Merge branch 'devel-stable' into for-next
[linux-2.6.git] / arch / arm / mm / flush.c
blob6d5ba9afb16a4409d50dbdbc03d08c83642df9b4
1 /*
2 * linux/arch/arm/mm/flush.c
4 * Copyright (C) 1995-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
15 #include <asm/cacheflush.h>
16 #include <asm/cachetype.h>
17 #include <asm/highmem.h>
18 #include <asm/smp_plat.h>
19 #include <asm/tlbflush.h>
20 #include <linux/hugetlb.h>
22 #include "mm.h"
24 #ifdef CONFIG_CPU_CACHE_VIPT
26 static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
28 unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
29 const int zero = 0;
31 set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
33 asm( "mcrr p15, 0, %1, %0, c14\n"
34 " mcr p15, 0, %2, c7, c10, 4"
36 : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
37 : "cc");
40 static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
42 unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
43 unsigned long offset = vaddr & (PAGE_SIZE - 1);
44 unsigned long to;
46 set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
47 to = va + offset;
48 flush_icache_range(to, to + len);
51 void flush_cache_mm(struct mm_struct *mm)
53 if (cache_is_vivt()) {
54 vivt_flush_cache_mm(mm);
55 return;
58 if (cache_is_vipt_aliasing()) {
59 asm( "mcr p15, 0, %0, c7, c14, 0\n"
60 " mcr p15, 0, %0, c7, c10, 4"
62 : "r" (0)
63 : "cc");
67 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
69 if (cache_is_vivt()) {
70 vivt_flush_cache_range(vma, start, end);
71 return;
74 if (cache_is_vipt_aliasing()) {
75 asm( "mcr p15, 0, %0, c7, c14, 0\n"
76 " mcr p15, 0, %0, c7, c10, 4"
78 : "r" (0)
79 : "cc");
82 if (vma->vm_flags & VM_EXEC)
83 __flush_icache_all();
86 void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
88 if (cache_is_vivt()) {
89 vivt_flush_cache_page(vma, user_addr, pfn);
90 return;
93 if (cache_is_vipt_aliasing()) {
94 flush_pfn_alias(pfn, user_addr);
95 __flush_icache_all();
98 if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
99 __flush_icache_all();
102 #else
103 #define flush_pfn_alias(pfn,vaddr) do { } while (0)
104 #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
105 #endif
107 static void flush_ptrace_access_other(void *args)
109 __flush_icache_all();
112 static
113 void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
114 unsigned long uaddr, void *kaddr, unsigned long len)
116 if (cache_is_vivt()) {
117 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
118 unsigned long addr = (unsigned long)kaddr;
119 __cpuc_coherent_kern_range(addr, addr + len);
121 return;
124 if (cache_is_vipt_aliasing()) {
125 flush_pfn_alias(page_to_pfn(page), uaddr);
126 __flush_icache_all();
127 return;
130 /* VIPT non-aliasing D-cache */
131 if (vma->vm_flags & VM_EXEC) {
132 unsigned long addr = (unsigned long)kaddr;
133 if (icache_is_vipt_aliasing())
134 flush_icache_alias(page_to_pfn(page), uaddr, len);
135 else
136 __cpuc_coherent_kern_range(addr, addr + len);
137 if (cache_ops_need_broadcast())
138 smp_call_function(flush_ptrace_access_other,
139 NULL, 1);
144 * Copy user data from/to a page which is mapped into a different
145 * processes address space. Really, we want to allow our "user
146 * space" model to handle this.
148 * Note that this code needs to run on the current CPU.
150 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
151 unsigned long uaddr, void *dst, const void *src,
152 unsigned long len)
154 #ifdef CONFIG_SMP
155 preempt_disable();
156 #endif
157 memcpy(dst, src, len);
158 flush_ptrace_access(vma, page, uaddr, dst, len);
159 #ifdef CONFIG_SMP
160 preempt_enable();
161 #endif
164 void __flush_dcache_page(struct address_space *mapping, struct page *page)
167 * Writeback any data associated with the kernel mapping of this
168 * page. This ensures that data in the physical page is mutually
169 * coherent with the kernels mapping.
171 if (!PageHighMem(page)) {
172 size_t page_size = PAGE_SIZE << compound_order(page);
173 __cpuc_flush_dcache_area(page_address(page), page_size);
174 } else {
175 unsigned long i;
176 if (cache_is_vipt_nonaliasing()) {
177 for (i = 0; i < (1 << compound_order(page)); i++) {
178 void *addr = kmap_atomic(page);
179 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
180 kunmap_atomic(addr);
182 } else {
183 for (i = 0; i < (1 << compound_order(page)); i++) {
184 void *addr = kmap_high_get(page);
185 if (addr) {
186 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
187 kunmap_high(page);
194 * If this is a page cache page, and we have an aliasing VIPT cache,
195 * we only need to do one flush - which would be at the relevant
196 * userspace colour, which is congruent with page->index.
198 if (mapping && cache_is_vipt_aliasing())
199 flush_pfn_alias(page_to_pfn(page),
200 page->index << PAGE_CACHE_SHIFT);
203 static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
205 struct mm_struct *mm = current->active_mm;
206 struct vm_area_struct *mpnt;
207 pgoff_t pgoff;
210 * There are possible user space mappings of this page:
211 * - VIVT cache: we need to also write back and invalidate all user
212 * data in the current VM view associated with this page.
213 * - aliasing VIPT: we only need to find one mapping of this page.
215 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
217 flush_dcache_mmap_lock(mapping);
218 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
219 unsigned long offset;
222 * If this VMA is not in our MM, we can ignore it.
224 if (mpnt->vm_mm != mm)
225 continue;
226 if (!(mpnt->vm_flags & VM_MAYSHARE))
227 continue;
228 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
229 flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
231 flush_dcache_mmap_unlock(mapping);
234 #if __LINUX_ARM_ARCH__ >= 6
235 void __sync_icache_dcache(pte_t pteval)
237 unsigned long pfn;
238 struct page *page;
239 struct address_space *mapping;
241 if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
242 /* only flush non-aliasing VIPT caches for exec mappings */
243 return;
244 pfn = pte_pfn(pteval);
245 if (!pfn_valid(pfn))
246 return;
248 page = pfn_to_page(pfn);
249 if (cache_is_vipt_aliasing())
250 mapping = page_mapping(page);
251 else
252 mapping = NULL;
254 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
255 __flush_dcache_page(mapping, page);
257 if (pte_exec(pteval))
258 __flush_icache_all();
260 #endif
263 * Ensure cache coherency between kernel mapping and userspace mapping
264 * of this page.
266 * We have three cases to consider:
267 * - VIPT non-aliasing cache: fully coherent so nothing required.
268 * - VIVT: fully aliasing, so we need to handle every alias in our
269 * current VM view.
270 * - VIPT aliasing: need to handle one alias in our current VM view.
272 * If we need to handle aliasing:
273 * If the page only exists in the page cache and there are no user
274 * space mappings, we can be lazy and remember that we may have dirty
275 * kernel cache lines for later. Otherwise, we assume we have
276 * aliasing mappings.
278 * Note that we disable the lazy flush for SMP configurations where
279 * the cache maintenance operations are not automatically broadcasted.
281 void flush_dcache_page(struct page *page)
283 struct address_space *mapping;
286 * The zero page is never written to, so never has any dirty
287 * cache lines, and therefore never needs to be flushed.
289 if (page == ZERO_PAGE(0))
290 return;
292 mapping = page_mapping(page);
294 if (!cache_ops_need_broadcast() &&
295 mapping && !page_mapped(page))
296 clear_bit(PG_dcache_clean, &page->flags);
297 else {
298 __flush_dcache_page(mapping, page);
299 if (mapping && cache_is_vivt())
300 __flush_dcache_aliases(mapping, page);
301 else if (mapping)
302 __flush_icache_all();
303 set_bit(PG_dcache_clean, &page->flags);
306 EXPORT_SYMBOL(flush_dcache_page);
309 * Ensure cache coherency for the kernel mapping of this page. We can
310 * assume that the page is pinned via kmap.
312 * If the page only exists in the page cache and there are no user
313 * space mappings, this is a no-op since the page was already marked
314 * dirty at creation. Otherwise, we need to flush the dirty kernel
315 * cache lines directly.
317 void flush_kernel_dcache_page(struct page *page)
319 if (cache_is_vivt() || cache_is_vipt_aliasing()) {
320 struct address_space *mapping;
322 mapping = page_mapping(page);
324 if (!mapping || mapping_mapped(mapping)) {
325 void *addr;
327 addr = page_address(page);
329 * kmap_atomic() doesn't set the page virtual
330 * address for highmem pages, and
331 * kunmap_atomic() takes care of cache
332 * flushing already.
334 if (!IS_ENABLED(CONFIG_HIGHMEM) || addr)
335 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
339 EXPORT_SYMBOL(flush_kernel_dcache_page);
342 * Flush an anonymous page so that users of get_user_pages()
343 * can safely access the data. The expected sequence is:
345 * get_user_pages()
346 * -> flush_anon_page
347 * memcpy() to/from page
348 * if written to page, flush_dcache_page()
350 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
352 unsigned long pfn;
354 /* VIPT non-aliasing caches need do nothing */
355 if (cache_is_vipt_nonaliasing())
356 return;
359 * Write back and invalidate userspace mapping.
361 pfn = page_to_pfn(page);
362 if (cache_is_vivt()) {
363 flush_cache_page(vma, vmaddr, pfn);
364 } else {
366 * For aliasing VIPT, we can flush an alias of the
367 * userspace address only.
369 flush_pfn_alias(pfn, vmaddr);
370 __flush_icache_all();
374 * Invalidate kernel mapping. No data should be contained
375 * in this mapping of the page. FIXME: this is overkill
376 * since we actually ask for a write-back and invalidate.
378 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);