bonding: check return value of nofitier when changing type
[linux-2.6.git] / net / core / dev.c
blobd1f027c41e73db3490e3e9577edcd01d17aa7d8f
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
212 struct net *net = dev_net(dev);
214 ASSERT_RTNL();
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
228 static void unlist_netdevice(struct net_device *dev)
230 ASSERT_RTNL();
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
241 * Our notifier list
244 static RAW_NOTIFIER_HEAD(netdev_chain);
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
254 #ifdef CONFIG_LOCKDEP
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 int i;
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
312 int i;
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321 int i;
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 #endif
338 /*******************************************************************************
340 Protocol management and registration routines
342 *******************************************************************************/
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
373 void dev_add_pack(struct packet_type *pt)
375 int hash;
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
384 spin_unlock_bh(&ptype_lock);
386 EXPORT_SYMBOL(dev_add_pack);
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
401 void __dev_remove_pack(struct packet_type *pt)
403 struct list_head *head;
404 struct packet_type *pt1;
406 spin_lock_bh(&ptype_lock);
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
424 EXPORT_SYMBOL(__dev_remove_pack);
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
438 void dev_remove_pack(struct packet_type *pt)
440 __dev_remove_pack(pt);
442 synchronize_net();
444 EXPORT_SYMBOL(dev_remove_pack);
446 /******************************************************************************
448 Device Boot-time Settings Routines
450 *******************************************************************************/
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
466 struct netdev_boot_setup *s;
467 int i;
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
491 int netdev_boot_setup_check(struct net_device *dev)
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
506 return 0;
508 EXPORT_SYMBOL(netdev_boot_setup_check);
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
521 unsigned long netdev_boot_base(const char *prefix, int unit)
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
527 sprintf(name, "%s%d", prefix, unit);
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
543 * Saves at boot time configured settings for any netdevice.
545 int __init netdev_boot_setup(char *str)
547 int ints[5];
548 struct ifmap map;
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
569 __setup("netdev=", netdev_boot_setup);
571 /*******************************************************************************
573 Device Interface Subroutines
575 *******************************************************************************/
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
599 return NULL;
601 EXPORT_SYMBOL(__dev_get_by_name);
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
625 return NULL;
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
643 struct net_device *dev;
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
652 EXPORT_SYMBOL(dev_get_by_name);
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
676 return NULL;
678 EXPORT_SYMBOL(__dev_get_by_index);
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
701 return NULL;
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
719 struct net_device *dev;
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
728 EXPORT_SYMBOL(dev_get_by_index);
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
747 struct net_device *dev;
749 ASSERT_RTNL();
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
756 return NULL;
758 EXPORT_SYMBOL(dev_getbyhwaddr);
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
762 struct net_device *dev;
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
769 return NULL;
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 struct net_device *dev;
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
784 EXPORT_SYMBOL(dev_getfirstbyhwtype);
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
801 struct net_device *dev, *ret;
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
812 rcu_read_unlock();
813 return ret;
815 EXPORT_SYMBOL(dev_get_by_flags);
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
825 int dev_valid_name(const char *name)
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
839 return 1;
841 EXPORT_SYMBOL(dev_valid_name);
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
858 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
906 return -ENFILE;
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
923 int dev_alloc_name(struct net_device *dev, const char *name)
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
936 EXPORT_SYMBOL(dev_alloc_name);
938 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
941 if (!dev_valid_name(name))
942 return -EINVAL;
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
951 return 0;
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
962 int dev_change_name(struct net_device *dev, const char *newname)
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
979 memcpy(oldname, dev->name, IFNAMSIZ);
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
985 rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1001 synchronize_rcu();
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1023 return err;
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1032 * Set ifalias for a device,
1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1036 ASSERT_RTNL();
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1046 return 0;
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1062 * Called to indicate a device has changed features.
1064 void netdev_features_change(struct net_device *dev)
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1068 EXPORT_SYMBOL(netdev_features_change);
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1078 void netdev_state_change(struct net_device *dev)
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1085 EXPORT_SYMBOL(netdev_state_change);
1087 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1089 return call_netdevice_notifiers(event, dev);
1091 EXPORT_SYMBOL(netdev_bonding_change);
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1103 void dev_load(struct net *net, const char *name)
1105 struct net_device *dev;
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1111 if (!dev && capable(CAP_NET_ADMIN))
1112 request_module("%s", name);
1114 EXPORT_SYMBOL(dev_load);
1116 static int __dev_open(struct net_device *dev)
1118 const struct net_device_ops *ops = dev->netdev_ops;
1119 int ret;
1121 ASSERT_RTNL();
1124 * Is it even present?
1126 if (!netif_device_present(dev))
1127 return -ENODEV;
1129 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1130 ret = notifier_to_errno(ret);
1131 if (ret)
1132 return ret;
1135 * Call device private open method
1137 set_bit(__LINK_STATE_START, &dev->state);
1139 if (ops->ndo_validate_addr)
1140 ret = ops->ndo_validate_addr(dev);
1142 if (!ret && ops->ndo_open)
1143 ret = ops->ndo_open(dev);
1146 * If it went open OK then:
1149 if (ret)
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151 else {
1153 * Set the flags.
1155 dev->flags |= IFF_UP;
1158 * Enable NET_DMA
1160 net_dmaengine_get();
1163 * Initialize multicasting status
1165 dev_set_rx_mode(dev);
1168 * Wakeup transmit queue engine
1170 dev_activate(dev);
1173 return ret;
1177 * dev_open - prepare an interface for use.
1178 * @dev: device to open
1180 * Takes a device from down to up state. The device's private open
1181 * function is invoked and then the multicast lists are loaded. Finally
1182 * the device is moved into the up state and a %NETDEV_UP message is
1183 * sent to the netdev notifier chain.
1185 * Calling this function on an active interface is a nop. On a failure
1186 * a negative errno code is returned.
1188 int dev_open(struct net_device *dev)
1190 int ret;
1193 * Is it already up?
1195 if (dev->flags & IFF_UP)
1196 return 0;
1199 * Open device
1201 ret = __dev_open(dev);
1202 if (ret < 0)
1203 return ret;
1206 * ... and announce new interface.
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1211 return ret;
1213 EXPORT_SYMBOL(dev_open);
1215 static int __dev_close(struct net_device *dev)
1217 const struct net_device_ops *ops = dev->netdev_ops;
1219 ASSERT_RTNL();
1220 might_sleep();
1223 * Tell people we are going down, so that they can
1224 * prepare to death, when device is still operating.
1226 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1228 clear_bit(__LINK_STATE_START, &dev->state);
1230 /* Synchronize to scheduled poll. We cannot touch poll list,
1231 * it can be even on different cpu. So just clear netif_running().
1233 * dev->stop() will invoke napi_disable() on all of it's
1234 * napi_struct instances on this device.
1236 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1238 dev_deactivate(dev);
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1251 * Device is now down.
1254 dev->flags &= ~IFF_UP;
1257 * Shutdown NET_DMA
1259 net_dmaengine_put();
1261 return 0;
1265 * dev_close - shutdown an interface.
1266 * @dev: device to shutdown
1268 * This function moves an active device into down state. A
1269 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1270 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1271 * chain.
1273 int dev_close(struct net_device *dev)
1275 if (!(dev->flags & IFF_UP))
1276 return 0;
1278 __dev_close(dev);
1281 * Tell people we are down
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1284 call_netdevice_notifiers(NETDEV_DOWN, dev);
1286 return 0;
1288 EXPORT_SYMBOL(dev_close);
1292 * dev_disable_lro - disable Large Receive Offload on a device
1293 * @dev: device
1295 * Disable Large Receive Offload (LRO) on a net device. Must be
1296 * called under RTNL. This is needed if received packets may be
1297 * forwarded to another interface.
1299 void dev_disable_lro(struct net_device *dev)
1301 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1302 dev->ethtool_ops->set_flags) {
1303 u32 flags = dev->ethtool_ops->get_flags(dev);
1304 if (flags & ETH_FLAG_LRO) {
1305 flags &= ~ETH_FLAG_LRO;
1306 dev->ethtool_ops->set_flags(dev, flags);
1309 WARN_ON(dev->features & NETIF_F_LRO);
1311 EXPORT_SYMBOL(dev_disable_lro);
1314 static int dev_boot_phase = 1;
1317 * Device change register/unregister. These are not inline or static
1318 * as we export them to the world.
1322 * register_netdevice_notifier - register a network notifier block
1323 * @nb: notifier
1325 * Register a notifier to be called when network device events occur.
1326 * The notifier passed is linked into the kernel structures and must
1327 * not be reused until it has been unregistered. A negative errno code
1328 * is returned on a failure.
1330 * When registered all registration and up events are replayed
1331 * to the new notifier to allow device to have a race free
1332 * view of the network device list.
1335 int register_netdevice_notifier(struct notifier_block *nb)
1337 struct net_device *dev;
1338 struct net_device *last;
1339 struct net *net;
1340 int err;
1342 rtnl_lock();
1343 err = raw_notifier_chain_register(&netdev_chain, nb);
1344 if (err)
1345 goto unlock;
1346 if (dev_boot_phase)
1347 goto unlock;
1348 for_each_net(net) {
1349 for_each_netdev(net, dev) {
1350 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1351 err = notifier_to_errno(err);
1352 if (err)
1353 goto rollback;
1355 if (!(dev->flags & IFF_UP))
1356 continue;
1358 nb->notifier_call(nb, NETDEV_UP, dev);
1362 unlock:
1363 rtnl_unlock();
1364 return err;
1366 rollback:
1367 last = dev;
1368 for_each_net(net) {
1369 for_each_netdev(net, dev) {
1370 if (dev == last)
1371 break;
1373 if (dev->flags & IFF_UP) {
1374 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1375 nb->notifier_call(nb, NETDEV_DOWN, dev);
1377 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1378 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1382 raw_notifier_chain_unregister(&netdev_chain, nb);
1383 goto unlock;
1385 EXPORT_SYMBOL(register_netdevice_notifier);
1388 * unregister_netdevice_notifier - unregister a network notifier block
1389 * @nb: notifier
1391 * Unregister a notifier previously registered by
1392 * register_netdevice_notifier(). The notifier is unlinked into the
1393 * kernel structures and may then be reused. A negative errno code
1394 * is returned on a failure.
1397 int unregister_netdevice_notifier(struct notifier_block *nb)
1399 int err;
1401 rtnl_lock();
1402 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1403 rtnl_unlock();
1404 return err;
1406 EXPORT_SYMBOL(unregister_netdevice_notifier);
1409 * call_netdevice_notifiers - call all network notifier blocks
1410 * @val: value passed unmodified to notifier function
1411 * @dev: net_device pointer passed unmodified to notifier function
1413 * Call all network notifier blocks. Parameters and return value
1414 * are as for raw_notifier_call_chain().
1417 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1419 return raw_notifier_call_chain(&netdev_chain, val, dev);
1422 /* When > 0 there are consumers of rx skb time stamps */
1423 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1425 void net_enable_timestamp(void)
1427 atomic_inc(&netstamp_needed);
1429 EXPORT_SYMBOL(net_enable_timestamp);
1431 void net_disable_timestamp(void)
1433 atomic_dec(&netstamp_needed);
1435 EXPORT_SYMBOL(net_disable_timestamp);
1437 static inline void net_timestamp(struct sk_buff *skb)
1439 if (atomic_read(&netstamp_needed))
1440 __net_timestamp(skb);
1441 else
1442 skb->tstamp.tv64 = 0;
1446 * dev_forward_skb - loopback an skb to another netif
1448 * @dev: destination network device
1449 * @skb: buffer to forward
1451 * return values:
1452 * NET_RX_SUCCESS (no congestion)
1453 * NET_RX_DROP (packet was dropped)
1455 * dev_forward_skb can be used for injecting an skb from the
1456 * start_xmit function of one device into the receive queue
1457 * of another device.
1459 * The receiving device may be in another namespace, so
1460 * we have to clear all information in the skb that could
1461 * impact namespace isolation.
1463 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1465 skb_orphan(skb);
1467 if (!(dev->flags & IFF_UP))
1468 return NET_RX_DROP;
1470 if (skb->len > (dev->mtu + dev->hard_header_len))
1471 return NET_RX_DROP;
1473 skb_set_dev(skb, dev);
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
1477 return netif_rx(skb);
1479 EXPORT_SYMBOL_GPL(dev_forward_skb);
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1486 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1488 struct packet_type *ptype;
1490 #ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1492 net_timestamp(skb);
1493 #else
1494 net_timestamp(skb);
1495 #endif
1497 rcu_read_lock();
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1500 * they originated from - MvS (miquels@drinkel.ow.org)
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1506 if (!skb2)
1507 break;
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1513 skb_reset_mac_header(skb2);
1515 if (skb_network_header(skb2) < skb2->data ||
1516 skb2->network_header > skb2->tail) {
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1519 "buggy, dev %s\n",
1520 skb2->protocol, dev->name);
1521 skb_reset_network_header(skb2);
1524 skb2->transport_header = skb2->network_header;
1525 skb2->pkt_type = PACKET_OUTGOING;
1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1529 rcu_read_unlock();
1533 static inline void __netif_reschedule(struct Qdisc *q)
1535 struct softnet_data *sd;
1536 unsigned long flags;
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1546 void __netif_schedule(struct Qdisc *q)
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
1551 EXPORT_SYMBOL(__netif_schedule);
1553 void dev_kfree_skb_irq(struct sk_buff *skb)
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1567 EXPORT_SYMBOL(dev_kfree_skb_irq);
1569 void dev_kfree_skb_any(struct sk_buff *skb)
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1573 else
1574 dev_kfree_skb(skb);
1576 EXPORT_SYMBOL(dev_kfree_skb_any);
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1583 * Mark device as removed from system and therefore no longer available.
1585 void netif_device_detach(struct net_device *dev)
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
1589 netif_tx_stop_all_queues(dev);
1592 EXPORT_SYMBOL(netif_device_detach);
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1598 * Mark device as attached from system and restart if needed.
1600 void netif_device_attach(struct net_device *dev)
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
1604 netif_tx_wake_all_queues(dev);
1605 __netdev_watchdog_up(dev);
1608 EXPORT_SYMBOL(netif_device_attach);
1610 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
1621 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1624 return true;
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1630 return true;
1633 return false;
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1645 #ifdef CONFIG_NET_NS
1646 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1648 skb_dst_drop(skb);
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1650 secpath_reset(skb);
1651 nf_reset(skb);
1652 skb_init_secmark(skb);
1653 skb->mark = 0;
1654 skb->priority = 0;
1655 skb->nf_trace = 0;
1656 skb->ipvs_property = 0;
1657 #ifdef CONFIG_NET_SCHED
1658 skb->tc_index = 0;
1659 #endif
1661 skb->dev = dev;
1663 EXPORT_SYMBOL(skb_set_dev);
1664 #endif /* CONFIG_NET_NS */
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1670 int skb_checksum_help(struct sk_buff *skb)
1672 __wsum csum;
1673 int ret = 0, offset;
1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
1676 goto out_set_summed;
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1693 if (ret)
1694 goto out;
1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1698 out_set_summed:
1699 skb->ip_summed = CHECKSUM_NONE;
1700 out:
1701 return ret;
1703 EXPORT_SYMBOL(skb_checksum_help);
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
1708 * @features: features for the output path (see dev->features)
1710 * This function segments the given skb and returns a list of segments.
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
1715 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
1719 __be16 type = skb->protocol;
1720 int err;
1722 skb_reset_mac_header(skb);
1723 skb->mac_len = skb->network_header - skb->mac_header;
1724 __skb_pull(skb, skb->mac_len);
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1734 "ip_summed=%d",
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1744 rcu_read_lock();
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1752 break;
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
1756 segs = ptype->gso_segment(skb, features);
1757 break;
1760 rcu_read_unlock();
1762 __skb_push(skb, skb->data - skb_mac_header(skb));
1764 return segs;
1766 EXPORT_SYMBOL(skb_gso_segment);
1768 /* Take action when hardware reception checksum errors are detected. */
1769 #ifdef CONFIG_BUG
1770 void netdev_rx_csum_fault(struct net_device *dev)
1772 if (net_ratelimit()) {
1773 printk(KERN_ERR "%s: hw csum failure.\n",
1774 dev ? dev->name : "<unknown>");
1775 dump_stack();
1778 EXPORT_SYMBOL(netdev_rx_csum_fault);
1779 #endif
1781 /* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1786 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1788 #ifdef CONFIG_HIGHMEM
1789 int i;
1791 if (dev->features & NETIF_F_HIGHDMA)
1792 return 0;
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1796 return 1;
1798 #endif
1799 return 0;
1802 struct dev_gso_cb {
1803 void (*destructor)(struct sk_buff *skb);
1806 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1808 static void dev_gso_skb_destructor(struct sk_buff *skb)
1810 struct dev_gso_cb *cb;
1812 do {
1813 struct sk_buff *nskb = skb->next;
1815 skb->next = nskb->next;
1816 nskb->next = NULL;
1817 kfree_skb(nskb);
1818 } while (skb->next);
1820 cb = DEV_GSO_CB(skb);
1821 if (cb->destructor)
1822 cb->destructor(skb);
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1829 * This function segments the given skb and stores the list of segments
1830 * in skb->next.
1832 static int dev_gso_segment(struct sk_buff *skb)
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1837 NETIF_F_SG : 0);
1839 segs = skb_gso_segment(skb, features);
1841 /* Verifying header integrity only. */
1842 if (!segs)
1843 return 0;
1845 if (IS_ERR(segs))
1846 return PTR_ERR(segs);
1848 skb->next = segs;
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1852 return 0;
1855 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
1858 const struct net_device_ops *ops = dev->netdev_ops;
1859 int rc = NETDEV_TX_OK;
1861 if (likely(!skb->next)) {
1862 if (!list_empty(&ptype_all))
1863 dev_queue_xmit_nit(skb, dev);
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1867 goto out_kfree_skb;
1868 if (skb->next)
1869 goto gso;
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1877 skb_dst_drop(skb);
1879 rc = ops->ndo_start_xmit(skb, dev);
1880 if (rc == NETDEV_TX_OK)
1881 txq_trans_update(txq);
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1896 return rc;
1899 gso:
1900 do {
1901 struct sk_buff *nskb = skb->next;
1903 skb->next = nskb->next;
1904 nskb->next = NULL;
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(nskb);
1913 rc = ops->ndo_start_xmit(nskb, dev);
1914 if (unlikely(rc != NETDEV_TX_OK)) {
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
1917 nskb->next = skb->next;
1918 skb->next = nskb;
1919 return rc;
1921 txq_trans_update(txq);
1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1923 return NETDEV_TX_BUSY;
1924 } while (skb->next);
1926 out_kfree_gso_skb:
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
1929 out_kfree_skb:
1930 kfree_skb(skb);
1931 return rc;
1934 static u32 hashrnd __read_mostly;
1936 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1938 u32 hash;
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
1942 while (unlikely(hash >= dev->real_num_tx_queues))
1943 hash -= dev->real_num_tx_queues;
1944 return hash;
1947 if (skb->sk && skb->sk->sk_hash)
1948 hash = skb->sk->sk_hash;
1949 else
1950 hash = skb->protocol;
1952 hash = jhash_1word(hash, hashrnd);
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1956 EXPORT_SYMBOL(skb_tx_hash);
1958 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
1962 netdev_warn(dev, "selects TX queue %d, but "
1963 "real number of TX queues is %d\n",
1964 queue_index, dev->real_num_tx_queues);
1966 return 0;
1968 return queue_index;
1971 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1972 struct sk_buff *skb)
1974 u16 queue_index;
1975 struct sock *sk = skb->sk;
1977 if (sk_tx_queue_recorded(sk)) {
1978 queue_index = sk_tx_queue_get(sk);
1979 } else {
1980 const struct net_device_ops *ops = dev->netdev_ops;
1982 if (ops->ndo_select_queue) {
1983 queue_index = ops->ndo_select_queue(dev, skb);
1984 queue_index = dev_cap_txqueue(dev, queue_index);
1985 } else {
1986 queue_index = 0;
1987 if (dev->real_num_tx_queues > 1)
1988 queue_index = skb_tx_hash(dev, skb);
1990 if (sk && sk->sk_dst_cache)
1991 sk_tx_queue_set(sk, queue_index);
1995 skb_set_queue_mapping(skb, queue_index);
1996 return netdev_get_tx_queue(dev, queue_index);
1999 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2000 struct net_device *dev,
2001 struct netdev_queue *txq)
2003 spinlock_t *root_lock = qdisc_lock(q);
2004 int rc;
2006 spin_lock(root_lock);
2007 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2008 kfree_skb(skb);
2009 rc = NET_XMIT_DROP;
2010 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2011 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2013 * This is a work-conserving queue; there are no old skbs
2014 * waiting to be sent out; and the qdisc is not running -
2015 * xmit the skb directly.
2017 __qdisc_update_bstats(q, skb->len);
2018 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2019 __qdisc_run(q);
2020 else
2021 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2023 rc = NET_XMIT_SUCCESS;
2024 } else {
2025 rc = qdisc_enqueue_root(skb, q);
2026 qdisc_run(q);
2028 spin_unlock(root_lock);
2030 return rc;
2034 * Returns true if either:
2035 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2036 * 2. skb is fragmented and the device does not support SG, or if
2037 * at least one of fragments is in highmem and device does not
2038 * support DMA from it.
2040 static inline int skb_needs_linearize(struct sk_buff *skb,
2041 struct net_device *dev)
2043 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2044 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2045 illegal_highdma(dev, skb)));
2049 * dev_queue_xmit - transmit a buffer
2050 * @skb: buffer to transmit
2052 * Queue a buffer for transmission to a network device. The caller must
2053 * have set the device and priority and built the buffer before calling
2054 * this function. The function can be called from an interrupt.
2056 * A negative errno code is returned on a failure. A success does not
2057 * guarantee the frame will be transmitted as it may be dropped due
2058 * to congestion or traffic shaping.
2060 * -----------------------------------------------------------------------------------
2061 * I notice this method can also return errors from the queue disciplines,
2062 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2063 * be positive.
2065 * Regardless of the return value, the skb is consumed, so it is currently
2066 * difficult to retry a send to this method. (You can bump the ref count
2067 * before sending to hold a reference for retry if you are careful.)
2069 * When calling this method, interrupts MUST be enabled. This is because
2070 * the BH enable code must have IRQs enabled so that it will not deadlock.
2071 * --BLG
2073 int dev_queue_xmit(struct sk_buff *skb)
2075 struct net_device *dev = skb->dev;
2076 struct netdev_queue *txq;
2077 struct Qdisc *q;
2078 int rc = -ENOMEM;
2080 /* GSO will handle the following emulations directly. */
2081 if (netif_needs_gso(dev, skb))
2082 goto gso;
2084 /* Convert a paged skb to linear, if required */
2085 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2086 goto out_kfree_skb;
2088 /* If packet is not checksummed and device does not support
2089 * checksumming for this protocol, complete checksumming here.
2091 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2092 skb_set_transport_header(skb, skb->csum_start -
2093 skb_headroom(skb));
2094 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2095 goto out_kfree_skb;
2098 gso:
2099 /* Disable soft irqs for various locks below. Also
2100 * stops preemption for RCU.
2102 rcu_read_lock_bh();
2104 txq = dev_pick_tx(dev, skb);
2105 q = rcu_dereference_bh(txq->qdisc);
2107 #ifdef CONFIG_NET_CLS_ACT
2108 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2109 #endif
2110 if (q->enqueue) {
2111 rc = __dev_xmit_skb(skb, q, dev, txq);
2112 goto out;
2115 /* The device has no queue. Common case for software devices:
2116 loopback, all the sorts of tunnels...
2118 Really, it is unlikely that netif_tx_lock protection is necessary
2119 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2120 counters.)
2121 However, it is possible, that they rely on protection
2122 made by us here.
2124 Check this and shot the lock. It is not prone from deadlocks.
2125 Either shot noqueue qdisc, it is even simpler 8)
2127 if (dev->flags & IFF_UP) {
2128 int cpu = smp_processor_id(); /* ok because BHs are off */
2130 if (txq->xmit_lock_owner != cpu) {
2132 HARD_TX_LOCK(dev, txq, cpu);
2134 if (!netif_tx_queue_stopped(txq)) {
2135 rc = dev_hard_start_xmit(skb, dev, txq);
2136 if (dev_xmit_complete(rc)) {
2137 HARD_TX_UNLOCK(dev, txq);
2138 goto out;
2141 HARD_TX_UNLOCK(dev, txq);
2142 if (net_ratelimit())
2143 printk(KERN_CRIT "Virtual device %s asks to "
2144 "queue packet!\n", dev->name);
2145 } else {
2146 /* Recursion is detected! It is possible,
2147 * unfortunately */
2148 if (net_ratelimit())
2149 printk(KERN_CRIT "Dead loop on virtual device "
2150 "%s, fix it urgently!\n", dev->name);
2154 rc = -ENETDOWN;
2155 rcu_read_unlock_bh();
2157 out_kfree_skb:
2158 kfree_skb(skb);
2159 return rc;
2160 out:
2161 rcu_read_unlock_bh();
2162 return rc;
2164 EXPORT_SYMBOL(dev_queue_xmit);
2167 /*=======================================================================
2168 Receiver routines
2169 =======================================================================*/
2171 int netdev_max_backlog __read_mostly = 1000;
2172 int netdev_budget __read_mostly = 300;
2173 int weight_p __read_mostly = 64; /* old backlog weight */
2175 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2177 #ifdef CONFIG_SMP
2179 * get_rps_cpu is called from netif_receive_skb and returns the target
2180 * CPU from the RPS map of the receiving queue for a given skb.
2182 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2184 struct ipv6hdr *ip6;
2185 struct iphdr *ip;
2186 struct netdev_rx_queue *rxqueue;
2187 struct rps_map *map;
2188 int cpu = -1;
2189 u8 ip_proto;
2190 u32 addr1, addr2, ports, ihl;
2192 rcu_read_lock();
2194 if (skb_rx_queue_recorded(skb)) {
2195 u16 index = skb_get_rx_queue(skb);
2196 if (unlikely(index >= dev->num_rx_queues)) {
2197 if (net_ratelimit()) {
2198 netdev_warn(dev, "received packet on queue "
2199 "%u, but number of RX queues is %u\n",
2200 index, dev->num_rx_queues);
2202 goto done;
2204 rxqueue = dev->_rx + index;
2205 } else
2206 rxqueue = dev->_rx;
2208 if (!rxqueue->rps_map)
2209 goto done;
2211 if (skb->rxhash)
2212 goto got_hash; /* Skip hash computation on packet header */
2214 switch (skb->protocol) {
2215 case __constant_htons(ETH_P_IP):
2216 if (!pskb_may_pull(skb, sizeof(*ip)))
2217 goto done;
2219 ip = (struct iphdr *) skb->data;
2220 ip_proto = ip->protocol;
2221 addr1 = ip->saddr;
2222 addr2 = ip->daddr;
2223 ihl = ip->ihl;
2224 break;
2225 case __constant_htons(ETH_P_IPV6):
2226 if (!pskb_may_pull(skb, sizeof(*ip6)))
2227 goto done;
2229 ip6 = (struct ipv6hdr *) skb->data;
2230 ip_proto = ip6->nexthdr;
2231 addr1 = ip6->saddr.s6_addr32[3];
2232 addr2 = ip6->daddr.s6_addr32[3];
2233 ihl = (40 >> 2);
2234 break;
2235 default:
2236 goto done;
2238 ports = 0;
2239 switch (ip_proto) {
2240 case IPPROTO_TCP:
2241 case IPPROTO_UDP:
2242 case IPPROTO_DCCP:
2243 case IPPROTO_ESP:
2244 case IPPROTO_AH:
2245 case IPPROTO_SCTP:
2246 case IPPROTO_UDPLITE:
2247 if (pskb_may_pull(skb, (ihl * 4) + 4))
2248 ports = *((u32 *) (skb->data + (ihl * 4)));
2249 break;
2251 default:
2252 break;
2255 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2256 if (!skb->rxhash)
2257 skb->rxhash = 1;
2259 got_hash:
2260 map = rcu_dereference(rxqueue->rps_map);
2261 if (map) {
2262 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2264 if (cpu_online(tcpu)) {
2265 cpu = tcpu;
2266 goto done;
2270 done:
2271 rcu_read_unlock();
2272 return cpu;
2276 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2277 * to be sent to kick remote softirq processing. There are two masks since
2278 * the sending of IPIs must be done with interrupts enabled. The select field
2279 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2280 * select is flipped before net_rps_action is called while still under lock,
2281 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2282 * it without conflicting with enqueue_backlog operation.
2284 struct rps_remote_softirq_cpus {
2285 cpumask_t mask[2];
2286 int select;
2288 static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2290 /* Called from hardirq (IPI) context */
2291 static void trigger_softirq(void *data)
2293 struct softnet_data *queue = data;
2294 __napi_schedule(&queue->backlog);
2295 __get_cpu_var(netdev_rx_stat).received_rps++;
2297 #endif /* CONFIG_SMP */
2300 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2301 * queue (may be a remote CPU queue).
2303 static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2305 struct softnet_data *queue;
2306 unsigned long flags;
2308 queue = &per_cpu(softnet_data, cpu);
2310 local_irq_save(flags);
2311 __get_cpu_var(netdev_rx_stat).total++;
2313 spin_lock(&queue->input_pkt_queue.lock);
2314 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2315 if (queue->input_pkt_queue.qlen) {
2316 enqueue:
2317 __skb_queue_tail(&queue->input_pkt_queue, skb);
2318 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2319 flags);
2320 return NET_RX_SUCCESS;
2323 /* Schedule NAPI for backlog device */
2324 if (napi_schedule_prep(&queue->backlog)) {
2325 #ifdef CONFIG_SMP
2326 if (cpu != smp_processor_id()) {
2327 struct rps_remote_softirq_cpus *rcpus =
2328 &__get_cpu_var(rps_remote_softirq_cpus);
2330 cpu_set(cpu, rcpus->mask[rcpus->select]);
2331 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2332 } else
2333 __napi_schedule(&queue->backlog);
2334 #else
2335 __napi_schedule(&queue->backlog);
2336 #endif
2338 goto enqueue;
2341 spin_unlock(&queue->input_pkt_queue.lock);
2343 __get_cpu_var(netdev_rx_stat).dropped++;
2344 local_irq_restore(flags);
2346 kfree_skb(skb);
2347 return NET_RX_DROP;
2351 * netif_rx - post buffer to the network code
2352 * @skb: buffer to post
2354 * This function receives a packet from a device driver and queues it for
2355 * the upper (protocol) levels to process. It always succeeds. The buffer
2356 * may be dropped during processing for congestion control or by the
2357 * protocol layers.
2359 * return values:
2360 * NET_RX_SUCCESS (no congestion)
2361 * NET_RX_DROP (packet was dropped)
2365 int netif_rx(struct sk_buff *skb)
2367 int cpu;
2369 /* if netpoll wants it, pretend we never saw it */
2370 if (netpoll_rx(skb))
2371 return NET_RX_DROP;
2373 if (!skb->tstamp.tv64)
2374 net_timestamp(skb);
2376 #ifdef CONFIG_SMP
2377 cpu = get_rps_cpu(skb->dev, skb);
2378 if (cpu < 0)
2379 cpu = smp_processor_id();
2380 #else
2381 cpu = smp_processor_id();
2382 #endif
2384 return enqueue_to_backlog(skb, cpu);
2386 EXPORT_SYMBOL(netif_rx);
2388 int netif_rx_ni(struct sk_buff *skb)
2390 int err;
2392 preempt_disable();
2393 err = netif_rx(skb);
2394 if (local_softirq_pending())
2395 do_softirq();
2396 preempt_enable();
2398 return err;
2400 EXPORT_SYMBOL(netif_rx_ni);
2402 static void net_tx_action(struct softirq_action *h)
2404 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2406 if (sd->completion_queue) {
2407 struct sk_buff *clist;
2409 local_irq_disable();
2410 clist = sd->completion_queue;
2411 sd->completion_queue = NULL;
2412 local_irq_enable();
2414 while (clist) {
2415 struct sk_buff *skb = clist;
2416 clist = clist->next;
2418 WARN_ON(atomic_read(&skb->users));
2419 __kfree_skb(skb);
2423 if (sd->output_queue) {
2424 struct Qdisc *head;
2426 local_irq_disable();
2427 head = sd->output_queue;
2428 sd->output_queue = NULL;
2429 local_irq_enable();
2431 while (head) {
2432 struct Qdisc *q = head;
2433 spinlock_t *root_lock;
2435 head = head->next_sched;
2437 root_lock = qdisc_lock(q);
2438 if (spin_trylock(root_lock)) {
2439 smp_mb__before_clear_bit();
2440 clear_bit(__QDISC_STATE_SCHED,
2441 &q->state);
2442 qdisc_run(q);
2443 spin_unlock(root_lock);
2444 } else {
2445 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2446 &q->state)) {
2447 __netif_reschedule(q);
2448 } else {
2449 smp_mb__before_clear_bit();
2450 clear_bit(__QDISC_STATE_SCHED,
2451 &q->state);
2458 static inline int deliver_skb(struct sk_buff *skb,
2459 struct packet_type *pt_prev,
2460 struct net_device *orig_dev)
2462 atomic_inc(&skb->users);
2463 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2466 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2468 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2469 /* This hook is defined here for ATM LANE */
2470 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2471 unsigned char *addr) __read_mostly;
2472 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2473 #endif
2476 * If bridge module is loaded call bridging hook.
2477 * returns NULL if packet was consumed.
2479 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2480 struct sk_buff *skb) __read_mostly;
2481 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2483 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2484 struct packet_type **pt_prev, int *ret,
2485 struct net_device *orig_dev)
2487 struct net_bridge_port *port;
2489 if (skb->pkt_type == PACKET_LOOPBACK ||
2490 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2491 return skb;
2493 if (*pt_prev) {
2494 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2495 *pt_prev = NULL;
2498 return br_handle_frame_hook(port, skb);
2500 #else
2501 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2502 #endif
2504 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2505 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2506 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2508 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2509 struct packet_type **pt_prev,
2510 int *ret,
2511 struct net_device *orig_dev)
2513 if (skb->dev->macvlan_port == NULL)
2514 return skb;
2516 if (*pt_prev) {
2517 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2518 *pt_prev = NULL;
2520 return macvlan_handle_frame_hook(skb);
2522 #else
2523 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2524 #endif
2526 #ifdef CONFIG_NET_CLS_ACT
2527 /* TODO: Maybe we should just force sch_ingress to be compiled in
2528 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2529 * a compare and 2 stores extra right now if we dont have it on
2530 * but have CONFIG_NET_CLS_ACT
2531 * NOTE: This doesnt stop any functionality; if you dont have
2532 * the ingress scheduler, you just cant add policies on ingress.
2535 static int ing_filter(struct sk_buff *skb)
2537 struct net_device *dev = skb->dev;
2538 u32 ttl = G_TC_RTTL(skb->tc_verd);
2539 struct netdev_queue *rxq;
2540 int result = TC_ACT_OK;
2541 struct Qdisc *q;
2543 if (MAX_RED_LOOP < ttl++) {
2544 printk(KERN_WARNING
2545 "Redir loop detected Dropping packet (%d->%d)\n",
2546 skb->skb_iif, dev->ifindex);
2547 return TC_ACT_SHOT;
2550 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2551 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2553 rxq = &dev->rx_queue;
2555 q = rxq->qdisc;
2556 if (q != &noop_qdisc) {
2557 spin_lock(qdisc_lock(q));
2558 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2559 result = qdisc_enqueue_root(skb, q);
2560 spin_unlock(qdisc_lock(q));
2563 return result;
2566 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2567 struct packet_type **pt_prev,
2568 int *ret, struct net_device *orig_dev)
2570 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2571 goto out;
2573 if (*pt_prev) {
2574 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2575 *pt_prev = NULL;
2576 } else {
2577 /* Huh? Why does turning on AF_PACKET affect this? */
2578 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2581 switch (ing_filter(skb)) {
2582 case TC_ACT_SHOT:
2583 case TC_ACT_STOLEN:
2584 kfree_skb(skb);
2585 return NULL;
2588 out:
2589 skb->tc_verd = 0;
2590 return skb;
2592 #endif
2595 * netif_nit_deliver - deliver received packets to network taps
2596 * @skb: buffer
2598 * This function is used to deliver incoming packets to network
2599 * taps. It should be used when the normal netif_receive_skb path
2600 * is bypassed, for example because of VLAN acceleration.
2602 void netif_nit_deliver(struct sk_buff *skb)
2604 struct packet_type *ptype;
2606 if (list_empty(&ptype_all))
2607 return;
2609 skb_reset_network_header(skb);
2610 skb_reset_transport_header(skb);
2611 skb->mac_len = skb->network_header - skb->mac_header;
2613 rcu_read_lock();
2614 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2615 if (!ptype->dev || ptype->dev == skb->dev)
2616 deliver_skb(skb, ptype, skb->dev);
2618 rcu_read_unlock();
2621 int __netif_receive_skb(struct sk_buff *skb)
2623 struct packet_type *ptype, *pt_prev;
2624 struct net_device *orig_dev;
2625 struct net_device *null_or_orig;
2626 struct net_device *null_or_bond;
2627 int ret = NET_RX_DROP;
2628 __be16 type;
2630 if (!skb->tstamp.tv64)
2631 net_timestamp(skb);
2633 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2634 return NET_RX_SUCCESS;
2636 /* if we've gotten here through NAPI, check netpoll */
2637 if (netpoll_receive_skb(skb))
2638 return NET_RX_DROP;
2640 if (!skb->skb_iif)
2641 skb->skb_iif = skb->dev->ifindex;
2643 null_or_orig = NULL;
2644 orig_dev = skb->dev;
2645 if (orig_dev->master) {
2646 if (skb_bond_should_drop(skb))
2647 null_or_orig = orig_dev; /* deliver only exact match */
2648 else
2649 skb->dev = orig_dev->master;
2652 __get_cpu_var(netdev_rx_stat).total++;
2654 skb_reset_network_header(skb);
2655 skb_reset_transport_header(skb);
2656 skb->mac_len = skb->network_header - skb->mac_header;
2658 pt_prev = NULL;
2660 rcu_read_lock();
2662 #ifdef CONFIG_NET_CLS_ACT
2663 if (skb->tc_verd & TC_NCLS) {
2664 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2665 goto ncls;
2667 #endif
2669 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2670 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2671 ptype->dev == orig_dev) {
2672 if (pt_prev)
2673 ret = deliver_skb(skb, pt_prev, orig_dev);
2674 pt_prev = ptype;
2678 #ifdef CONFIG_NET_CLS_ACT
2679 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2680 if (!skb)
2681 goto out;
2682 ncls:
2683 #endif
2685 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2686 if (!skb)
2687 goto out;
2688 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2689 if (!skb)
2690 goto out;
2693 * Make sure frames received on VLAN interfaces stacked on
2694 * bonding interfaces still make their way to any base bonding
2695 * device that may have registered for a specific ptype. The
2696 * handler may have to adjust skb->dev and orig_dev.
2698 null_or_bond = NULL;
2699 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2700 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2701 null_or_bond = vlan_dev_real_dev(skb->dev);
2704 type = skb->protocol;
2705 list_for_each_entry_rcu(ptype,
2706 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2707 if (ptype->type == type && (ptype->dev == null_or_orig ||
2708 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2709 ptype->dev == null_or_bond)) {
2710 if (pt_prev)
2711 ret = deliver_skb(skb, pt_prev, orig_dev);
2712 pt_prev = ptype;
2716 if (pt_prev) {
2717 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2718 } else {
2719 kfree_skb(skb);
2720 /* Jamal, now you will not able to escape explaining
2721 * me how you were going to use this. :-)
2723 ret = NET_RX_DROP;
2726 out:
2727 rcu_read_unlock();
2728 return ret;
2732 * netif_receive_skb - process receive buffer from network
2733 * @skb: buffer to process
2735 * netif_receive_skb() is the main receive data processing function.
2736 * It always succeeds. The buffer may be dropped during processing
2737 * for congestion control or by the protocol layers.
2739 * This function may only be called from softirq context and interrupts
2740 * should be enabled.
2742 * Return values (usually ignored):
2743 * NET_RX_SUCCESS: no congestion
2744 * NET_RX_DROP: packet was dropped
2746 int netif_receive_skb(struct sk_buff *skb)
2748 #ifdef CONFIG_SMP
2749 int cpu;
2751 cpu = get_rps_cpu(skb->dev, skb);
2753 if (cpu < 0)
2754 return __netif_receive_skb(skb);
2755 else
2756 return enqueue_to_backlog(skb, cpu);
2757 #else
2758 return __netif_receive_skb(skb);
2759 #endif
2761 EXPORT_SYMBOL(netif_receive_skb);
2763 /* Network device is going away, flush any packets still pending */
2764 static void flush_backlog(void *arg)
2766 struct net_device *dev = arg;
2767 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2768 struct sk_buff *skb, *tmp;
2770 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2771 if (skb->dev == dev) {
2772 __skb_unlink(skb, &queue->input_pkt_queue);
2773 kfree_skb(skb);
2777 static int napi_gro_complete(struct sk_buff *skb)
2779 struct packet_type *ptype;
2780 __be16 type = skb->protocol;
2781 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2782 int err = -ENOENT;
2784 if (NAPI_GRO_CB(skb)->count == 1) {
2785 skb_shinfo(skb)->gso_size = 0;
2786 goto out;
2789 rcu_read_lock();
2790 list_for_each_entry_rcu(ptype, head, list) {
2791 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2792 continue;
2794 err = ptype->gro_complete(skb);
2795 break;
2797 rcu_read_unlock();
2799 if (err) {
2800 WARN_ON(&ptype->list == head);
2801 kfree_skb(skb);
2802 return NET_RX_SUCCESS;
2805 out:
2806 return netif_receive_skb(skb);
2809 static void napi_gro_flush(struct napi_struct *napi)
2811 struct sk_buff *skb, *next;
2813 for (skb = napi->gro_list; skb; skb = next) {
2814 next = skb->next;
2815 skb->next = NULL;
2816 napi_gro_complete(skb);
2819 napi->gro_count = 0;
2820 napi->gro_list = NULL;
2823 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2825 struct sk_buff **pp = NULL;
2826 struct packet_type *ptype;
2827 __be16 type = skb->protocol;
2828 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2829 int same_flow;
2830 int mac_len;
2831 enum gro_result ret;
2833 if (!(skb->dev->features & NETIF_F_GRO))
2834 goto normal;
2836 if (skb_is_gso(skb) || skb_has_frags(skb))
2837 goto normal;
2839 rcu_read_lock();
2840 list_for_each_entry_rcu(ptype, head, list) {
2841 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2842 continue;
2844 skb_set_network_header(skb, skb_gro_offset(skb));
2845 mac_len = skb->network_header - skb->mac_header;
2846 skb->mac_len = mac_len;
2847 NAPI_GRO_CB(skb)->same_flow = 0;
2848 NAPI_GRO_CB(skb)->flush = 0;
2849 NAPI_GRO_CB(skb)->free = 0;
2851 pp = ptype->gro_receive(&napi->gro_list, skb);
2852 break;
2854 rcu_read_unlock();
2856 if (&ptype->list == head)
2857 goto normal;
2859 same_flow = NAPI_GRO_CB(skb)->same_flow;
2860 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2862 if (pp) {
2863 struct sk_buff *nskb = *pp;
2865 *pp = nskb->next;
2866 nskb->next = NULL;
2867 napi_gro_complete(nskb);
2868 napi->gro_count--;
2871 if (same_flow)
2872 goto ok;
2874 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2875 goto normal;
2877 napi->gro_count++;
2878 NAPI_GRO_CB(skb)->count = 1;
2879 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2880 skb->next = napi->gro_list;
2881 napi->gro_list = skb;
2882 ret = GRO_HELD;
2884 pull:
2885 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2886 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2888 BUG_ON(skb->end - skb->tail < grow);
2890 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2892 skb->tail += grow;
2893 skb->data_len -= grow;
2895 skb_shinfo(skb)->frags[0].page_offset += grow;
2896 skb_shinfo(skb)->frags[0].size -= grow;
2898 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2899 put_page(skb_shinfo(skb)->frags[0].page);
2900 memmove(skb_shinfo(skb)->frags,
2901 skb_shinfo(skb)->frags + 1,
2902 --skb_shinfo(skb)->nr_frags);
2907 return ret;
2909 normal:
2910 ret = GRO_NORMAL;
2911 goto pull;
2913 EXPORT_SYMBOL(dev_gro_receive);
2915 static gro_result_t
2916 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2918 struct sk_buff *p;
2920 if (netpoll_rx_on(skb))
2921 return GRO_NORMAL;
2923 for (p = napi->gro_list; p; p = p->next) {
2924 NAPI_GRO_CB(p)->same_flow =
2925 (p->dev == skb->dev) &&
2926 !compare_ether_header(skb_mac_header(p),
2927 skb_gro_mac_header(skb));
2928 NAPI_GRO_CB(p)->flush = 0;
2931 return dev_gro_receive(napi, skb);
2934 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2936 switch (ret) {
2937 case GRO_NORMAL:
2938 if (netif_receive_skb(skb))
2939 ret = GRO_DROP;
2940 break;
2942 case GRO_DROP:
2943 case GRO_MERGED_FREE:
2944 kfree_skb(skb);
2945 break;
2947 case GRO_HELD:
2948 case GRO_MERGED:
2949 break;
2952 return ret;
2954 EXPORT_SYMBOL(napi_skb_finish);
2956 void skb_gro_reset_offset(struct sk_buff *skb)
2958 NAPI_GRO_CB(skb)->data_offset = 0;
2959 NAPI_GRO_CB(skb)->frag0 = NULL;
2960 NAPI_GRO_CB(skb)->frag0_len = 0;
2962 if (skb->mac_header == skb->tail &&
2963 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2964 NAPI_GRO_CB(skb)->frag0 =
2965 page_address(skb_shinfo(skb)->frags[0].page) +
2966 skb_shinfo(skb)->frags[0].page_offset;
2967 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2970 EXPORT_SYMBOL(skb_gro_reset_offset);
2972 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2974 skb_gro_reset_offset(skb);
2976 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2978 EXPORT_SYMBOL(napi_gro_receive);
2980 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2982 __skb_pull(skb, skb_headlen(skb));
2983 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2985 napi->skb = skb;
2987 EXPORT_SYMBOL(napi_reuse_skb);
2989 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2991 struct sk_buff *skb = napi->skb;
2993 if (!skb) {
2994 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2995 if (skb)
2996 napi->skb = skb;
2998 return skb;
3000 EXPORT_SYMBOL(napi_get_frags);
3002 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3003 gro_result_t ret)
3005 switch (ret) {
3006 case GRO_NORMAL:
3007 case GRO_HELD:
3008 skb->protocol = eth_type_trans(skb, skb->dev);
3010 if (ret == GRO_HELD)
3011 skb_gro_pull(skb, -ETH_HLEN);
3012 else if (netif_receive_skb(skb))
3013 ret = GRO_DROP;
3014 break;
3016 case GRO_DROP:
3017 case GRO_MERGED_FREE:
3018 napi_reuse_skb(napi, skb);
3019 break;
3021 case GRO_MERGED:
3022 break;
3025 return ret;
3027 EXPORT_SYMBOL(napi_frags_finish);
3029 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3031 struct sk_buff *skb = napi->skb;
3032 struct ethhdr *eth;
3033 unsigned int hlen;
3034 unsigned int off;
3036 napi->skb = NULL;
3038 skb_reset_mac_header(skb);
3039 skb_gro_reset_offset(skb);
3041 off = skb_gro_offset(skb);
3042 hlen = off + sizeof(*eth);
3043 eth = skb_gro_header_fast(skb, off);
3044 if (skb_gro_header_hard(skb, hlen)) {
3045 eth = skb_gro_header_slow(skb, hlen, off);
3046 if (unlikely(!eth)) {
3047 napi_reuse_skb(napi, skb);
3048 skb = NULL;
3049 goto out;
3053 skb_gro_pull(skb, sizeof(*eth));
3056 * This works because the only protocols we care about don't require
3057 * special handling. We'll fix it up properly at the end.
3059 skb->protocol = eth->h_proto;
3061 out:
3062 return skb;
3064 EXPORT_SYMBOL(napi_frags_skb);
3066 gro_result_t napi_gro_frags(struct napi_struct *napi)
3068 struct sk_buff *skb = napi_frags_skb(napi);
3070 if (!skb)
3071 return GRO_DROP;
3073 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3075 EXPORT_SYMBOL(napi_gro_frags);
3077 static int process_backlog(struct napi_struct *napi, int quota)
3079 int work = 0;
3080 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3081 unsigned long start_time = jiffies;
3083 napi->weight = weight_p;
3084 do {
3085 struct sk_buff *skb;
3087 spin_lock_irq(&queue->input_pkt_queue.lock);
3088 skb = __skb_dequeue(&queue->input_pkt_queue);
3089 if (!skb) {
3090 __napi_complete(napi);
3091 spin_unlock_irq(&queue->input_pkt_queue.lock);
3092 break;
3094 spin_unlock_irq(&queue->input_pkt_queue.lock);
3096 __netif_receive_skb(skb);
3097 } while (++work < quota && jiffies == start_time);
3099 return work;
3103 * __napi_schedule - schedule for receive
3104 * @n: entry to schedule
3106 * The entry's receive function will be scheduled to run
3108 void __napi_schedule(struct napi_struct *n)
3110 unsigned long flags;
3112 local_irq_save(flags);
3113 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3114 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3115 local_irq_restore(flags);
3117 EXPORT_SYMBOL(__napi_schedule);
3119 void __napi_complete(struct napi_struct *n)
3121 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3122 BUG_ON(n->gro_list);
3124 list_del(&n->poll_list);
3125 smp_mb__before_clear_bit();
3126 clear_bit(NAPI_STATE_SCHED, &n->state);
3128 EXPORT_SYMBOL(__napi_complete);
3130 void napi_complete(struct napi_struct *n)
3132 unsigned long flags;
3135 * don't let napi dequeue from the cpu poll list
3136 * just in case its running on a different cpu
3138 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3139 return;
3141 napi_gro_flush(n);
3142 local_irq_save(flags);
3143 __napi_complete(n);
3144 local_irq_restore(flags);
3146 EXPORT_SYMBOL(napi_complete);
3148 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3149 int (*poll)(struct napi_struct *, int), int weight)
3151 INIT_LIST_HEAD(&napi->poll_list);
3152 napi->gro_count = 0;
3153 napi->gro_list = NULL;
3154 napi->skb = NULL;
3155 napi->poll = poll;
3156 napi->weight = weight;
3157 list_add(&napi->dev_list, &dev->napi_list);
3158 napi->dev = dev;
3159 #ifdef CONFIG_NETPOLL
3160 spin_lock_init(&napi->poll_lock);
3161 napi->poll_owner = -1;
3162 #endif
3163 set_bit(NAPI_STATE_SCHED, &napi->state);
3165 EXPORT_SYMBOL(netif_napi_add);
3167 void netif_napi_del(struct napi_struct *napi)
3169 struct sk_buff *skb, *next;
3171 list_del_init(&napi->dev_list);
3172 napi_free_frags(napi);
3174 for (skb = napi->gro_list; skb; skb = next) {
3175 next = skb->next;
3176 skb->next = NULL;
3177 kfree_skb(skb);
3180 napi->gro_list = NULL;
3181 napi->gro_count = 0;
3183 EXPORT_SYMBOL(netif_napi_del);
3185 #ifdef CONFIG_SMP
3187 * net_rps_action sends any pending IPI's for rps. This is only called from
3188 * softirq and interrupts must be enabled.
3190 static void net_rps_action(cpumask_t *mask)
3192 int cpu;
3194 /* Send pending IPI's to kick RPS processing on remote cpus. */
3195 for_each_cpu_mask_nr(cpu, *mask) {
3196 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3197 if (cpu_online(cpu))
3198 __smp_call_function_single(cpu, &queue->csd, 0);
3200 cpus_clear(*mask);
3202 #endif
3204 static void net_rx_action(struct softirq_action *h)
3206 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3207 unsigned long time_limit = jiffies + 2;
3208 int budget = netdev_budget;
3209 void *have;
3210 #ifdef CONFIG_SMP
3211 int select;
3212 struct rps_remote_softirq_cpus *rcpus;
3213 #endif
3215 local_irq_disable();
3217 while (!list_empty(list)) {
3218 struct napi_struct *n;
3219 int work, weight;
3221 /* If softirq window is exhuasted then punt.
3222 * Allow this to run for 2 jiffies since which will allow
3223 * an average latency of 1.5/HZ.
3225 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3226 goto softnet_break;
3228 local_irq_enable();
3230 /* Even though interrupts have been re-enabled, this
3231 * access is safe because interrupts can only add new
3232 * entries to the tail of this list, and only ->poll()
3233 * calls can remove this head entry from the list.
3235 n = list_first_entry(list, struct napi_struct, poll_list);
3237 have = netpoll_poll_lock(n);
3239 weight = n->weight;
3241 /* This NAPI_STATE_SCHED test is for avoiding a race
3242 * with netpoll's poll_napi(). Only the entity which
3243 * obtains the lock and sees NAPI_STATE_SCHED set will
3244 * actually make the ->poll() call. Therefore we avoid
3245 * accidently calling ->poll() when NAPI is not scheduled.
3247 work = 0;
3248 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3249 work = n->poll(n, weight);
3250 trace_napi_poll(n);
3253 WARN_ON_ONCE(work > weight);
3255 budget -= work;
3257 local_irq_disable();
3259 /* Drivers must not modify the NAPI state if they
3260 * consume the entire weight. In such cases this code
3261 * still "owns" the NAPI instance and therefore can
3262 * move the instance around on the list at-will.
3264 if (unlikely(work == weight)) {
3265 if (unlikely(napi_disable_pending(n))) {
3266 local_irq_enable();
3267 napi_complete(n);
3268 local_irq_disable();
3269 } else
3270 list_move_tail(&n->poll_list, list);
3273 netpoll_poll_unlock(have);
3275 out:
3276 #ifdef CONFIG_SMP
3277 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3278 select = rcpus->select;
3279 rcpus->select ^= 1;
3281 local_irq_enable();
3283 net_rps_action(&rcpus->mask[select]);
3284 #else
3285 local_irq_enable();
3286 #endif
3288 #ifdef CONFIG_NET_DMA
3290 * There may not be any more sk_buffs coming right now, so push
3291 * any pending DMA copies to hardware
3293 dma_issue_pending_all();
3294 #endif
3296 return;
3298 softnet_break:
3299 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3300 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3301 goto out;
3304 static gifconf_func_t *gifconf_list[NPROTO];
3307 * register_gifconf - register a SIOCGIF handler
3308 * @family: Address family
3309 * @gifconf: Function handler
3311 * Register protocol dependent address dumping routines. The handler
3312 * that is passed must not be freed or reused until it has been replaced
3313 * by another handler.
3315 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3317 if (family >= NPROTO)
3318 return -EINVAL;
3319 gifconf_list[family] = gifconf;
3320 return 0;
3322 EXPORT_SYMBOL(register_gifconf);
3326 * Map an interface index to its name (SIOCGIFNAME)
3330 * We need this ioctl for efficient implementation of the
3331 * if_indextoname() function required by the IPv6 API. Without
3332 * it, we would have to search all the interfaces to find a
3333 * match. --pb
3336 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3338 struct net_device *dev;
3339 struct ifreq ifr;
3342 * Fetch the caller's info block.
3345 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3346 return -EFAULT;
3348 rcu_read_lock();
3349 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3350 if (!dev) {
3351 rcu_read_unlock();
3352 return -ENODEV;
3355 strcpy(ifr.ifr_name, dev->name);
3356 rcu_read_unlock();
3358 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3359 return -EFAULT;
3360 return 0;
3364 * Perform a SIOCGIFCONF call. This structure will change
3365 * size eventually, and there is nothing I can do about it.
3366 * Thus we will need a 'compatibility mode'.
3369 static int dev_ifconf(struct net *net, char __user *arg)
3371 struct ifconf ifc;
3372 struct net_device *dev;
3373 char __user *pos;
3374 int len;
3375 int total;
3376 int i;
3379 * Fetch the caller's info block.
3382 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3383 return -EFAULT;
3385 pos = ifc.ifc_buf;
3386 len = ifc.ifc_len;
3389 * Loop over the interfaces, and write an info block for each.
3392 total = 0;
3393 for_each_netdev(net, dev) {
3394 for (i = 0; i < NPROTO; i++) {
3395 if (gifconf_list[i]) {
3396 int done;
3397 if (!pos)
3398 done = gifconf_list[i](dev, NULL, 0);
3399 else
3400 done = gifconf_list[i](dev, pos + total,
3401 len - total);
3402 if (done < 0)
3403 return -EFAULT;
3404 total += done;
3410 * All done. Write the updated control block back to the caller.
3412 ifc.ifc_len = total;
3415 * Both BSD and Solaris return 0 here, so we do too.
3417 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3420 #ifdef CONFIG_PROC_FS
3422 * This is invoked by the /proc filesystem handler to display a device
3423 * in detail.
3425 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3426 __acquires(RCU)
3428 struct net *net = seq_file_net(seq);
3429 loff_t off;
3430 struct net_device *dev;
3432 rcu_read_lock();
3433 if (!*pos)
3434 return SEQ_START_TOKEN;
3436 off = 1;
3437 for_each_netdev_rcu(net, dev)
3438 if (off++ == *pos)
3439 return dev;
3441 return NULL;
3444 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3446 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3447 first_net_device(seq_file_net(seq)) :
3448 next_net_device((struct net_device *)v);
3450 ++*pos;
3451 return rcu_dereference(dev);
3454 void dev_seq_stop(struct seq_file *seq, void *v)
3455 __releases(RCU)
3457 rcu_read_unlock();
3460 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3462 const struct net_device_stats *stats = dev_get_stats(dev);
3464 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3465 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3466 dev->name, stats->rx_bytes, stats->rx_packets,
3467 stats->rx_errors,
3468 stats->rx_dropped + stats->rx_missed_errors,
3469 stats->rx_fifo_errors,
3470 stats->rx_length_errors + stats->rx_over_errors +
3471 stats->rx_crc_errors + stats->rx_frame_errors,
3472 stats->rx_compressed, stats->multicast,
3473 stats->tx_bytes, stats->tx_packets,
3474 stats->tx_errors, stats->tx_dropped,
3475 stats->tx_fifo_errors, stats->collisions,
3476 stats->tx_carrier_errors +
3477 stats->tx_aborted_errors +
3478 stats->tx_window_errors +
3479 stats->tx_heartbeat_errors,
3480 stats->tx_compressed);
3484 * Called from the PROCfs module. This now uses the new arbitrary sized
3485 * /proc/net interface to create /proc/net/dev
3487 static int dev_seq_show(struct seq_file *seq, void *v)
3489 if (v == SEQ_START_TOKEN)
3490 seq_puts(seq, "Inter-| Receive "
3491 " | Transmit\n"
3492 " face |bytes packets errs drop fifo frame "
3493 "compressed multicast|bytes packets errs "
3494 "drop fifo colls carrier compressed\n");
3495 else
3496 dev_seq_printf_stats(seq, v);
3497 return 0;
3500 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3502 struct netif_rx_stats *rc = NULL;
3504 while (*pos < nr_cpu_ids)
3505 if (cpu_online(*pos)) {
3506 rc = &per_cpu(netdev_rx_stat, *pos);
3507 break;
3508 } else
3509 ++*pos;
3510 return rc;
3513 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3515 return softnet_get_online(pos);
3518 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3520 ++*pos;
3521 return softnet_get_online(pos);
3524 static void softnet_seq_stop(struct seq_file *seq, void *v)
3528 static int softnet_seq_show(struct seq_file *seq, void *v)
3530 struct netif_rx_stats *s = v;
3532 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3533 s->total, s->dropped, s->time_squeeze, 0,
3534 0, 0, 0, 0, /* was fastroute */
3535 s->cpu_collision, s->received_rps);
3536 return 0;
3539 static const struct seq_operations dev_seq_ops = {
3540 .start = dev_seq_start,
3541 .next = dev_seq_next,
3542 .stop = dev_seq_stop,
3543 .show = dev_seq_show,
3546 static int dev_seq_open(struct inode *inode, struct file *file)
3548 return seq_open_net(inode, file, &dev_seq_ops,
3549 sizeof(struct seq_net_private));
3552 static const struct file_operations dev_seq_fops = {
3553 .owner = THIS_MODULE,
3554 .open = dev_seq_open,
3555 .read = seq_read,
3556 .llseek = seq_lseek,
3557 .release = seq_release_net,
3560 static const struct seq_operations softnet_seq_ops = {
3561 .start = softnet_seq_start,
3562 .next = softnet_seq_next,
3563 .stop = softnet_seq_stop,
3564 .show = softnet_seq_show,
3567 static int softnet_seq_open(struct inode *inode, struct file *file)
3569 return seq_open(file, &softnet_seq_ops);
3572 static const struct file_operations softnet_seq_fops = {
3573 .owner = THIS_MODULE,
3574 .open = softnet_seq_open,
3575 .read = seq_read,
3576 .llseek = seq_lseek,
3577 .release = seq_release,
3580 static void *ptype_get_idx(loff_t pos)
3582 struct packet_type *pt = NULL;
3583 loff_t i = 0;
3584 int t;
3586 list_for_each_entry_rcu(pt, &ptype_all, list) {
3587 if (i == pos)
3588 return pt;
3589 ++i;
3592 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3593 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3594 if (i == pos)
3595 return pt;
3596 ++i;
3599 return NULL;
3602 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3603 __acquires(RCU)
3605 rcu_read_lock();
3606 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3609 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3611 struct packet_type *pt;
3612 struct list_head *nxt;
3613 int hash;
3615 ++*pos;
3616 if (v == SEQ_START_TOKEN)
3617 return ptype_get_idx(0);
3619 pt = v;
3620 nxt = pt->list.next;
3621 if (pt->type == htons(ETH_P_ALL)) {
3622 if (nxt != &ptype_all)
3623 goto found;
3624 hash = 0;
3625 nxt = ptype_base[0].next;
3626 } else
3627 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3629 while (nxt == &ptype_base[hash]) {
3630 if (++hash >= PTYPE_HASH_SIZE)
3631 return NULL;
3632 nxt = ptype_base[hash].next;
3634 found:
3635 return list_entry(nxt, struct packet_type, list);
3638 static void ptype_seq_stop(struct seq_file *seq, void *v)
3639 __releases(RCU)
3641 rcu_read_unlock();
3644 static int ptype_seq_show(struct seq_file *seq, void *v)
3646 struct packet_type *pt = v;
3648 if (v == SEQ_START_TOKEN)
3649 seq_puts(seq, "Type Device Function\n");
3650 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3651 if (pt->type == htons(ETH_P_ALL))
3652 seq_puts(seq, "ALL ");
3653 else
3654 seq_printf(seq, "%04x", ntohs(pt->type));
3656 seq_printf(seq, " %-8s %pF\n",
3657 pt->dev ? pt->dev->name : "", pt->func);
3660 return 0;
3663 static const struct seq_operations ptype_seq_ops = {
3664 .start = ptype_seq_start,
3665 .next = ptype_seq_next,
3666 .stop = ptype_seq_stop,
3667 .show = ptype_seq_show,
3670 static int ptype_seq_open(struct inode *inode, struct file *file)
3672 return seq_open_net(inode, file, &ptype_seq_ops,
3673 sizeof(struct seq_net_private));
3676 static const struct file_operations ptype_seq_fops = {
3677 .owner = THIS_MODULE,
3678 .open = ptype_seq_open,
3679 .read = seq_read,
3680 .llseek = seq_lseek,
3681 .release = seq_release_net,
3685 static int __net_init dev_proc_net_init(struct net *net)
3687 int rc = -ENOMEM;
3689 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3690 goto out;
3691 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3692 goto out_dev;
3693 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3694 goto out_softnet;
3696 if (wext_proc_init(net))
3697 goto out_ptype;
3698 rc = 0;
3699 out:
3700 return rc;
3701 out_ptype:
3702 proc_net_remove(net, "ptype");
3703 out_softnet:
3704 proc_net_remove(net, "softnet_stat");
3705 out_dev:
3706 proc_net_remove(net, "dev");
3707 goto out;
3710 static void __net_exit dev_proc_net_exit(struct net *net)
3712 wext_proc_exit(net);
3714 proc_net_remove(net, "ptype");
3715 proc_net_remove(net, "softnet_stat");
3716 proc_net_remove(net, "dev");
3719 static struct pernet_operations __net_initdata dev_proc_ops = {
3720 .init = dev_proc_net_init,
3721 .exit = dev_proc_net_exit,
3724 static int __init dev_proc_init(void)
3726 return register_pernet_subsys(&dev_proc_ops);
3728 #else
3729 #define dev_proc_init() 0
3730 #endif /* CONFIG_PROC_FS */
3734 * netdev_set_master - set up master/slave pair
3735 * @slave: slave device
3736 * @master: new master device
3738 * Changes the master device of the slave. Pass %NULL to break the
3739 * bonding. The caller must hold the RTNL semaphore. On a failure
3740 * a negative errno code is returned. On success the reference counts
3741 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3742 * function returns zero.
3744 int netdev_set_master(struct net_device *slave, struct net_device *master)
3746 struct net_device *old = slave->master;
3748 ASSERT_RTNL();
3750 if (master) {
3751 if (old)
3752 return -EBUSY;
3753 dev_hold(master);
3756 slave->master = master;
3758 synchronize_net();
3760 if (old)
3761 dev_put(old);
3763 if (master)
3764 slave->flags |= IFF_SLAVE;
3765 else
3766 slave->flags &= ~IFF_SLAVE;
3768 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3769 return 0;
3771 EXPORT_SYMBOL(netdev_set_master);
3773 static void dev_change_rx_flags(struct net_device *dev, int flags)
3775 const struct net_device_ops *ops = dev->netdev_ops;
3777 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3778 ops->ndo_change_rx_flags(dev, flags);
3781 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3783 unsigned short old_flags = dev->flags;
3784 uid_t uid;
3785 gid_t gid;
3787 ASSERT_RTNL();
3789 dev->flags |= IFF_PROMISC;
3790 dev->promiscuity += inc;
3791 if (dev->promiscuity == 0) {
3793 * Avoid overflow.
3794 * If inc causes overflow, untouch promisc and return error.
3796 if (inc < 0)
3797 dev->flags &= ~IFF_PROMISC;
3798 else {
3799 dev->promiscuity -= inc;
3800 printk(KERN_WARNING "%s: promiscuity touches roof, "
3801 "set promiscuity failed, promiscuity feature "
3802 "of device might be broken.\n", dev->name);
3803 return -EOVERFLOW;
3806 if (dev->flags != old_flags) {
3807 printk(KERN_INFO "device %s %s promiscuous mode\n",
3808 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3809 "left");
3810 if (audit_enabled) {
3811 current_uid_gid(&uid, &gid);
3812 audit_log(current->audit_context, GFP_ATOMIC,
3813 AUDIT_ANOM_PROMISCUOUS,
3814 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3815 dev->name, (dev->flags & IFF_PROMISC),
3816 (old_flags & IFF_PROMISC),
3817 audit_get_loginuid(current),
3818 uid, gid,
3819 audit_get_sessionid(current));
3822 dev_change_rx_flags(dev, IFF_PROMISC);
3824 return 0;
3828 * dev_set_promiscuity - update promiscuity count on a device
3829 * @dev: device
3830 * @inc: modifier
3832 * Add or remove promiscuity from a device. While the count in the device
3833 * remains above zero the interface remains promiscuous. Once it hits zero
3834 * the device reverts back to normal filtering operation. A negative inc
3835 * value is used to drop promiscuity on the device.
3836 * Return 0 if successful or a negative errno code on error.
3838 int dev_set_promiscuity(struct net_device *dev, int inc)
3840 unsigned short old_flags = dev->flags;
3841 int err;
3843 err = __dev_set_promiscuity(dev, inc);
3844 if (err < 0)
3845 return err;
3846 if (dev->flags != old_flags)
3847 dev_set_rx_mode(dev);
3848 return err;
3850 EXPORT_SYMBOL(dev_set_promiscuity);
3853 * dev_set_allmulti - update allmulti count on a device
3854 * @dev: device
3855 * @inc: modifier
3857 * Add or remove reception of all multicast frames to a device. While the
3858 * count in the device remains above zero the interface remains listening
3859 * to all interfaces. Once it hits zero the device reverts back to normal
3860 * filtering operation. A negative @inc value is used to drop the counter
3861 * when releasing a resource needing all multicasts.
3862 * Return 0 if successful or a negative errno code on error.
3865 int dev_set_allmulti(struct net_device *dev, int inc)
3867 unsigned short old_flags = dev->flags;
3869 ASSERT_RTNL();
3871 dev->flags |= IFF_ALLMULTI;
3872 dev->allmulti += inc;
3873 if (dev->allmulti == 0) {
3875 * Avoid overflow.
3876 * If inc causes overflow, untouch allmulti and return error.
3878 if (inc < 0)
3879 dev->flags &= ~IFF_ALLMULTI;
3880 else {
3881 dev->allmulti -= inc;
3882 printk(KERN_WARNING "%s: allmulti touches roof, "
3883 "set allmulti failed, allmulti feature of "
3884 "device might be broken.\n", dev->name);
3885 return -EOVERFLOW;
3888 if (dev->flags ^ old_flags) {
3889 dev_change_rx_flags(dev, IFF_ALLMULTI);
3890 dev_set_rx_mode(dev);
3892 return 0;
3894 EXPORT_SYMBOL(dev_set_allmulti);
3897 * Upload unicast and multicast address lists to device and
3898 * configure RX filtering. When the device doesn't support unicast
3899 * filtering it is put in promiscuous mode while unicast addresses
3900 * are present.
3902 void __dev_set_rx_mode(struct net_device *dev)
3904 const struct net_device_ops *ops = dev->netdev_ops;
3906 /* dev_open will call this function so the list will stay sane. */
3907 if (!(dev->flags&IFF_UP))
3908 return;
3910 if (!netif_device_present(dev))
3911 return;
3913 if (ops->ndo_set_rx_mode)
3914 ops->ndo_set_rx_mode(dev);
3915 else {
3916 /* Unicast addresses changes may only happen under the rtnl,
3917 * therefore calling __dev_set_promiscuity here is safe.
3919 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3920 __dev_set_promiscuity(dev, 1);
3921 dev->uc_promisc = 1;
3922 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3923 __dev_set_promiscuity(dev, -1);
3924 dev->uc_promisc = 0;
3927 if (ops->ndo_set_multicast_list)
3928 ops->ndo_set_multicast_list(dev);
3932 void dev_set_rx_mode(struct net_device *dev)
3934 netif_addr_lock_bh(dev);
3935 __dev_set_rx_mode(dev);
3936 netif_addr_unlock_bh(dev);
3939 /* hw addresses list handling functions */
3941 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3942 int addr_len, unsigned char addr_type)
3944 struct netdev_hw_addr *ha;
3945 int alloc_size;
3947 if (addr_len > MAX_ADDR_LEN)
3948 return -EINVAL;
3950 list_for_each_entry(ha, &list->list, list) {
3951 if (!memcmp(ha->addr, addr, addr_len) &&
3952 ha->type == addr_type) {
3953 ha->refcount++;
3954 return 0;
3959 alloc_size = sizeof(*ha);
3960 if (alloc_size < L1_CACHE_BYTES)
3961 alloc_size = L1_CACHE_BYTES;
3962 ha = kmalloc(alloc_size, GFP_ATOMIC);
3963 if (!ha)
3964 return -ENOMEM;
3965 memcpy(ha->addr, addr, addr_len);
3966 ha->type = addr_type;
3967 ha->refcount = 1;
3968 ha->synced = false;
3969 list_add_tail_rcu(&ha->list, &list->list);
3970 list->count++;
3971 return 0;
3974 static void ha_rcu_free(struct rcu_head *head)
3976 struct netdev_hw_addr *ha;
3978 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3979 kfree(ha);
3982 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3983 int addr_len, unsigned char addr_type)
3985 struct netdev_hw_addr *ha;
3987 list_for_each_entry(ha, &list->list, list) {
3988 if (!memcmp(ha->addr, addr, addr_len) &&
3989 (ha->type == addr_type || !addr_type)) {
3990 if (--ha->refcount)
3991 return 0;
3992 list_del_rcu(&ha->list);
3993 call_rcu(&ha->rcu_head, ha_rcu_free);
3994 list->count--;
3995 return 0;
3998 return -ENOENT;
4001 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
4002 struct netdev_hw_addr_list *from_list,
4003 int addr_len,
4004 unsigned char addr_type)
4006 int err;
4007 struct netdev_hw_addr *ha, *ha2;
4008 unsigned char type;
4010 list_for_each_entry(ha, &from_list->list, list) {
4011 type = addr_type ? addr_type : ha->type;
4012 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
4013 if (err)
4014 goto unroll;
4016 return 0;
4018 unroll:
4019 list_for_each_entry(ha2, &from_list->list, list) {
4020 if (ha2 == ha)
4021 break;
4022 type = addr_type ? addr_type : ha2->type;
4023 __hw_addr_del(to_list, ha2->addr, addr_len, type);
4025 return err;
4028 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4029 struct netdev_hw_addr_list *from_list,
4030 int addr_len,
4031 unsigned char addr_type)
4033 struct netdev_hw_addr *ha;
4034 unsigned char type;
4036 list_for_each_entry(ha, &from_list->list, list) {
4037 type = addr_type ? addr_type : ha->type;
4038 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
4042 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4043 struct netdev_hw_addr_list *from_list,
4044 int addr_len)
4046 int err = 0;
4047 struct netdev_hw_addr *ha, *tmp;
4049 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4050 if (!ha->synced) {
4051 err = __hw_addr_add(to_list, ha->addr,
4052 addr_len, ha->type);
4053 if (err)
4054 break;
4055 ha->synced = true;
4056 ha->refcount++;
4057 } else if (ha->refcount == 1) {
4058 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4059 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
4062 return err;
4065 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4066 struct netdev_hw_addr_list *from_list,
4067 int addr_len)
4069 struct netdev_hw_addr *ha, *tmp;
4071 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4072 if (ha->synced) {
4073 __hw_addr_del(to_list, ha->addr,
4074 addr_len, ha->type);
4075 ha->synced = false;
4076 __hw_addr_del(from_list, ha->addr,
4077 addr_len, ha->type);
4082 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
4084 struct netdev_hw_addr *ha, *tmp;
4086 list_for_each_entry_safe(ha, tmp, &list->list, list) {
4087 list_del_rcu(&ha->list);
4088 call_rcu(&ha->rcu_head, ha_rcu_free);
4090 list->count = 0;
4093 static void __hw_addr_init(struct netdev_hw_addr_list *list)
4095 INIT_LIST_HEAD(&list->list);
4096 list->count = 0;
4099 /* Device addresses handling functions */
4101 static void dev_addr_flush(struct net_device *dev)
4103 /* rtnl_mutex must be held here */
4105 __hw_addr_flush(&dev->dev_addrs);
4106 dev->dev_addr = NULL;
4109 static int dev_addr_init(struct net_device *dev)
4111 unsigned char addr[MAX_ADDR_LEN];
4112 struct netdev_hw_addr *ha;
4113 int err;
4115 /* rtnl_mutex must be held here */
4117 __hw_addr_init(&dev->dev_addrs);
4118 memset(addr, 0, sizeof(addr));
4119 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
4120 NETDEV_HW_ADDR_T_LAN);
4121 if (!err) {
4123 * Get the first (previously created) address from the list
4124 * and set dev_addr pointer to this location.
4126 ha = list_first_entry(&dev->dev_addrs.list,
4127 struct netdev_hw_addr, list);
4128 dev->dev_addr = ha->addr;
4130 return err;
4134 * dev_addr_add - Add a device address
4135 * @dev: device
4136 * @addr: address to add
4137 * @addr_type: address type
4139 * Add a device address to the device or increase the reference count if
4140 * it already exists.
4142 * The caller must hold the rtnl_mutex.
4144 int dev_addr_add(struct net_device *dev, unsigned char *addr,
4145 unsigned char addr_type)
4147 int err;
4149 ASSERT_RTNL();
4151 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
4152 if (!err)
4153 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4154 return err;
4156 EXPORT_SYMBOL(dev_addr_add);
4159 * dev_addr_del - Release a device address.
4160 * @dev: device
4161 * @addr: address to delete
4162 * @addr_type: address type
4164 * Release reference to a device address and remove it from the device
4165 * if the reference count drops to zero.
4167 * The caller must hold the rtnl_mutex.
4169 int dev_addr_del(struct net_device *dev, unsigned char *addr,
4170 unsigned char addr_type)
4172 int err;
4173 struct netdev_hw_addr *ha;
4175 ASSERT_RTNL();
4178 * We can not remove the first address from the list because
4179 * dev->dev_addr points to that.
4181 ha = list_first_entry(&dev->dev_addrs.list,
4182 struct netdev_hw_addr, list);
4183 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4184 return -ENOENT;
4186 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
4187 addr_type);
4188 if (!err)
4189 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4190 return err;
4192 EXPORT_SYMBOL(dev_addr_del);
4195 * dev_addr_add_multiple - Add device addresses from another device
4196 * @to_dev: device to which addresses will be added
4197 * @from_dev: device from which addresses will be added
4198 * @addr_type: address type - 0 means type will be used from from_dev
4200 * Add device addresses of the one device to another.
4202 * The caller must hold the rtnl_mutex.
4204 int dev_addr_add_multiple(struct net_device *to_dev,
4205 struct net_device *from_dev,
4206 unsigned char addr_type)
4208 int err;
4210 ASSERT_RTNL();
4212 if (from_dev->addr_len != to_dev->addr_len)
4213 return -EINVAL;
4214 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4215 to_dev->addr_len, addr_type);
4216 if (!err)
4217 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4218 return err;
4220 EXPORT_SYMBOL(dev_addr_add_multiple);
4223 * dev_addr_del_multiple - Delete device addresses by another device
4224 * @to_dev: device where the addresses will be deleted
4225 * @from_dev: device by which addresses the addresses will be deleted
4226 * @addr_type: address type - 0 means type will used from from_dev
4228 * Deletes addresses in to device by the list of addresses in from device.
4230 * The caller must hold the rtnl_mutex.
4232 int dev_addr_del_multiple(struct net_device *to_dev,
4233 struct net_device *from_dev,
4234 unsigned char addr_type)
4236 ASSERT_RTNL();
4238 if (from_dev->addr_len != to_dev->addr_len)
4239 return -EINVAL;
4240 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4241 to_dev->addr_len, addr_type);
4242 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4243 return 0;
4245 EXPORT_SYMBOL(dev_addr_del_multiple);
4247 /* multicast addresses handling functions */
4249 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4250 void *addr, int alen, int glbl)
4252 struct dev_addr_list *da;
4254 for (; (da = *list) != NULL; list = &da->next) {
4255 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4256 alen == da->da_addrlen) {
4257 if (glbl) {
4258 int old_glbl = da->da_gusers;
4259 da->da_gusers = 0;
4260 if (old_glbl == 0)
4261 break;
4263 if (--da->da_users)
4264 return 0;
4266 *list = da->next;
4267 kfree(da);
4268 (*count)--;
4269 return 0;
4272 return -ENOENT;
4275 int __dev_addr_add(struct dev_addr_list **list, int *count,
4276 void *addr, int alen, int glbl)
4278 struct dev_addr_list *da;
4280 for (da = *list; da != NULL; da = da->next) {
4281 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4282 da->da_addrlen == alen) {
4283 if (glbl) {
4284 int old_glbl = da->da_gusers;
4285 da->da_gusers = 1;
4286 if (old_glbl)
4287 return 0;
4289 da->da_users++;
4290 return 0;
4294 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4295 if (da == NULL)
4296 return -ENOMEM;
4297 memcpy(da->da_addr, addr, alen);
4298 da->da_addrlen = alen;
4299 da->da_users = 1;
4300 da->da_gusers = glbl ? 1 : 0;
4301 da->next = *list;
4302 *list = da;
4303 (*count)++;
4304 return 0;
4308 * dev_unicast_delete - Release secondary unicast address.
4309 * @dev: device
4310 * @addr: address to delete
4312 * Release reference to a secondary unicast address and remove it
4313 * from the device if the reference count drops to zero.
4315 * The caller must hold the rtnl_mutex.
4317 int dev_unicast_delete(struct net_device *dev, void *addr)
4319 int err;
4321 ASSERT_RTNL();
4323 netif_addr_lock_bh(dev);
4324 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4325 NETDEV_HW_ADDR_T_UNICAST);
4326 if (!err)
4327 __dev_set_rx_mode(dev);
4328 netif_addr_unlock_bh(dev);
4329 return err;
4331 EXPORT_SYMBOL(dev_unicast_delete);
4334 * dev_unicast_add - add a secondary unicast address
4335 * @dev: device
4336 * @addr: address to add
4338 * Add a secondary unicast address to the device or increase
4339 * the reference count if it already exists.
4341 * The caller must hold the rtnl_mutex.
4343 int dev_unicast_add(struct net_device *dev, void *addr)
4345 int err;
4347 ASSERT_RTNL();
4349 netif_addr_lock_bh(dev);
4350 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4351 NETDEV_HW_ADDR_T_UNICAST);
4352 if (!err)
4353 __dev_set_rx_mode(dev);
4354 netif_addr_unlock_bh(dev);
4355 return err;
4357 EXPORT_SYMBOL(dev_unicast_add);
4359 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4360 struct dev_addr_list **from, int *from_count)
4362 struct dev_addr_list *da, *next;
4363 int err = 0;
4365 da = *from;
4366 while (da != NULL) {
4367 next = da->next;
4368 if (!da->da_synced) {
4369 err = __dev_addr_add(to, to_count,
4370 da->da_addr, da->da_addrlen, 0);
4371 if (err < 0)
4372 break;
4373 da->da_synced = 1;
4374 da->da_users++;
4375 } else if (da->da_users == 1) {
4376 __dev_addr_delete(to, to_count,
4377 da->da_addr, da->da_addrlen, 0);
4378 __dev_addr_delete(from, from_count,
4379 da->da_addr, da->da_addrlen, 0);
4381 da = next;
4383 return err;
4385 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4387 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4388 struct dev_addr_list **from, int *from_count)
4390 struct dev_addr_list *da, *next;
4392 da = *from;
4393 while (da != NULL) {
4394 next = da->next;
4395 if (da->da_synced) {
4396 __dev_addr_delete(to, to_count,
4397 da->da_addr, da->da_addrlen, 0);
4398 da->da_synced = 0;
4399 __dev_addr_delete(from, from_count,
4400 da->da_addr, da->da_addrlen, 0);
4402 da = next;
4405 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4408 * dev_unicast_sync - Synchronize device's unicast list to another device
4409 * @to: destination device
4410 * @from: source device
4412 * Add newly added addresses to the destination device and release
4413 * addresses that have no users left. The source device must be
4414 * locked by netif_tx_lock_bh.
4416 * This function is intended to be called from the dev->set_rx_mode
4417 * function of layered software devices.
4419 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4421 int err = 0;
4423 if (to->addr_len != from->addr_len)
4424 return -EINVAL;
4426 netif_addr_lock_bh(to);
4427 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4428 if (!err)
4429 __dev_set_rx_mode(to);
4430 netif_addr_unlock_bh(to);
4431 return err;
4433 EXPORT_SYMBOL(dev_unicast_sync);
4436 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4437 * @to: destination device
4438 * @from: source device
4440 * Remove all addresses that were added to the destination device by
4441 * dev_unicast_sync(). This function is intended to be called from the
4442 * dev->stop function of layered software devices.
4444 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4446 if (to->addr_len != from->addr_len)
4447 return;
4449 netif_addr_lock_bh(from);
4450 netif_addr_lock(to);
4451 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4452 __dev_set_rx_mode(to);
4453 netif_addr_unlock(to);
4454 netif_addr_unlock_bh(from);
4456 EXPORT_SYMBOL(dev_unicast_unsync);
4458 static void dev_unicast_flush(struct net_device *dev)
4460 netif_addr_lock_bh(dev);
4461 __hw_addr_flush(&dev->uc);
4462 netif_addr_unlock_bh(dev);
4465 static void dev_unicast_init(struct net_device *dev)
4467 __hw_addr_init(&dev->uc);
4471 static void __dev_addr_discard(struct dev_addr_list **list)
4473 struct dev_addr_list *tmp;
4475 while (*list != NULL) {
4476 tmp = *list;
4477 *list = tmp->next;
4478 if (tmp->da_users > tmp->da_gusers)
4479 printk("__dev_addr_discard: address leakage! "
4480 "da_users=%d\n", tmp->da_users);
4481 kfree(tmp);
4485 static void dev_addr_discard(struct net_device *dev)
4487 netif_addr_lock_bh(dev);
4489 __dev_addr_discard(&dev->mc_list);
4490 netdev_mc_count(dev) = 0;
4492 netif_addr_unlock_bh(dev);
4496 * dev_get_flags - get flags reported to userspace
4497 * @dev: device
4499 * Get the combination of flag bits exported through APIs to userspace.
4501 unsigned dev_get_flags(const struct net_device *dev)
4503 unsigned flags;
4505 flags = (dev->flags & ~(IFF_PROMISC |
4506 IFF_ALLMULTI |
4507 IFF_RUNNING |
4508 IFF_LOWER_UP |
4509 IFF_DORMANT)) |
4510 (dev->gflags & (IFF_PROMISC |
4511 IFF_ALLMULTI));
4513 if (netif_running(dev)) {
4514 if (netif_oper_up(dev))
4515 flags |= IFF_RUNNING;
4516 if (netif_carrier_ok(dev))
4517 flags |= IFF_LOWER_UP;
4518 if (netif_dormant(dev))
4519 flags |= IFF_DORMANT;
4522 return flags;
4524 EXPORT_SYMBOL(dev_get_flags);
4526 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4528 int old_flags = dev->flags;
4529 int ret;
4531 ASSERT_RTNL();
4534 * Set the flags on our device.
4537 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4538 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4539 IFF_AUTOMEDIA)) |
4540 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4541 IFF_ALLMULTI));
4544 * Load in the correct multicast list now the flags have changed.
4547 if ((old_flags ^ flags) & IFF_MULTICAST)
4548 dev_change_rx_flags(dev, IFF_MULTICAST);
4550 dev_set_rx_mode(dev);
4553 * Have we downed the interface. We handle IFF_UP ourselves
4554 * according to user attempts to set it, rather than blindly
4555 * setting it.
4558 ret = 0;
4559 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4560 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4562 if (!ret)
4563 dev_set_rx_mode(dev);
4566 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4567 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4569 dev->gflags ^= IFF_PROMISC;
4570 dev_set_promiscuity(dev, inc);
4573 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4574 is important. Some (broken) drivers set IFF_PROMISC, when
4575 IFF_ALLMULTI is requested not asking us and not reporting.
4577 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4578 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4580 dev->gflags ^= IFF_ALLMULTI;
4581 dev_set_allmulti(dev, inc);
4584 return ret;
4587 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4589 unsigned int changes = dev->flags ^ old_flags;
4591 if (changes & IFF_UP) {
4592 if (dev->flags & IFF_UP)
4593 call_netdevice_notifiers(NETDEV_UP, dev);
4594 else
4595 call_netdevice_notifiers(NETDEV_DOWN, dev);
4598 if (dev->flags & IFF_UP &&
4599 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4600 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4604 * dev_change_flags - change device settings
4605 * @dev: device
4606 * @flags: device state flags
4608 * Change settings on device based state flags. The flags are
4609 * in the userspace exported format.
4611 int dev_change_flags(struct net_device *dev, unsigned flags)
4613 int ret, changes;
4614 int old_flags = dev->flags;
4616 ret = __dev_change_flags(dev, flags);
4617 if (ret < 0)
4618 return ret;
4620 changes = old_flags ^ dev->flags;
4621 if (changes)
4622 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4624 __dev_notify_flags(dev, old_flags);
4625 return ret;
4627 EXPORT_SYMBOL(dev_change_flags);
4630 * dev_set_mtu - Change maximum transfer unit
4631 * @dev: device
4632 * @new_mtu: new transfer unit
4634 * Change the maximum transfer size of the network device.
4636 int dev_set_mtu(struct net_device *dev, int new_mtu)
4638 const struct net_device_ops *ops = dev->netdev_ops;
4639 int err;
4641 if (new_mtu == dev->mtu)
4642 return 0;
4644 /* MTU must be positive. */
4645 if (new_mtu < 0)
4646 return -EINVAL;
4648 if (!netif_device_present(dev))
4649 return -ENODEV;
4651 err = 0;
4652 if (ops->ndo_change_mtu)
4653 err = ops->ndo_change_mtu(dev, new_mtu);
4654 else
4655 dev->mtu = new_mtu;
4657 if (!err && dev->flags & IFF_UP)
4658 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4659 return err;
4661 EXPORT_SYMBOL(dev_set_mtu);
4664 * dev_set_mac_address - Change Media Access Control Address
4665 * @dev: device
4666 * @sa: new address
4668 * Change the hardware (MAC) address of the device
4670 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4672 const struct net_device_ops *ops = dev->netdev_ops;
4673 int err;
4675 if (!ops->ndo_set_mac_address)
4676 return -EOPNOTSUPP;
4677 if (sa->sa_family != dev->type)
4678 return -EINVAL;
4679 if (!netif_device_present(dev))
4680 return -ENODEV;
4681 err = ops->ndo_set_mac_address(dev, sa);
4682 if (!err)
4683 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4684 return err;
4686 EXPORT_SYMBOL(dev_set_mac_address);
4689 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4691 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4693 int err;
4694 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4696 if (!dev)
4697 return -ENODEV;
4699 switch (cmd) {
4700 case SIOCGIFFLAGS: /* Get interface flags */
4701 ifr->ifr_flags = (short) dev_get_flags(dev);
4702 return 0;
4704 case SIOCGIFMETRIC: /* Get the metric on the interface
4705 (currently unused) */
4706 ifr->ifr_metric = 0;
4707 return 0;
4709 case SIOCGIFMTU: /* Get the MTU of a device */
4710 ifr->ifr_mtu = dev->mtu;
4711 return 0;
4713 case SIOCGIFHWADDR:
4714 if (!dev->addr_len)
4715 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4716 else
4717 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4718 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4719 ifr->ifr_hwaddr.sa_family = dev->type;
4720 return 0;
4722 case SIOCGIFSLAVE:
4723 err = -EINVAL;
4724 break;
4726 case SIOCGIFMAP:
4727 ifr->ifr_map.mem_start = dev->mem_start;
4728 ifr->ifr_map.mem_end = dev->mem_end;
4729 ifr->ifr_map.base_addr = dev->base_addr;
4730 ifr->ifr_map.irq = dev->irq;
4731 ifr->ifr_map.dma = dev->dma;
4732 ifr->ifr_map.port = dev->if_port;
4733 return 0;
4735 case SIOCGIFINDEX:
4736 ifr->ifr_ifindex = dev->ifindex;
4737 return 0;
4739 case SIOCGIFTXQLEN:
4740 ifr->ifr_qlen = dev->tx_queue_len;
4741 return 0;
4743 default:
4744 /* dev_ioctl() should ensure this case
4745 * is never reached
4747 WARN_ON(1);
4748 err = -EINVAL;
4749 break;
4752 return err;
4756 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4758 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4760 int err;
4761 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4762 const struct net_device_ops *ops;
4764 if (!dev)
4765 return -ENODEV;
4767 ops = dev->netdev_ops;
4769 switch (cmd) {
4770 case SIOCSIFFLAGS: /* Set interface flags */
4771 return dev_change_flags(dev, ifr->ifr_flags);
4773 case SIOCSIFMETRIC: /* Set the metric on the interface
4774 (currently unused) */
4775 return -EOPNOTSUPP;
4777 case SIOCSIFMTU: /* Set the MTU of a device */
4778 return dev_set_mtu(dev, ifr->ifr_mtu);
4780 case SIOCSIFHWADDR:
4781 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4783 case SIOCSIFHWBROADCAST:
4784 if (ifr->ifr_hwaddr.sa_family != dev->type)
4785 return -EINVAL;
4786 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4787 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4789 return 0;
4791 case SIOCSIFMAP:
4792 if (ops->ndo_set_config) {
4793 if (!netif_device_present(dev))
4794 return -ENODEV;
4795 return ops->ndo_set_config(dev, &ifr->ifr_map);
4797 return -EOPNOTSUPP;
4799 case SIOCADDMULTI:
4800 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4801 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4802 return -EINVAL;
4803 if (!netif_device_present(dev))
4804 return -ENODEV;
4805 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4806 dev->addr_len, 1);
4808 case SIOCDELMULTI:
4809 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4810 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4811 return -EINVAL;
4812 if (!netif_device_present(dev))
4813 return -ENODEV;
4814 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4815 dev->addr_len, 1);
4817 case SIOCSIFTXQLEN:
4818 if (ifr->ifr_qlen < 0)
4819 return -EINVAL;
4820 dev->tx_queue_len = ifr->ifr_qlen;
4821 return 0;
4823 case SIOCSIFNAME:
4824 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4825 return dev_change_name(dev, ifr->ifr_newname);
4828 * Unknown or private ioctl
4830 default:
4831 if ((cmd >= SIOCDEVPRIVATE &&
4832 cmd <= SIOCDEVPRIVATE + 15) ||
4833 cmd == SIOCBONDENSLAVE ||
4834 cmd == SIOCBONDRELEASE ||
4835 cmd == SIOCBONDSETHWADDR ||
4836 cmd == SIOCBONDSLAVEINFOQUERY ||
4837 cmd == SIOCBONDINFOQUERY ||
4838 cmd == SIOCBONDCHANGEACTIVE ||
4839 cmd == SIOCGMIIPHY ||
4840 cmd == SIOCGMIIREG ||
4841 cmd == SIOCSMIIREG ||
4842 cmd == SIOCBRADDIF ||
4843 cmd == SIOCBRDELIF ||
4844 cmd == SIOCSHWTSTAMP ||
4845 cmd == SIOCWANDEV) {
4846 err = -EOPNOTSUPP;
4847 if (ops->ndo_do_ioctl) {
4848 if (netif_device_present(dev))
4849 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4850 else
4851 err = -ENODEV;
4853 } else
4854 err = -EINVAL;
4857 return err;
4861 * This function handles all "interface"-type I/O control requests. The actual
4862 * 'doing' part of this is dev_ifsioc above.
4866 * dev_ioctl - network device ioctl
4867 * @net: the applicable net namespace
4868 * @cmd: command to issue
4869 * @arg: pointer to a struct ifreq in user space
4871 * Issue ioctl functions to devices. This is normally called by the
4872 * user space syscall interfaces but can sometimes be useful for
4873 * other purposes. The return value is the return from the syscall if
4874 * positive or a negative errno code on error.
4877 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4879 struct ifreq ifr;
4880 int ret;
4881 char *colon;
4883 /* One special case: SIOCGIFCONF takes ifconf argument
4884 and requires shared lock, because it sleeps writing
4885 to user space.
4888 if (cmd == SIOCGIFCONF) {
4889 rtnl_lock();
4890 ret = dev_ifconf(net, (char __user *) arg);
4891 rtnl_unlock();
4892 return ret;
4894 if (cmd == SIOCGIFNAME)
4895 return dev_ifname(net, (struct ifreq __user *)arg);
4897 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4898 return -EFAULT;
4900 ifr.ifr_name[IFNAMSIZ-1] = 0;
4902 colon = strchr(ifr.ifr_name, ':');
4903 if (colon)
4904 *colon = 0;
4907 * See which interface the caller is talking about.
4910 switch (cmd) {
4912 * These ioctl calls:
4913 * - can be done by all.
4914 * - atomic and do not require locking.
4915 * - return a value
4917 case SIOCGIFFLAGS:
4918 case SIOCGIFMETRIC:
4919 case SIOCGIFMTU:
4920 case SIOCGIFHWADDR:
4921 case SIOCGIFSLAVE:
4922 case SIOCGIFMAP:
4923 case SIOCGIFINDEX:
4924 case SIOCGIFTXQLEN:
4925 dev_load(net, ifr.ifr_name);
4926 rcu_read_lock();
4927 ret = dev_ifsioc_locked(net, &ifr, cmd);
4928 rcu_read_unlock();
4929 if (!ret) {
4930 if (colon)
4931 *colon = ':';
4932 if (copy_to_user(arg, &ifr,
4933 sizeof(struct ifreq)))
4934 ret = -EFAULT;
4936 return ret;
4938 case SIOCETHTOOL:
4939 dev_load(net, ifr.ifr_name);
4940 rtnl_lock();
4941 ret = dev_ethtool(net, &ifr);
4942 rtnl_unlock();
4943 if (!ret) {
4944 if (colon)
4945 *colon = ':';
4946 if (copy_to_user(arg, &ifr,
4947 sizeof(struct ifreq)))
4948 ret = -EFAULT;
4950 return ret;
4953 * These ioctl calls:
4954 * - require superuser power.
4955 * - require strict serialization.
4956 * - return a value
4958 case SIOCGMIIPHY:
4959 case SIOCGMIIREG:
4960 case SIOCSIFNAME:
4961 if (!capable(CAP_NET_ADMIN))
4962 return -EPERM;
4963 dev_load(net, ifr.ifr_name);
4964 rtnl_lock();
4965 ret = dev_ifsioc(net, &ifr, cmd);
4966 rtnl_unlock();
4967 if (!ret) {
4968 if (colon)
4969 *colon = ':';
4970 if (copy_to_user(arg, &ifr,
4971 sizeof(struct ifreq)))
4972 ret = -EFAULT;
4974 return ret;
4977 * These ioctl calls:
4978 * - require superuser power.
4979 * - require strict serialization.
4980 * - do not return a value
4982 case SIOCSIFFLAGS:
4983 case SIOCSIFMETRIC:
4984 case SIOCSIFMTU:
4985 case SIOCSIFMAP:
4986 case SIOCSIFHWADDR:
4987 case SIOCSIFSLAVE:
4988 case SIOCADDMULTI:
4989 case SIOCDELMULTI:
4990 case SIOCSIFHWBROADCAST:
4991 case SIOCSIFTXQLEN:
4992 case SIOCSMIIREG:
4993 case SIOCBONDENSLAVE:
4994 case SIOCBONDRELEASE:
4995 case SIOCBONDSETHWADDR:
4996 case SIOCBONDCHANGEACTIVE:
4997 case SIOCBRADDIF:
4998 case SIOCBRDELIF:
4999 case SIOCSHWTSTAMP:
5000 if (!capable(CAP_NET_ADMIN))
5001 return -EPERM;
5002 /* fall through */
5003 case SIOCBONDSLAVEINFOQUERY:
5004 case SIOCBONDINFOQUERY:
5005 dev_load(net, ifr.ifr_name);
5006 rtnl_lock();
5007 ret = dev_ifsioc(net, &ifr, cmd);
5008 rtnl_unlock();
5009 return ret;
5011 case SIOCGIFMEM:
5012 /* Get the per device memory space. We can add this but
5013 * currently do not support it */
5014 case SIOCSIFMEM:
5015 /* Set the per device memory buffer space.
5016 * Not applicable in our case */
5017 case SIOCSIFLINK:
5018 return -EINVAL;
5021 * Unknown or private ioctl.
5023 default:
5024 if (cmd == SIOCWANDEV ||
5025 (cmd >= SIOCDEVPRIVATE &&
5026 cmd <= SIOCDEVPRIVATE + 15)) {
5027 dev_load(net, ifr.ifr_name);
5028 rtnl_lock();
5029 ret = dev_ifsioc(net, &ifr, cmd);
5030 rtnl_unlock();
5031 if (!ret && copy_to_user(arg, &ifr,
5032 sizeof(struct ifreq)))
5033 ret = -EFAULT;
5034 return ret;
5036 /* Take care of Wireless Extensions */
5037 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5038 return wext_handle_ioctl(net, &ifr, cmd, arg);
5039 return -EINVAL;
5045 * dev_new_index - allocate an ifindex
5046 * @net: the applicable net namespace
5048 * Returns a suitable unique value for a new device interface
5049 * number. The caller must hold the rtnl semaphore or the
5050 * dev_base_lock to be sure it remains unique.
5052 static int dev_new_index(struct net *net)
5054 static int ifindex;
5055 for (;;) {
5056 if (++ifindex <= 0)
5057 ifindex = 1;
5058 if (!__dev_get_by_index(net, ifindex))
5059 return ifindex;
5063 /* Delayed registration/unregisteration */
5064 static LIST_HEAD(net_todo_list);
5066 static void net_set_todo(struct net_device *dev)
5068 list_add_tail(&dev->todo_list, &net_todo_list);
5071 static void rollback_registered_many(struct list_head *head)
5073 struct net_device *dev, *tmp;
5075 BUG_ON(dev_boot_phase);
5076 ASSERT_RTNL();
5078 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5079 /* Some devices call without registering
5080 * for initialization unwind. Remove those
5081 * devices and proceed with the remaining.
5083 if (dev->reg_state == NETREG_UNINITIALIZED) {
5084 pr_debug("unregister_netdevice: device %s/%p never "
5085 "was registered\n", dev->name, dev);
5087 WARN_ON(1);
5088 list_del(&dev->unreg_list);
5089 continue;
5092 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5094 /* If device is running, close it first. */
5095 dev_close(dev);
5097 /* And unlink it from device chain. */
5098 unlist_netdevice(dev);
5100 dev->reg_state = NETREG_UNREGISTERING;
5103 synchronize_net();
5105 list_for_each_entry(dev, head, unreg_list) {
5106 /* Shutdown queueing discipline. */
5107 dev_shutdown(dev);
5110 /* Notify protocols, that we are about to destroy
5111 this device. They should clean all the things.
5113 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5115 if (!dev->rtnl_link_ops ||
5116 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5117 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5120 * Flush the unicast and multicast chains
5122 dev_unicast_flush(dev);
5123 dev_addr_discard(dev);
5125 if (dev->netdev_ops->ndo_uninit)
5126 dev->netdev_ops->ndo_uninit(dev);
5128 /* Notifier chain MUST detach us from master device. */
5129 WARN_ON(dev->master);
5131 /* Remove entries from kobject tree */
5132 netdev_unregister_kobject(dev);
5135 /* Process any work delayed until the end of the batch */
5136 dev = list_first_entry(head, struct net_device, unreg_list);
5137 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5139 synchronize_net();
5141 list_for_each_entry(dev, head, unreg_list)
5142 dev_put(dev);
5145 static void rollback_registered(struct net_device *dev)
5147 LIST_HEAD(single);
5149 list_add(&dev->unreg_list, &single);
5150 rollback_registered_many(&single);
5153 static void __netdev_init_queue_locks_one(struct net_device *dev,
5154 struct netdev_queue *dev_queue,
5155 void *_unused)
5157 spin_lock_init(&dev_queue->_xmit_lock);
5158 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
5159 dev_queue->xmit_lock_owner = -1;
5162 static void netdev_init_queue_locks(struct net_device *dev)
5164 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5165 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
5168 unsigned long netdev_fix_features(unsigned long features, const char *name)
5170 /* Fix illegal SG+CSUM combinations. */
5171 if ((features & NETIF_F_SG) &&
5172 !(features & NETIF_F_ALL_CSUM)) {
5173 if (name)
5174 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5175 "checksum feature.\n", name);
5176 features &= ~NETIF_F_SG;
5179 /* TSO requires that SG is present as well. */
5180 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5181 if (name)
5182 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5183 "SG feature.\n", name);
5184 features &= ~NETIF_F_TSO;
5187 if (features & NETIF_F_UFO) {
5188 if (!(features & NETIF_F_GEN_CSUM)) {
5189 if (name)
5190 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5191 "since no NETIF_F_HW_CSUM feature.\n",
5192 name);
5193 features &= ~NETIF_F_UFO;
5196 if (!(features & NETIF_F_SG)) {
5197 if (name)
5198 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5199 "since no NETIF_F_SG feature.\n", name);
5200 features &= ~NETIF_F_UFO;
5204 return features;
5206 EXPORT_SYMBOL(netdev_fix_features);
5209 * netif_stacked_transfer_operstate - transfer operstate
5210 * @rootdev: the root or lower level device to transfer state from
5211 * @dev: the device to transfer operstate to
5213 * Transfer operational state from root to device. This is normally
5214 * called when a stacking relationship exists between the root
5215 * device and the device(a leaf device).
5217 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5218 struct net_device *dev)
5220 if (rootdev->operstate == IF_OPER_DORMANT)
5221 netif_dormant_on(dev);
5222 else
5223 netif_dormant_off(dev);
5225 if (netif_carrier_ok(rootdev)) {
5226 if (!netif_carrier_ok(dev))
5227 netif_carrier_on(dev);
5228 } else {
5229 if (netif_carrier_ok(dev))
5230 netif_carrier_off(dev);
5233 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5236 * register_netdevice - register a network device
5237 * @dev: device to register
5239 * Take a completed network device structure and add it to the kernel
5240 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5241 * chain. 0 is returned on success. A negative errno code is returned
5242 * on a failure to set up the device, or if the name is a duplicate.
5244 * Callers must hold the rtnl semaphore. You may want
5245 * register_netdev() instead of this.
5247 * BUGS:
5248 * The locking appears insufficient to guarantee two parallel registers
5249 * will not get the same name.
5252 int register_netdevice(struct net_device *dev)
5254 int ret;
5255 struct net *net = dev_net(dev);
5257 BUG_ON(dev_boot_phase);
5258 ASSERT_RTNL();
5260 might_sleep();
5262 /* When net_device's are persistent, this will be fatal. */
5263 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5264 BUG_ON(!net);
5266 spin_lock_init(&dev->addr_list_lock);
5267 netdev_set_addr_lockdep_class(dev);
5268 netdev_init_queue_locks(dev);
5270 dev->iflink = -1;
5272 if (!dev->num_rx_queues) {
5274 * Allocate a single RX queue if driver never called
5275 * alloc_netdev_mq
5278 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5279 if (!dev->_rx) {
5280 ret = -ENOMEM;
5281 goto out;
5284 dev->_rx->first = dev->_rx;
5285 atomic_set(&dev->_rx->count, 1);
5286 dev->num_rx_queues = 1;
5289 /* Init, if this function is available */
5290 if (dev->netdev_ops->ndo_init) {
5291 ret = dev->netdev_ops->ndo_init(dev);
5292 if (ret) {
5293 if (ret > 0)
5294 ret = -EIO;
5295 goto out;
5299 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5300 if (ret)
5301 goto err_uninit;
5303 dev->ifindex = dev_new_index(net);
5304 if (dev->iflink == -1)
5305 dev->iflink = dev->ifindex;
5307 /* Fix illegal checksum combinations */
5308 if ((dev->features & NETIF_F_HW_CSUM) &&
5309 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5310 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5311 dev->name);
5312 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5315 if ((dev->features & NETIF_F_NO_CSUM) &&
5316 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5317 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5318 dev->name);
5319 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5322 dev->features = netdev_fix_features(dev->features, dev->name);
5324 /* Enable software GSO if SG is supported. */
5325 if (dev->features & NETIF_F_SG)
5326 dev->features |= NETIF_F_GSO;
5328 netdev_initialize_kobject(dev);
5330 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5331 ret = notifier_to_errno(ret);
5332 if (ret)
5333 goto err_uninit;
5335 ret = netdev_register_kobject(dev);
5336 if (ret)
5337 goto err_uninit;
5338 dev->reg_state = NETREG_REGISTERED;
5341 * Default initial state at registry is that the
5342 * device is present.
5345 set_bit(__LINK_STATE_PRESENT, &dev->state);
5347 dev_init_scheduler(dev);
5348 dev_hold(dev);
5349 list_netdevice(dev);
5351 /* Notify protocols, that a new device appeared. */
5352 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5353 ret = notifier_to_errno(ret);
5354 if (ret) {
5355 rollback_registered(dev);
5356 dev->reg_state = NETREG_UNREGISTERED;
5359 * Prevent userspace races by waiting until the network
5360 * device is fully setup before sending notifications.
5362 if (!dev->rtnl_link_ops ||
5363 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5364 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5366 out:
5367 return ret;
5369 err_uninit:
5370 if (dev->netdev_ops->ndo_uninit)
5371 dev->netdev_ops->ndo_uninit(dev);
5372 goto out;
5374 EXPORT_SYMBOL(register_netdevice);
5377 * init_dummy_netdev - init a dummy network device for NAPI
5378 * @dev: device to init
5380 * This takes a network device structure and initialize the minimum
5381 * amount of fields so it can be used to schedule NAPI polls without
5382 * registering a full blown interface. This is to be used by drivers
5383 * that need to tie several hardware interfaces to a single NAPI
5384 * poll scheduler due to HW limitations.
5386 int init_dummy_netdev(struct net_device *dev)
5388 /* Clear everything. Note we don't initialize spinlocks
5389 * are they aren't supposed to be taken by any of the
5390 * NAPI code and this dummy netdev is supposed to be
5391 * only ever used for NAPI polls
5393 memset(dev, 0, sizeof(struct net_device));
5395 /* make sure we BUG if trying to hit standard
5396 * register/unregister code path
5398 dev->reg_state = NETREG_DUMMY;
5400 /* initialize the ref count */
5401 atomic_set(&dev->refcnt, 1);
5403 /* NAPI wants this */
5404 INIT_LIST_HEAD(&dev->napi_list);
5406 /* a dummy interface is started by default */
5407 set_bit(__LINK_STATE_PRESENT, &dev->state);
5408 set_bit(__LINK_STATE_START, &dev->state);
5410 return 0;
5412 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5416 * register_netdev - register a network device
5417 * @dev: device to register
5419 * Take a completed network device structure and add it to the kernel
5420 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5421 * chain. 0 is returned on success. A negative errno code is returned
5422 * on a failure to set up the device, or if the name is a duplicate.
5424 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5425 * and expands the device name if you passed a format string to
5426 * alloc_netdev.
5428 int register_netdev(struct net_device *dev)
5430 int err;
5432 rtnl_lock();
5435 * If the name is a format string the caller wants us to do a
5436 * name allocation.
5438 if (strchr(dev->name, '%')) {
5439 err = dev_alloc_name(dev, dev->name);
5440 if (err < 0)
5441 goto out;
5444 err = register_netdevice(dev);
5445 out:
5446 rtnl_unlock();
5447 return err;
5449 EXPORT_SYMBOL(register_netdev);
5452 * netdev_wait_allrefs - wait until all references are gone.
5454 * This is called when unregistering network devices.
5456 * Any protocol or device that holds a reference should register
5457 * for netdevice notification, and cleanup and put back the
5458 * reference if they receive an UNREGISTER event.
5459 * We can get stuck here if buggy protocols don't correctly
5460 * call dev_put.
5462 static void netdev_wait_allrefs(struct net_device *dev)
5464 unsigned long rebroadcast_time, warning_time;
5466 linkwatch_forget_dev(dev);
5468 rebroadcast_time = warning_time = jiffies;
5469 while (atomic_read(&dev->refcnt) != 0) {
5470 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5471 rtnl_lock();
5473 /* Rebroadcast unregister notification */
5474 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5475 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5476 * should have already handle it the first time */
5478 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5479 &dev->state)) {
5480 /* We must not have linkwatch events
5481 * pending on unregister. If this
5482 * happens, we simply run the queue
5483 * unscheduled, resulting in a noop
5484 * for this device.
5486 linkwatch_run_queue();
5489 __rtnl_unlock();
5491 rebroadcast_time = jiffies;
5494 msleep(250);
5496 if (time_after(jiffies, warning_time + 10 * HZ)) {
5497 printk(KERN_EMERG "unregister_netdevice: "
5498 "waiting for %s to become free. Usage "
5499 "count = %d\n",
5500 dev->name, atomic_read(&dev->refcnt));
5501 warning_time = jiffies;
5506 /* The sequence is:
5508 * rtnl_lock();
5509 * ...
5510 * register_netdevice(x1);
5511 * register_netdevice(x2);
5512 * ...
5513 * unregister_netdevice(y1);
5514 * unregister_netdevice(y2);
5515 * ...
5516 * rtnl_unlock();
5517 * free_netdev(y1);
5518 * free_netdev(y2);
5520 * We are invoked by rtnl_unlock().
5521 * This allows us to deal with problems:
5522 * 1) We can delete sysfs objects which invoke hotplug
5523 * without deadlocking with linkwatch via keventd.
5524 * 2) Since we run with the RTNL semaphore not held, we can sleep
5525 * safely in order to wait for the netdev refcnt to drop to zero.
5527 * We must not return until all unregister events added during
5528 * the interval the lock was held have been completed.
5530 void netdev_run_todo(void)
5532 struct list_head list;
5534 /* Snapshot list, allow later requests */
5535 list_replace_init(&net_todo_list, &list);
5537 __rtnl_unlock();
5539 while (!list_empty(&list)) {
5540 struct net_device *dev
5541 = list_first_entry(&list, struct net_device, todo_list);
5542 list_del(&dev->todo_list);
5544 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5545 printk(KERN_ERR "network todo '%s' but state %d\n",
5546 dev->name, dev->reg_state);
5547 dump_stack();
5548 continue;
5551 dev->reg_state = NETREG_UNREGISTERED;
5553 on_each_cpu(flush_backlog, dev, 1);
5555 netdev_wait_allrefs(dev);
5557 /* paranoia */
5558 BUG_ON(atomic_read(&dev->refcnt));
5559 WARN_ON(dev->ip_ptr);
5560 WARN_ON(dev->ip6_ptr);
5561 WARN_ON(dev->dn_ptr);
5563 if (dev->destructor)
5564 dev->destructor(dev);
5566 /* Free network device */
5567 kobject_put(&dev->dev.kobj);
5572 * dev_txq_stats_fold - fold tx_queues stats
5573 * @dev: device to get statistics from
5574 * @stats: struct net_device_stats to hold results
5576 void dev_txq_stats_fold(const struct net_device *dev,
5577 struct net_device_stats *stats)
5579 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5580 unsigned int i;
5581 struct netdev_queue *txq;
5583 for (i = 0; i < dev->num_tx_queues; i++) {
5584 txq = netdev_get_tx_queue(dev, i);
5585 tx_bytes += txq->tx_bytes;
5586 tx_packets += txq->tx_packets;
5587 tx_dropped += txq->tx_dropped;
5589 if (tx_bytes || tx_packets || tx_dropped) {
5590 stats->tx_bytes = tx_bytes;
5591 stats->tx_packets = tx_packets;
5592 stats->tx_dropped = tx_dropped;
5595 EXPORT_SYMBOL(dev_txq_stats_fold);
5598 * dev_get_stats - get network device statistics
5599 * @dev: device to get statistics from
5601 * Get network statistics from device. The device driver may provide
5602 * its own method by setting dev->netdev_ops->get_stats; otherwise
5603 * the internal statistics structure is used.
5605 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5607 const struct net_device_ops *ops = dev->netdev_ops;
5609 if (ops->ndo_get_stats)
5610 return ops->ndo_get_stats(dev);
5612 dev_txq_stats_fold(dev, &dev->stats);
5613 return &dev->stats;
5615 EXPORT_SYMBOL(dev_get_stats);
5617 static void netdev_init_one_queue(struct net_device *dev,
5618 struct netdev_queue *queue,
5619 void *_unused)
5621 queue->dev = dev;
5624 static void netdev_init_queues(struct net_device *dev)
5626 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5627 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5628 spin_lock_init(&dev->tx_global_lock);
5632 * alloc_netdev_mq - allocate network device
5633 * @sizeof_priv: size of private data to allocate space for
5634 * @name: device name format string
5635 * @setup: callback to initialize device
5636 * @queue_count: the number of subqueues to allocate
5638 * Allocates a struct net_device with private data area for driver use
5639 * and performs basic initialization. Also allocates subquue structs
5640 * for each queue on the device at the end of the netdevice.
5642 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5643 void (*setup)(struct net_device *), unsigned int queue_count)
5645 struct netdev_queue *tx;
5646 struct netdev_rx_queue *rx;
5647 struct net_device *dev;
5648 size_t alloc_size;
5649 struct net_device *p;
5650 int i;
5652 BUG_ON(strlen(name) >= sizeof(dev->name));
5654 alloc_size = sizeof(struct net_device);
5655 if (sizeof_priv) {
5656 /* ensure 32-byte alignment of private area */
5657 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5658 alloc_size += sizeof_priv;
5660 /* ensure 32-byte alignment of whole construct */
5661 alloc_size += NETDEV_ALIGN - 1;
5663 p = kzalloc(alloc_size, GFP_KERNEL);
5664 if (!p) {
5665 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5666 return NULL;
5669 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5670 if (!tx) {
5671 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5672 "tx qdiscs.\n");
5673 goto free_p;
5676 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5677 if (!rx) {
5678 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5679 "rx queues.\n");
5680 goto free_tx;
5683 atomic_set(&rx->count, queue_count);
5686 * Set a pointer to first element in the array which holds the
5687 * reference count.
5689 for (i = 0; i < queue_count; i++)
5690 rx[i].first = rx;
5692 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5693 dev->padded = (char *)dev - (char *)p;
5695 if (dev_addr_init(dev))
5696 goto free_rx;
5698 dev_unicast_init(dev);
5700 dev_net_set(dev, &init_net);
5702 dev->_tx = tx;
5703 dev->num_tx_queues = queue_count;
5704 dev->real_num_tx_queues = queue_count;
5706 dev->_rx = rx;
5707 dev->num_rx_queues = queue_count;
5709 dev->gso_max_size = GSO_MAX_SIZE;
5711 netdev_init_queues(dev);
5713 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5714 dev->ethtool_ntuple_list.count = 0;
5715 INIT_LIST_HEAD(&dev->napi_list);
5716 INIT_LIST_HEAD(&dev->unreg_list);
5717 INIT_LIST_HEAD(&dev->link_watch_list);
5718 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5719 setup(dev);
5720 strcpy(dev->name, name);
5721 return dev;
5723 free_rx:
5724 kfree(rx);
5725 free_tx:
5726 kfree(tx);
5727 free_p:
5728 kfree(p);
5729 return NULL;
5731 EXPORT_SYMBOL(alloc_netdev_mq);
5734 * free_netdev - free network device
5735 * @dev: device
5737 * This function does the last stage of destroying an allocated device
5738 * interface. The reference to the device object is released.
5739 * If this is the last reference then it will be freed.
5741 void free_netdev(struct net_device *dev)
5743 struct napi_struct *p, *n;
5745 release_net(dev_net(dev));
5747 kfree(dev->_tx);
5749 /* Flush device addresses */
5750 dev_addr_flush(dev);
5752 /* Clear ethtool n-tuple list */
5753 ethtool_ntuple_flush(dev);
5755 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5756 netif_napi_del(p);
5758 /* Compatibility with error handling in drivers */
5759 if (dev->reg_state == NETREG_UNINITIALIZED) {
5760 kfree((char *)dev - dev->padded);
5761 return;
5764 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5765 dev->reg_state = NETREG_RELEASED;
5767 /* will free via device release */
5768 put_device(&dev->dev);
5770 EXPORT_SYMBOL(free_netdev);
5773 * synchronize_net - Synchronize with packet receive processing
5775 * Wait for packets currently being received to be done.
5776 * Does not block later packets from starting.
5778 void synchronize_net(void)
5780 might_sleep();
5781 synchronize_rcu();
5783 EXPORT_SYMBOL(synchronize_net);
5786 * unregister_netdevice_queue - remove device from the kernel
5787 * @dev: device
5788 * @head: list
5790 * This function shuts down a device interface and removes it
5791 * from the kernel tables.
5792 * If head not NULL, device is queued to be unregistered later.
5794 * Callers must hold the rtnl semaphore. You may want
5795 * unregister_netdev() instead of this.
5798 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5800 ASSERT_RTNL();
5802 if (head) {
5803 list_move_tail(&dev->unreg_list, head);
5804 } else {
5805 rollback_registered(dev);
5806 /* Finish processing unregister after unlock */
5807 net_set_todo(dev);
5810 EXPORT_SYMBOL(unregister_netdevice_queue);
5813 * unregister_netdevice_many - unregister many devices
5814 * @head: list of devices
5816 void unregister_netdevice_many(struct list_head *head)
5818 struct net_device *dev;
5820 if (!list_empty(head)) {
5821 rollback_registered_many(head);
5822 list_for_each_entry(dev, head, unreg_list)
5823 net_set_todo(dev);
5826 EXPORT_SYMBOL(unregister_netdevice_many);
5829 * unregister_netdev - remove device from the kernel
5830 * @dev: device
5832 * This function shuts down a device interface and removes it
5833 * from the kernel tables.
5835 * This is just a wrapper for unregister_netdevice that takes
5836 * the rtnl semaphore. In general you want to use this and not
5837 * unregister_netdevice.
5839 void unregister_netdev(struct net_device *dev)
5841 rtnl_lock();
5842 unregister_netdevice(dev);
5843 rtnl_unlock();
5845 EXPORT_SYMBOL(unregister_netdev);
5848 * dev_change_net_namespace - move device to different nethost namespace
5849 * @dev: device
5850 * @net: network namespace
5851 * @pat: If not NULL name pattern to try if the current device name
5852 * is already taken in the destination network namespace.
5854 * This function shuts down a device interface and moves it
5855 * to a new network namespace. On success 0 is returned, on
5856 * a failure a netagive errno code is returned.
5858 * Callers must hold the rtnl semaphore.
5861 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5863 int err;
5865 ASSERT_RTNL();
5867 /* Don't allow namespace local devices to be moved. */
5868 err = -EINVAL;
5869 if (dev->features & NETIF_F_NETNS_LOCAL)
5870 goto out;
5872 #ifdef CONFIG_SYSFS
5873 /* Don't allow real devices to be moved when sysfs
5874 * is enabled.
5876 err = -EINVAL;
5877 if (dev->dev.parent)
5878 goto out;
5879 #endif
5881 /* Ensure the device has been registrered */
5882 err = -EINVAL;
5883 if (dev->reg_state != NETREG_REGISTERED)
5884 goto out;
5886 /* Get out if there is nothing todo */
5887 err = 0;
5888 if (net_eq(dev_net(dev), net))
5889 goto out;
5891 /* Pick the destination device name, and ensure
5892 * we can use it in the destination network namespace.
5894 err = -EEXIST;
5895 if (__dev_get_by_name(net, dev->name)) {
5896 /* We get here if we can't use the current device name */
5897 if (!pat)
5898 goto out;
5899 if (dev_get_valid_name(net, pat, dev->name, 1))
5900 goto out;
5904 * And now a mini version of register_netdevice unregister_netdevice.
5907 /* If device is running close it first. */
5908 dev_close(dev);
5910 /* And unlink it from device chain */
5911 err = -ENODEV;
5912 unlist_netdevice(dev);
5914 synchronize_net();
5916 /* Shutdown queueing discipline. */
5917 dev_shutdown(dev);
5919 /* Notify protocols, that we are about to destroy
5920 this device. They should clean all the things.
5922 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5923 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5926 * Flush the unicast and multicast chains
5928 dev_unicast_flush(dev);
5929 dev_addr_discard(dev);
5931 netdev_unregister_kobject(dev);
5933 /* Actually switch the network namespace */
5934 dev_net_set(dev, net);
5936 /* If there is an ifindex conflict assign a new one */
5937 if (__dev_get_by_index(net, dev->ifindex)) {
5938 int iflink = (dev->iflink == dev->ifindex);
5939 dev->ifindex = dev_new_index(net);
5940 if (iflink)
5941 dev->iflink = dev->ifindex;
5944 /* Fixup kobjects */
5945 err = netdev_register_kobject(dev);
5946 WARN_ON(err);
5948 /* Add the device back in the hashes */
5949 list_netdevice(dev);
5951 /* Notify protocols, that a new device appeared. */
5952 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5955 * Prevent userspace races by waiting until the network
5956 * device is fully setup before sending notifications.
5958 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5960 synchronize_net();
5961 err = 0;
5962 out:
5963 return err;
5965 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5967 static int dev_cpu_callback(struct notifier_block *nfb,
5968 unsigned long action,
5969 void *ocpu)
5971 struct sk_buff **list_skb;
5972 struct Qdisc **list_net;
5973 struct sk_buff *skb;
5974 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5975 struct softnet_data *sd, *oldsd;
5977 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5978 return NOTIFY_OK;
5980 local_irq_disable();
5981 cpu = smp_processor_id();
5982 sd = &per_cpu(softnet_data, cpu);
5983 oldsd = &per_cpu(softnet_data, oldcpu);
5985 /* Find end of our completion_queue. */
5986 list_skb = &sd->completion_queue;
5987 while (*list_skb)
5988 list_skb = &(*list_skb)->next;
5989 /* Append completion queue from offline CPU. */
5990 *list_skb = oldsd->completion_queue;
5991 oldsd->completion_queue = NULL;
5993 /* Find end of our output_queue. */
5994 list_net = &sd->output_queue;
5995 while (*list_net)
5996 list_net = &(*list_net)->next_sched;
5997 /* Append output queue from offline CPU. */
5998 *list_net = oldsd->output_queue;
5999 oldsd->output_queue = NULL;
6001 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6002 local_irq_enable();
6004 /* Process offline CPU's input_pkt_queue */
6005 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
6006 netif_rx(skb);
6008 return NOTIFY_OK;
6013 * netdev_increment_features - increment feature set by one
6014 * @all: current feature set
6015 * @one: new feature set
6016 * @mask: mask feature set
6018 * Computes a new feature set after adding a device with feature set
6019 * @one to the master device with current feature set @all. Will not
6020 * enable anything that is off in @mask. Returns the new feature set.
6022 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6023 unsigned long mask)
6025 /* If device needs checksumming, downgrade to it. */
6026 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6027 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6028 else if (mask & NETIF_F_ALL_CSUM) {
6029 /* If one device supports v4/v6 checksumming, set for all. */
6030 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6031 !(all & NETIF_F_GEN_CSUM)) {
6032 all &= ~NETIF_F_ALL_CSUM;
6033 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6036 /* If one device supports hw checksumming, set for all. */
6037 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6038 all &= ~NETIF_F_ALL_CSUM;
6039 all |= NETIF_F_HW_CSUM;
6043 one |= NETIF_F_ALL_CSUM;
6045 one |= all & NETIF_F_ONE_FOR_ALL;
6046 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6047 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6049 return all;
6051 EXPORT_SYMBOL(netdev_increment_features);
6053 static struct hlist_head *netdev_create_hash(void)
6055 int i;
6056 struct hlist_head *hash;
6058 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6059 if (hash != NULL)
6060 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6061 INIT_HLIST_HEAD(&hash[i]);
6063 return hash;
6066 /* Initialize per network namespace state */
6067 static int __net_init netdev_init(struct net *net)
6069 INIT_LIST_HEAD(&net->dev_base_head);
6071 net->dev_name_head = netdev_create_hash();
6072 if (net->dev_name_head == NULL)
6073 goto err_name;
6075 net->dev_index_head = netdev_create_hash();
6076 if (net->dev_index_head == NULL)
6077 goto err_idx;
6079 return 0;
6081 err_idx:
6082 kfree(net->dev_name_head);
6083 err_name:
6084 return -ENOMEM;
6088 * netdev_drivername - network driver for the device
6089 * @dev: network device
6090 * @buffer: buffer for resulting name
6091 * @len: size of buffer
6093 * Determine network driver for device.
6095 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6097 const struct device_driver *driver;
6098 const struct device *parent;
6100 if (len <= 0 || !buffer)
6101 return buffer;
6102 buffer[0] = 0;
6104 parent = dev->dev.parent;
6106 if (!parent)
6107 return buffer;
6109 driver = parent->driver;
6110 if (driver && driver->name)
6111 strlcpy(buffer, driver->name, len);
6112 return buffer;
6115 static void __net_exit netdev_exit(struct net *net)
6117 kfree(net->dev_name_head);
6118 kfree(net->dev_index_head);
6121 static struct pernet_operations __net_initdata netdev_net_ops = {
6122 .init = netdev_init,
6123 .exit = netdev_exit,
6126 static void __net_exit default_device_exit(struct net *net)
6128 struct net_device *dev, *aux;
6130 * Push all migratable network devices back to the
6131 * initial network namespace
6133 rtnl_lock();
6134 for_each_netdev_safe(net, dev, aux) {
6135 int err;
6136 char fb_name[IFNAMSIZ];
6138 /* Ignore unmoveable devices (i.e. loopback) */
6139 if (dev->features & NETIF_F_NETNS_LOCAL)
6140 continue;
6142 /* Leave virtual devices for the generic cleanup */
6143 if (dev->rtnl_link_ops)
6144 continue;
6146 /* Push remaing network devices to init_net */
6147 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6148 err = dev_change_net_namespace(dev, &init_net, fb_name);
6149 if (err) {
6150 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6151 __func__, dev->name, err);
6152 BUG();
6155 rtnl_unlock();
6158 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6160 /* At exit all network devices most be removed from a network
6161 * namespace. Do this in the reverse order of registeration.
6162 * Do this across as many network namespaces as possible to
6163 * improve batching efficiency.
6165 struct net_device *dev;
6166 struct net *net;
6167 LIST_HEAD(dev_kill_list);
6169 rtnl_lock();
6170 list_for_each_entry(net, net_list, exit_list) {
6171 for_each_netdev_reverse(net, dev) {
6172 if (dev->rtnl_link_ops)
6173 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6174 else
6175 unregister_netdevice_queue(dev, &dev_kill_list);
6178 unregister_netdevice_many(&dev_kill_list);
6179 rtnl_unlock();
6182 static struct pernet_operations __net_initdata default_device_ops = {
6183 .exit = default_device_exit,
6184 .exit_batch = default_device_exit_batch,
6188 * Initialize the DEV module. At boot time this walks the device list and
6189 * unhooks any devices that fail to initialise (normally hardware not
6190 * present) and leaves us with a valid list of present and active devices.
6195 * This is called single threaded during boot, so no need
6196 * to take the rtnl semaphore.
6198 static int __init net_dev_init(void)
6200 int i, rc = -ENOMEM;
6202 BUG_ON(!dev_boot_phase);
6204 if (dev_proc_init())
6205 goto out;
6207 if (netdev_kobject_init())
6208 goto out;
6210 INIT_LIST_HEAD(&ptype_all);
6211 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6212 INIT_LIST_HEAD(&ptype_base[i]);
6214 if (register_pernet_subsys(&netdev_net_ops))
6215 goto out;
6218 * Initialise the packet receive queues.
6221 for_each_possible_cpu(i) {
6222 struct softnet_data *queue;
6224 queue = &per_cpu(softnet_data, i);
6225 skb_queue_head_init(&queue->input_pkt_queue);
6226 queue->completion_queue = NULL;
6227 INIT_LIST_HEAD(&queue->poll_list);
6229 #ifdef CONFIG_SMP
6230 queue->csd.func = trigger_softirq;
6231 queue->csd.info = queue;
6232 queue->csd.flags = 0;
6233 #endif
6235 queue->backlog.poll = process_backlog;
6236 queue->backlog.weight = weight_p;
6237 queue->backlog.gro_list = NULL;
6238 queue->backlog.gro_count = 0;
6241 dev_boot_phase = 0;
6243 /* The loopback device is special if any other network devices
6244 * is present in a network namespace the loopback device must
6245 * be present. Since we now dynamically allocate and free the
6246 * loopback device ensure this invariant is maintained by
6247 * keeping the loopback device as the first device on the
6248 * list of network devices. Ensuring the loopback devices
6249 * is the first device that appears and the last network device
6250 * that disappears.
6252 if (register_pernet_device(&loopback_net_ops))
6253 goto out;
6255 if (register_pernet_device(&default_device_ops))
6256 goto out;
6258 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6259 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6261 hotcpu_notifier(dev_cpu_callback, 0);
6262 dst_init();
6263 dev_mcast_init();
6264 rc = 0;
6265 out:
6266 return rc;
6269 subsys_initcall(net_dev_init);
6271 static int __init initialize_hashrnd(void)
6273 get_random_bytes(&hashrnd, sizeof(hashrnd));
6274 return 0;
6277 late_initcall_sync(initialize_hashrnd);