Btrfs: get write access when setting the default subvolume
[linux-2.6.git] / fs / xfs / xfs_mount.c
blobb2bd3a0e6376e1190e1bbb747435acdaca998bb6
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
47 #ifdef HAVE_PERCPU_SB
48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57 #endif
59 static const struct {
60 short offset;
61 short type; /* 0 = integer
62 * 1 = binary / string (no translation)
64 } xfs_sb_info[] = {
65 { offsetof(xfs_sb_t, sb_magicnum), 0 },
66 { offsetof(xfs_sb_t, sb_blocksize), 0 },
67 { offsetof(xfs_sb_t, sb_dblocks), 0 },
68 { offsetof(xfs_sb_t, sb_rblocks), 0 },
69 { offsetof(xfs_sb_t, sb_rextents), 0 },
70 { offsetof(xfs_sb_t, sb_uuid), 1 },
71 { offsetof(xfs_sb_t, sb_logstart), 0 },
72 { offsetof(xfs_sb_t, sb_rootino), 0 },
73 { offsetof(xfs_sb_t, sb_rbmino), 0 },
74 { offsetof(xfs_sb_t, sb_rsumino), 0 },
75 { offsetof(xfs_sb_t, sb_rextsize), 0 },
76 { offsetof(xfs_sb_t, sb_agblocks), 0 },
77 { offsetof(xfs_sb_t, sb_agcount), 0 },
78 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
79 { offsetof(xfs_sb_t, sb_logblocks), 0 },
80 { offsetof(xfs_sb_t, sb_versionnum), 0 },
81 { offsetof(xfs_sb_t, sb_sectsize), 0 },
82 { offsetof(xfs_sb_t, sb_inodesize), 0 },
83 { offsetof(xfs_sb_t, sb_inopblock), 0 },
84 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
85 { offsetof(xfs_sb_t, sb_blocklog), 0 },
86 { offsetof(xfs_sb_t, sb_sectlog), 0 },
87 { offsetof(xfs_sb_t, sb_inodelog), 0 },
88 { offsetof(xfs_sb_t, sb_inopblog), 0 },
89 { offsetof(xfs_sb_t, sb_agblklog), 0 },
90 { offsetof(xfs_sb_t, sb_rextslog), 0 },
91 { offsetof(xfs_sb_t, sb_inprogress), 0 },
92 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
93 { offsetof(xfs_sb_t, sb_icount), 0 },
94 { offsetof(xfs_sb_t, sb_ifree), 0 },
95 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
96 { offsetof(xfs_sb_t, sb_frextents), 0 },
97 { offsetof(xfs_sb_t, sb_uquotino), 0 },
98 { offsetof(xfs_sb_t, sb_gquotino), 0 },
99 { offsetof(xfs_sb_t, sb_qflags), 0 },
100 { offsetof(xfs_sb_t, sb_flags), 0 },
101 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
102 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
103 { offsetof(xfs_sb_t, sb_unit), 0 },
104 { offsetof(xfs_sb_t, sb_width), 0 },
105 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
106 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
107 { offsetof(xfs_sb_t, sb_logsectsize),0 },
108 { offsetof(xfs_sb_t, sb_logsunit), 0 },
109 { offsetof(xfs_sb_t, sb_features2), 0 },
110 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
111 { sizeof(xfs_sb_t), 0 }
114 static DEFINE_MUTEX(xfs_uuid_table_mutex);
115 static int xfs_uuid_table_size;
116 static uuid_t *xfs_uuid_table;
119 * See if the UUID is unique among mounted XFS filesystems.
120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
122 STATIC int
123 xfs_uuid_mount(
124 struct xfs_mount *mp)
126 uuid_t *uuid = &mp->m_sb.sb_uuid;
127 int hole, i;
129 if (mp->m_flags & XFS_MOUNT_NOUUID)
130 return 0;
132 if (uuid_is_nil(uuid)) {
133 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
134 return XFS_ERROR(EINVAL);
137 mutex_lock(&xfs_uuid_table_mutex);
138 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
139 if (uuid_is_nil(&xfs_uuid_table[i])) {
140 hole = i;
141 continue;
143 if (uuid_equal(uuid, &xfs_uuid_table[i]))
144 goto out_duplicate;
147 if (hole < 0) {
148 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
149 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
150 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
151 KM_SLEEP);
152 hole = xfs_uuid_table_size++;
154 xfs_uuid_table[hole] = *uuid;
155 mutex_unlock(&xfs_uuid_table_mutex);
157 return 0;
159 out_duplicate:
160 mutex_unlock(&xfs_uuid_table_mutex);
161 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
162 return XFS_ERROR(EINVAL);
165 STATIC void
166 xfs_uuid_unmount(
167 struct xfs_mount *mp)
169 uuid_t *uuid = &mp->m_sb.sb_uuid;
170 int i;
172 if (mp->m_flags & XFS_MOUNT_NOUUID)
173 return;
175 mutex_lock(&xfs_uuid_table_mutex);
176 for (i = 0; i < xfs_uuid_table_size; i++) {
177 if (uuid_is_nil(&xfs_uuid_table[i]))
178 continue;
179 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
180 continue;
181 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
182 break;
184 ASSERT(i < xfs_uuid_table_size);
185 mutex_unlock(&xfs_uuid_table_mutex);
190 * Reference counting access wrappers to the perag structures.
191 * Because we never free per-ag structures, the only thing we
192 * have to protect against changes is the tree structure itself.
194 struct xfs_perag *
195 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
197 struct xfs_perag *pag;
198 int ref = 0;
200 rcu_read_lock();
201 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
202 if (pag) {
203 ASSERT(atomic_read(&pag->pag_ref) >= 0);
204 ref = atomic_inc_return(&pag->pag_ref);
206 rcu_read_unlock();
207 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
208 return pag;
212 * search from @first to find the next perag with the given tag set.
214 struct xfs_perag *
215 xfs_perag_get_tag(
216 struct xfs_mount *mp,
217 xfs_agnumber_t first,
218 int tag)
220 struct xfs_perag *pag;
221 int found;
222 int ref;
224 rcu_read_lock();
225 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
226 (void **)&pag, first, 1, tag);
227 if (found <= 0) {
228 rcu_read_unlock();
229 return NULL;
231 ref = atomic_inc_return(&pag->pag_ref);
232 rcu_read_unlock();
233 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
234 return pag;
237 void
238 xfs_perag_put(struct xfs_perag *pag)
240 int ref;
242 ASSERT(atomic_read(&pag->pag_ref) > 0);
243 ref = atomic_dec_return(&pag->pag_ref);
244 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
247 STATIC void
248 __xfs_free_perag(
249 struct rcu_head *head)
251 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
253 ASSERT(atomic_read(&pag->pag_ref) == 0);
254 kmem_free(pag);
258 * Free up the per-ag resources associated with the mount structure.
260 STATIC void
261 xfs_free_perag(
262 xfs_mount_t *mp)
264 xfs_agnumber_t agno;
265 struct xfs_perag *pag;
267 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
268 spin_lock(&mp->m_perag_lock);
269 pag = radix_tree_delete(&mp->m_perag_tree, agno);
270 spin_unlock(&mp->m_perag_lock);
271 ASSERT(pag);
272 ASSERT(atomic_read(&pag->pag_ref) == 0);
273 call_rcu(&pag->rcu_head, __xfs_free_perag);
278 * Check size of device based on the (data/realtime) block count.
279 * Note: this check is used by the growfs code as well as mount.
282 xfs_sb_validate_fsb_count(
283 xfs_sb_t *sbp,
284 __uint64_t nblocks)
286 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
287 ASSERT(sbp->sb_blocklog >= BBSHIFT);
289 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
290 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
291 return EFBIG;
292 #else /* Limited by UINT_MAX of sectors */
293 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
294 return EFBIG;
295 #endif
296 return 0;
300 * Check the validity of the SB found.
302 STATIC int
303 xfs_mount_validate_sb(
304 xfs_mount_t *mp,
305 xfs_sb_t *sbp,
306 int flags)
308 int loud = !(flags & XFS_MFSI_QUIET);
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 if (loud)
319 xfs_warn(mp, "bad magic number");
320 return XFS_ERROR(EWRONGFS);
323 if (!xfs_sb_good_version(sbp)) {
324 if (loud)
325 xfs_warn(mp, "bad version");
326 return XFS_ERROR(EWRONGFS);
329 if (unlikely(
330 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
331 if (loud)
332 xfs_warn(mp,
333 "filesystem is marked as having an external log; "
334 "specify logdev on the mount command line.");
335 return XFS_ERROR(EINVAL);
338 if (unlikely(
339 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
340 if (loud)
341 xfs_warn(mp,
342 "filesystem is marked as having an internal log; "
343 "do not specify logdev on the mount command line.");
344 return XFS_ERROR(EINVAL);
348 * More sanity checking. Most of these were stolen directly from
349 * xfs_repair.
351 if (unlikely(
352 sbp->sb_agcount <= 0 ||
353 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
354 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
355 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
356 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
357 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
358 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
359 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
360 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
361 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
362 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
363 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
364 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
365 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
366 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
367 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
368 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
369 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
370 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
371 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
372 sbp->sb_dblocks == 0 ||
373 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
374 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
375 if (loud)
376 XFS_CORRUPTION_ERROR("SB sanity check failed",
377 XFS_ERRLEVEL_LOW, mp, sbp);
378 return XFS_ERROR(EFSCORRUPTED);
382 * Until this is fixed only page-sized or smaller data blocks work.
384 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
385 if (loud) {
386 xfs_warn(mp,
387 "File system with blocksize %d bytes. "
388 "Only pagesize (%ld) or less will currently work.",
389 sbp->sb_blocksize, PAGE_SIZE);
391 return XFS_ERROR(ENOSYS);
395 * Currently only very few inode sizes are supported.
397 switch (sbp->sb_inodesize) {
398 case 256:
399 case 512:
400 case 1024:
401 case 2048:
402 break;
403 default:
404 if (loud)
405 xfs_warn(mp, "inode size of %d bytes not supported",
406 sbp->sb_inodesize);
407 return XFS_ERROR(ENOSYS);
410 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
411 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
412 if (loud)
413 xfs_warn(mp,
414 "file system too large to be mounted on this system.");
415 return XFS_ERROR(EFBIG);
418 if (unlikely(sbp->sb_inprogress)) {
419 if (loud)
420 xfs_warn(mp, "file system busy");
421 return XFS_ERROR(EFSCORRUPTED);
425 * Version 1 directory format has never worked on Linux.
427 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
428 if (loud)
429 xfs_warn(mp,
430 "file system using version 1 directory format");
431 return XFS_ERROR(ENOSYS);
434 return 0;
438 xfs_initialize_perag(
439 xfs_mount_t *mp,
440 xfs_agnumber_t agcount,
441 xfs_agnumber_t *maxagi)
443 xfs_agnumber_t index;
444 xfs_agnumber_t first_initialised = 0;
445 xfs_perag_t *pag;
446 xfs_agino_t agino;
447 xfs_ino_t ino;
448 xfs_sb_t *sbp = &mp->m_sb;
449 int error = -ENOMEM;
452 * Walk the current per-ag tree so we don't try to initialise AGs
453 * that already exist (growfs case). Allocate and insert all the
454 * AGs we don't find ready for initialisation.
456 for (index = 0; index < agcount; index++) {
457 pag = xfs_perag_get(mp, index);
458 if (pag) {
459 xfs_perag_put(pag);
460 continue;
462 if (!first_initialised)
463 first_initialised = index;
465 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
466 if (!pag)
467 goto out_unwind;
468 pag->pag_agno = index;
469 pag->pag_mount = mp;
470 spin_lock_init(&pag->pag_ici_lock);
471 mutex_init(&pag->pag_ici_reclaim_lock);
472 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
473 spin_lock_init(&pag->pag_buf_lock);
474 pag->pag_buf_tree = RB_ROOT;
476 if (radix_tree_preload(GFP_NOFS))
477 goto out_unwind;
479 spin_lock(&mp->m_perag_lock);
480 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
481 BUG();
482 spin_unlock(&mp->m_perag_lock);
483 radix_tree_preload_end();
484 error = -EEXIST;
485 goto out_unwind;
487 spin_unlock(&mp->m_perag_lock);
488 radix_tree_preload_end();
492 * If we mount with the inode64 option, or no inode overflows
493 * the legacy 32-bit address space clear the inode32 option.
495 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
496 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
498 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
499 mp->m_flags |= XFS_MOUNT_32BITINODES;
500 else
501 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
503 if (mp->m_flags & XFS_MOUNT_32BITINODES)
504 index = xfs_set_inode32(mp);
505 else
506 index = xfs_set_inode64(mp);
508 if (maxagi)
509 *maxagi = index;
510 return 0;
512 out_unwind:
513 kmem_free(pag);
514 for (; index > first_initialised; index--) {
515 pag = radix_tree_delete(&mp->m_perag_tree, index);
516 kmem_free(pag);
518 return error;
521 void
522 xfs_sb_from_disk(
523 struct xfs_mount *mp,
524 xfs_dsb_t *from)
526 struct xfs_sb *to = &mp->m_sb;
528 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
529 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
530 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
531 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
532 to->sb_rextents = be64_to_cpu(from->sb_rextents);
533 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
534 to->sb_logstart = be64_to_cpu(from->sb_logstart);
535 to->sb_rootino = be64_to_cpu(from->sb_rootino);
536 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
537 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
538 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
539 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
540 to->sb_agcount = be32_to_cpu(from->sb_agcount);
541 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
542 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
543 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
544 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
545 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
546 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
547 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
548 to->sb_blocklog = from->sb_blocklog;
549 to->sb_sectlog = from->sb_sectlog;
550 to->sb_inodelog = from->sb_inodelog;
551 to->sb_inopblog = from->sb_inopblog;
552 to->sb_agblklog = from->sb_agblklog;
553 to->sb_rextslog = from->sb_rextslog;
554 to->sb_inprogress = from->sb_inprogress;
555 to->sb_imax_pct = from->sb_imax_pct;
556 to->sb_icount = be64_to_cpu(from->sb_icount);
557 to->sb_ifree = be64_to_cpu(from->sb_ifree);
558 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
559 to->sb_frextents = be64_to_cpu(from->sb_frextents);
560 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
561 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
562 to->sb_qflags = be16_to_cpu(from->sb_qflags);
563 to->sb_flags = from->sb_flags;
564 to->sb_shared_vn = from->sb_shared_vn;
565 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
566 to->sb_unit = be32_to_cpu(from->sb_unit);
567 to->sb_width = be32_to_cpu(from->sb_width);
568 to->sb_dirblklog = from->sb_dirblklog;
569 to->sb_logsectlog = from->sb_logsectlog;
570 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
571 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
572 to->sb_features2 = be32_to_cpu(from->sb_features2);
573 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
577 * Copy in core superblock to ondisk one.
579 * The fields argument is mask of superblock fields to copy.
581 void
582 xfs_sb_to_disk(
583 xfs_dsb_t *to,
584 xfs_sb_t *from,
585 __int64_t fields)
587 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
588 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
589 xfs_sb_field_t f;
590 int first;
591 int size;
593 ASSERT(fields);
594 if (!fields)
595 return;
597 while (fields) {
598 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
599 first = xfs_sb_info[f].offset;
600 size = xfs_sb_info[f + 1].offset - first;
602 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
604 if (size == 1 || xfs_sb_info[f].type == 1) {
605 memcpy(to_ptr + first, from_ptr + first, size);
606 } else {
607 switch (size) {
608 case 2:
609 *(__be16 *)(to_ptr + first) =
610 cpu_to_be16(*(__u16 *)(from_ptr + first));
611 break;
612 case 4:
613 *(__be32 *)(to_ptr + first) =
614 cpu_to_be32(*(__u32 *)(from_ptr + first));
615 break;
616 case 8:
617 *(__be64 *)(to_ptr + first) =
618 cpu_to_be64(*(__u64 *)(from_ptr + first));
619 break;
620 default:
621 ASSERT(0);
625 fields &= ~(1LL << f);
630 * xfs_readsb
632 * Does the initial read of the superblock.
635 xfs_readsb(xfs_mount_t *mp, int flags)
637 unsigned int sector_size;
638 xfs_buf_t *bp;
639 int error;
640 int loud = !(flags & XFS_MFSI_QUIET);
642 ASSERT(mp->m_sb_bp == NULL);
643 ASSERT(mp->m_ddev_targp != NULL);
646 * Allocate a (locked) buffer to hold the superblock.
647 * This will be kept around at all times to optimize
648 * access to the superblock.
650 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
652 reread:
653 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
654 BTOBB(sector_size), 0);
655 if (!bp) {
656 if (loud)
657 xfs_warn(mp, "SB buffer read failed");
658 return EIO;
662 * Initialize the mount structure from the superblock.
663 * But first do some basic consistency checking.
665 xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp));
666 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
667 if (error) {
668 if (loud)
669 xfs_warn(mp, "SB validate failed");
670 goto release_buf;
674 * We must be able to do sector-sized and sector-aligned IO.
676 if (sector_size > mp->m_sb.sb_sectsize) {
677 if (loud)
678 xfs_warn(mp, "device supports %u byte sectors (not %u)",
679 sector_size, mp->m_sb.sb_sectsize);
680 error = ENOSYS;
681 goto release_buf;
685 * If device sector size is smaller than the superblock size,
686 * re-read the superblock so the buffer is correctly sized.
688 if (sector_size < mp->m_sb.sb_sectsize) {
689 xfs_buf_relse(bp);
690 sector_size = mp->m_sb.sb_sectsize;
691 goto reread;
694 /* Initialize per-cpu counters */
695 xfs_icsb_reinit_counters(mp);
697 mp->m_sb_bp = bp;
698 xfs_buf_unlock(bp);
699 return 0;
701 release_buf:
702 xfs_buf_relse(bp);
703 return error;
708 * xfs_mount_common
710 * Mount initialization code establishing various mount
711 * fields from the superblock associated with the given
712 * mount structure
714 STATIC void
715 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
717 mp->m_agfrotor = mp->m_agirotor = 0;
718 spin_lock_init(&mp->m_agirotor_lock);
719 mp->m_maxagi = mp->m_sb.sb_agcount;
720 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
721 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
722 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
723 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
724 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
725 mp->m_blockmask = sbp->sb_blocksize - 1;
726 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
727 mp->m_blockwmask = mp->m_blockwsize - 1;
729 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
730 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
731 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
732 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
734 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
735 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
736 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
737 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
739 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
740 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
741 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
742 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
744 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
745 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
746 sbp->sb_inopblock);
747 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
751 * xfs_initialize_perag_data
753 * Read in each per-ag structure so we can count up the number of
754 * allocated inodes, free inodes and used filesystem blocks as this
755 * information is no longer persistent in the superblock. Once we have
756 * this information, write it into the in-core superblock structure.
758 STATIC int
759 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
761 xfs_agnumber_t index;
762 xfs_perag_t *pag;
763 xfs_sb_t *sbp = &mp->m_sb;
764 uint64_t ifree = 0;
765 uint64_t ialloc = 0;
766 uint64_t bfree = 0;
767 uint64_t bfreelst = 0;
768 uint64_t btree = 0;
769 int error;
771 for (index = 0; index < agcount; index++) {
773 * read the agf, then the agi. This gets us
774 * all the information we need and populates the
775 * per-ag structures for us.
777 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
778 if (error)
779 return error;
781 error = xfs_ialloc_pagi_init(mp, NULL, index);
782 if (error)
783 return error;
784 pag = xfs_perag_get(mp, index);
785 ifree += pag->pagi_freecount;
786 ialloc += pag->pagi_count;
787 bfree += pag->pagf_freeblks;
788 bfreelst += pag->pagf_flcount;
789 btree += pag->pagf_btreeblks;
790 xfs_perag_put(pag);
793 * Overwrite incore superblock counters with just-read data
795 spin_lock(&mp->m_sb_lock);
796 sbp->sb_ifree = ifree;
797 sbp->sb_icount = ialloc;
798 sbp->sb_fdblocks = bfree + bfreelst + btree;
799 spin_unlock(&mp->m_sb_lock);
801 /* Fixup the per-cpu counters as well. */
802 xfs_icsb_reinit_counters(mp);
804 return 0;
808 * Update alignment values based on mount options and sb values
810 STATIC int
811 xfs_update_alignment(xfs_mount_t *mp)
813 xfs_sb_t *sbp = &(mp->m_sb);
815 if (mp->m_dalign) {
817 * If stripe unit and stripe width are not multiples
818 * of the fs blocksize turn off alignment.
820 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
821 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
822 if (mp->m_flags & XFS_MOUNT_RETERR) {
823 xfs_warn(mp, "alignment check failed: "
824 "(sunit/swidth vs. blocksize)");
825 return XFS_ERROR(EINVAL);
827 mp->m_dalign = mp->m_swidth = 0;
828 } else {
830 * Convert the stripe unit and width to FSBs.
832 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
833 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
834 if (mp->m_flags & XFS_MOUNT_RETERR) {
835 xfs_warn(mp, "alignment check failed: "
836 "(sunit/swidth vs. ag size)");
837 return XFS_ERROR(EINVAL);
839 xfs_warn(mp,
840 "stripe alignment turned off: sunit(%d)/swidth(%d) "
841 "incompatible with agsize(%d)",
842 mp->m_dalign, mp->m_swidth,
843 sbp->sb_agblocks);
845 mp->m_dalign = 0;
846 mp->m_swidth = 0;
847 } else if (mp->m_dalign) {
848 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
849 } else {
850 if (mp->m_flags & XFS_MOUNT_RETERR) {
851 xfs_warn(mp, "alignment check failed: "
852 "sunit(%d) less than bsize(%d)",
853 mp->m_dalign,
854 mp->m_blockmask +1);
855 return XFS_ERROR(EINVAL);
857 mp->m_swidth = 0;
862 * Update superblock with new values
863 * and log changes
865 if (xfs_sb_version_hasdalign(sbp)) {
866 if (sbp->sb_unit != mp->m_dalign) {
867 sbp->sb_unit = mp->m_dalign;
868 mp->m_update_flags |= XFS_SB_UNIT;
870 if (sbp->sb_width != mp->m_swidth) {
871 sbp->sb_width = mp->m_swidth;
872 mp->m_update_flags |= XFS_SB_WIDTH;
875 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
876 xfs_sb_version_hasdalign(&mp->m_sb)) {
877 mp->m_dalign = sbp->sb_unit;
878 mp->m_swidth = sbp->sb_width;
881 return 0;
885 * Set the maximum inode count for this filesystem
887 STATIC void
888 xfs_set_maxicount(xfs_mount_t *mp)
890 xfs_sb_t *sbp = &(mp->m_sb);
891 __uint64_t icount;
893 if (sbp->sb_imax_pct) {
895 * Make sure the maximum inode count is a multiple
896 * of the units we allocate inodes in.
898 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
899 do_div(icount, 100);
900 do_div(icount, mp->m_ialloc_blks);
901 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
902 sbp->sb_inopblog;
903 } else {
904 mp->m_maxicount = 0;
909 * Set the default minimum read and write sizes unless
910 * already specified in a mount option.
911 * We use smaller I/O sizes when the file system
912 * is being used for NFS service (wsync mount option).
914 STATIC void
915 xfs_set_rw_sizes(xfs_mount_t *mp)
917 xfs_sb_t *sbp = &(mp->m_sb);
918 int readio_log, writeio_log;
920 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
921 if (mp->m_flags & XFS_MOUNT_WSYNC) {
922 readio_log = XFS_WSYNC_READIO_LOG;
923 writeio_log = XFS_WSYNC_WRITEIO_LOG;
924 } else {
925 readio_log = XFS_READIO_LOG_LARGE;
926 writeio_log = XFS_WRITEIO_LOG_LARGE;
928 } else {
929 readio_log = mp->m_readio_log;
930 writeio_log = mp->m_writeio_log;
933 if (sbp->sb_blocklog > readio_log) {
934 mp->m_readio_log = sbp->sb_blocklog;
935 } else {
936 mp->m_readio_log = readio_log;
938 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
939 if (sbp->sb_blocklog > writeio_log) {
940 mp->m_writeio_log = sbp->sb_blocklog;
941 } else {
942 mp->m_writeio_log = writeio_log;
944 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
948 * precalculate the low space thresholds for dynamic speculative preallocation.
950 void
951 xfs_set_low_space_thresholds(
952 struct xfs_mount *mp)
954 int i;
956 for (i = 0; i < XFS_LOWSP_MAX; i++) {
957 __uint64_t space = mp->m_sb.sb_dblocks;
959 do_div(space, 100);
960 mp->m_low_space[i] = space * (i + 1);
966 * Set whether we're using inode alignment.
968 STATIC void
969 xfs_set_inoalignment(xfs_mount_t *mp)
971 if (xfs_sb_version_hasalign(&mp->m_sb) &&
972 mp->m_sb.sb_inoalignmt >=
973 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
974 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
975 else
976 mp->m_inoalign_mask = 0;
978 * If we are using stripe alignment, check whether
979 * the stripe unit is a multiple of the inode alignment
981 if (mp->m_dalign && mp->m_inoalign_mask &&
982 !(mp->m_dalign & mp->m_inoalign_mask))
983 mp->m_sinoalign = mp->m_dalign;
984 else
985 mp->m_sinoalign = 0;
989 * Check that the data (and log if separate) are an ok size.
991 STATIC int
992 xfs_check_sizes(xfs_mount_t *mp)
994 xfs_buf_t *bp;
995 xfs_daddr_t d;
997 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
998 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
999 xfs_warn(mp, "filesystem size mismatch detected");
1000 return XFS_ERROR(EFBIG);
1002 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1003 d - XFS_FSS_TO_BB(mp, 1),
1004 XFS_FSS_TO_BB(mp, 1), 0);
1005 if (!bp) {
1006 xfs_warn(mp, "last sector read failed");
1007 return EIO;
1009 xfs_buf_relse(bp);
1011 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1012 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1013 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1014 xfs_warn(mp, "log size mismatch detected");
1015 return XFS_ERROR(EFBIG);
1017 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1018 d - XFS_FSB_TO_BB(mp, 1),
1019 XFS_FSB_TO_BB(mp, 1), 0);
1020 if (!bp) {
1021 xfs_warn(mp, "log device read failed");
1022 return EIO;
1024 xfs_buf_relse(bp);
1026 return 0;
1030 * Clear the quotaflags in memory and in the superblock.
1033 xfs_mount_reset_sbqflags(
1034 struct xfs_mount *mp)
1036 int error;
1037 struct xfs_trans *tp;
1039 mp->m_qflags = 0;
1042 * It is OK to look at sb_qflags here in mount path,
1043 * without m_sb_lock.
1045 if (mp->m_sb.sb_qflags == 0)
1046 return 0;
1047 spin_lock(&mp->m_sb_lock);
1048 mp->m_sb.sb_qflags = 0;
1049 spin_unlock(&mp->m_sb_lock);
1052 * If the fs is readonly, let the incore superblock run
1053 * with quotas off but don't flush the update out to disk
1055 if (mp->m_flags & XFS_MOUNT_RDONLY)
1056 return 0;
1058 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1059 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1060 XFS_DEFAULT_LOG_COUNT);
1061 if (error) {
1062 xfs_trans_cancel(tp, 0);
1063 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1064 return error;
1067 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1068 return xfs_trans_commit(tp, 0);
1071 __uint64_t
1072 xfs_default_resblks(xfs_mount_t *mp)
1074 __uint64_t resblks;
1077 * We default to 5% or 8192 fsbs of space reserved, whichever is
1078 * smaller. This is intended to cover concurrent allocation
1079 * transactions when we initially hit enospc. These each require a 4
1080 * block reservation. Hence by default we cover roughly 2000 concurrent
1081 * allocation reservations.
1083 resblks = mp->m_sb.sb_dblocks;
1084 do_div(resblks, 20);
1085 resblks = min_t(__uint64_t, resblks, 8192);
1086 return resblks;
1090 * This function does the following on an initial mount of a file system:
1091 * - reads the superblock from disk and init the mount struct
1092 * - if we're a 32-bit kernel, do a size check on the superblock
1093 * so we don't mount terabyte filesystems
1094 * - init mount struct realtime fields
1095 * - allocate inode hash table for fs
1096 * - init directory manager
1097 * - perform recovery and init the log manager
1100 xfs_mountfs(
1101 xfs_mount_t *mp)
1103 xfs_sb_t *sbp = &(mp->m_sb);
1104 xfs_inode_t *rip;
1105 __uint64_t resblks;
1106 uint quotamount = 0;
1107 uint quotaflags = 0;
1108 int error = 0;
1110 xfs_mount_common(mp, sbp);
1113 * Check for a mismatched features2 values. Older kernels
1114 * read & wrote into the wrong sb offset for sb_features2
1115 * on some platforms due to xfs_sb_t not being 64bit size aligned
1116 * when sb_features2 was added, which made older superblock
1117 * reading/writing routines swap it as a 64-bit value.
1119 * For backwards compatibility, we make both slots equal.
1121 * If we detect a mismatched field, we OR the set bits into the
1122 * existing features2 field in case it has already been modified; we
1123 * don't want to lose any features. We then update the bad location
1124 * with the ORed value so that older kernels will see any features2
1125 * flags, and mark the two fields as needing updates once the
1126 * transaction subsystem is online.
1128 if (xfs_sb_has_mismatched_features2(sbp)) {
1129 xfs_warn(mp, "correcting sb_features alignment problem");
1130 sbp->sb_features2 |= sbp->sb_bad_features2;
1131 sbp->sb_bad_features2 = sbp->sb_features2;
1132 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1135 * Re-check for ATTR2 in case it was found in bad_features2
1136 * slot.
1138 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1139 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1140 mp->m_flags |= XFS_MOUNT_ATTR2;
1143 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1144 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1145 xfs_sb_version_removeattr2(&mp->m_sb);
1146 mp->m_update_flags |= XFS_SB_FEATURES2;
1148 /* update sb_versionnum for the clearing of the morebits */
1149 if (!sbp->sb_features2)
1150 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1154 * Check if sb_agblocks is aligned at stripe boundary
1155 * If sb_agblocks is NOT aligned turn off m_dalign since
1156 * allocator alignment is within an ag, therefore ag has
1157 * to be aligned at stripe boundary.
1159 error = xfs_update_alignment(mp);
1160 if (error)
1161 goto out;
1163 xfs_alloc_compute_maxlevels(mp);
1164 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1165 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1166 xfs_ialloc_compute_maxlevels(mp);
1168 xfs_set_maxicount(mp);
1170 error = xfs_uuid_mount(mp);
1171 if (error)
1172 goto out;
1175 * Set the minimum read and write sizes
1177 xfs_set_rw_sizes(mp);
1179 /* set the low space thresholds for dynamic preallocation */
1180 xfs_set_low_space_thresholds(mp);
1183 * Set the inode cluster size.
1184 * This may still be overridden by the file system
1185 * block size if it is larger than the chosen cluster size.
1187 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1190 * Set inode alignment fields
1192 xfs_set_inoalignment(mp);
1195 * Check that the data (and log if separate) are an ok size.
1197 error = xfs_check_sizes(mp);
1198 if (error)
1199 goto out_remove_uuid;
1202 * Initialize realtime fields in the mount structure
1204 error = xfs_rtmount_init(mp);
1205 if (error) {
1206 xfs_warn(mp, "RT mount failed");
1207 goto out_remove_uuid;
1211 * Copies the low order bits of the timestamp and the randomly
1212 * set "sequence" number out of a UUID.
1214 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1216 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1218 xfs_dir_mount(mp);
1221 * Initialize the attribute manager's entries.
1223 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1226 * Initialize the precomputed transaction reservations values.
1228 xfs_trans_init(mp);
1231 * Allocate and initialize the per-ag data.
1233 spin_lock_init(&mp->m_perag_lock);
1234 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1235 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1236 if (error) {
1237 xfs_warn(mp, "Failed per-ag init: %d", error);
1238 goto out_remove_uuid;
1241 if (!sbp->sb_logblocks) {
1242 xfs_warn(mp, "no log defined");
1243 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1244 error = XFS_ERROR(EFSCORRUPTED);
1245 goto out_free_perag;
1249 * log's mount-time initialization. Perform 1st part recovery if needed
1251 error = xfs_log_mount(mp, mp->m_logdev_targp,
1252 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1253 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1254 if (error) {
1255 xfs_warn(mp, "log mount failed");
1256 goto out_fail_wait;
1260 * Now the log is mounted, we know if it was an unclean shutdown or
1261 * not. If it was, with the first phase of recovery has completed, we
1262 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1263 * but they are recovered transactionally in the second recovery phase
1264 * later.
1266 * Hence we can safely re-initialise incore superblock counters from
1267 * the per-ag data. These may not be correct if the filesystem was not
1268 * cleanly unmounted, so we need to wait for recovery to finish before
1269 * doing this.
1271 * If the filesystem was cleanly unmounted, then we can trust the
1272 * values in the superblock to be correct and we don't need to do
1273 * anything here.
1275 * If we are currently making the filesystem, the initialisation will
1276 * fail as the perag data is in an undefined state.
1278 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1279 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1280 !mp->m_sb.sb_inprogress) {
1281 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1282 if (error)
1283 goto out_fail_wait;
1287 * Get and sanity-check the root inode.
1288 * Save the pointer to it in the mount structure.
1290 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1291 if (error) {
1292 xfs_warn(mp, "failed to read root inode");
1293 goto out_log_dealloc;
1296 ASSERT(rip != NULL);
1298 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1299 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1300 (unsigned long long)rip->i_ino);
1301 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1302 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1303 mp);
1304 error = XFS_ERROR(EFSCORRUPTED);
1305 goto out_rele_rip;
1307 mp->m_rootip = rip; /* save it */
1309 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1312 * Initialize realtime inode pointers in the mount structure
1314 error = xfs_rtmount_inodes(mp);
1315 if (error) {
1317 * Free up the root inode.
1319 xfs_warn(mp, "failed to read RT inodes");
1320 goto out_rele_rip;
1324 * If this is a read-only mount defer the superblock updates until
1325 * the next remount into writeable mode. Otherwise we would never
1326 * perform the update e.g. for the root filesystem.
1328 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1329 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1330 if (error) {
1331 xfs_warn(mp, "failed to write sb changes");
1332 goto out_rtunmount;
1337 * Initialise the XFS quota management subsystem for this mount
1339 if (XFS_IS_QUOTA_RUNNING(mp)) {
1340 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1341 if (error)
1342 goto out_rtunmount;
1343 } else {
1344 ASSERT(!XFS_IS_QUOTA_ON(mp));
1347 * If a file system had quotas running earlier, but decided to
1348 * mount without -o uquota/pquota/gquota options, revoke the
1349 * quotachecked license.
1351 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1352 xfs_notice(mp, "resetting quota flags");
1353 error = xfs_mount_reset_sbqflags(mp);
1354 if (error)
1355 return error;
1360 * Finish recovering the file system. This part needed to be
1361 * delayed until after the root and real-time bitmap inodes
1362 * were consistently read in.
1364 error = xfs_log_mount_finish(mp);
1365 if (error) {
1366 xfs_warn(mp, "log mount finish failed");
1367 goto out_rtunmount;
1371 * Complete the quota initialisation, post-log-replay component.
1373 if (quotamount) {
1374 ASSERT(mp->m_qflags == 0);
1375 mp->m_qflags = quotaflags;
1377 xfs_qm_mount_quotas(mp);
1381 * Now we are mounted, reserve a small amount of unused space for
1382 * privileged transactions. This is needed so that transaction
1383 * space required for critical operations can dip into this pool
1384 * when at ENOSPC. This is needed for operations like create with
1385 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1386 * are not allowed to use this reserved space.
1388 * This may drive us straight to ENOSPC on mount, but that implies
1389 * we were already there on the last unmount. Warn if this occurs.
1391 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1392 resblks = xfs_default_resblks(mp);
1393 error = xfs_reserve_blocks(mp, &resblks, NULL);
1394 if (error)
1395 xfs_warn(mp,
1396 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1399 return 0;
1401 out_rtunmount:
1402 xfs_rtunmount_inodes(mp);
1403 out_rele_rip:
1404 IRELE(rip);
1405 out_log_dealloc:
1406 xfs_log_unmount(mp);
1407 out_fail_wait:
1408 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1409 xfs_wait_buftarg(mp->m_logdev_targp);
1410 xfs_wait_buftarg(mp->m_ddev_targp);
1411 out_free_perag:
1412 xfs_free_perag(mp);
1413 out_remove_uuid:
1414 xfs_uuid_unmount(mp);
1415 out:
1416 return error;
1420 * This flushes out the inodes,dquots and the superblock, unmounts the
1421 * log and makes sure that incore structures are freed.
1423 void
1424 xfs_unmountfs(
1425 struct xfs_mount *mp)
1427 __uint64_t resblks;
1428 int error;
1430 xfs_qm_unmount_quotas(mp);
1431 xfs_rtunmount_inodes(mp);
1432 IRELE(mp->m_rootip);
1435 * We can potentially deadlock here if we have an inode cluster
1436 * that has been freed has its buffer still pinned in memory because
1437 * the transaction is still sitting in a iclog. The stale inodes
1438 * on that buffer will have their flush locks held until the
1439 * transaction hits the disk and the callbacks run. the inode
1440 * flush takes the flush lock unconditionally and with nothing to
1441 * push out the iclog we will never get that unlocked. hence we
1442 * need to force the log first.
1444 xfs_log_force(mp, XFS_LOG_SYNC);
1447 * Flush all pending changes from the AIL.
1449 xfs_ail_push_all_sync(mp->m_ail);
1452 * And reclaim all inodes. At this point there should be no dirty
1453 * inode, and none should be pinned or locked, but use synchronous
1454 * reclaim just to be sure.
1456 xfs_reclaim_inodes(mp, SYNC_WAIT);
1458 xfs_qm_unmount(mp);
1461 * Flush out the log synchronously so that we know for sure
1462 * that nothing is pinned. This is important because bflush()
1463 * will skip pinned buffers.
1465 xfs_log_force(mp, XFS_LOG_SYNC);
1468 * Unreserve any blocks we have so that when we unmount we don't account
1469 * the reserved free space as used. This is really only necessary for
1470 * lazy superblock counting because it trusts the incore superblock
1471 * counters to be absolutely correct on clean unmount.
1473 * We don't bother correcting this elsewhere for lazy superblock
1474 * counting because on mount of an unclean filesystem we reconstruct the
1475 * correct counter value and this is irrelevant.
1477 * For non-lazy counter filesystems, this doesn't matter at all because
1478 * we only every apply deltas to the superblock and hence the incore
1479 * value does not matter....
1481 resblks = 0;
1482 error = xfs_reserve_blocks(mp, &resblks, NULL);
1483 if (error)
1484 xfs_warn(mp, "Unable to free reserved block pool. "
1485 "Freespace may not be correct on next mount.");
1487 error = xfs_log_sbcount(mp);
1488 if (error)
1489 xfs_warn(mp, "Unable to update superblock counters. "
1490 "Freespace may not be correct on next mount.");
1493 * At this point we might have modified the superblock again and thus
1494 * added an item to the AIL, thus flush it again.
1496 xfs_ail_push_all_sync(mp->m_ail);
1497 xfs_wait_buftarg(mp->m_ddev_targp);
1500 * The superblock buffer is uncached and xfsaild_push() will lock and
1501 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
1502 * here but a lock on the superblock buffer will block until iodone()
1503 * has completed.
1505 xfs_buf_lock(mp->m_sb_bp);
1506 xfs_buf_unlock(mp->m_sb_bp);
1508 xfs_log_unmount_write(mp);
1509 xfs_log_unmount(mp);
1510 xfs_uuid_unmount(mp);
1512 #if defined(DEBUG)
1513 xfs_errortag_clearall(mp, 0);
1514 #endif
1515 xfs_free_perag(mp);
1519 xfs_fs_writable(xfs_mount_t *mp)
1521 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1522 (mp->m_flags & XFS_MOUNT_RDONLY));
1526 * xfs_log_sbcount
1528 * Sync the superblock counters to disk.
1530 * Note this code can be called during the process of freezing, so
1531 * we may need to use the transaction allocator which does not
1532 * block when the transaction subsystem is in its frozen state.
1535 xfs_log_sbcount(xfs_mount_t *mp)
1537 xfs_trans_t *tp;
1538 int error;
1540 if (!xfs_fs_writable(mp))
1541 return 0;
1543 xfs_icsb_sync_counters(mp, 0);
1546 * we don't need to do this if we are updating the superblock
1547 * counters on every modification.
1549 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1550 return 0;
1552 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1553 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1554 XFS_DEFAULT_LOG_COUNT);
1555 if (error) {
1556 xfs_trans_cancel(tp, 0);
1557 return error;
1560 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1561 xfs_trans_set_sync(tp);
1562 error = xfs_trans_commit(tp, 0);
1563 return error;
1567 * xfs_mod_sb() can be used to copy arbitrary changes to the
1568 * in-core superblock into the superblock buffer to be logged.
1569 * It does not provide the higher level of locking that is
1570 * needed to protect the in-core superblock from concurrent
1571 * access.
1573 void
1574 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1576 xfs_buf_t *bp;
1577 int first;
1578 int last;
1579 xfs_mount_t *mp;
1580 xfs_sb_field_t f;
1582 ASSERT(fields);
1583 if (!fields)
1584 return;
1585 mp = tp->t_mountp;
1586 bp = xfs_trans_getsb(tp, mp, 0);
1587 first = sizeof(xfs_sb_t);
1588 last = 0;
1590 /* translate/copy */
1592 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1594 /* find modified range */
1595 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1596 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1597 last = xfs_sb_info[f + 1].offset - 1;
1599 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1600 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1601 first = xfs_sb_info[f].offset;
1603 xfs_trans_log_buf(tp, bp, first, last);
1608 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1609 * a delta to a specified field in the in-core superblock. Simply
1610 * switch on the field indicated and apply the delta to that field.
1611 * Fields are not allowed to dip below zero, so if the delta would
1612 * do this do not apply it and return EINVAL.
1614 * The m_sb_lock must be held when this routine is called.
1616 STATIC int
1617 xfs_mod_incore_sb_unlocked(
1618 xfs_mount_t *mp,
1619 xfs_sb_field_t field,
1620 int64_t delta,
1621 int rsvd)
1623 int scounter; /* short counter for 32 bit fields */
1624 long long lcounter; /* long counter for 64 bit fields */
1625 long long res_used, rem;
1628 * With the in-core superblock spin lock held, switch
1629 * on the indicated field. Apply the delta to the
1630 * proper field. If the fields value would dip below
1631 * 0, then do not apply the delta and return EINVAL.
1633 switch (field) {
1634 case XFS_SBS_ICOUNT:
1635 lcounter = (long long)mp->m_sb.sb_icount;
1636 lcounter += delta;
1637 if (lcounter < 0) {
1638 ASSERT(0);
1639 return XFS_ERROR(EINVAL);
1641 mp->m_sb.sb_icount = lcounter;
1642 return 0;
1643 case XFS_SBS_IFREE:
1644 lcounter = (long long)mp->m_sb.sb_ifree;
1645 lcounter += delta;
1646 if (lcounter < 0) {
1647 ASSERT(0);
1648 return XFS_ERROR(EINVAL);
1650 mp->m_sb.sb_ifree = lcounter;
1651 return 0;
1652 case XFS_SBS_FDBLOCKS:
1653 lcounter = (long long)
1654 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1655 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1657 if (delta > 0) { /* Putting blocks back */
1658 if (res_used > delta) {
1659 mp->m_resblks_avail += delta;
1660 } else {
1661 rem = delta - res_used;
1662 mp->m_resblks_avail = mp->m_resblks;
1663 lcounter += rem;
1665 } else { /* Taking blocks away */
1666 lcounter += delta;
1667 if (lcounter >= 0) {
1668 mp->m_sb.sb_fdblocks = lcounter +
1669 XFS_ALLOC_SET_ASIDE(mp);
1670 return 0;
1674 * We are out of blocks, use any available reserved
1675 * blocks if were allowed to.
1677 if (!rsvd)
1678 return XFS_ERROR(ENOSPC);
1680 lcounter = (long long)mp->m_resblks_avail + delta;
1681 if (lcounter >= 0) {
1682 mp->m_resblks_avail = lcounter;
1683 return 0;
1685 printk_once(KERN_WARNING
1686 "Filesystem \"%s\": reserve blocks depleted! "
1687 "Consider increasing reserve pool size.",
1688 mp->m_fsname);
1689 return XFS_ERROR(ENOSPC);
1692 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1693 return 0;
1694 case XFS_SBS_FREXTENTS:
1695 lcounter = (long long)mp->m_sb.sb_frextents;
1696 lcounter += delta;
1697 if (lcounter < 0) {
1698 return XFS_ERROR(ENOSPC);
1700 mp->m_sb.sb_frextents = lcounter;
1701 return 0;
1702 case XFS_SBS_DBLOCKS:
1703 lcounter = (long long)mp->m_sb.sb_dblocks;
1704 lcounter += delta;
1705 if (lcounter < 0) {
1706 ASSERT(0);
1707 return XFS_ERROR(EINVAL);
1709 mp->m_sb.sb_dblocks = lcounter;
1710 return 0;
1711 case XFS_SBS_AGCOUNT:
1712 scounter = mp->m_sb.sb_agcount;
1713 scounter += delta;
1714 if (scounter < 0) {
1715 ASSERT(0);
1716 return XFS_ERROR(EINVAL);
1718 mp->m_sb.sb_agcount = scounter;
1719 return 0;
1720 case XFS_SBS_IMAX_PCT:
1721 scounter = mp->m_sb.sb_imax_pct;
1722 scounter += delta;
1723 if (scounter < 0) {
1724 ASSERT(0);
1725 return XFS_ERROR(EINVAL);
1727 mp->m_sb.sb_imax_pct = scounter;
1728 return 0;
1729 case XFS_SBS_REXTSIZE:
1730 scounter = mp->m_sb.sb_rextsize;
1731 scounter += delta;
1732 if (scounter < 0) {
1733 ASSERT(0);
1734 return XFS_ERROR(EINVAL);
1736 mp->m_sb.sb_rextsize = scounter;
1737 return 0;
1738 case XFS_SBS_RBMBLOCKS:
1739 scounter = mp->m_sb.sb_rbmblocks;
1740 scounter += delta;
1741 if (scounter < 0) {
1742 ASSERT(0);
1743 return XFS_ERROR(EINVAL);
1745 mp->m_sb.sb_rbmblocks = scounter;
1746 return 0;
1747 case XFS_SBS_RBLOCKS:
1748 lcounter = (long long)mp->m_sb.sb_rblocks;
1749 lcounter += delta;
1750 if (lcounter < 0) {
1751 ASSERT(0);
1752 return XFS_ERROR(EINVAL);
1754 mp->m_sb.sb_rblocks = lcounter;
1755 return 0;
1756 case XFS_SBS_REXTENTS:
1757 lcounter = (long long)mp->m_sb.sb_rextents;
1758 lcounter += delta;
1759 if (lcounter < 0) {
1760 ASSERT(0);
1761 return XFS_ERROR(EINVAL);
1763 mp->m_sb.sb_rextents = lcounter;
1764 return 0;
1765 case XFS_SBS_REXTSLOG:
1766 scounter = mp->m_sb.sb_rextslog;
1767 scounter += delta;
1768 if (scounter < 0) {
1769 ASSERT(0);
1770 return XFS_ERROR(EINVAL);
1772 mp->m_sb.sb_rextslog = scounter;
1773 return 0;
1774 default:
1775 ASSERT(0);
1776 return XFS_ERROR(EINVAL);
1781 * xfs_mod_incore_sb() is used to change a field in the in-core
1782 * superblock structure by the specified delta. This modification
1783 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1784 * routine to do the work.
1787 xfs_mod_incore_sb(
1788 struct xfs_mount *mp,
1789 xfs_sb_field_t field,
1790 int64_t delta,
1791 int rsvd)
1793 int status;
1795 #ifdef HAVE_PERCPU_SB
1796 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1797 #endif
1798 spin_lock(&mp->m_sb_lock);
1799 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1800 spin_unlock(&mp->m_sb_lock);
1802 return status;
1806 * Change more than one field in the in-core superblock structure at a time.
1808 * The fields and changes to those fields are specified in the array of
1809 * xfs_mod_sb structures passed in. Either all of the specified deltas
1810 * will be applied or none of them will. If any modified field dips below 0,
1811 * then all modifications will be backed out and EINVAL will be returned.
1813 * Note that this function may not be used for the superblock values that
1814 * are tracked with the in-memory per-cpu counters - a direct call to
1815 * xfs_icsb_modify_counters is required for these.
1818 xfs_mod_incore_sb_batch(
1819 struct xfs_mount *mp,
1820 xfs_mod_sb_t *msb,
1821 uint nmsb,
1822 int rsvd)
1824 xfs_mod_sb_t *msbp;
1825 int error = 0;
1828 * Loop through the array of mod structures and apply each individually.
1829 * If any fail, then back out all those which have already been applied.
1830 * Do all of this within the scope of the m_sb_lock so that all of the
1831 * changes will be atomic.
1833 spin_lock(&mp->m_sb_lock);
1834 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1835 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1836 msbp->msb_field > XFS_SBS_FDBLOCKS);
1838 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1839 msbp->msb_delta, rsvd);
1840 if (error)
1841 goto unwind;
1843 spin_unlock(&mp->m_sb_lock);
1844 return 0;
1846 unwind:
1847 while (--msbp >= msb) {
1848 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1849 -msbp->msb_delta, rsvd);
1850 ASSERT(error == 0);
1852 spin_unlock(&mp->m_sb_lock);
1853 return error;
1857 * xfs_getsb() is called to obtain the buffer for the superblock.
1858 * The buffer is returned locked and read in from disk.
1859 * The buffer should be released with a call to xfs_brelse().
1861 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1862 * the superblock buffer if it can be locked without sleeping.
1863 * If it can't then we'll return NULL.
1865 struct xfs_buf *
1866 xfs_getsb(
1867 struct xfs_mount *mp,
1868 int flags)
1870 struct xfs_buf *bp = mp->m_sb_bp;
1872 if (!xfs_buf_trylock(bp)) {
1873 if (flags & XBF_TRYLOCK)
1874 return NULL;
1875 xfs_buf_lock(bp);
1878 xfs_buf_hold(bp);
1879 ASSERT(XFS_BUF_ISDONE(bp));
1880 return bp;
1884 * Used to free the superblock along various error paths.
1886 void
1887 xfs_freesb(
1888 struct xfs_mount *mp)
1890 struct xfs_buf *bp = mp->m_sb_bp;
1892 xfs_buf_lock(bp);
1893 mp->m_sb_bp = NULL;
1894 xfs_buf_relse(bp);
1898 * Used to log changes to the superblock unit and width fields which could
1899 * be altered by the mount options, as well as any potential sb_features2
1900 * fixup. Only the first superblock is updated.
1903 xfs_mount_log_sb(
1904 xfs_mount_t *mp,
1905 __int64_t fields)
1907 xfs_trans_t *tp;
1908 int error;
1910 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1911 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1912 XFS_SB_VERSIONNUM));
1914 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1915 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1916 XFS_DEFAULT_LOG_COUNT);
1917 if (error) {
1918 xfs_trans_cancel(tp, 0);
1919 return error;
1921 xfs_mod_sb(tp, fields);
1922 error = xfs_trans_commit(tp, 0);
1923 return error;
1927 * If the underlying (data/log/rt) device is readonly, there are some
1928 * operations that cannot proceed.
1931 xfs_dev_is_read_only(
1932 struct xfs_mount *mp,
1933 char *message)
1935 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1936 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1937 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1938 xfs_notice(mp, "%s required on read-only device.", message);
1939 xfs_notice(mp, "write access unavailable, cannot proceed.");
1940 return EROFS;
1942 return 0;
1945 #ifdef HAVE_PERCPU_SB
1947 * Per-cpu incore superblock counters
1949 * Simple concept, difficult implementation
1951 * Basically, replace the incore superblock counters with a distributed per cpu
1952 * counter for contended fields (e.g. free block count).
1954 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1955 * hence needs to be accurately read when we are running low on space. Hence
1956 * there is a method to enable and disable the per-cpu counters based on how
1957 * much "stuff" is available in them.
1959 * Basically, a counter is enabled if there is enough free resource to justify
1960 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1961 * ENOSPC), then we disable the counters to synchronise all callers and
1962 * re-distribute the available resources.
1964 * If, once we redistributed the available resources, we still get a failure,
1965 * we disable the per-cpu counter and go through the slow path.
1967 * The slow path is the current xfs_mod_incore_sb() function. This means that
1968 * when we disable a per-cpu counter, we need to drain its resources back to
1969 * the global superblock. We do this after disabling the counter to prevent
1970 * more threads from queueing up on the counter.
1972 * Essentially, this means that we still need a lock in the fast path to enable
1973 * synchronisation between the global counters and the per-cpu counters. This
1974 * is not a problem because the lock will be local to a CPU almost all the time
1975 * and have little contention except when we get to ENOSPC conditions.
1977 * Basically, this lock becomes a barrier that enables us to lock out the fast
1978 * path while we do things like enabling and disabling counters and
1979 * synchronising the counters.
1981 * Locking rules:
1983 * 1. m_sb_lock before picking up per-cpu locks
1984 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1985 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1986 * 4. modifying per-cpu counters requires holding per-cpu lock
1987 * 5. modifying global counters requires holding m_sb_lock
1988 * 6. enabling or disabling a counter requires holding the m_sb_lock
1989 * and _none_ of the per-cpu locks.
1991 * Disabled counters are only ever re-enabled by a balance operation
1992 * that results in more free resources per CPU than a given threshold.
1993 * To ensure counters don't remain disabled, they are rebalanced when
1994 * the global resource goes above a higher threshold (i.e. some hysteresis
1995 * is present to prevent thrashing).
1998 #ifdef CONFIG_HOTPLUG_CPU
2000 * hot-plug CPU notifier support.
2002 * We need a notifier per filesystem as we need to be able to identify
2003 * the filesystem to balance the counters out. This is achieved by
2004 * having a notifier block embedded in the xfs_mount_t and doing pointer
2005 * magic to get the mount pointer from the notifier block address.
2007 STATIC int
2008 xfs_icsb_cpu_notify(
2009 struct notifier_block *nfb,
2010 unsigned long action,
2011 void *hcpu)
2013 xfs_icsb_cnts_t *cntp;
2014 xfs_mount_t *mp;
2016 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2017 cntp = (xfs_icsb_cnts_t *)
2018 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2019 switch (action) {
2020 case CPU_UP_PREPARE:
2021 case CPU_UP_PREPARE_FROZEN:
2022 /* Easy Case - initialize the area and locks, and
2023 * then rebalance when online does everything else for us. */
2024 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2025 break;
2026 case CPU_ONLINE:
2027 case CPU_ONLINE_FROZEN:
2028 xfs_icsb_lock(mp);
2029 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2030 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2031 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2032 xfs_icsb_unlock(mp);
2033 break;
2034 case CPU_DEAD:
2035 case CPU_DEAD_FROZEN:
2036 /* Disable all the counters, then fold the dead cpu's
2037 * count into the total on the global superblock and
2038 * re-enable the counters. */
2039 xfs_icsb_lock(mp);
2040 spin_lock(&mp->m_sb_lock);
2041 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2042 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2043 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2045 mp->m_sb.sb_icount += cntp->icsb_icount;
2046 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2047 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2049 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2051 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2052 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2053 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2054 spin_unlock(&mp->m_sb_lock);
2055 xfs_icsb_unlock(mp);
2056 break;
2059 return NOTIFY_OK;
2061 #endif /* CONFIG_HOTPLUG_CPU */
2064 xfs_icsb_init_counters(
2065 xfs_mount_t *mp)
2067 xfs_icsb_cnts_t *cntp;
2068 int i;
2070 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2071 if (mp->m_sb_cnts == NULL)
2072 return -ENOMEM;
2074 #ifdef CONFIG_HOTPLUG_CPU
2075 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2076 mp->m_icsb_notifier.priority = 0;
2077 register_hotcpu_notifier(&mp->m_icsb_notifier);
2078 #endif /* CONFIG_HOTPLUG_CPU */
2080 for_each_online_cpu(i) {
2081 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2082 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2085 mutex_init(&mp->m_icsb_mutex);
2088 * start with all counters disabled so that the
2089 * initial balance kicks us off correctly
2091 mp->m_icsb_counters = -1;
2092 return 0;
2095 void
2096 xfs_icsb_reinit_counters(
2097 xfs_mount_t *mp)
2099 xfs_icsb_lock(mp);
2101 * start with all counters disabled so that the
2102 * initial balance kicks us off correctly
2104 mp->m_icsb_counters = -1;
2105 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2106 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2107 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2108 xfs_icsb_unlock(mp);
2111 void
2112 xfs_icsb_destroy_counters(
2113 xfs_mount_t *mp)
2115 if (mp->m_sb_cnts) {
2116 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2117 free_percpu(mp->m_sb_cnts);
2119 mutex_destroy(&mp->m_icsb_mutex);
2122 STATIC void
2123 xfs_icsb_lock_cntr(
2124 xfs_icsb_cnts_t *icsbp)
2126 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2127 ndelay(1000);
2131 STATIC void
2132 xfs_icsb_unlock_cntr(
2133 xfs_icsb_cnts_t *icsbp)
2135 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2139 STATIC void
2140 xfs_icsb_lock_all_counters(
2141 xfs_mount_t *mp)
2143 xfs_icsb_cnts_t *cntp;
2144 int i;
2146 for_each_online_cpu(i) {
2147 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2148 xfs_icsb_lock_cntr(cntp);
2152 STATIC void
2153 xfs_icsb_unlock_all_counters(
2154 xfs_mount_t *mp)
2156 xfs_icsb_cnts_t *cntp;
2157 int i;
2159 for_each_online_cpu(i) {
2160 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2161 xfs_icsb_unlock_cntr(cntp);
2165 STATIC void
2166 xfs_icsb_count(
2167 xfs_mount_t *mp,
2168 xfs_icsb_cnts_t *cnt,
2169 int flags)
2171 xfs_icsb_cnts_t *cntp;
2172 int i;
2174 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2176 if (!(flags & XFS_ICSB_LAZY_COUNT))
2177 xfs_icsb_lock_all_counters(mp);
2179 for_each_online_cpu(i) {
2180 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2181 cnt->icsb_icount += cntp->icsb_icount;
2182 cnt->icsb_ifree += cntp->icsb_ifree;
2183 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2186 if (!(flags & XFS_ICSB_LAZY_COUNT))
2187 xfs_icsb_unlock_all_counters(mp);
2190 STATIC int
2191 xfs_icsb_counter_disabled(
2192 xfs_mount_t *mp,
2193 xfs_sb_field_t field)
2195 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2196 return test_bit(field, &mp->m_icsb_counters);
2199 STATIC void
2200 xfs_icsb_disable_counter(
2201 xfs_mount_t *mp,
2202 xfs_sb_field_t field)
2204 xfs_icsb_cnts_t cnt;
2206 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2209 * If we are already disabled, then there is nothing to do
2210 * here. We check before locking all the counters to avoid
2211 * the expensive lock operation when being called in the
2212 * slow path and the counter is already disabled. This is
2213 * safe because the only time we set or clear this state is under
2214 * the m_icsb_mutex.
2216 if (xfs_icsb_counter_disabled(mp, field))
2217 return;
2219 xfs_icsb_lock_all_counters(mp);
2220 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2221 /* drain back to superblock */
2223 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2224 switch(field) {
2225 case XFS_SBS_ICOUNT:
2226 mp->m_sb.sb_icount = cnt.icsb_icount;
2227 break;
2228 case XFS_SBS_IFREE:
2229 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2230 break;
2231 case XFS_SBS_FDBLOCKS:
2232 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2233 break;
2234 default:
2235 BUG();
2239 xfs_icsb_unlock_all_counters(mp);
2242 STATIC void
2243 xfs_icsb_enable_counter(
2244 xfs_mount_t *mp,
2245 xfs_sb_field_t field,
2246 uint64_t count,
2247 uint64_t resid)
2249 xfs_icsb_cnts_t *cntp;
2250 int i;
2252 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2254 xfs_icsb_lock_all_counters(mp);
2255 for_each_online_cpu(i) {
2256 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2257 switch (field) {
2258 case XFS_SBS_ICOUNT:
2259 cntp->icsb_icount = count + resid;
2260 break;
2261 case XFS_SBS_IFREE:
2262 cntp->icsb_ifree = count + resid;
2263 break;
2264 case XFS_SBS_FDBLOCKS:
2265 cntp->icsb_fdblocks = count + resid;
2266 break;
2267 default:
2268 BUG();
2269 break;
2271 resid = 0;
2273 clear_bit(field, &mp->m_icsb_counters);
2274 xfs_icsb_unlock_all_counters(mp);
2277 void
2278 xfs_icsb_sync_counters_locked(
2279 xfs_mount_t *mp,
2280 int flags)
2282 xfs_icsb_cnts_t cnt;
2284 xfs_icsb_count(mp, &cnt, flags);
2286 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2287 mp->m_sb.sb_icount = cnt.icsb_icount;
2288 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2289 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2290 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2291 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2295 * Accurate update of per-cpu counters to incore superblock
2297 void
2298 xfs_icsb_sync_counters(
2299 xfs_mount_t *mp,
2300 int flags)
2302 spin_lock(&mp->m_sb_lock);
2303 xfs_icsb_sync_counters_locked(mp, flags);
2304 spin_unlock(&mp->m_sb_lock);
2308 * Balance and enable/disable counters as necessary.
2310 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2311 * chosen to be the same number as single on disk allocation chunk per CPU, and
2312 * free blocks is something far enough zero that we aren't going thrash when we
2313 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2314 * prevent looping endlessly when xfs_alloc_space asks for more than will
2315 * be distributed to a single CPU but each CPU has enough blocks to be
2316 * reenabled.
2318 * Note that we can be called when counters are already disabled.
2319 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2320 * prevent locking every per-cpu counter needlessly.
2323 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2324 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2325 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2326 STATIC void
2327 xfs_icsb_balance_counter_locked(
2328 xfs_mount_t *mp,
2329 xfs_sb_field_t field,
2330 int min_per_cpu)
2332 uint64_t count, resid;
2333 int weight = num_online_cpus();
2334 uint64_t min = (uint64_t)min_per_cpu;
2336 /* disable counter and sync counter */
2337 xfs_icsb_disable_counter(mp, field);
2339 /* update counters - first CPU gets residual*/
2340 switch (field) {
2341 case XFS_SBS_ICOUNT:
2342 count = mp->m_sb.sb_icount;
2343 resid = do_div(count, weight);
2344 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2345 return;
2346 break;
2347 case XFS_SBS_IFREE:
2348 count = mp->m_sb.sb_ifree;
2349 resid = do_div(count, weight);
2350 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2351 return;
2352 break;
2353 case XFS_SBS_FDBLOCKS:
2354 count = mp->m_sb.sb_fdblocks;
2355 resid = do_div(count, weight);
2356 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2357 return;
2358 break;
2359 default:
2360 BUG();
2361 count = resid = 0; /* quiet, gcc */
2362 break;
2365 xfs_icsb_enable_counter(mp, field, count, resid);
2368 STATIC void
2369 xfs_icsb_balance_counter(
2370 xfs_mount_t *mp,
2371 xfs_sb_field_t fields,
2372 int min_per_cpu)
2374 spin_lock(&mp->m_sb_lock);
2375 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2376 spin_unlock(&mp->m_sb_lock);
2380 xfs_icsb_modify_counters(
2381 xfs_mount_t *mp,
2382 xfs_sb_field_t field,
2383 int64_t delta,
2384 int rsvd)
2386 xfs_icsb_cnts_t *icsbp;
2387 long long lcounter; /* long counter for 64 bit fields */
2388 int ret = 0;
2390 might_sleep();
2391 again:
2392 preempt_disable();
2393 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2396 * if the counter is disabled, go to slow path
2398 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2399 goto slow_path;
2400 xfs_icsb_lock_cntr(icsbp);
2401 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2402 xfs_icsb_unlock_cntr(icsbp);
2403 goto slow_path;
2406 switch (field) {
2407 case XFS_SBS_ICOUNT:
2408 lcounter = icsbp->icsb_icount;
2409 lcounter += delta;
2410 if (unlikely(lcounter < 0))
2411 goto balance_counter;
2412 icsbp->icsb_icount = lcounter;
2413 break;
2415 case XFS_SBS_IFREE:
2416 lcounter = icsbp->icsb_ifree;
2417 lcounter += delta;
2418 if (unlikely(lcounter < 0))
2419 goto balance_counter;
2420 icsbp->icsb_ifree = lcounter;
2421 break;
2423 case XFS_SBS_FDBLOCKS:
2424 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2426 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2427 lcounter += delta;
2428 if (unlikely(lcounter < 0))
2429 goto balance_counter;
2430 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2431 break;
2432 default:
2433 BUG();
2434 break;
2436 xfs_icsb_unlock_cntr(icsbp);
2437 preempt_enable();
2438 return 0;
2440 slow_path:
2441 preempt_enable();
2444 * serialise with a mutex so we don't burn lots of cpu on
2445 * the superblock lock. We still need to hold the superblock
2446 * lock, however, when we modify the global structures.
2448 xfs_icsb_lock(mp);
2451 * Now running atomically.
2453 * If the counter is enabled, someone has beaten us to rebalancing.
2454 * Drop the lock and try again in the fast path....
2456 if (!(xfs_icsb_counter_disabled(mp, field))) {
2457 xfs_icsb_unlock(mp);
2458 goto again;
2462 * The counter is currently disabled. Because we are
2463 * running atomically here, we know a rebalance cannot
2464 * be in progress. Hence we can go straight to operating
2465 * on the global superblock. We do not call xfs_mod_incore_sb()
2466 * here even though we need to get the m_sb_lock. Doing so
2467 * will cause us to re-enter this function and deadlock.
2468 * Hence we get the m_sb_lock ourselves and then call
2469 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2470 * directly on the global counters.
2472 spin_lock(&mp->m_sb_lock);
2473 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2474 spin_unlock(&mp->m_sb_lock);
2477 * Now that we've modified the global superblock, we
2478 * may be able to re-enable the distributed counters
2479 * (e.g. lots of space just got freed). After that
2480 * we are done.
2482 if (ret != ENOSPC)
2483 xfs_icsb_balance_counter(mp, field, 0);
2484 xfs_icsb_unlock(mp);
2485 return ret;
2487 balance_counter:
2488 xfs_icsb_unlock_cntr(icsbp);
2489 preempt_enable();
2492 * We may have multiple threads here if multiple per-cpu
2493 * counters run dry at the same time. This will mean we can
2494 * do more balances than strictly necessary but it is not
2495 * the common slowpath case.
2497 xfs_icsb_lock(mp);
2500 * running atomically.
2502 * This will leave the counter in the correct state for future
2503 * accesses. After the rebalance, we simply try again and our retry
2504 * will either succeed through the fast path or slow path without
2505 * another balance operation being required.
2507 xfs_icsb_balance_counter(mp, field, delta);
2508 xfs_icsb_unlock(mp);
2509 goto again;
2512 #endif