tpg = se_sess->se_tpg;
363 struct se_node_acl *se_nacl;
364 unsigned long flags;
366 if (!se_tpg) {
367 transport_free_session(se_sess);
368 return;
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 list_del(&se_sess->sess_list);
373 se_sess->se_tpg = NULL;
374 se_sess->fabric_sess_ptr = NULL;
375 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
378 * Determine if we need to do extra work for this initiator node's
379 * struct se_node_acl if it had been previously dynamically generated.
381 se_nacl = se_sess->se_node_acl;
382 if (se_nacl) {
383 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384 if (se_nacl->dynamic_node_acl) {
385 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386 se_tpg)) {
387 list_del(&se_nacl->acl_list);
388 se_tpg->num_node_acls--;
389 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
391 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392 core_free_device_list_for_node(se_nacl, se_tpg);
393 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394 se_nacl);
395 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
401 transport_free_session(se_sess);
403 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404 se_tpg->se_tpg_tfo->get_fabric_name());
406 EXPORT_SYMBOL(transport_deregister_session);
409 * Called with cmd->t_state_lock held.
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
413 struct se_device *dev = cmd->se_dev;
414 struct se_task *task;
415 unsigned long flags;
417 if (!dev)
418 return;
420 list_for_each_entry(task, &cmd->t_task_list, t_list) {
421 if (task->task_flags & TF_ACTIVE)
422 continue;
424 spin_lock_irqsave(&dev->execute_task_lock, flags);
425 if (task->t_state_active) {
426 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427 cmd->se_tfo->get_task_tag(cmd), dev, task);
429 list_del(&task->t_state_list);
430 atomic_dec(&cmd->t_task_cdbs_ex_left);
431 task->t_state_active = false;
433 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
438 /* transport_cmd_check_stop():
440 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
441 * 'transport_off = 2' determines if task_dev_state should be removed.
443 * A non-zero u8 t_state sets cmd->t_state.
444 * Returns 1 when command is stopped, else 0.
446 static int transport_cmd_check_stop(
447 struct se_cmd *cmd,
448 int transport_off,
449 u8 t_state)
451 unsigned long flags;
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
458 if (cmd->transport_state & CMD_T_LUN_STOP) {
459 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
460 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
462 cmd->transport_state &= ~CMD_T_ACTIVE;
463 if (transport_off == 2)
464 transport_all_task_dev_remove_state(cmd);
465 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467 complete(&cmd->transport_lun_stop_comp);
468 return 1;
471 * Determine if frontend context caller is requesting the stopping of
472 * this command for frontend exceptions.
474 if (cmd->transport_state & CMD_T_STOP) {
475 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
476 __func__, __LINE__,
477 cmd->se_tfo->get_task_tag(cmd));
479 if (transport_off == 2)
480 transport_all_task_dev_remove_state(cmd);
483 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
484 * to FE.
486 if (transport_off == 2)
487 cmd->se_lun = NULL;
488 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490 complete(&cmd->t_transport_stop_comp);
491 return 1;
493 if (transport_off) {
494 cmd->transport_state &= ~CMD_T_ACTIVE;
495 if (transport_off == 2) {
496 transport_all_task_dev_remove_state(cmd);
498 * Clear struct se_cmd->se_lun before the transport_off == 2
499 * handoff to fabric module.
501 cmd->se_lun = NULL;
503 * Some fabric modules like tcm_loop can release
504 * their internally allocated I/O reference now and
505 * struct se_cmd now.
507 * Fabric modules are expected to return '1' here if the
508 * se_cmd being passed is released at this point,
509 * or zero if not being released.
511 if (cmd->se_tfo->check_stop_free != NULL) {
512 spin_unlock_irqrestore(
513 &cmd->t_state_lock, flags);
515 return cmd->se_tfo->check_stop_free(cmd);
518 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520 return 0;
521 } else if (t_state)
522 cmd->t_state = t_state;
523 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525 return 0;
528 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 return transport_cmd_check_stop(cmd, 2, 0);
533 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 struct se_lun *lun = cmd->se_lun;
536 unsigned long flags;
538 if (!lun)
539 return;
541 spin_lock_irqsave(&cmd->t_state_lock, flags);
542 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
543 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
544 transport_all_task_dev_remove_state(cmd);
546 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
548 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
549 if (!list_empty(&cmd->se_lun_node))
550 list_del_init(&cmd->se_lun_node);
551 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
554 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
556 if (!cmd->se_tmr_req)
557 transport_lun_remove_cmd(cmd);
559 if (transport_cmd_check_stop_to_fabric(cmd))
560 return;
561 if (remove) {
562 transport_remove_cmd_from_queue(cmd);
563 transport_put_cmd(cmd);
567 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
568 bool at_head)
570 struct se_device *dev = cmd->se_dev;
571 struct se_queue_obj *qobj = &dev->dev_queue_obj;
572 unsigned long flags;
574 if (t_state) {
575 spin_lock_irqsave(&cmd->t_state_lock, flags);
576 cmd->t_state = t_state;
577 cmd->transport_state |= CMD_T_ACTIVE;
578 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
581 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
583 /* If the cmd is already on the list, remove it before we add it */
584 if (!list_empty(&cmd->se_queue_node))
585 list_del(&cmd->se_queue_node);
586 else
587 atomic_inc(&qobj->queue_cnt);
589 if (at_head)
590 list_add(&cmd->se_queue_node, &qobj->qobj_list);
591 else
592 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
593 cmd->transport_state |= CMD_T_QUEUED;
594 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
596 wake_up_interruptible(&qobj->thread_wq);
599 static struct se_cmd *
600 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
602 struct se_cmd *cmd;
603 unsigned long flags;
605 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
606 if (list_empty(&qobj->qobj_list)) {
607 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
608 return NULL;
610 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
612 cmd->transport_state &= ~CMD_T_QUEUED;
613 list_del_init(&cmd->se_queue_node);
614 atomic_dec(&qobj->queue_cnt);
615 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
617 return cmd;
620 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
622 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
623 unsigned long flags;
625 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
626 if (!(cmd->transport_state & CMD_T_QUEUED)) {
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628 return;
630 cmd->transport_state &= ~CMD_T_QUEUED;
631 atomic_dec(&qobj->queue_cnt);
632 list_del_init(&cmd->se_queue_node);
633 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
637 * Completion function used by TCM subsystem plugins (such as FILEIO)
638 * for queueing up response from struct se_subsystem_api->do_task()
640 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
642 struct se_task *task = list_entry(cmd->t_task_list.next,
643 struct se_task, t_list);
645 if (good) {
646 cmd->scsi_status = SAM_STAT_GOOD;
647 task->task_scsi_status = GOOD;
648 } else {
649 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
650 task->task_se_cmd->scsi_sense_reason =
651 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
655 transport_complete_task(task, good);
657 EXPORT_SYMBOL(transport_complete_sync_cache);
659 static void target_complete_failure_work(struct work_struct *work)
661 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
663 transport_generic_request_failure(cmd);
666 /* transport_complete_task():
668 * Called from interrupt and non interrupt context depending
669 * on the transport plugin.
671 void transport_complete_task(struct se_task *task, int success)
673 struct se_cmd *cmd = task->task_se_cmd;
674 struct se_device *dev = cmd->se_dev;
675 unsigned long flags;
677 spin_lock_irqsave(&cmd->t_state_lock, flags);
678 task->task_flags &= ~TF_ACTIVE;
681 * See if any sense data exists, if so set the TASK_SENSE flag.
682 * Also check for any other post completion work that needs to be
683 * done by the plugins.
685 if (dev && dev->transport->transport_complete) {
686 if (dev->transport->transport_complete(task) != 0) {
687 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
688 task->task_flags |= TF_HAS_SENSE;
689 success = 1;
694 * See if we are waiting for outstanding struct se_task
695 * to complete for an exception condition
697 if (task->task_flags & TF_REQUEST_STOP) {
698 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
699 complete(&task->task_stop_comp);
700 return;
703 if (!success)
704 cmd->transport_state |= CMD_T_FAILED;
707 * Decrement the outstanding t_task_cdbs_left count. The last
708 * struct se_task from struct se_cmd will complete itself into the
709 * device queue depending upon int success.
711 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
712 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
713 return;
716 if (cmd->transport_state & CMD_T_FAILED) {
717 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
718 INIT_WORK(&cmd->work, target_complete_failure_work);
719 } else {
720 cmd->transport_state |= CMD_T_COMPLETE;
721 INIT_WORK(&cmd->work, target_complete_ok_work);
724 cmd->t_state = TRANSPORT_COMPLETE;
725 cmd->transport_state |= CMD_T_ACTIVE;
726 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
728 queue_work(target_completion_wq, &cmd->work);
730 EXPORT_SYMBOL(transport_complete_task);
733 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
734 * struct se_task list are ready to be added to the active execution list
735 * struct se_device
737 * Called with se_dev_t->execute_task_lock called.
739 static inline int transport_add_task_check_sam_attr(
740 struct se_task *task,
741 struct se_task *task_prev,
742 struct se_device *dev)
745 * No SAM Task attribute emulation enabled, add to tail of
746 * execution queue
748 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
749 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
750 return 0;
753 * HEAD_OF_QUEUE attribute for received CDB, which means
754 * the first task that is associated with a struct se_cmd goes to
755 * head of the struct se_device->execute_task_list, and task_prev
756 * after that for each subsequent task
758 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
759 list_add(&task->t_execute_list,
760 (task_prev != NULL) ?
761 &task_prev->t_execute_list :
762 &dev->execute_task_list);
764 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
765 " in execution queue\n",
766 task->task_se_cmd->t_task_cdb[0]);
767 return 1;
770 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
771 * transitioned from Dermant -> Active state, and are added to the end
772 * of the struct se_device->execute_task_list
774 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
775 return 0;
778 /* __transport_add_task_to_execute_queue():
780 * Called with se_dev_t->execute_task_lock called.
782 static void __transport_add_task_to_execute_queue(
783 struct se_task *task,
784 struct se_task *task_prev,
785 struct se_device *dev)
787 int head_of_queue;
789 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
790 atomic_inc(&dev->execute_tasks);
792 if (task->t_state_active)
793 return;
795 * Determine if this task needs to go to HEAD_OF_QUEUE for the
796 * state list as well. Running with SAM Task Attribute emulation
797 * will always return head_of_queue == 0 here
799 if (head_of_queue)
800 list_add(&task->t_state_list, (task_prev) ?
801 &task_prev->t_state_list :
802 &dev->state_task_list);
803 else
804 list_add_tail(&task->t_state_list, &dev->state_task_list);
806 task->t_state_active = true;
808 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
809 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
810 task, dev);
813 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
815 struct se_device *dev = cmd->se_dev;
816 struct se_task *task;
817 unsigned long flags;
819 spin_lock_irqsave(&cmd->t_state_lock, flags);
820 list_for_each_entry(task, &cmd->t_task_list, t_list) {
821 spin_lock(&dev->execute_task_lock);
822 if (!task->t_state_active) {
823 list_add_tail(&task->t_state_list,
824 &dev->state_task_list);
825 task->t_state_active = true;
827 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
828 task->task_se_cmd->se_tfo->get_task_tag(
829 task->task_se_cmd), task, dev);
831 spin_unlock(&dev->execute_task_lock);
833 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
836 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
838 struct se_device *dev = cmd->se_dev;
839 struct se_task *task, *task_prev = NULL;
841 list_for_each_entry(task, &cmd->t_task_list, t_list) {
842 if (!list_empty(&task->t_execute_list))
843 continue;
845 * __transport_add_task_to_execute_queue() handles the
846 * SAM Task Attribute emulation if enabled
848 __transport_add_task_to_execute_queue(task, task_prev, dev);
849 task_prev = task;
853 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 unsigned long flags;
856 struct se_device *dev = cmd->se_dev;
858 spin_lock_irqsave(&dev->execute_task_lock, flags);
859 __transport_add_tasks_from_cmd(cmd);
860 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
863 void __transport_remove_task_from_execute_queue(struct se_task *task,
864 struct se_device *dev)
866 list_del_init(&task->t_execute_list);
867 atomic_dec(&dev->execute_tasks);
870 static void transport_remove_task_from_execute_queue(
871 struct se_task *task,
872 struct se_device *dev)
874 unsigned long flags;
876 if (WARN_ON(list_empty(&task->t_execute_list)))
877 return;
879 spin_lock_irqsave(&dev->execute_task_lock, flags);
880 __transport_remove_task_from_execute_queue(task, dev);
881 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
885 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
888 static void target_qf_do_work(struct work_struct *work)
890 struct se_device *dev = container_of(work, struct se_device,
891 qf_work_queue);
892 LIST_HEAD(qf_cmd_list);
893 struct se_cmd *cmd, *cmd_tmp;
895 spin_lock_irq(&dev->qf_cmd_lock);
896 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
897 spin_unlock_irq(&dev->qf_cmd_lock);
899 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
900 list_del(&cmd->se_qf_node);
901 atomic_dec(&dev->dev_qf_count);
902 smp_mb__after_atomic_dec();
904 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
905 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
906 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
907 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
908 : "UNKNOWN");
910 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
914 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
916 switch (cmd->data_direction) {
917 case DMA_NONE:
918 return "NONE";
919 case DMA_FROM_DEVICE:
920 return "READ";
921 case DMA_TO_DEVICE:
922 return "WRITE";
923 case DMA_BIDIRECTIONAL:
924 return "BIDI";
925 default:
926 break;
929 return "UNKNOWN";
932 void transport_dump_dev_state(
933 struct se_device *dev,
934 char *b,
935 int *bl)
937 *bl += sprintf(b + *bl, "Status: ");
938 switch (dev->dev_status) {
939 case TRANSPORT_DEVICE_ACTIVATED:
940 *bl += sprintf(b + *bl, "ACTIVATED");
941 break;
942 case TRANSPORT_DEVICE_DEACTIVATED:
943 *bl += sprintf(b + *bl, "DEACTIVATED");
944 break;
945 case TRANSPORT_DEVICE_SHUTDOWN:
946 *bl += sprintf(b + *bl, "SHUTDOWN");
947 break;
948 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
949 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
950 *bl += sprintf(b + *bl, "OFFLINE");
951 break;
952 default:
953 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
954 break;
957 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
958 atomic_read(&dev->execute_tasks), dev->queue_depth);
959 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
960 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
961 *bl += sprintf(b + *bl, " ");
964 void transport_dump_vpd_proto_id(
965 struct t10_vpd *vpd,
966 unsigned char *p_buf,
967 int p_buf_len)
969 unsigned char buf[VPD_TMP_BUF_SIZE];
970 int len;
972 memset(buf, 0, VPD_TMP_BUF_SIZE);
973 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
975 switch (vpd->protocol_identifier) {
976 case 0x00:
977 sprintf(buf+len, "Fibre Channel\n");
978 break;
979 case 0x10:
980 sprintf(buf+len, "Parallel SCSI\n");
981 break;
982 case 0x20:
983 sprintf(buf+len, "SSA\n");
984 break;
985 case 0x30:
986 sprintf(buf+len, "IEEE 1394\n");
987 break;
988 case 0x40:
989 sprintf(buf+len, "SCSI Remote Direct Memory Access"
990 " Protocol\n");
991 break;
992 case 0x50:
993 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
994 break;
995 case 0x60:
996 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
997 break;
998 case 0x70:
999 sprintf(buf+len, "Automation/Drive Interface Transport"
1000 " Protocol\n");
1001 break;
1002 case 0x80:
1003 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1004 break;
1005 default:
1006 sprintf(buf+len, "Unknown 0x%02x\n",
1007 vpd->protocol_identifier);
1008 break;
1011 if (p_buf)
1012 strncpy(p_buf, buf, p_buf_len);
1013 else
1014 pr_debug("%s", buf);
1017 void
1018 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1021 * Check if the Protocol Identifier Valid (PIV) bit is set..
1023 * from spc3r23.pdf section 7.5.1
1025 if (page_83[1] & 0x80) {
1026 vpd->protocol_identifier = (page_83[0] & 0xf0);
1027 vpd->protocol_identifier_set = 1;
1028 transport_dump_vpd_proto_id(vpd, NULL, 0);
1031 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1033 int transport_dump_vpd_assoc(
1034 struct t10_vpd *vpd,
1035 unsigned char *p_buf,
1036 int p_buf_len)
1038 unsigned char buf[VPD_TMP_BUF_SIZE];
1039 int ret = 0;
1040 int len;
1042 memset(buf, 0, VPD_TMP_BUF_SIZE);
1043 len = sprintf(buf, "T10 VPD Identifier Association: ");
1045 switch (vpd->association) {
1046 case 0x00:
1047 sprintf(buf+len, "addressed logical unit\n");
1048 break;
1049 case 0x10:
1050 sprintf(buf+len, "target port\n");
1051 break;
1052 case 0x20:
1053 sprintf(buf+len, "SCSI target device\n");
1054 break;
1055 default:
1056 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1057 ret = -EINVAL;
1058 break;
1061 if (p_buf)
1062 strncpy(p_buf, buf, p_buf_len);
1063 else
1064 pr_debug("%s", buf);
1066 return ret;
1069 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1072 * The VPD identification association..
1074 * from spc3r23.pdf Section 7.6.3.1 Table 297
1076 vpd->association = (page_83[1] & 0x30);
1077 return transport_dump_vpd_assoc(vpd, NULL, 0);
1079 EXPORT_SYMBOL(transport_set_vpd_assoc);
1081 int transport_dump_vpd_ident_type(
1082 struct t10_vpd *vpd,
1083 unsigned char *p_buf,
1084 int p_buf_len)
1086 unsigned char buf[VPD_TMP_BUF_SIZE];
1087 int ret = 0;
1088 int len;
1090 memset(buf, 0, VPD_TMP_BUF_SIZE);
1091 len = sprintf(buf, "T10 VPD Identifier Type: ");
1093 switch (vpd->device_identifier_type) {
1094 case 0x00:
1095 sprintf(buf+len, "Vendor specific\n");
1096 break;
1097 case 0x01:
1098 sprintf(buf+len, "T10 Vendor ID based\n");
1099 break;
1100 case 0x02:
1101 sprintf(buf+len, "EUI-64 based\n");
1102 break;
1103 case 0x03:
1104 sprintf(buf+len, "NAA\n");
1105 break;
1106 case 0x04:
1107 sprintf(buf+len, "Relative target port identifier\n");
1108 break;
1109 case 0x08:
1110 sprintf(buf+len, "SCSI name string\n");
1111 break;
1112 default:
1113 sprintf(buf+len, "Unsupported: 0x%02x\n",
1114 vpd->device_identifier_type);
1115 ret = -EINVAL;
1116 break;
1119 if (p_buf) {
1120 if (p_buf_len < strlen(buf)+1)
1121 return -EINVAL;
1122 strncpy(p_buf, buf, p_buf_len);
1123 } else {
1124 pr_debug("%s", buf);
1127 return ret;
1130 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1133 * The VPD identifier type..
1135 * from spc3r23.pdf Section 7.6.3.1 Table 298
1137 vpd->device_identifier_type = (page_83[1] & 0x0f);
1138 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1140 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1142 int transport_dump_vpd_ident(
1143 struct t10_vpd *vpd,
1144 unsigned char *p_buf,
1145 int p_buf_len)
1147 unsigned char buf[VPD_TMP_BUF_SIZE];
1148 int ret = 0;
1150 memset(buf, 0, VPD_TMP_BUF_SIZE);
1152 switch (vpd->device_identifier_code_set) {
1153 case 0x01: /* Binary */
1154 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1155 &vpd->device_identifier[0]);
1156 break;
1157 case 0x02: /* ASCII */
1158 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1159 &vpd->device_identifier[0]);
1160 break;
1161 case 0x03: /* UTF-8 */
1162 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1163 &vpd->device_identifier[0]);
1164 break;
1165 default:
1166 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1167 " 0x%02x", vpd->device_identifier_code_set);
1168 ret = -EINVAL;
1169 break;
1172 if (p_buf)
1173 strncpy(p_buf, buf, p_buf_len);
1174 else
1175 pr_debug("%s", buf);
1177 return ret;
1181 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1183 static const char hex_str[] = "0123456789abcdef";
1184 int j = 0, i = 4; /* offset to start of the identifer */
1187 * The VPD Code Set (encoding)
1189 * from spc3r23.pdf Section 7.6.3.1 Table 296
1191 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1192 switch (vpd->device_identifier_code_set) {
1193 case 0x01: /* Binary */
1194 vpd->device_identifier[j++] =
1195 hex_str[vpd->device_identifier_type];
1196 while (i < (4 + page_83[3])) {
1197 vpd->device_identifier[j++] =
1198 hex_str[(page_83[i] & 0xf0) >> 4];
1199 vpd->device_identifier[j++] =
1200 hex_str[page_83[i] & 0x0f];
1201 i++;
1203 break;
1204 case 0x02: /* ASCII */
1205 case 0x03: /* UTF-8 */
1206 while (i < (4 + page_83[3]))
1207 vpd->device_identifier[j++] = page_83[i++];
1208 break;
1209 default:
1210 break;
1213 return transport_dump_vpd_ident(vpd, NULL, 0);
1215 EXPORT_SYMBOL(transport_set_vpd_ident);
1217 static void core_setup_task_attr_emulation(struct se_device *dev)
1220 * If this device is from Target_Core_Mod/pSCSI, disable the
1221 * SAM Task Attribute emulation.
1223 * This is currently not available in upsream Linux/SCSI Target
1224 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1226 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1227 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1228 return;
1231 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1232 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1233 " device\n", dev->transport->name,
1234 dev->transport->get_device_rev(dev));
1237 static void scsi_dump_inquiry(struct se_device *dev)
1239 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1240 char buf[17];
1241 int i, device_type;
1243 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1245 for (i = 0; i < 8; i++)
1246 if (wwn->vendor[i] >= 0x20)
1247 buf[i] = wwn->vendor[i];
1248 else
1249 buf[i] = ' ';
1250 buf[i] = '\0';
1251 pr_debug(" Vendor: %s\n", buf);
1253 for (i = 0; i < 16; i++)
1254 if (wwn->model[i] >= 0x20)
1255 buf[i] = wwn->model[i];
1256 else
1257 buf[i] = ' ';
1258 buf[i] = '\0';
1259 pr_debug(" Model: %s\n", buf);
1261 for (i = 0; i < 4; i++)
1262 if (wwn->revision[i] >= 0x20)
1263 buf[i] = wwn->revision[i];
1264 else
1265 buf[i] = ' ';
1266 buf[i] = '\0';
1267 pr_debug(" Revision: %s\n", buf);
1269 device_type = dev->transport->get_device_type(dev);
1270 pr_debug(" Type: %s ", scsi_device_type(device_type));
1271 pr_debug(" ANSI SCSI revision: %02x\n",
1272 dev->transport->get_device_rev(dev));
1275 struct se_device *transport_add_device_to_core_hba(
1276 struct se_hba *hba,
1277 struct se_subsystem_api *transport,
1278 struct se_subsystem_dev *se_dev,
1279 u32 device_flags,
1280 void *transport_dev,
1281 struct se_dev_limits *dev_limits,
1282 const char *inquiry_prod,
1283 const char *inquiry_rev)
1285 int force_pt;
1286 struct se_device *dev;
1288 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1289 if (!dev) {
1290 pr_err("Unable to allocate memory for se_dev_t\n");
1291 return NULL;
1294 transport_init_queue_obj(&dev->dev_queue_obj);
1295 dev->dev_flags = device_flags;
1296 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1297 dev->dev_ptr = transport_dev;
1298 dev->se_hba = hba;
1299 dev->se_sub_dev = se_dev;
1300 dev->transport = transport;
1301 INIT_LIST_HEAD(&dev->dev_list);
1302 INIT_LIST_HEAD(&dev->dev_sep_list);
1303 INIT_LIST_HEAD(&dev->dev_tmr_list);
1304 INIT_LIST_HEAD(&dev->execute_task_list);
1305 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1306 INIT_LIST_HEAD(&dev->state_task_list);
1307 INIT_LIST_HEAD(&dev->qf_cmd_list);
1308 spin_lock_init(&dev->execute_task_lock);
1309 spin_lock_init(&dev->delayed_cmd_lock);
1310 spin_lock_init(&dev->dev_reservation_lock);
1311 spin_lock_init(&dev->dev_status_lock);
1312 spin_lock_init(&dev->se_port_lock);
1313 spin_lock_init(&dev->se_tmr_lock);
1314 spin_lock_init(&dev->qf_cmd_lock);
1315 atomic_set(&dev->dev_ordered_id, 0);
1317 se_dev_set_default_attribs(dev, dev_limits);
1319 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1320 dev->creation_time = get_jiffies_64();
1321 spin_lock_init(&dev->stats_lock);
1323 spin_lock(&hba->device_lock);
1324 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1325 hba->dev_count++;
1326 spin_unlock(&hba->device_lock);
1328 * Setup the SAM Task Attribute emulation for struct se_device
1330 core_setup_task_attr_emulation(dev);
1332 * Force PR and ALUA passthrough emulation with internal object use.
1334 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1336 * Setup the Reservations infrastructure for struct se_device
1338 core_setup_reservations(dev, force_pt);
1340 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1342 if (core_setup_alua(dev, force_pt) < 0)
1343 goto out;
1346 * Startup the struct se_device processing thread
1348 dev->process_thread = kthread_run(transport_processing_thread, dev,
1349 "LIO_%s", dev->transport->name);
1350 if (IS_ERR(dev->process_thread)) {
1351 pr_err("Unable to create kthread: LIO_%s\n",
1352 dev->transport->name);
1353 goto out;
1356 * Setup work_queue for QUEUE_FULL
1358 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1360 * Preload the initial INQUIRY const values if we are doing
1361 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1362 * passthrough because this is being provided by the backend LLD.
1363 * This is required so that transport_get_inquiry() copies these
1364 * originals once back into DEV_T10_WWN(dev) for the virtual device
1365 * setup.
1367 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1368 if (!inquiry_prod || !inquiry_rev) {
1369 pr_err("All non TCM/pSCSI plugins require"
1370 " INQUIRY consts\n");
1371 goto out;
1374 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1375 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1376 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1378 scsi_dump_inquiry(dev);
1380 return dev;
1381 out:
1382 kthread_stop(dev->process_thread);
1384 spin_lock(&hba->device_lock);
1385 list_del(&dev->dev_list);
1386 hba->dev_count--;
1387 spin_unlock(&hba->device_lock);
1389 se_release_vpd_for_dev(dev);
1391 kfree(dev);
1393 return NULL;
1395 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1397 /* transport_generic_prepare_cdb():
1399 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1400 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1401 * The point of this is since we are mapping iSCSI LUNs to
1402 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1403 * devices and HBAs for a loop.
1405 static inline void transport_generic_prepare_cdb(
1406 unsigned char *cdb)
1408 switch (cdb[0]) {
1409 case READ_10: /* SBC - RDProtect */
1410 case READ_12: /* SBC - RDProtect */
1411 case READ_16: /* SBC - RDProtect */
1412 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1413 case VERIFY: /* SBC - VRProtect */
1414 case VERIFY_16: /* SBC - VRProtect */
1415 case WRITE_VERIFY: /* SBC - VRProtect */
1416 case WRITE_VERIFY_12: /* SBC - VRProtect */
1417 break;
1418 default:
1419 cdb[1] &= 0x1f; /* clear logical unit number */
1420 break;
1424 static struct se_task *
1425 transport_generic_get_task(struct se_cmd *cmd,
1426 enum dma_data_direction data_direction)
1428 struct se_task *task;
1429 struct se_device *dev = cmd->se_dev;
1431 task = dev->transport->alloc_task(cmd->t_task_cdb);
1432 if (!task) {
1433 pr_err("Unable to allocate struct se_task\n");
1434 return NULL;
1437 INIT_LIST_HEAD(&task->t_list);
1438 INIT_LIST_HEAD(&task->t_execute_list);
1439 INIT_LIST_HEAD(&task->t_state_list);
1440 init_completion(&task->task_stop_comp);
1441 task->task_se_cmd = cmd;
1442 task->task_data_direction = data_direction;
1444 return task;
1447 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1450 * Used by fabric modules containing a local struct se_cmd within their
1451 * fabric dependent per I/O descriptor.
1453 void transport_init_se_cmd(
1454 struct se_cmd *cmd,
1455 struct target_core_fabric_ops *tfo,
1456 struct se_session *se_sess,
1457 u32 data_length,
1458 int data_direction,
1459 int task_attr,
1460 unsigned char *sense_buffer)
1462 INIT_LIST_HEAD(&cmd->se_lun_node);
1463 INIT_LIST_HEAD(&cmd->se_delayed_node);
1464 INIT_LIST_HEAD(&cmd->se_qf_node);
1465 INIT_LIST_HEAD(&cmd->se_queue_node);
1466 INIT_LIST_HEAD(&cmd->se_cmd_list);
1467 INIT_LIST_HEAD(&cmd->t_task_list);
1468 init_completion(&cmd->transport_lun_fe_stop_comp);
1469 init_completion(&cmd->transport_lun_stop_comp);
1470 init_completion(&cmd->t_transport_stop_comp);
1471 init_completion(&cmd->cmd_wait_comp);
1472 spin_lock_init(&cmd->t_state_lock);
1473 cmd->transport_state = CMD_T_DEV_ACTIVE;
1475 cmd->se_tfo = tfo;
1476 cmd->se_sess = se_sess;
1477 cmd->data_length = data_length;
1478 cmd->data_direction = data_direction;
1479 cmd->sam_task_attr = task_attr;
1480 cmd->sense_buffer = sense_buffer;
1482 EXPORT_SYMBOL(transport_init_se_cmd);
1484 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1487 * Check if SAM Task Attribute emulation is enabled for this
1488 * struct se_device storage object
1490 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1491 return 0;
1493 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1494 pr_debug("SAM Task Attribute ACA"
1495 " emulation is not supported\n");
1496 return -EINVAL;
1499 * Used to determine when ORDERED commands should go from
1500 * Dormant to Active status.
1502 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1503 smp_mb__after_atomic_inc();
1504 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1505 cmd->se_ordered_id, cmd->sam_task_attr,
1506 cmd->se_dev->transport->name);
1507 return 0;
1510 /* transport_generic_allocate_tasks():
1512 * Called from fabric RX Thread.
1514 int transport_generic_allocate_tasks(
1515 struct se_cmd *cmd,
1516 unsigned char *cdb)
1518 int ret;
1520 transport_generic_prepare_cdb(cdb);
1522 * Ensure that the received CDB is less than the max (252 + 8) bytes
1523 * for VARIABLE_LENGTH_CMD
1525 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1526 pr_err("Received SCSI CDB with command_size: %d that"
1527 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1528 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1529 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1530 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1531 return -EINVAL;
1534 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1535 * allocate the additional extended CDB buffer now.. Otherwise
1536 * setup the pointer from __t_task_cdb to t_task_cdb.
1538 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1539 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1540 GFP_KERNEL);
1541 if (!cmd->t_task_cdb) {
1542 pr_err("Unable to allocate cmd->t_task_cdb"
1543 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1544 scsi_command_size(cdb),
1545 (unsigned long)sizeof(cmd->__t_task_cdb));
1546 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1547 cmd->scsi_sense_reason =
1548 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1549 return -ENOMEM;
1551 } else
1552 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1554 * Copy the original CDB into cmd->
1556 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1558 * Setup the received CDB based on SCSI defined opcodes and
1559 * perform unit attention, persistent reservations and ALUA
1560 * checks for virtual device backends. The cmd->t_task_cdb
1561 * pointer is expected to be setup before we reach this point.
1563 ret = transport_generic_cmd_sequencer(cmd, cdb);
1564 if (ret < 0)
1565 return ret;
1567 * Check for SAM Task Attribute Emulation
1569 if (transport_check_alloc_task_attr(cmd) < 0) {
1570 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1571 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1572 return -EINVAL;
1574 spin_lock(&cmd->se_lun->lun_sep_lock);
1575 if (cmd->se_lun->lun_sep)
1576 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1577 spin_unlock(&cmd->se_lun->lun_sep_lock);
1578 return 0;
1580 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1583 * Used by fabric module frontends to queue tasks directly.
1584 * Many only be used from process context only
1586 int transport_handle_cdb_direct(
1587 struct se_cmd *cmd)
1589 int ret;
1591 if (!cmd->se_lun) {
1592 dump_stack();
1593 pr_err("cmd->se_lun is NULL\n");
1594 return -EINVAL;
1596 if (in_interrupt()) {
1597 dump_stack();
1598 pr_err("transport_generic_handle_cdb cannot be called"
1599 " from interrupt context\n");
1600 return -EINVAL;
1603 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1604 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1605 * in existing usage to ensure that outstanding descriptors are handled
1606 * correctly during shutdown via transport_wait_for_tasks()
1608 * Also, we don't take cmd->t_state_lock here as we only expect
1609 * this to be called for initial descriptor submission.
1611 cmd->t_state = TRANSPORT_NEW_CMD;
1612 cmd->transport_state |= CMD_T_ACTIVE;
1615 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1616 * so follow TRANSPORT_NEW_CMD processing thread context usage
1617 * and call transport_generic_request_failure() if necessary..
1619 ret = transport_generic_new_cmd(cmd);
1620 if (ret < 0)
1621 transport_generic_request_failure(cmd);
1623 return 0;
1625 EXPORT_SYMBOL(transport_handle_cdb_direct);
1628 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1630 * @se_cmd: command descriptor to submit
1631 * @se_sess: associated se_sess for endpoint
1632 * @cdb: pointer to SCSI CDB
1633 * @sense: pointer to SCSI sense buffer
1634 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1635 * @data_length: fabric expected data transfer length
1636 * @task_addr: SAM task attribute
1637 * @data_dir: DMA data direction
1638 * @flags: flags for command submission from target_sc_flags_tables
1640 * This may only be called from process context, and also currently
1641 * assumes internal allocation of fabric payload buffer by target-core.
1643 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1644 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1645 u32 data_length, int task_attr, int data_dir, int flags)
1647 struct se_portal_group *se_tpg;
1648 int rc;
1650 se_tpg = se_sess->se_tpg;
1651 BUG_ON(!se_tpg);
1652 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1653 BUG_ON(in_interrupt());
1655 * Initialize se_cmd for target operation. From this point
1656 * exceptions are handled by sending exception status via
1657 * target_core_fabric_ops->queue_status() callback
1659 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1660 data_length, data_dir, task_attr, sense);
1662 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1663 * se_sess->sess_cmd_list. A second kref_get here is necessary
1664 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1665 * kref_put() to happen during fabric packet acknowledgement.
1667 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1669 * Signal bidirectional data payloads to target-core
1671 if (flags & TARGET_SCF_BIDI_OP)
1672 se_cmd->se_cmd_flags |= SCF_BIDI;
1674 * Locate se_lun pointer and attach it to struct se_cmd
1676 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1677 transport_send_check_condition_and_sense(se_cmd,
1678 se_cmd->scsi_sense_reason, 0);
1679 target_put_sess_cmd(se_sess, se_cmd);
1680 return;
1683 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1684 * allocate the necessary tasks to complete the received CDB+data
1686 rc = transport_generic_allocate_tasks(se_cmd, cdb);
1687 if (rc != 0) {
1688 transport_generic_request_failure(se_cmd);
1689 return;
1692 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1693 * for immediate execution of READs, otherwise wait for
1694 * transport_generic_handle_data() to be called for WRITEs
1695 * when fabric has filled the incoming buffer.
1697 transport_handle_cdb_direct(se_cmd);
1698 return;
1700 EXPORT_SYMBOL(target_submit_cmd);
1703 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1704 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1705 * complete setup in TCM process context w/ TFO->new_cmd_map().
1707 int transport_generic_handle_cdb_map(
1708 struct se_cmd *cmd)
1710 if (!cmd->se_lun) {
1711 dump_stack();
1712 pr_err("cmd->se_lun is NULL\n");
1713 return -EINVAL;
1716 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1717 return 0;
1719 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1721 /* transport_generic_handle_data():
1725 int transport_generic_handle_data(
1726 struct se_cmd *cmd)
1729 * For the software fabric case, then we assume the nexus is being
1730 * failed/shutdown when signals are pending from the kthread context
1731 * caller, so we return a failure. For the HW target mode case running
1732 * in interrupt code, the signal_pending() check is skipped.
1734 if (!in_interrupt() && signal_pending(current))
1735 return -EPERM;
1737 * If the received CDB has aleady been ABORTED by the generic
1738 * target engine, we now call transport_check_aborted_status()
1739 * to queue any delated TASK_ABORTED status for the received CDB to the
1740 * fabric module as we are expecting no further incoming DATA OUT
1741 * sequences at this point.
1743 if (transport_check_aborted_status(cmd, 1) != 0)
1744 return 0;
1746 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1747 return 0;
1749 EXPORT_SYMBOL(transport_generic_handle_data);
1751 /* transport_generic_handle_tmr():
1755 int transport_generic_handle_tmr(
1756 struct se_cmd *cmd)
1758 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1759 return 0;
1761 EXPORT_SYMBOL(transport_generic_handle_tmr);
1764 * If the task is active, request it to be stopped and sleep until it
1765 * has completed.
1767 bool target_stop_task(struct se_task *task, unsigned long *flags)
1769 struct se_cmd *cmd = task->task_se_cmd;
1770 bool was_active = false;
1772 if (task->task_flags & TF_ACTIVE) {
1773 task->task_flags |= TF_REQUEST_STOP;
1774 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1776 pr_debug("Task %p waiting to complete\n", task);
1777 wait_for_completion(&task->task_stop_comp);
1778 pr_debug("Task %p stopped successfully\n", task);
1780 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1781 atomic_dec(&cmd->t_task_cdbs_left);
1782 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1783 was_active = true;
1786 return was_active;
1789 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1791 struct se_task *task, *task_tmp;
1792 unsigned long flags;
1793 int ret = 0;
1795 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1796 cmd->se_tfo->get_task_tag(cmd));
1799 * No tasks remain in the execution queue
1801 spin_lock_irqsave(&cmd->t_state_lock, flags);
1802 list_for_each_entry_safe(task, task_tmp,
1803 &cmd->t_task_list, t_list) {
1804 pr_debug("Processing task %p\n", task);
1806 * If the struct se_task has not been sent and is not active,
1807 * remove the struct se_task from the execution queue.
1809 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1810 spin_unlock_irqrestore(&cmd->t_state_lock,
1811 flags);
1812 transport_remove_task_from_execute_queue(task,
1813 cmd->se_dev);
1815 pr_debug("Task %p removed from execute queue\n", task);
1816 spin_lock_irqsave(&cmd->t_state_lock, flags);
1817 continue;
1820 if (!target_stop_task(task, &flags)) {
1821 pr_debug("Task %p - did nothing\n", task);
1822 ret++;
1825 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1827 return ret;
1831 * Handle SAM-esque emulation for generic transport request failures.
1833 static void transport_generic_request_failure(struct se_cmd *cmd)
1835 int ret = 0;
1837 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1838 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1839 cmd->t_task_cdb[0]);
1840 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1841 cmd->se_tfo->get_cmd_state(cmd),
1842 cmd->t_state, cmd->scsi_sense_reason);
1843 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1844 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1845 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1846 cmd->t_task_list_num,
1847 atomic_read(&cmd->t_task_cdbs_left),
1848 atomic_read(&cmd->t_task_cdbs_sent),
1849 atomic_read(&cmd->t_task_cdbs_ex_left),
1850 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1851 (cmd->transport_state & CMD_T_STOP) != 0,
1852 (cmd->transport_state & CMD_T_SENT) != 0);
1855 * For SAM Task Attribute emulation for failed struct se_cmd
1857 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1858 transport_complete_task_attr(cmd);
1860 switch (cmd->scsi_sense_reason) {
1861 case TCM_NON_EXISTENT_LUN:
1862 case TCM_UNSUPPORTED_SCSI_OPCODE:
1863 case TCM_INVALID_CDB_FIELD:
1864 case TCM_INVALID_PARAMETER_LIST:
1865 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1866 case TCM_UNKNOWN_MODE_PAGE:
1867 case TCM_WRITE_PROTECTED:
1868 case TCM_CHECK_CONDITION_ABORT_CMD:
1869 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1870 case TCM_CHECK_CONDITION_NOT_READY:
1871 break;
1872 case TCM_RESERVATION_CONFLICT:
1874 * No SENSE Data payload for this case, set SCSI Status
1875 * and queue the response to $FABRIC_MOD.
1877 * Uses linux/include/scsi/scsi.h SAM status codes defs
1879 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1881 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1882 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1883 * CONFLICT STATUS.
1885 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1887 if (cmd->se_sess &&
1888 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1889 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1890 cmd->orig_fe_lun, 0x2C,
1891 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1893 ret = cmd->se_tfo->queue_status(cmd);
1894 if (ret == -EAGAIN || ret == -ENOMEM)
1895 goto queue_full;
1896 goto check_stop;
1897 default:
1898 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1899 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1900 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1901 break;
1904 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1905 * make the call to transport_send_check_condition_and_sense()
1906 * directly. Otherwise expect the fabric to make the call to
1907 * transport_send_check_condition_and_sense() after handling
1908 * possible unsoliticied write data payloads.
1910 ret = transport_send_check_condition_and_sense(cmd,
1911 cmd->scsi_sense_reason, 0);
1912 if (ret == -EAGAIN || ret == -ENOMEM)
1913 goto queue_full;
1915 check_stop:
1916 transport_lun_remove_cmd(cmd);
1917 if (!transport_cmd_check_stop_to_fabric(cmd))
1919 return;
1921 queue_full:
1922 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1923 transport_handle_queue_full(cmd, cmd->se_dev);
1926 static inline u32 transport_lba_21(unsigned char *cdb)
1928 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1931 static inline u32 transport_lba_32(unsigned char *cdb)
1933 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1936 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1938 unsigned int __v1, __v2;
1940 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1941 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1943 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1947 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1949 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1951 unsigned int __v1, __v2;
1953 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1954 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1956 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1959 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1961 unsigned long flags;
1963 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1964 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1965 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1969 * Called from Fabric Module context from transport_execute_tasks()
1971 * The return of this function determins if the tasks from struct se_cmd
1972 * get added to the execution queue in transport_execute_tasks(),
1973 * or are added to the delayed or ordered lists here.
1975 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1977 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1978 return 1;
1980 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1981 * to allow the passed struct se_cmd list of tasks to the front of the list.
1983 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1984 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1985 " 0x%02x, se_ordered_id: %u\n",
1986 cmd->t_task_cdb[0],
1987 cmd->se_ordered_id);
1988 return 1;
1989 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1990 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1991 smp_mb__after_atomic_inc();
1993 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1994 " list, se_ordered_id: %u\n",
1995 cmd->t_task_cdb[0],
1996 cmd->se_ordered_id);
1998 * Add ORDERED command to tail of execution queue if
1999 * no other older commands exist that need to be
2000 * completed first.
2002 if (!atomic_read(&cmd->se_dev->simple_cmds))
2003 return 1;
2004 } else {
2006 * For SIMPLE and UNTAGGED Task Attribute commands
2008 atomic_inc(&cmd->se_dev->simple_cmds);
2009 smp_mb__after_atomic_inc();
2012 * Otherwise if one or more outstanding ORDERED task attribute exist,
2013 * add the dormant task(s) built for the passed struct se_cmd to the
2014 * execution queue and become in Active state for this struct se_device.
2016 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2018 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2019 * will be drained upon completion of HEAD_OF_QUEUE task.
2021 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2022 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2023 list_add_tail(&cmd->se_delayed_node,
2024 &cmd->se_dev->delayed_cmd_list);
2025 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2027 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2028 " delayed CMD list, se_ordered_id: %u\n",
2029 cmd->t_task_cdb[0], cmd->sam_task_attr,
2030 cmd->se_ordered_id);
2032 * Return zero to let transport_execute_tasks() know
2033 * not to add the delayed tasks to the execution list.
2035 return 0;
2038 * Otherwise, no ORDERED task attributes exist..
2040 return 1;
2044 * Called from fabric module context in transport_generic_new_cmd() and
2045 * transport_generic_process_write()
2047 static int transport_execute_tasks(struct se_cmd *cmd)
2049 int add_tasks;
2050 struct se_device *se_dev = cmd->se_dev;
2052 * Call transport_cmd_check_stop() to see if a fabric exception
2053 * has occurred that prevents execution.
2055 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2057 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2058 * attribute for the tasks of the received struct se_cmd CDB
2060 add_tasks = transport_execute_task_attr(cmd);
2061 if (!add_tasks)
2062 goto execute_tasks;
2064 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2065 * adds associated se_tasks while holding dev->execute_task_lock
2066 * before I/O dispath to avoid a double spinlock access.
2068 __transport_execute_tasks(se_dev, cmd);
2069 return 0;
2072 execute_tasks:
2073 __transport_execute_tasks(se_dev, NULL);
2074 return 0;
2078 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2079 * from struct se_device->execute_task_list and
2081 * Called from transport_processing_thread()
2083 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2085 int error;
2086 struct se_cmd *cmd = NULL;
2087 struct se_task *task = NULL;
2088 unsigned long flags;
2090 check_depth:
2091 spin_lock_irq(&dev->execute_task_lock);
2092 if (new_cmd != NULL)
2093 __transport_add_tasks_from_cmd(new_cmd);
2095 if (list_empty(&dev->execute_task_list)) {
2096 spin_unlock_irq(&dev->execute_task_lock);
2097 return 0;
2099 task = list_first_entry(&dev->execute_task_list,
2100 struct se_task, t_execute_list);
2101 __transport_remove_task_from_execute_queue(task, dev);
2102 spin_unlock_irq(&dev->execute_task_lock);
2104 cmd = task->task_se_cmd;
2105 spin_lock_irqsave(&cmd->t_state_lock, flags);
2106 task->task_flags |= (TF_ACTIVE | TF_SENT);
2107 atomic_inc(&cmd->t_task_cdbs_sent);
2109 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2110 cmd->t_task_list_num)
2111 cmd->transport_state |= CMD_T_SENT;
2113 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2115 if (cmd->execute_task)
2116 error = cmd->execute_task(task);
2117 else
2118 error = dev->transport->do_task(task);
2119 if (error != 0) {
2120 spin_lock_irqsave(&cmd->t_state_lock, flags);
2121 task->task_flags &= ~TF_ACTIVE;
2122 cmd->transport_state &= ~CMD_T_SENT;
2123 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2125 transport_stop_tasks_for_cmd(cmd);
2126 transport_generic_request_failure(cmd);
2129 new_cmd = NULL;
2130 goto check_depth;
2132 return 0;
2135 static inline u32 transport_get_sectors_6(
2136 unsigned char *cdb,
2137 struct se_cmd *cmd,
2138 int *ret)
2140 struct se_device *dev = cmd->se_dev;
2143 * Assume TYPE_DISK for non struct se_device objects.
2144 * Use 8-bit sector value.
2146 if (!dev)
2147 goto type_disk;
2150 * Use 24-bit allocation length for TYPE_TAPE.
2152 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2153 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2156 * Everything else assume TYPE_DISK Sector CDB location.
2157 * Use 8-bit sector value. SBC-3 says:
2159 * A TRANSFER LENGTH field set to zero specifies that 256
2160 * logical blocks shall be written. Any other value
2161 * specifies the number of logical blocks that shall be
2162 * written.
2164 type_disk:
2165 return cdb[4] ? : 256;
2168 static inline u32 transport_get_sectors_10(
2169 unsigned char *cdb,
2170 struct se_cmd *cmd,
2171 int *ret)
2173 struct se_device *dev = cmd->se_dev;
2176 * Assume TYPE_DISK for non struct se_device objects.
2177 * Use 16-bit sector value.
2179 if (!dev)
2180 goto type_disk;
2183 * XXX_10 is not defined in SSC, throw an exception
2185 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2186 *ret = -EINVAL;
2187 return 0;
2191 * Everything else assume TYPE_DISK Sector CDB location.
2192 * Use 16-bit sector value.
2194 type_disk:
2195 return (u32)(cdb[7] << 8) + cdb[8];
2198 static inline u32 transport_get_sectors_12(
2199 unsigned char *cdb,
2200 struct se_cmd *cmd,
2201 int *ret)
2203 struct se_device *dev = cmd->se_dev;
2206 * Assume TYPE_DISK for non struct se_device objects.
2207 * Use 32-bit sector value.
2209 if (!dev)
2210 goto type_disk;
2213 * XXX_12 is not defined in SSC, throw an exception
2215 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2216 *ret = -EINVAL;
2217 return 0;
2221 * Everything else assume TYPE_DISK Sector CDB location.
2222 * Use 32-bit sector value.
2224 type_disk:
2225 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2228 static inline u32 transport_get_sectors_16(
2229 unsigned char *cdb,
2230 struct se_cmd *cmd,
2231 int *ret)
2233 struct se_device *dev = cmd->se_dev;
2236 * Assume TYPE_DISK for non struct se_device objects.
2237 * Use 32-bit sector value.
2239 if (!dev)
2240 goto type_disk;
2243 * Use 24-bit allocation length for TYPE_TAPE.
2245 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2246 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2248 type_disk:
2249 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2250 (cdb[12] << 8) + cdb[13];
2254 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2256 static inline u32 transport_get_sectors_32(
2257 unsigned char *cdb,
2258 struct se_cmd *cmd,
2259 int *ret)
2262 * Assume TYPE_DISK for non struct se_device objects.
2263 * Use 32-bit sector value.
2265 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2266 (cdb[30] << 8) + cdb[31];
2270 static inline u32 transport_get_size(
2271 u32 sectors,
2272 unsigned char *cdb,
2273 struct se_cmd *cmd)
2275 struct se_device *dev = cmd->se_dev;
2277 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2278 if (cdb[1] & 1) { /* sectors */
2279 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2280 } else /* bytes */
2281 return sectors;
2283 #if 0
2284 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2285 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2286 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2287 dev->transport->name);
2288 #endif
2289 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2292 static void transport_xor_callback(struct se_cmd *cmd)
2294 unsigned char *buf, *addr;
2295 struct scatterlist *sg;
2296 unsigned int offset;
2297 int i;
2298 int count;
2300 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2302 * 1) read the specified logical block(s);
2303 * 2) transfer logical blocks from the data-out buffer;
2304 * 3) XOR the logical blocks transferred from the data-out buffer with
2305 * the logical blocks read, storing the resulting XOR data in a buffer;
2306 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2307 * blocks transferred from the data-out buffer; and
2308 * 5) transfer the resulting XOR data to the data-in buffer.
2310 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2311 if (!buf) {
2312 pr_err("Unable to allocate xor_callback buf\n");
2313 return;
2316 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2317 * into the locally allocated *buf
2319 sg_copy_to_buffer(cmd->t_data_sg,
2320 cmd->t_data_nents,
2321 buf,
2322 cmd->data_length);
2325 * Now perform the XOR against the BIDI read memory located at
2326 * cmd->t_mem_bidi_list
2329 offset = 0;
2330 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2331 addr = kmap_atomic(sg_page(sg), KM_USER0);
2332 if (!addr)
2333 goto out;
2335 for (i = 0; i < sg->length; i++)
2336 *(addr + sg->offset + i) ^= *(buf + offset + i);
2338 offset += sg->length;
2339 kunmap_atomic(addr, KM_USER0);
2342 out:
2343 kfree(buf);
2347 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2349 static int transport_get_sense_data(struct se_cmd *cmd)
2351 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2352 struct se_device *dev = cmd->se_dev;
2353 struct se_task *task = NULL, *task_tmp;
2354 unsigned long flags;
2355 u32 offset = 0;
2357 WARN_ON(!cmd->se_lun);
2359 if (!dev)
2360 return 0;
2362 spin_lock_irqsave(&cmd->t_state_lock, flags);
2363 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2364 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2365 return 0;
2368 list_for_each_entry_safe(task, task_tmp,
2369 &cmd->t_task_list, t_list) {
2370 if (!(task->task_flags & TF_HAS_SENSE))
2371 continue;
2373 if (!dev->transport->get_sense_buffer) {
2374 pr_err("dev->transport->get_sense_buffer"
2375 " is NULL\n");
2376 continue;
2379 sense_buffer = dev->transport->get_sense_buffer(task);
2380 if (!sense_buffer) {
2381 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2382 " sense buffer for task with sense\n",
2383 cmd->se_tfo->get_task_tag(cmd), task);
2384 continue;
2386 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2388 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2389 TRANSPORT_SENSE_BUFFER);
2391 memcpy(&buffer[offset], sense_buffer,
2392 TRANSPORT_SENSE_BUFFER);
2393 cmd->scsi_status = task->task_scsi_status;
2394 /* Automatically padded */
2395 cmd->scsi_sense_length =
2396 (TRANSPORT_SENSE_BUFFER + offset);
2398 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2399 " and sense\n",
2400 dev->se_hba->hba_id, dev->transport->name,
2401 cmd->scsi_status);
2402 return 0;
2404 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2406 return -1;
2409 static inline long long transport_dev_end_lba(struct se_device *dev)
2411 return dev->transport->get_blocks(dev) + 1;
2414 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2416 struct se_device *dev = cmd->se_dev;
2417 u32 sectors;
2419 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2420 return 0;
2422 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2424 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2425 pr_err("LBA: %llu Sectors: %u exceeds"
2426 " transport_dev_end_lba(): %llu\n",
2427 cmd->t_task_lba, sectors,
2428 transport_dev_end_lba(dev));
2429 return -EINVAL;
2432 return 0;
2435 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2438 * Determine if the received WRITE_SAME is used to for direct
2439 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2440 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2441 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2443 int passthrough = (dev->transport->transport_type ==
2444 TRANSPORT_PLUGIN_PHBA_PDEV);
2446 if (!passthrough) {
2447 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2448 pr_err("WRITE_SAME PBDATA and LBDATA"
2449 " bits not supported for Block Discard"
2450 " Emulation\n");
2451 return -ENOSYS;
2454 * Currently for the emulated case we only accept
2455 * tpws with the UNMAP=1 bit set.
2457 if (!(flags[0] & 0x08)) {
2458 pr_err("WRITE_SAME w/o UNMAP bit not"
2459 " supported for Block Discard Emulation\n");
2460 return -ENOSYS;
2464 return 0;
2467 /* transport_generic_cmd_sequencer():
2469 * Generic Command Sequencer that should work for most DAS transport
2470 * drivers.
2472 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2473 * RX Thread.
2475 * FIXME: Need to support other SCSI OPCODES where as well.
2477 static int transport_generic_cmd_sequencer(
2478 struct se_cmd *cmd,
2479 unsigned char *cdb)
2481 struct se_device *dev = cmd->se_dev;
2482 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2483 int ret = 0, sector_ret = 0, passthrough;
2484 u32 sectors = 0, size = 0, pr_reg_type = 0;
2485 u16 service_action;
2486 u8 alua_ascq = 0;
2488 * Check for an existing UNIT ATTENTION condition
2490 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2491 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2492 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2493 return -EINVAL;
2496 * Check status of Asymmetric Logical Unit Assignment port
2498 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2499 if (ret != 0) {
2501 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2502 * The ALUA additional sense code qualifier (ASCQ) is determined
2503 * by the ALUA primary or secondary access state..
2505 if (ret > 0) {
2506 #if 0
2507 pr_debug("[%s]: ALUA TG Port not available,"
2508 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2509 cmd->se_tfo->get_fabric_name(), alua_ascq);
2510 #endif
2511 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2512 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2513 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2514 return -EINVAL;
2516 goto out_invalid_cdb_field;
2519 * Check status for SPC-3 Persistent Reservations
2521 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2522 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2523 cmd, cdb, pr_reg_type) != 0) {
2524 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2525 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2526 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2527 return -EBUSY;
2530 * This means the CDB is allowed for the SCSI Initiator port
2531 * when said port is *NOT* holding the legacy SPC-2 or
2532 * SPC-3 Persistent Reservation.
2537 * If we operate in passthrough mode we skip most CDB emulation and
2538 * instead hand the commands down to the physical SCSI device.
2540 passthrough =
2541 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2543 switch (cdb[0]) {
2544 case READ_6:
2545 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2546 if (sector_ret)
2547 goto out_unsupported_cdb;
2548 size = transport_get_size(sectors, cdb, cmd);
2549 cmd->t_task_lba = transport_lba_21(cdb);
2550 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2551 break;
2552 case READ_10:
2553 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2554 if (sector_ret)
2555 goto out_unsupported_cdb;
2556 size = transport_get_size(sectors, cdb, cmd);
2557 cmd->t_task_lba = transport_lba_32(cdb);
2558 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2559 break;
2560 case READ_12:
2561 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2562 if (sector_ret)
2563 goto out_unsupported_cdb;
2564 size = transport_get_size(sectors, cdb, cmd);
2565 cmd->t_task_lba = transport_lba_32(cdb);
2566 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2567 break;
2568 case READ_16:
2569 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2570 if (sector_ret)
2571 goto out_unsupported_cdb;
2572 size = transport_get_size(sectors, cdb, cmd);
2573 cmd->t_task_lba = transport_lba_64(cdb);
2574 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2575 break;
2576 case WRITE_6:
2577 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2578 if (sector_ret)
2579 goto out_unsupported_cdb;
2580 size = transport_get_size(sectors, cdb, cmd);
2581 cmd->t_task_lba = transport_lba_21(cdb);
2582 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2583 break;
2584 case WRITE_10:
2585 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2586 if (sector_ret)
2587 goto out_unsupported_cdb;
2588 size = transport_get_size(sectors, cdb, cmd);
2589 cmd->t_task_lba = transport_lba_32(cdb);
2590 if (cdb[1] & 0x8)
2591 cmd->se_cmd_flags |= SCF_FUA;
2592 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2593 break;
2594 case WRITE_12:
2595 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2596 if (sector_ret)
2597 goto out_unsupported_cdb;
2598 size = transport_get_size(sectors, cdb, cmd);
2599 cmd->t_task_lba = transport_lba_32(cdb);
2600 if (cdb[1] & 0x8)
2601 cmd->se_cmd_flags |= SCF_FUA;
2602 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2603 break;
2604 case WRITE_16:
2605 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2606 if (sector_ret)
2607 goto out_unsupported_cdb;
2608 size = transport_get_size(sectors, cdb, cmd);
2609 cmd->t_task_lba = transport_lba_64(cdb);
2610 if (cdb[1] & 0x8)
2611 cmd->se_cmd_flags |= SCF_FUA;
2612 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2613 break;
2614 case XDWRITEREAD_10:
2615 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2616 !(cmd->se_cmd_flags & SCF_BIDI))
2617 goto out_invalid_cdb_field;
2618 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2619 if (sector_ret)
2620 goto out_unsupported_cdb;
2621 size = transport_get_size(sectors, cdb, cmd);
2622 cmd->t_task_lba = transport_lba_32(cdb);
2623 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2626 * Do now allow BIDI commands for passthrough mode.
2628 if (passthrough)
2629 goto out_unsupported_cdb;
2632 * Setup BIDI XOR callback to be run after I/O completion.
2634 cmd->transport_complete_callback = &transport_xor_callback;
2635 if (cdb[1] & 0x8)
2636 cmd->se_cmd_flags |= SCF_FUA;
2637 break;
2638 case VARIABLE_LENGTH_CMD:
2639 service_action = get_unaligned_be16(&cdb[8]);
2640 switch (service_action) {
2641 case XDWRITEREAD_32:
2642 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2643 if (sector_ret)
2644 goto out_unsupported_cdb;
2645 size = transport_get_size(sectors, cdb, cmd);
2647 * Use WRITE_32 and READ_32 opcodes for the emulated
2648 * XDWRITE_READ_32 logic.
2650 cmd->t_task_lba = transport_lba_64_ext(cdb);
2651 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2654 * Do now allow BIDI commands for passthrough mode.
2656 if (passthrough)
2657 goto out_unsupported_cdb;
2660 * Setup BIDI XOR callback to be run during after I/O
2661 * completion.
2663 cmd->transport_complete_callback = &transport_xor_callback;
2664 if (cdb[1] & 0x8)
2665 cmd->se_cmd_flags |= SCF_FUA;
2666 break;
2667 case WRITE_SAME_32:
2668 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2669 if (sector_ret)
2670 goto out_unsupported_cdb;
2672 if (sectors)
2673 size = transport_get_size(1, cdb, cmd);
2674 else {
2675 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2676 " supported\n");
2677 goto out_invalid_cdb_field;
2680 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2681 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2683 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2684 goto out_unsupported_cdb;
2685 if (!passthrough)
2686 cmd->execute_task = target_emulate_write_same;
2687 break;
2688 default:
2689 pr_err("VARIABLE_LENGTH_CMD service action"
2690 " 0x%04x not supported\n", service_action);
2691 goto out_unsupported_cdb;
2693 break;
2694 case MAINTENANCE_IN:
2695 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2696 /* MAINTENANCE_IN from SCC-2 */
2698 * Check for emulated MI_REPORT_TARGET_PGS.
2700 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2701 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2702 cmd->execute_task =
2703 target_emulate_report_target_port_groups;
2705 size = (cdb[6] << 24) | (cdb[7] << 16) |
2706 (cdb[8] << 8) | cdb[9];
2707 } else {
2708 /* GPCMD_SEND_KEY from multi media commands */
2709 size = (cdb[8] << 8) + cdb[9];
2711 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2712 break;
2713 case MODE_SELECT:
2714 size = cdb[4];
2715 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2716 break;
2717 case MODE_SELECT_10:
2718 size = (cdb[7] << 8) + cdb[8];
2719 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2720 break;
2721 case MODE_SENSE:
2722 size = cdb[4];
2723 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2724 if (!passthrough)
2725 cmd->execute_task = target_emulate_modesense;
2726 break;
2727 case MODE_SENSE_10:
2728 size = (cdb[7] << 8) + cdb[8];
2729 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2730 if (!passthrough)
2731 cmd->execute_task = target_emulate_modesense;
2732 break;
2733 case GPCMD_READ_BUFFER_CAPACITY:
2734 case GPCMD_SEND_OPC:
2735 case LOG_SELECT:
2736 case LOG_SENSE:
2737 size = (cdb[7] << 8) + cdb[8];
2738 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2739 break;
2740 case READ_BLOCK_LIMITS:
2741 size = READ_BLOCK_LEN;
2742 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2743 break;
2744 case GPCMD_GET_CONFIGURATION:
2745 case GPCMD_READ_FORMAT_CAPACITIES:
2746 case GPCMD_READ_DISC_INFO:
2747 case GPCMD_READ_TRACK_RZONE_INFO:
2748 size = (cdb[7] << 8) + cdb[8];
2749 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2750 break;
2751 case PERSISTENT_RESERVE_IN:
2752 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2753 cmd->execute_task = target_scsi3_emulate_pr_in;
2754 size = (cdb[7] << 8) + cdb[8];
2755 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2756 break;
2757 case PERSISTENT_RESERVE_OUT:
2758 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2759 cmd->execute_task = target_scsi3_emulate_pr_out;
2760 size = (cdb[7] << 8) + cdb[8];
2761 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2762 break;
2763 case GPCMD_MECHANISM_STATUS:
2764 case GPCMD_READ_DVD_STRUCTURE:
2765 size = (cdb[8] << 8) + cdb[9];
2766 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2767 break;
2768 case READ_POSITION:
2769 size = READ_POSITION_LEN;
2770 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2771 break;
2772 case MAINTENANCE_OUT:
2773 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2774 /* MAINTENANCE_OUT from SCC-2
2776 * Check for emulated MO_SET_TARGET_PGS.
2778 if (cdb[1] == MO_SET_TARGET_PGS &&
2779 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2780 cmd->execute_task =
2781 target_emulate_set_target_port_groups;
2784 size = (cdb[6] << 24) | (cdb[7] << 16) |
2785 (cdb[8] << 8) | cdb[9];
2786 } else {
2787 /* GPCMD_REPORT_KEY from multi media commands */
2788 size = (cdb[8] << 8) + cdb[9];
2790 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2791 break;
2792 case INQUIRY:
2793 size = (cdb[3] << 8) + cdb[4];
2795 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2796 * See spc4r17 section 5.3
2798 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2799 cmd->sam_task_attr = MSG_HEAD_TAG;
2800 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2801 if (!passthrough)
2802 cmd->execute_task = target_emulate_inquiry;
2803 break;
2804 case READ_BUFFER:
2805 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2806 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2807 break;
2808 case READ_CAPACITY:
2809 size = READ_CAP_LEN;
2810 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2811 if (!passthrough)
2812 cmd->execute_task = target_emulate_readcapacity;
2813 break;
2814 case READ_MEDIA_SERIAL_NUMBER:
2815 case SECURITY_PROTOCOL_IN:
2816 case SECURITY_PROTOCOL_OUT:
2817 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2818 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2819 break;
2820 case SERVICE_ACTION_IN:
2821 switch (cmd->t_task_cdb[1] & 0x1f) {
2822 case SAI_READ_CAPACITY_16:
2823 if (!passthrough)
2824 cmd->execute_task =
2825 target_emulate_readcapacity_16;
2826 break;
2827 default:
2828 if (passthrough)
2829 break;
2831 pr_err("Unsupported SA: 0x%02x\n",
2832 cmd->t_task_cdb[1] & 0x1f);
2833 goto out_unsupported_cdb;
2835 /*FALLTHROUGH*/
2836 case ACCESS_CONTROL_IN:
2837 case ACCESS_CONTROL_OUT:
2838 case EXTENDED_COPY:
2839 case READ_ATTRIBUTE:
2840 case RECEIVE_COPY_RESULTS:
2841 case WRITE_ATTRIBUTE:
2842 size = (cdb[10] << 24) | (cdb[11] << 16) |
2843 (cdb[12] << 8) | cdb[13];
2844 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2845 break;
2846 case RECEIVE_DIAGNOSTIC:
2847 case SEND_DIAGNOSTIC:
2848 size = (cdb[3] << 8) | cdb[4];
2849 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2850 break;
2851 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2852 #if 0
2853 case GPCMD_READ_CD:
2854 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2855 size = (2336 * sectors);
2856 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2857 break;
2858 #endif
2859 case READ_TOC:
2860 size = cdb[8];
2861 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2862 break;
2863 case REQUEST_SENSE:
2864 size = cdb[4];
2865 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2866 if (!passthrough)
2867 cmd->execute_task = target_emulate_request_sense;
2868 break;
2869 case READ_ELEMENT_STATUS:
2870 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2871 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2872 break;
2873 case WRITE_BUFFER:
2874 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2875 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2876 break;
2877 case RESERVE:
2878 case RESERVE_10:
2880 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2881 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2883 if (cdb[0] == RESERVE_10)
2884 size = (cdb[7] << 8) | cdb[8];
2885 else
2886 size = cmd->data_length;
2889 * Setup the legacy emulated handler for SPC-2 and
2890 * >= SPC-3 compatible reservation handling (CRH=1)
2891 * Otherwise, we assume the underlying SCSI logic is
2892 * is running in SPC_PASSTHROUGH, and wants reservations
2893 * emulation disabled.
2895 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2896 cmd->execute_task = target_scsi2_reservation_reserve;
2897 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2898 break;
2899 case RELEASE:
2900 case RELEASE_10:
2902 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2903 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2905 if (cdb[0] == RELEASE_10)
2906 size = (cdb[7] << 8) | cdb[8];
2907 else
2908 size = cmd->data_length;
2910 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2911 cmd->execute_task = target_scsi2_reservation_release;
2912 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2913 break;
2914 case SYNCHRONIZE_CACHE:
2915 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2917 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2919 if (cdb[0] == SYNCHRONIZE_CACHE) {
2920 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2921 cmd->t_task_lba = transport_lba_32(cdb);
2922 } else {
2923 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2924 cmd->t_task_lba = transport_lba_64(cdb);
2926 if (sector_ret)
2927 goto out_unsupported_cdb;
2929 size = transport_get_size(sectors, cdb, cmd);
2930 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2932 if (passthrough)
2933 break;
2936 * Check to ensure that LBA + Range does not exceed past end of
2937 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2939 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2940 if (transport_cmd_get_valid_sectors(cmd) < 0)
2941 goto out_invalid_cdb_field;
2943 cmd->execute_task = target_emulate_synchronize_cache;
2944 break;
2945 case UNMAP:
2946 size = get_unaligned_be16(&cdb[7]);
2947 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2948 if (!passthrough)
2949 cmd->execute_task = target_emulate_unmap;
2950 break;
2951 case WRITE_SAME_16:
2952 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2953 if (sector_ret)
2954 goto out_unsupported_cdb;
2956 if (sectors)
2957 size = transport_get_size(1, cdb, cmd);
2958 else {
2959 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2960 goto out_invalid_cdb_field;
2963 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2964 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2966 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2967 goto out_unsupported_cdb;
2968 if (!passthrough)
2969 cmd->execute_task = target_emulate_write_same;
2970 break;
2971 case WRITE_SAME:
2972 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2973 if (sector_ret)
2974 goto out_unsupported_cdb;
2976 if (sectors)
2977 size = transport_get_size(1, cdb, cmd);
2978 else {
2979 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2980 goto out_invalid_cdb_field;
2983 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2984 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2986 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2987 * of byte 1 bit 3 UNMAP instead of original reserved field
2989 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2990 goto out_unsupported_cdb;
2991 if (!passthrough)
2992 cmd->execute_task = target_emulate_write_same;
2993 break;
2994 case ALLOW_MEDIUM_REMOVAL:
2995 case ERASE:
2996 case REZERO_UNIT:
2997 case SEEK_10:
2998 case SPACE:
2999 case START_STOP:
3000 case TEST_UNIT_READY:
3001 case VERIFY:
3002 case WRITE_FILEMARKS:
3003 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3004 if (!passthrough)
3005 cmd->execute_task = target_emulate_noop;
3006 break;
3007 case GPCMD_CLOSE_TRACK:
3008 case INITIALIZE_ELEMENT_STATUS:
3009 case GPCMD_LOAD_UNLOAD:
3010 case GPCMD_SET_SPEED:
3011 case MOVE_MEDIUM:
3012 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3013 break;
3014 case REPORT_LUNS:
3015 cmd->execute_task = target_report_luns;
3016 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3018 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3019 * See spc4r17 section 5.3
3021 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3022 cmd->sam_task_attr = MSG_HEAD_TAG;
3023 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3024 break;
3025 default:
3026 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3027 " 0x%02x, sending CHECK_CONDITION.\n",
3028 cmd->se_tfo->get_fabric_name(), cdb[0]);
3029 goto out_unsupported_cdb;
3032 if (size != cmd->data_length) {
3033 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3034 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3035 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3036 cmd->data_length, size, cdb[0]);
3038 cmd->cmd_spdtl = size;
3040 if (cmd->data_direction == DMA_TO_DEVICE) {
3041 pr_err("Rejecting underflow/overflow"
3042 " WRITE data\n");
3043 goto out_invalid_cdb_field;
3046 * Reject READ_* or WRITE_* with overflow/underflow for
3047 * type SCF_SCSI_DATA_SG_IO_CDB.
3049 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3050 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3051 " CDB on non 512-byte sector setup subsystem"
3052 " plugin: %s\n", dev->transport->name);
3053 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3054 goto out_invalid_cdb_field;
3057 if (size > cmd->data_length) {
3058 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3059 cmd->residual_count = (size - cmd->data_length);
3060 } else {
3061 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3062 cmd->residual_count = (cmd->data_length - size);
3064 cmd->data_length = size;
3067 /* reject any command that we don't have a handler for */
3068 if (!(passthrough || cmd->execute_task ||
3069 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3070 goto out_unsupported_cdb;
3072 transport_set_supported_SAM_opcode(cmd);
3073 return ret;
3075 out_unsupported_cdb:
3076 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3077 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3078 return -EINVAL;
3079 out_invalid_cdb_field:
3080 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3081 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3082 return -EINVAL;
3086 * Called from I/O completion to determine which dormant/delayed
3087 * and ordered cmds need to have their tasks added to the execution queue.
3089 static void transport_complete_task_attr(struct se_cmd *cmd)
3091 struct se_device *dev = cmd->se_dev;
3092 struct se_cmd *cmd_p, *cmd_tmp;
3093 int new_active_tasks = 0;
3095 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3096 atomic_dec(&dev->simple_cmds);
3097 smp_mb__after_atomic_dec();
3098 dev->dev_cur_ordered_id++;
3099 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3100 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3101 cmd->se_ordered_id);
3102 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3103 dev->dev_cur_ordered_id++;
3104 pr_debug("Incremented dev_cur_ordered_id: %u for"
3105 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3106 cmd->se_ordered_id);
3107 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3108 atomic_dec(&dev->dev_ordered_sync);
3109 smp_mb__after_atomic_dec();
3111 dev->dev_cur_ordered_id++;
3112 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3113 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3116 * Process all commands up to the last received
3117 * ORDERED task attribute which requires another blocking
3118 * boundary
3120 spin_lock(&dev->delayed_cmd_lock);
3121 list_for_each_entry_safe(cmd_p, cmd_tmp,
3122 &dev->delayed_cmd_list, se_delayed_node) {
3124 list_del(&cmd_p->se_delayed_node);
3125 spin_unlock(&dev->delayed_cmd_lock);
3127 pr_debug("Calling add_tasks() for"
3128 " cmd_p: 0x%02x Task Attr: 0x%02x"
3129 " Dormant -> Active, se_ordered_id: %u\n",
3130 cmd_p->t_task_cdb[0],
3131 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3133 transport_add_tasks_from_cmd(cmd_p);
3134 new_active_tasks++;
3136 spin_lock(&dev->delayed_cmd_lock);
3137 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3138 break;
3140 spin_unlock(&dev->delayed_cmd_lock);
3142 * If new tasks have become active, wake up the transport thread
3143 * to do the processing of the Active tasks.
3145 if (new_active_tasks != 0)
3146 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3149 static void transport_complete_qf(struct se_cmd *cmd)
3151 int ret = 0;
3153 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3154 transport_complete_task_attr(cmd);
3156 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3157 ret = cmd->se_tfo->queue_status(cmd);
3158 if (ret)
3159 goto out;
3162 switch (cmd->data_direction) {
3163 case DMA_FROM_DEVICE:
3164 ret = cmd->se_tfo->queue_data_in(cmd);
3165 break;
3166 case DMA_TO_DEVICE:
3167 if (cmd->t_bidi_data_sg) {
3168 ret = cmd->se_tfo->queue_data_in(cmd);
3169 if (ret < 0)
3170 break;
3172 /* Fall through for DMA_TO_DEVICE */
3173 case DMA_NONE:
3174 ret = cmd->se_tfo->queue_status(cmd);
3175 break;
3176 default:
3177 break;
3180 out:
3181 if (ret < 0) {
3182 transport_handle_queue_full(cmd, cmd->se_dev);
3183 return;
3185 transport_lun_remove_cmd(cmd);
3186 transport_cmd_check_stop_to_fabric(cmd);
3189 static void transport_handle_queue_full(
3190 struct se_cmd *cmd,
3191 struct se_device *dev)
3193 spin_lock_irq(&dev->qf_cmd_lock);
3194 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3195 atomic_inc(&dev->dev_qf_count);
3196 smp_mb__after_atomic_inc();
3197 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3199 schedule_work(&cmd->se_dev->qf_work_queue);
3202 static void target_complete_ok_work(struct work_struct *work)
3204 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3205 int reason = 0, ret;
3208 * Check if we need to move delayed/dormant tasks from cmds on the
3209 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3210 * Attribute.
3212 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3213 transport_complete_task_attr(cmd);
3215 * Check to schedule QUEUE_FULL work, or execute an existing
3216 * cmd->transport_qf_callback()
3218 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3219 schedule_work(&cmd->se_dev->qf_work_queue);
3222 * Check if we need to retrieve a sense buffer from
3223 * the struct se_cmd in question.
3225 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3226 if (transport_get_sense_data(cmd) < 0)
3227 reason = TCM_NON_EXISTENT_LUN;
3230 * Only set when an struct se_task->task_scsi_status returned
3231 * a non GOOD status.
3233 if (cmd->scsi_status) {
3234 ret = transport_send_check_condition_and_sense(
3235 cmd, reason, 1);
3236 if (ret == -EAGAIN || ret == -ENOMEM)
3237 goto queue_full;
3239 transport_lun_remove_cmd(cmd);
3240 transport_cmd_check_stop_to_fabric(cmd);
3241 return;
3245 * Check for a callback, used by amongst other things
3246 * XDWRITE_READ_10 emulation.
3248 if (cmd->transport_complete_callback)
3249 cmd->transport_complete_callback(cmd);
3251 switch (cmd->data_direction) {
3252 case DMA_FROM_DEVICE:
3253 spin_lock(&cmd->se_lun->lun_sep_lock);
3254 if (cmd->se_lun->lun_sep) {
3255 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3256 cmd->data_length;
3258 spin_unlock(&cmd->se_lun->lun_sep_lock);
3260 ret = cmd->se_tfo->queue_data_in(cmd);
3261 if (ret == -EAGAIN || ret == -ENOMEM)
3262 goto queue_full;
3263 break;
3264 case DMA_TO_DEVICE:
3265 spin_lock(&cmd->se_lun->lun_sep_lock);
3266 if (cmd->se_lun->lun_sep) {
3267 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3268 cmd->data_length;
3270 spin_unlock(&cmd->se_lun->lun_sep_lock);
3272 * Check if we need to send READ payload for BIDI-COMMAND
3274 if (cmd->t_bidi_data_sg) {
3275 spin_lock(&cmd->se_lun->lun_sep_lock);
3276 if (cmd->se_lun->lun_sep) {
3277 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3278 cmd->data_length;
3280 spin_unlock(&cmd->se_lun->lun_sep_lock);
3281 ret = cmd->se_tfo->queue_data_in(cmd);
3282 if (ret == -EAGAIN || ret == -ENOMEM)
3283 goto queue_full;
3284 break;
3286 /* Fall through for DMA_TO_DEVICE */
3287 case DMA_NONE:
3288 ret = cmd->se_tfo->queue_status(cmd);
3289 if (ret == -EAGAIN || ret == -ENOMEM)
3290 goto queue_full;
3291 break;
3292 default:
3293 break;
3296 transport_lun_remove_cmd(cmd);
3297 transport_cmd_check_stop_to_fabric(cmd);
3298 return;
3300 queue_full:
3301 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3302 " data_direction: %d\n", cmd, cmd->data_direction);
3303 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3304 transport_handle_queue_full(cmd, cmd->se_dev);
3307 static void transport_free_dev_tasks(struct se_cmd *cmd)
3309 struct se_task *task, *task_tmp;
3310 unsigned long flags;
3311 LIST_HEAD(dispose_list);
3313 spin_lock_irqsave(&cmd->t_state_lock, flags);
3314 list_for_each_entry_safe(task, task_tmp,
3315 &cmd->t_task_list, t_list) {
3316 if (!(task->task_flags & TF_ACTIVE))
3317 list_move_tail(&task->t_list, &dispose_list);
3319 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3321 while (!list_empty(&dispose_list)) {
3322 task = list_first_entry(&dispose_list, struct se_task, t_list);
3324 if (task->task_sg != cmd->t_data_sg &&
3325 task->task_sg != cmd->t_bidi_data_sg)
3326 kfree(task->task_sg);
3328 list_del(&task->t_list);
3330 cmd->se_dev->transport->free_task(task);
3334 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3336 struct scatterlist *sg;
3337 int count;
3339 for_each_sg(sgl, sg, nents, count)
3340 __free_page(sg_page(sg));
3342 kfree(sgl);
3345 static inline void transport_free_pages(struct se_cmd *cmd)
3347 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3348 return;
3350 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3351 cmd->t_data_sg = NULL;
3352 cmd->t_data_nents = 0;
3354 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3355 cmd->t_bidi_data_sg = NULL;
3356 cmd->t_bidi_data_nents = 0;
3360 * transport_release_cmd - free a command
3361 * @cmd: command to free
3363 * This routine unconditionally frees a command, and reference counting
3364 * or list removal must be done in the caller.
3366 static void transport_release_cmd(struct se_cmd *cmd)
3368 BUG_ON(!cmd->se_tfo);
3370 if (cmd->se_tmr_req)
3371 core_tmr_release_req(cmd->se_tmr_req);
3372 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3373 kfree(cmd->t_task_cdb);
3375 * If this cmd has been setup with target_get_sess_cmd(), drop
3376 * the kref and call ->release_cmd() in kref callback.
3378 if (cmd->check_release != 0) {
3379 target_put_sess_cmd(cmd->se_sess, cmd);
3380 return;
3382 cmd->se_tfo->release_cmd(cmd);
3386 * transport_put_cmd - release a reference to a command
3387 * @cmd: command to release
3389 * This routine releases our reference to the command and frees it if possible.
3391 static void transport_put_cmd(struct se_cmd *cmd)
3393 unsigned long flags;
3394 int free_tasks = 0;
3396 spin_lock_irqsave(&cmd->t_state_lock, flags);
3397 if (atomic_read(&cmd->t_fe_count)) {
3398 if (!atomic_dec_and_test(&cmd->t_fe_count))
3399 goto out_busy;
3402 if (atomic_read(&cmd->t_se_count)) {
3403 if (!atomic_dec_and_test(&cmd->t_se_count))
3404 goto out_busy;
3407 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3408 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3409 transport_all_task_dev_remove_state(cmd);
3410 free_tasks = 1;
3412 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3414 if (free_tasks != 0)
3415 transport_free_dev_tasks(cmd);
3417 transport_free_pages(cmd);
3418 transport_release_cmd(cmd);
3419 return;
3420 out_busy:
3421 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3425 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3426 * allocating in the core.
3427 * @cmd: Associated se_cmd descriptor
3428 * @mem: SGL style memory for TCM WRITE / READ
3429 * @sg_mem_num: Number of SGL elements
3430 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3431 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3433 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3434 * of parameters.
3436 int transport_generic_map_mem_to_cmd(
3437 struct se_cmd *cmd,
3438 struct scatterlist *sgl,
3439 u32 sgl_count,
3440 struct scatterlist *sgl_bidi,
3441 u32 sgl_bidi_count)
3443 if (!sgl || !sgl_count)
3444 return 0;
3446 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3447 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3449 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3450 * scatterlists already have been set to follow what the fabric
3451 * passes for the original expected data transfer length.
3453 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3454 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3455 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3456 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3457 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3458 return -EINVAL;
3461 cmd->t_data_sg = sgl;
3462 cmd->t_data_nents = sgl_count;
3464 if (sgl_bidi && sgl_bidi_count) {
3465 cmd->t_bidi_data_sg = sgl_bidi;
3466 cmd->t_bidi_data_nents = sgl_bidi_count;
3468 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3471 return 0;
3473 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3475 void *transport_kmap_data_sg(struct se_cmd *cmd)
3477 struct scatterlist *sg = cmd->t_data_sg;
3478 struct page **pages;
3479 int i;
3481 BUG_ON(!sg);
3483 * We need to take into account a possible offset here for fabrics like
3484 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3485 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3487 if (!cmd->t_data_nents)
3488 return NULL;
3489 else if (cmd->t_data_nents == 1)
3490 return kmap(sg_page(sg)) + sg->offset;
3492 /* >1 page. use vmap */
3493 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3494 if (!pages)
3495 return NULL;
3497 /* convert sg[] to pages[] */
3498 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3499 pages[i] = sg_page(sg);
3502 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
3503 kfree(pages);
3504 if (!cmd->t_data_vmap)
3505 return NULL;
3507 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3509 EXPORT_SYMBOL(transport_kmap_data_sg);
3511 void transport_kunmap_data_sg(struct se_cmd *cmd)
3513 if (!cmd->t_data_nents)
3514 return;
3515 else if (cmd->t_data_nents == 1)
3516 kunmap(sg_page(cmd->t_data_sg));
3518 vunmap(cmd->t_data_vmap);
3519 cmd->t_data_vmap = NULL;
3521 EXPORT_SYMBOL(transport_kunmap_data_sg);
3523 static int
3524 transport_generic_get_mem(struct se_cmd *cmd)
3526 u32 length = cmd->data_length;
3527 unsigned int nents;
3528 struct page *page;
3529 gfp_t zero_flag;
3530 int i = 0;
3532 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3533 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3534 if (!cmd->t_data_sg)
3535 return -ENOMEM;
3537 cmd->t_data_nents = nents;
3538 sg_init_table(cmd->t_data_sg, nents);
3540 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3542 while (length) {
3543 u32 page_len = min_t(u32, length, PAGE_SIZE);
3544 page = alloc_page(GFP_KERNEL | zero_flag);
3545 if (!page)
3546 goto out;
3548 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3549 length -= page_len;
3550 i++;
3552 return 0;
3554 out:
3555 while (i >= 0) {
3556 __free_page(sg_page(&cmd->t_data_sg[i]));
3557 i--;
3559 kfree(cmd->t_data_sg);
3560 cmd->t_data_sg = NULL;
3561 return -ENOMEM;
3564 /* Reduce sectors if they are too long for the device */
3565 static inline sector_t transport_limit_task_sectors(
3566 struct se_device *dev,
3567 unsigned long long lba,
3568 sector_t sectors)
3570 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3572 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3573 if ((lba + sectors) > transport_dev_end_lba(dev))
3574 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3576 return sectors;
3581 * This function can be used by HW target mode drivers to create a linked
3582 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3583 * This is intended to be called during the completion path by TCM Core
3584 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3586 void transport_do_task_sg_chain(struct se_cmd *cmd)
3588 struct scatterlist *sg_first = NULL;
3589 struct scatterlist *sg_prev = NULL;
3590 int sg_prev_nents = 0;
3591 struct scatterlist *sg;
3592 struct se_task *task;
3593 u32 chained_nents = 0;
3594 int i;
3596 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3599 * Walk the struct se_task list and setup scatterlist chains
3600 * for each contiguously allocated struct se_task->task_sg[].
3602 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3603 if (!task->task_sg)
3604 continue;
3606 if (!sg_first) {
3607 sg_first = task->task_sg;
3608 chained_nents = task->task_sg_nents;
3609 } else {
3610 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3611 chained_nents += task->task_sg_nents;
3614 * For the padded tasks, use the extra SGL vector allocated
3615 * in transport_allocate_data_tasks() for the sg_prev_nents
3616 * offset into sg_chain() above.
3618 * We do not need the padding for the last task (or a single
3619 * task), but in that case we will never use the sg_prev_nents
3620 * value below which would be incorrect.
3622 sg_prev_nents = (task->task_sg_nents + 1);
3623 sg_prev = task->task_sg;
3626 * Setup the starting pointer and total t_tasks_sg_linked_no including
3627 * padding SGs for linking and to mark the end.
3629 cmd->t_tasks_sg_chained = sg_first;
3630 cmd->t_tasks_sg_chained_no = chained_nents;
3632 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3633 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3634 cmd->t_tasks_sg_chained_no);
3636 for_each_sg(cmd->t_tasks_sg_chained, sg,
3637 cmd->t_tasks_sg_chained_no, i) {
3639 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3640 i, sg, sg_page(sg), sg->length, sg->offset);
3641 if (sg_is_chain(sg))
3642 pr_debug("SG: %p sg_is_chain=1\n", sg);
3643 if (sg_is_last(sg))
3644 pr_debug("SG: %p sg_is_last=1\n", sg);
3647 EXPORT_SYMBOL(transport_do_task_sg_chain);
3650 * Break up cmd into chunks transport can handle
3652 static int
3653 transport_allocate_data_tasks(struct se_cmd *cmd,
3654 enum dma_data_direction data_direction,
3655 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3657 struct se_device *dev = cmd->se_dev;
3658 int task_count, i;
3659 unsigned long long lba;
3660 sector_t sectors, dev_max_sectors;
3661 u32 sector_size;
3663 if (transport_cmd_get_valid_sectors(cmd) < 0)
3664 return -EINVAL;
3666 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3667 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3669 WARN_ON(cmd->data_length % sector_size);
3671 lba = cmd->t_task_lba;
3672 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3673 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3676 * If we need just a single task reuse the SG list in the command
3677 * and avoid a lot of work.
3679 if (task_count == 1) {
3680 struct se_task *task;
3681 unsigned long flags;
3683 task = transport_generic_get_task(cmd, data_direction);
3684 if (!task)
3685 return -ENOMEM;
3687 task->task_sg = cmd_sg;
3688 task->task_sg_nents = sgl_nents;
3690 task->task_lba = lba;
3691 task->task_sectors = sectors;
3692 task->task_size = task->task_sectors * sector_size;
3694 spin_lock_irqsave(&cmd->t_state_lock, flags);
3695 list_add_tail(&task->t_list, &cmd->t_task_list);
3696 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3698 return task_count;
3701 for (i = 0; i < task_count; i++) {
3702 struct se_task *task;
3703 unsigned int task_size, task_sg_nents_padded;
3704 struct scatterlist *sg;
3705 unsigned long flags;
3706 int count;
3708 task = transport_generic_get_task(cmd, data_direction);
3709 if (!task)
3710 return -ENOMEM;
3712 task->task_lba = lba;
3713 task->task_sectors = min(sectors, dev_max_sectors);
3714 task->task_size = task->task_sectors * sector_size;
3717 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3718 * in order to calculate the number per task SGL entries
3720 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3722 * Check if the fabric module driver is requesting that all
3723 * struct se_task->task_sg[] be chained together.. If so,
3724 * then allocate an extra padding SG entry for linking and
3725 * marking the end of the chained SGL for every task except
3726 * the last one for (task_count > 1) operation, or skipping
3727 * the extra padding for the (task_count == 1) case.
3729 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3730 task_sg_nents_padded = (task->task_sg_nents + 1);
3731 } else
3732 task_sg_nents_padded = task->task_sg_nents;
3734 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3735 task_sg_nents_padded, GFP_KERNEL);
3736 if (!task->task_sg) {
3737 cmd->se_dev->transport->free_task(task);
3738 return -ENOMEM;
3741 sg_init_table(task->task_sg, task_sg_nents_padded);
3743 task_size = task->task_size;
3745 /* Build new sgl, only up to task_size */
3746 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3747 if (cmd_sg->length > task_size)
3748 break;
3750 *sg = *cmd_sg;
3751 task_size -= cmd_sg->length;
3752 cmd_sg = sg_next(cmd_sg);
3755 lba += task->task_sectors;
3756 sectors -= task->task_sectors;
3758 spin_lock_irqsave(&cmd->t_state_lock, flags);
3759 list_add_tail(&task->t_list, &cmd->t_task_list);
3760 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3763 return task_count;
3766 static int
3767 transport_allocate_control_task(struct se_cmd *cmd)
3769 struct se_task *task;
3770 unsigned long flags;
3772 /* Workaround for handling zero-length control CDBs */
3773 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3774 !cmd->data_length)
3775 return 0;
3777 task = transport_generic_get_task(cmd, cmd->data_direction);
3778 if (!task)
3779 return -ENOMEM;
3781 task->task_sg = cmd->t_data_sg;
3782 task->task_size = cmd->data_length;
3783 task->task_sg_nents = cmd->t_data_nents;
3785 spin_lock_irqsave(&cmd->t_state_lock, flags);
3786 list_add_tail(&task->t_list, &cmd->t_task_list);
3787 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3789 /* Success! Return number of tasks allocated */
3790 return 1;
3794 * Allocate any required ressources to execute the command, and either place
3795 * it on the execution queue if possible. For writes we might not have the
3796 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3798 int transport_generic_new_cmd(struct se_cmd *cmd)
3800 struct se_device *dev = cmd->se_dev;
3801 int task_cdbs, task_cdbs_bidi = 0;
3802 int set_counts = 1;
3803 int ret = 0;
3806 * Determine is the TCM fabric module has already allocated physical
3807 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3808 * beforehand.
3810 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3811 cmd->data_length) {
3812 ret = transport_generic_get_mem(cmd);
3813 if (ret < 0)
3814 goto out_fail;
3818 * For BIDI command set up the read tasks first.
3820 if (cmd->t_bidi_data_sg &&
3821 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3822 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3824 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3825 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3826 cmd->t_bidi_data_nents);
3827 if (task_cdbs_bidi <= 0)
3828 goto out_fail;
3830 atomic_inc(&cmd->t_fe_count);
3831 atomic_inc(&cmd->t_se_count);
3832 set_counts = 0;
3835 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3836 task_cdbs = transport_allocate_data_tasks(cmd,
3837 cmd->data_direction, cmd->t_data_sg,
3838 cmd->t_data_nents);
3839 } else {
3840 task_cdbs = transport_allocate_control_task(cmd);
3843 if (task_cdbs < 0)
3844 goto out_fail;
3845 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3846 spin_lock_irq(&cmd->t_state_lock);
3847 cmd->t_state = TRANSPORT_COMPLETE;
3848 cmd->transport_state |= CMD_T_ACTIVE;
3849 spin_unlock_irq(&cmd->t_state_lock);
3851 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3852 u8 ua_asc = 0, ua_ascq = 0;
3854 core_scsi3_ua_clear_for_request_sense(cmd,
3855 &ua_asc, &ua_ascq);
3858 INIT_WORK(&cmd->work, target_complete_ok_work);
3859 queue_work(target_completion_wq, &cmd->work);
3860 return 0;
3863 if (set_counts) {
3864 atomic_inc(&cmd->t_fe_count);
3865 atomic_inc(&cmd->t_se_count);
3868 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3869 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3870 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3873 * For WRITEs, let the fabric know its buffer is ready..
3874 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3875 * will be added to the struct se_device execution queue after its WRITE
3876 * data has arrived. (ie: It gets handled by the transport processing
3877 * thread a second time)
3879 if (cmd->data_direction == DMA_TO_DEVICE) {
3880 transport_add_tasks_to_state_queue(cmd);
3881 return transport_generic_write_pending(cmd);
3884 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3885 * to the execution queue.
3887 transport_execute_tasks(cmd);
3888 return 0;
3890 out_fail:
3891 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3892 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3893 return -EINVAL;
3895 EXPORT_SYMBOL(transport_generic_new_cmd);
3897 /* transport_generic_process_write():
3901 void transport_generic_process_write(struct se_cmd *cmd)
3903 transport_execute_tasks(cmd);
3905 EXPORT_SYMBOL(transport_generic_process_write);
3907 static void transport_write_pending_qf(struct se_cmd *cmd)
3909 int ret;
3911 ret = cmd->se_tfo->write_pending(cmd);
3912 if (ret == -EAGAIN || ret == -ENOMEM) {
3913 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3914 cmd);
3915 transport_handle_queue_full(cmd, cmd->se_dev);
3919 static int transport_generic_write_pending(struct se_cmd *cmd)
3921 unsigned long flags;
3922 int ret;
3924 spin_lock_irqsave(&cmd->t_state_lock, flags);
3925 cmd->t_state = TRANSPORT_WRITE_PENDING;
3926 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3929 * Clear the se_cmd for WRITE_PENDING status in order to set
3930 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3931 * from HW target mode interrupt code. This is safe to be called
3932 * with transport_off=1 before the cmd->se_tfo->write_pending
3933 * because the se_cmd->se_lun pointer is not being cleared.
3935 transport_cmd_check_stop(cmd, 1, 0);
3938 * Call the fabric write_pending function here to let the
3939 * frontend know that WRITE buffers are ready.
3941 ret = cmd->se_tfo->write_pending(cmd);
3942 if (ret == -EAGAIN || ret == -ENOMEM)
3943 goto queue_full;
3944 else if (ret < 0)
3945 return ret;
3947 return 1;
3949 queue_full:
3950 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3951 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3952 transport_handle_queue_full(cmd, cmd->se_dev);
3953 return 0;
3956 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3958 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3959 if (wait_for_tasks && cmd->se_tmr_req)
3960 transport_wait_for_tasks(cmd);
3962 transport_release_cmd(cmd);
3963 } else {
3964 if (wait_for_tasks)
3965 transport_wait_for_tasks(cmd);
3967 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3969 if (cmd->se_lun)
3970 transport_lun_remove_cmd(cmd);
3972 transport_free_dev_tasks(cmd);
3974 transport_put_cmd(cmd);
3977 EXPORT_SYMBOL(transport_generic_free_cmd);
3979 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3980 * @se_sess: session to reference
3981 * @se_cmd: command descriptor to add
3982 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
3984 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3985 bool ack_kref)
3987 unsigned long flags;
3989 kref_init(&se_cmd->cmd_kref);
3991 * Add a second kref if the fabric caller is expecting to handle
3992 * fabric acknowledgement that requires two target_put_sess_cmd()
3993 * invocations before se_cmd descriptor release.
3995 if (ack_kref == true)
3996 kref_get(&se_cmd->cmd_kref);
3998 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3999 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4000 se_cmd->check_release = 1;
4001 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4003 EXPORT_SYMBOL(target_get_sess_cmd);
4005 static void target_release_cmd_kref(struct kref *kref)
4007 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4008 struct se_session *se_sess = se_cmd->se_sess;
4009 unsigned long flags;
4011 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4012 if (list_empty(&se_cmd->se_cmd_list)) {
4013 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4014 WARN_ON(1);
4015 return;
4017 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4018 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4019 complete(&se_cmd->cmd_wait_comp);
4020 return;
4022 list_del(&se_cmd->se_cmd_list);
4023 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4025 se_cmd->se_tfo->release_cmd(se_cmd);
4028 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4029 * @se_sess: session to reference
4030 * @se_cmd: command descriptor to drop
4032 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4034 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4036 EXPORT_SYMBOL(target_put_sess_cmd);
4038 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4039 * @se_sess: session to split
4041 void target_splice_sess_cmd_list(struct se_session *se_sess)
4043 struct se_cmd *se_cmd;
4044 unsigned long flags;
4046 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4047 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4049 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4050 se_sess->sess_tearing_down = 1;
4052 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4054 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4055 se_cmd->cmd_wait_set = 1;
4057 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4059 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4061 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4062 * @se_sess: session to wait for active I/O
4063 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4065 void target_wait_for_sess_cmds(
4066 struct se_session *se_sess,
4067 int wait_for_tasks)
4069 struct se_cmd *se_cmd, *tmp_cmd;
4070 bool rc = false;
4072 list_for_each_entry_safe(se_cmd, tmp_cmd,
4073 &se_sess->sess_wait_list, se_cmd_list) {
4074 list_del(&se_cmd->se_cmd_list);
4076 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4077 " %d\n", se_cmd, se_cmd->t_state,
4078 se_cmd->se_tfo->get_cmd_state(se_cmd));
4080 if (wait_for_tasks) {
4081 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4082 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4083 se_cmd->se_tfo->get_cmd_state(se_cmd));
4085 rc = transport_wait_for_tasks(se_cmd);
4087 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4088 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4089 se_cmd->se_tfo->get_cmd_state(se_cmd));
4092 if (!rc) {
4093 wait_for_completion(&se_cmd->cmd_wait_comp);
4094 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4095 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4096 se_cmd->se_tfo->get_cmd_state(se_cmd));
4099 se_cmd->se_tfo->release_cmd(se_cmd);
4102 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4104 /* transport_lun_wait_for_tasks():
4106 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4107 * an struct se_lun to be successfully shutdown.
4109 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4111 unsigned long flags;
4112 int ret;
4114 * If the frontend has already requested this struct se_cmd to
4115 * be stopped, we can safely ignore this struct se_cmd.
4117 spin_lock_irqsave(&cmd->t_state_lock, flags);
4118 if (cmd->transport_state & CMD_T_STOP) {
4119 cmd->transport_state &= ~CMD_T_LUN_STOP;
4121 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4122 cmd->se_tfo->get_task_tag(cmd));
4123 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4124 transport_cmd_check_stop(cmd, 1, 0);
4125 return -EPERM;
4127 cmd->transport_state |= CMD_T_LUN_FE_STOP;
4128 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4130 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4132 ret = transport_stop_tasks_for_cmd(cmd);
4134 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4135 " %d\n", cmd, cmd->t_task_list_num, ret);
4136 if (!ret) {
4137 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4138 cmd->se_tfo->get_task_tag(cmd));
4139 wait_for_completion(&cmd->transport_lun_stop_comp);
4140 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4141 cmd->se_tfo->get_task_tag(cmd));
4143 transport_remove_cmd_from_queue(cmd);
4145 return 0;
4148 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4150 struct se_cmd *cmd = NULL;
4151 unsigned long lun_flags, cmd_flags;
4153 * Do exception processing and return CHECK_CONDITION status to the
4154 * Initiator Port.
4156 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4157 while (!list_empty(&lun->lun_cmd_list)) {
4158 cmd = list_first_entry(&lun->lun_cmd_list,
4159 struct se_cmd, se_lun_node);
4160 list_del_init(&cmd->se_lun_node);
4163 * This will notify iscsi_target_transport.c:
4164 * transport_cmd_check_stop() that a LUN shutdown is in
4165 * progress for the iscsi_cmd_t.
4167 spin_lock(&cmd->t_state_lock);
4168 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4169 "_lun_stop for ITT: 0x%08x\n",
4170 cmd->se_lun->unpacked_lun,
4171 cmd->se_tfo->get_task_tag(cmd));
4172 cmd->transport_state |= CMD_T_LUN_STOP;
4173 spin_unlock(&cmd->t_state_lock);
4175 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4177 if (!cmd->se_lun) {
4178 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4179 cmd->se_tfo->get_task_tag(cmd),
4180 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4181 BUG();
4184 * If the Storage engine still owns the iscsi_cmd_t, determine
4185 * and/or stop its context.
4187 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4188 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4189 cmd->se_tfo->get_task_tag(cmd));
4191 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4192 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4193 continue;
4196 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4197 "_wait_for_tasks(): SUCCESS\n",
4198 cmd->se_lun->unpacked_lun,
4199 cmd->se_tfo->get_task_tag(cmd));
4201 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4202 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4203 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4204 goto check_cond;
4206 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4207 transport_all_task_dev_remove_state(cmd);
4208 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4210 transport_free_dev_tasks(cmd);
4212 * The Storage engine stopped this struct se_cmd before it was
4213 * send to the fabric frontend for delivery back to the
4214 * Initiator Node. Return this SCSI CDB back with an
4215 * CHECK_CONDITION status.
4217 check_cond:
4218 transport_send_check_condition_and_sense(cmd,
4219 TCM_NON_EXISTENT_LUN, 0);
4221 * If the fabric frontend is waiting for this iscsi_cmd_t to
4222 * be released, notify the waiting thread now that LU has
4223 * finished accessing it.
4225 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4226 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4227 pr_debug("SE_LUN[%d] - Detected FE stop for"
4228 " struct se_cmd: %p ITT: 0x%08x\n",
4229 lun->unpacked_lun,
4230 cmd, cmd->se_tfo->get_task_tag(cmd));
4232 spin_unlock_irqrestore(&cmd->t_state_lock,
4233 cmd_flags);
4234 transport_cmd_check_stop(cmd, 1, 0);
4235 complete(&cmd->transport_lun_fe_stop_comp);
4236 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4237 continue;
4239 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4240 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4242 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4243 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4245 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4248 static int transport_clear_lun_thread(void *p)
4250 struct se_lun *lun = p;
4252 __transport_clear_lun_from_sessions(lun);
4253 complete(&lun->lun_shutdown_comp);
4255 return 0;
4258 int transport_clear_lun_from_sessions(struct se_lun *lun)
4260 struct task_struct *kt;
4262 kt = kthread_run(transport_clear_lun_thread, lun,
4263 "tcm_cl_%u", lun->unpacked_lun);
4264 if (IS_ERR(kt)) {
4265 pr_err("Unable to start clear_lun thread\n");
4266 return PTR_ERR(kt);
4268 wait_for_completion(&lun->lun_shutdown_comp);
4270 return 0;
4274 * transport_wait_for_tasks - wait for completion to occur
4275 * @cmd: command to wait
4277 * Called from frontend fabric context to wait for storage engine
4278 * to pause and/or release frontend generated struct se_cmd.
4280 bool transport_wait_for_tasks(struct se_cmd *cmd)
4282 unsigned long flags;
4284 spin_lock_irqsave(&cmd->t_state_lock, flags);
4285 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4286 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4287 return false;
4290 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4291 * has been set in transport_set_supported_SAM_opcode().
4293 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4294 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4295 return false;
4298 * If we are already stopped due to an external event (ie: LUN shutdown)
4299 * sleep until the connection can have the passed struct se_cmd back.
4300 * The cmd->transport_lun_stopped_sem will be upped by
4301 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4302 * has completed its operation on the struct se_cmd.
4304 if (cmd->transport_state & CMD_T_LUN_STOP) {
4305 pr_debug("wait_for_tasks: Stopping"
4306 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4307 "_stop_comp); for ITT: 0x%08x\n",
4308 cmd->se_tfo->get_task_tag(cmd));
4310 * There is a special case for WRITES where a FE exception +
4311 * LUN shutdown means ConfigFS context is still sleeping on
4312 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4313 * We go ahead and up transport_lun_stop_comp just to be sure
4314 * here.
4316 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4317 complete(&cmd->transport_lun_stop_comp);
4318 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4319 spin_lock_irqsave(&cmd->t_state_lock, flags);
4321 transport_all_task_dev_remove_state(cmd);
4323 * At this point, the frontend who was the originator of this
4324 * struct se_cmd, now owns the structure and can be released through
4325 * normal means below.
4327 pr_debug("wait_for_tasks: Stopped"
4328 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4329 "stop_comp); for ITT: 0x%08x\n",
4330 cmd->se_tfo->get_task_tag(cmd));
4332 cmd->transport_state &= ~CMD_T_LUN_STOP;
4335 if (!(cmd->transport_state & CMD_T_ACTIVE) ||
4336 (cmd->transport_state & CMD_T_ABORTED)) {
4337 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4338 return false;
4341 cmd->transport_state |= CMD_T_STOP;
4343 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4344 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4345 cmd, cmd->se_tfo->get_task_tag(cmd),
4346 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4348 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4350 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4352 wait_for_completion(&cmd->t_transport_stop_comp);
4354 spin_lock_irqsave(&cmd->t_state_lock, flags);
4355 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4357 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4358 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4359 cmd->se_tfo->get_task_tag(cmd));
4361 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4363 return true;
4365 EXPORT_SYMBOL(transport_wait_for_tasks);
4367 static int transport_get_sense_codes(
4368 struct se_cmd *cmd,
4369 u8 *asc,
4370 u8 *ascq)
4372 *asc = cmd->scsi_asc;
4373 *ascq = cmd->scsi_ascq;
4375 return 0;
4378 static int transport_set_sense_codes(
4379 struct se_cmd *cmd,
4380 u8 asc,
4381 u8 ascq)
4383 cmd->scsi_asc = asc;
4384 cmd->scsi_ascq = ascq;
4386 return 0;
4389 int transport_send_check_condition_and_sense(
4390 struct se_cmd *cmd,
4391 u8 reason,
4392 int from_transport)
4394 unsigned char *buffer = cmd->sense_buffer;
4395 unsigned long flags;
4396 int offset;
4397 u8 asc = 0, ascq = 0;
4399 spin_lock_irqsave(&cmd->t_state_lock, flags);
4400 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4401 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4402 return 0;
4404 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4405 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4407 if (!reason && from_transport)
4408 goto after_reason;
4410 if (!from_transport)
4411 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4413 * Data Segment and SenseLength of the fabric response PDU.
4415 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4416 * from include/scsi/scsi_cmnd.h
4418 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4419 TRANSPORT_SENSE_BUFFER);
4421 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4422 * SENSE KEY values from include/scsi/scsi.h
4424 switch (reason) {
4425 case TCM_NON_EXISTENT_LUN:
4426 /* CURRENT ERROR */
4427 buffer[offset] = 0x70;
4428 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4429 /* ILLEGAL REQUEST */
4430 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4431 /* LOGICAL UNIT NOT SUPPORTED */
4432 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4433 break;
4434 case TCM_UNSUPPORTED_SCSI_OPCODE:
4435 case TCM_SECTOR_COUNT_TOO_MANY:
4436 /* CURRENT ERROR */
4437 buffer[offset] = 0x70;
4438 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4439 /* ILLEGAL REQUEST */
4440 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4441 /* INVALID COMMAND OPERATION CODE */
4442 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4443 break;
4444 case TCM_UNKNOWN_MODE_PAGE:
4445 /* CURRENT ERROR */
4446 buffer[offset] = 0x70;
4447 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4448 /* ILLEGAL REQUEST */
4449 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4450 /* INVALID FIELD IN CDB */
4451 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4452 break;
4453 case TCM_CHECK_CONDITION_ABORT_CMD:
4454 /* CURRENT ERROR */
4455 buffer[offset] = 0x70;
4456 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4457 /* ABORTED COMMAND */
4458 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4459 /* BUS DEVICE RESET FUNCTION OCCURRED */
4460 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4461 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4462 break;
4463 case TCM_INCORRECT_AMOUNT_OF_DATA:
4464 /* CURRENT ERROR */
4465 buffer[offset] = 0x70;
4466 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4467 /* ABORTED COMMAND */
4468 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4469 /* WRITE ERROR */
4470 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4471 /* NOT ENOUGH UNSOLICITED DATA */
4472 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4473 break;
4474 case TCM_INVALID_CDB_FIELD:
4475 /* CURRENT ERROR */
4476 buffer[offset] = 0x70;
4477 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4478 /* ILLEGAL REQUEST */
4479 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4480 /* INVALID FIELD IN CDB */
4481 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4482 break;
4483 case TCM_INVALID_PARAMETER_LIST:
4484 /* CURRENT ERROR */
4485 buffer[offset] = 0x70;
4486 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4487 /* ILLEGAL REQUEST */
4488 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4489 /* INVALID FIELD IN PARAMETER LIST */
4490 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4491 break;
4492 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4493 /* CURRENT ERROR */
4494 buffer[offset] = 0x70;
4495 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4496 /* ABORTED COMMAND */
4497 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4498 /* WRITE ERROR */
4499 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4500 /* UNEXPECTED_UNSOLICITED_DATA */
4501 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4502 break;
4503 case TCM_SERVICE_CRC_ERROR:
4504 /* CURRENT ERROR */
4505 buffer[offset] = 0x70;
4506 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4507 /* ABORTED COMMAND */
4508 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4509 /* PROTOCOL SERVICE CRC ERROR */
4510 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4511 /* N/A */
4512 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4513 break;
4514 case TCM_SNACK_REJECTED:
4515 /* CURRENT ERROR */
4516 buffer[offset] = 0x70;
4517 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4518 /* ABORTED COMMAND */
4519 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4520 /* READ ERROR */
4521 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4522 /* FAILED RETRANSMISSION REQUEST */
4523 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4524 break;
4525 case TCM_WRITE_PROTECTED:
4526 /* CURRENT ERROR */
4527 buffer[offset] = 0x70;
4528 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4529 /* DATA PROTECT */
4530 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4531 /* WRITE PROTECTED */
4532 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4533 break;
4534 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4535 /* CURRENT ERROR */
4536 buffer[offset] = 0x70;
4537 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4538 /* UNIT ATTENTION */
4539 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4540 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4541 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4542 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4543 break;
4544 case TCM_CHECK_CONDITION_NOT_READY:
4545 /* CURRENT ERROR */
4546 buffer[offset] = 0x70;
4547 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4548 /* Not Ready */
4549 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4550 transport_get_sense_codes(cmd, &asc, &ascq);
4551 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4552 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4553 break;
4554 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4555 default:
4556 /* CURRENT ERROR */
4557 buffer[offset] = 0x70;
4558 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4559 /* ILLEGAL REQUEST */
4560 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4561 /* LOGICAL UNIT COMMUNICATION FAILURE */
4562 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4563 break;
4566 * This code uses linux/include/scsi/scsi.h SAM status codes!
4568 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4570 * Automatically padded, this value is encoded in the fabric's
4571 * data_length response PDU containing the SCSI defined sense data.
4573 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4575 after_reason:
4576 return cmd->se_tfo->queue_status(cmd);
4578 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4580 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4582 int ret = 0;
4584 if (cmd->transport_state & CMD_T_ABORTED) {
4585 if (!send_status ||
4586 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4587 return 1;
4588 #if 0
4589 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4590 " status for CDB: 0x%02x ITT: 0x%08x\n",
4591 cmd->t_task_cdb[0],
4592 cmd->se_tfo->get_task_tag(cmd));
4593 #endif
4594 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4595 cmd->se_tfo->queue_status(cmd);
4596 ret = 1;
4598 return ret;
4600 EXPORT_SYMBOL(transport_check_aborted_status);
4602 void transport_send_task_abort(struct se_cmd *cmd)
4604 unsigned long flags;
4606 spin_lock_irqsave(&cmd->t_state_lock, flags);
4607 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4608 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4609 return;
4611 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4614 * If there are still expected incoming fabric WRITEs, we wait
4615 * until until they have completed before sending a TASK_ABORTED
4616 * response. This response with TASK_ABORTED status will be
4617 * queued back to fabric module by transport_check_aborted_status().
4619 if (cmd->data_direction == DMA_TO_DEVICE) {
4620 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4621 cmd->transport_state |= CMD_T_ABORTED;
4622 smp_mb__after_atomic_inc();
4625 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4626 #if 0
4627 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4628 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4629 cmd->se_tfo->get_task_tag(cmd));
4630 #endif
4631 cmd->se_tfo->queue_status(cmd);
4634 static int transport_generic_do_tmr(struct se_cmd *cmd)
4636 struct se_device *dev = cmd->se_dev;
4637 struct se_tmr_req *tmr = cmd->se_tmr_req;
4638 int ret;
4640 switch (tmr->function) {
4641 case TMR_ABORT_TASK:
4642 tmr->response = TMR_FUNCTION_REJECTED;
4643 break;
4644 case TMR_ABORT_TASK_SET:
4645 case TMR_CLEAR_ACA:
4646 case TMR_CLEAR_TASK_SET:
4647 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4648 break;
4649 case TMR_LUN_RESET:
4650 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4651 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4652 TMR_FUNCTION_REJECTED;
4653 break;
4654 case TMR_TARGET_WARM_RESET:
4655 tmr->response = TMR_FUNCTION_REJECTED;
4656 break;
4657 case TMR_TARGET_COLD_RESET:
4658 tmr->response = TMR_FUNCTION_REJECTED;
4659 break;
4660 default:
4661 pr_err("Uknown TMR function: 0x%02x.\n",
4662 tmr->function);
4663 tmr->response = TMR_FUNCTION_REJECTED;
4664 break;
4667 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4668 cmd->se_tfo->queue_tm_rsp(cmd);
4670 transport_cmd_check_stop_to_fabric(cmd);
4671 return 0;
4674 /* transport_processing_thread():
4678 static int transport_processing_thread(void *param)
4680 int ret;
4681 struct se_cmd *cmd;
4682 struct se_device *dev = param;
4684 while (!kthread_should_stop()) {
4685 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4686 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4687 kthread_should_stop());
4688 if (ret < 0)
4689 goto out;
4691 get_cmd:
4692 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4693 if (!cmd)
4694 continue;
4696 switch (cmd->t_state) {
4697 case TRANSPORT_NEW_CMD:
4698 BUG();
4699 break;
4700 case TRANSPORT_NEW_CMD_MAP:
4701 if (!cmd->se_tfo->new_cmd_map) {
4702 pr_err("cmd->se_tfo->new_cmd_map is"
4703 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4704 BUG();
4706 ret = cmd->se_tfo->new_cmd_map(cmd);
4707 if (ret < 0) {
4708 transport_generic_request_failure(cmd);
4709 break;
4711 ret = transport_generic_new_cmd(cmd);
4712 if (ret < 0) {
4713 transport_generic_request_failure(cmd);
4714 break;
4716 break;
4717 case TRANSPORT_PROCESS_WRITE:
4718 transport_generic_process_write(cmd);
4719 break;
4720 case TRANSPORT_PROCESS_TMR:
4721 transport_generic_do_tmr(cmd);
4722 break;
4723 case TRANSPORT_COMPLETE_QF_WP:
4724 transport_write_pending_qf(cmd);
4725 break;
4726 case TRANSPORT_COMPLETE_QF_OK:
4727 transport_complete_qf(cmd);
4728 break;
4729 default:
4730 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4731 "i_state: %d on SE LUN: %u\n",
4732 cmd->t_state,
4733 cmd->se_tfo->get_task_tag(cmd),
4734 cmd->se_tfo->get_cmd_state(cmd),
4735 cmd->se_lun->unpacked_lun);
4736 BUG();
4739 goto get_cmd;
4742 out:
4743 WARN_ON(!list_empty(&dev->state_task_list));
4744 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4745 dev->process_thread = NULL;
4746 return 0;