Disintegrate asm/system.h for Blackfin [ver #2]
[linux-2.6.git] / kernel / auditsc.c
blobaf1de0f34eaed8dbf3dfb0057cd5c200da70b47a
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
71 #include "audit.h"
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES 5
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
89 /* number of audit rules */
90 int audit_n_rules;
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
95 struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 struct list_head list; /* audit_context->names_list */
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
118 u32 osid;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
128 bool should_free;
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
136 #define AUDIT_AUX_IPCPERM 0
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
215 pid_t target_pid;
216 uid_t target_auid;
217 uid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 uid_t uid;
234 gid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
271 int fds[2];
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
279 static inline int open_arg(int flags, int mask)
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
287 static int audit_match_perm(struct audit_context *ctx, int mask)
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
330 static int audit_match_filetype(struct audit_context *ctx, int val)
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
335 if (unlikely(!ctx))
336 return 0;
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
344 return 0;
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
384 return 0;
387 static int grow_tree_refs(struct audit_context *ctx)
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
402 #endif
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
434 static void free_tree_refs(struct audit_context *ctx)
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
462 #endif
463 return 0;
466 static int audit_compare_id(uid_t uid1,
467 struct audit_names *name,
468 unsigned long name_offset,
469 struct audit_field *f,
470 struct audit_context *ctx)
472 struct audit_names *n;
473 unsigned long addr;
474 uid_t uid2;
475 int rc;
477 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
479 if (name) {
480 addr = (unsigned long)name;
481 addr += name_offset;
483 uid2 = *(uid_t *)addr;
484 rc = audit_comparator(uid1, f->op, uid2);
485 if (rc)
486 return rc;
489 if (ctx) {
490 list_for_each_entry(n, &ctx->names_list, list) {
491 addr = (unsigned long)n;
492 addr += name_offset;
494 uid2 = *(uid_t *)addr;
496 rc = audit_comparator(uid1, f->op, uid2);
497 if (rc)
498 return rc;
501 return 0;
504 static int audit_field_compare(struct task_struct *tsk,
505 const struct cred *cred,
506 struct audit_field *f,
507 struct audit_context *ctx,
508 struct audit_names *name)
510 switch (f->val) {
511 /* process to file object comparisons */
512 case AUDIT_COMPARE_UID_TO_OBJ_UID:
513 return audit_compare_id(cred->uid,
514 name, offsetof(struct audit_names, uid),
515 f, ctx);
516 case AUDIT_COMPARE_GID_TO_OBJ_GID:
517 return audit_compare_id(cred->gid,
518 name, offsetof(struct audit_names, gid),
519 f, ctx);
520 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
521 return audit_compare_id(cred->euid,
522 name, offsetof(struct audit_names, uid),
523 f, ctx);
524 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
525 return audit_compare_id(cred->egid,
526 name, offsetof(struct audit_names, gid),
527 f, ctx);
528 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
529 return audit_compare_id(tsk->loginuid,
530 name, offsetof(struct audit_names, uid),
531 f, ctx);
532 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
533 return audit_compare_id(cred->suid,
534 name, offsetof(struct audit_names, uid),
535 f, ctx);
536 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
537 return audit_compare_id(cred->sgid,
538 name, offsetof(struct audit_names, gid),
539 f, ctx);
540 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
541 return audit_compare_id(cred->fsuid,
542 name, offsetof(struct audit_names, uid),
543 f, ctx);
544 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
545 return audit_compare_id(cred->fsgid,
546 name, offsetof(struct audit_names, gid),
547 f, ctx);
548 /* uid comparisons */
549 case AUDIT_COMPARE_UID_TO_AUID:
550 return audit_comparator(cred->uid, f->op, tsk->loginuid);
551 case AUDIT_COMPARE_UID_TO_EUID:
552 return audit_comparator(cred->uid, f->op, cred->euid);
553 case AUDIT_COMPARE_UID_TO_SUID:
554 return audit_comparator(cred->uid, f->op, cred->suid);
555 case AUDIT_COMPARE_UID_TO_FSUID:
556 return audit_comparator(cred->uid, f->op, cred->fsuid);
557 /* auid comparisons */
558 case AUDIT_COMPARE_AUID_TO_EUID:
559 return audit_comparator(tsk->loginuid, f->op, cred->euid);
560 case AUDIT_COMPARE_AUID_TO_SUID:
561 return audit_comparator(tsk->loginuid, f->op, cred->suid);
562 case AUDIT_COMPARE_AUID_TO_FSUID:
563 return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
564 /* euid comparisons */
565 case AUDIT_COMPARE_EUID_TO_SUID:
566 return audit_comparator(cred->euid, f->op, cred->suid);
567 case AUDIT_COMPARE_EUID_TO_FSUID:
568 return audit_comparator(cred->euid, f->op, cred->fsuid);
569 /* suid comparisons */
570 case AUDIT_COMPARE_SUID_TO_FSUID:
571 return audit_comparator(cred->suid, f->op, cred->fsuid);
572 /* gid comparisons */
573 case AUDIT_COMPARE_GID_TO_EGID:
574 return audit_comparator(cred->gid, f->op, cred->egid);
575 case AUDIT_COMPARE_GID_TO_SGID:
576 return audit_comparator(cred->gid, f->op, cred->sgid);
577 case AUDIT_COMPARE_GID_TO_FSGID:
578 return audit_comparator(cred->gid, f->op, cred->fsgid);
579 /* egid comparisons */
580 case AUDIT_COMPARE_EGID_TO_SGID:
581 return audit_comparator(cred->egid, f->op, cred->sgid);
582 case AUDIT_COMPARE_EGID_TO_FSGID:
583 return audit_comparator(cred->egid, f->op, cred->fsgid);
584 /* sgid comparison */
585 case AUDIT_COMPARE_SGID_TO_FSGID:
586 return audit_comparator(cred->sgid, f->op, cred->fsgid);
587 default:
588 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
589 return 0;
591 return 0;
594 /* Determine if any context name data matches a rule's watch data */
595 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
596 * otherwise.
598 * If task_creation is true, this is an explicit indication that we are
599 * filtering a task rule at task creation time. This and tsk == current are
600 * the only situations where tsk->cred may be accessed without an rcu read lock.
602 static int audit_filter_rules(struct task_struct *tsk,
603 struct audit_krule *rule,
604 struct audit_context *ctx,
605 struct audit_names *name,
606 enum audit_state *state,
607 bool task_creation)
609 const struct cred *cred;
610 int i, need_sid = 1;
611 u32 sid;
613 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
615 for (i = 0; i < rule->field_count; i++) {
616 struct audit_field *f = &rule->fields[i];
617 struct audit_names *n;
618 int result = 0;
620 switch (f->type) {
621 case AUDIT_PID:
622 result = audit_comparator(tsk->pid, f->op, f->val);
623 break;
624 case AUDIT_PPID:
625 if (ctx) {
626 if (!ctx->ppid)
627 ctx->ppid = sys_getppid();
628 result = audit_comparator(ctx->ppid, f->op, f->val);
630 break;
631 case AUDIT_UID:
632 result = audit_comparator(cred->uid, f->op, f->val);
633 break;
634 case AUDIT_EUID:
635 result = audit_comparator(cred->euid, f->op, f->val);
636 break;
637 case AUDIT_SUID:
638 result = audit_comparator(cred->suid, f->op, f->val);
639 break;
640 case AUDIT_FSUID:
641 result = audit_comparator(cred->fsuid, f->op, f->val);
642 break;
643 case AUDIT_GID:
644 result = audit_comparator(cred->gid, f->op, f->val);
645 break;
646 case AUDIT_EGID:
647 result = audit_comparator(cred->egid, f->op, f->val);
648 break;
649 case AUDIT_SGID:
650 result = audit_comparator(cred->sgid, f->op, f->val);
651 break;
652 case AUDIT_FSGID:
653 result = audit_comparator(cred->fsgid, f->op, f->val);
654 break;
655 case AUDIT_PERS:
656 result = audit_comparator(tsk->personality, f->op, f->val);
657 break;
658 case AUDIT_ARCH:
659 if (ctx)
660 result = audit_comparator(ctx->arch, f->op, f->val);
661 break;
663 case AUDIT_EXIT:
664 if (ctx && ctx->return_valid)
665 result = audit_comparator(ctx->return_code, f->op, f->val);
666 break;
667 case AUDIT_SUCCESS:
668 if (ctx && ctx->return_valid) {
669 if (f->val)
670 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
671 else
672 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
674 break;
675 case AUDIT_DEVMAJOR:
676 if (name) {
677 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
678 audit_comparator(MAJOR(name->rdev), f->op, f->val))
679 ++result;
680 } else if (ctx) {
681 list_for_each_entry(n, &ctx->names_list, list) {
682 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
683 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
684 ++result;
685 break;
689 break;
690 case AUDIT_DEVMINOR:
691 if (name) {
692 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
693 audit_comparator(MINOR(name->rdev), f->op, f->val))
694 ++result;
695 } else if (ctx) {
696 list_for_each_entry(n, &ctx->names_list, list) {
697 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
698 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
699 ++result;
700 break;
704 break;
705 case AUDIT_INODE:
706 if (name)
707 result = (name->ino == f->val);
708 else if (ctx) {
709 list_for_each_entry(n, &ctx->names_list, list) {
710 if (audit_comparator(n->ino, f->op, f->val)) {
711 ++result;
712 break;
716 break;
717 case AUDIT_OBJ_UID:
718 if (name) {
719 result = audit_comparator(name->uid, f->op, f->val);
720 } else if (ctx) {
721 list_for_each_entry(n, &ctx->names_list, list) {
722 if (audit_comparator(n->uid, f->op, f->val)) {
723 ++result;
724 break;
728 break;
729 case AUDIT_OBJ_GID:
730 if (name) {
731 result = audit_comparator(name->gid, f->op, f->val);
732 } else if (ctx) {
733 list_for_each_entry(n, &ctx->names_list, list) {
734 if (audit_comparator(n->gid, f->op, f->val)) {
735 ++result;
736 break;
740 break;
741 case AUDIT_WATCH:
742 if (name)
743 result = audit_watch_compare(rule->watch, name->ino, name->dev);
744 break;
745 case AUDIT_DIR:
746 if (ctx)
747 result = match_tree_refs(ctx, rule->tree);
748 break;
749 case AUDIT_LOGINUID:
750 result = 0;
751 if (ctx)
752 result = audit_comparator(tsk->loginuid, f->op, f->val);
753 break;
754 case AUDIT_SUBJ_USER:
755 case AUDIT_SUBJ_ROLE:
756 case AUDIT_SUBJ_TYPE:
757 case AUDIT_SUBJ_SEN:
758 case AUDIT_SUBJ_CLR:
759 /* NOTE: this may return negative values indicating
760 a temporary error. We simply treat this as a
761 match for now to avoid losing information that
762 may be wanted. An error message will also be
763 logged upon error */
764 if (f->lsm_rule) {
765 if (need_sid) {
766 security_task_getsecid(tsk, &sid);
767 need_sid = 0;
769 result = security_audit_rule_match(sid, f->type,
770 f->op,
771 f->lsm_rule,
772 ctx);
774 break;
775 case AUDIT_OBJ_USER:
776 case AUDIT_OBJ_ROLE:
777 case AUDIT_OBJ_TYPE:
778 case AUDIT_OBJ_LEV_LOW:
779 case AUDIT_OBJ_LEV_HIGH:
780 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
781 also applies here */
782 if (f->lsm_rule) {
783 /* Find files that match */
784 if (name) {
785 result = security_audit_rule_match(
786 name->osid, f->type, f->op,
787 f->lsm_rule, ctx);
788 } else if (ctx) {
789 list_for_each_entry(n, &ctx->names_list, list) {
790 if (security_audit_rule_match(n->osid, f->type,
791 f->op, f->lsm_rule,
792 ctx)) {
793 ++result;
794 break;
798 /* Find ipc objects that match */
799 if (!ctx || ctx->type != AUDIT_IPC)
800 break;
801 if (security_audit_rule_match(ctx->ipc.osid,
802 f->type, f->op,
803 f->lsm_rule, ctx))
804 ++result;
806 break;
807 case AUDIT_ARG0:
808 case AUDIT_ARG1:
809 case AUDIT_ARG2:
810 case AUDIT_ARG3:
811 if (ctx)
812 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
813 break;
814 case AUDIT_FILTERKEY:
815 /* ignore this field for filtering */
816 result = 1;
817 break;
818 case AUDIT_PERM:
819 result = audit_match_perm(ctx, f->val);
820 break;
821 case AUDIT_FILETYPE:
822 result = audit_match_filetype(ctx, f->val);
823 break;
824 case AUDIT_FIELD_COMPARE:
825 result = audit_field_compare(tsk, cred, f, ctx, name);
826 break;
828 if (!result)
829 return 0;
832 if (ctx) {
833 if (rule->prio <= ctx->prio)
834 return 0;
835 if (rule->filterkey) {
836 kfree(ctx->filterkey);
837 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
839 ctx->prio = rule->prio;
841 switch (rule->action) {
842 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
843 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
845 return 1;
848 /* At process creation time, we can determine if system-call auditing is
849 * completely disabled for this task. Since we only have the task
850 * structure at this point, we can only check uid and gid.
852 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
854 struct audit_entry *e;
855 enum audit_state state;
857 rcu_read_lock();
858 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
859 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
860 &state, true)) {
861 if (state == AUDIT_RECORD_CONTEXT)
862 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
863 rcu_read_unlock();
864 return state;
867 rcu_read_unlock();
868 return AUDIT_BUILD_CONTEXT;
871 /* At syscall entry and exit time, this filter is called if the
872 * audit_state is not low enough that auditing cannot take place, but is
873 * also not high enough that we already know we have to write an audit
874 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
876 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
877 struct audit_context *ctx,
878 struct list_head *list)
880 struct audit_entry *e;
881 enum audit_state state;
883 if (audit_pid && tsk->tgid == audit_pid)
884 return AUDIT_DISABLED;
886 rcu_read_lock();
887 if (!list_empty(list)) {
888 int word = AUDIT_WORD(ctx->major);
889 int bit = AUDIT_BIT(ctx->major);
891 list_for_each_entry_rcu(e, list, list) {
892 if ((e->rule.mask[word] & bit) == bit &&
893 audit_filter_rules(tsk, &e->rule, ctx, NULL,
894 &state, false)) {
895 rcu_read_unlock();
896 ctx->current_state = state;
897 return state;
901 rcu_read_unlock();
902 return AUDIT_BUILD_CONTEXT;
906 * Given an audit_name check the inode hash table to see if they match.
907 * Called holding the rcu read lock to protect the use of audit_inode_hash
909 static int audit_filter_inode_name(struct task_struct *tsk,
910 struct audit_names *n,
911 struct audit_context *ctx) {
912 int word, bit;
913 int h = audit_hash_ino((u32)n->ino);
914 struct list_head *list = &audit_inode_hash[h];
915 struct audit_entry *e;
916 enum audit_state state;
918 word = AUDIT_WORD(ctx->major);
919 bit = AUDIT_BIT(ctx->major);
921 if (list_empty(list))
922 return 0;
924 list_for_each_entry_rcu(e, list, list) {
925 if ((e->rule.mask[word] & bit) == bit &&
926 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
927 ctx->current_state = state;
928 return 1;
932 return 0;
935 /* At syscall exit time, this filter is called if any audit_names have been
936 * collected during syscall processing. We only check rules in sublists at hash
937 * buckets applicable to the inode numbers in audit_names.
938 * Regarding audit_state, same rules apply as for audit_filter_syscall().
940 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
942 struct audit_names *n;
944 if (audit_pid && tsk->tgid == audit_pid)
945 return;
947 rcu_read_lock();
949 list_for_each_entry(n, &ctx->names_list, list) {
950 if (audit_filter_inode_name(tsk, n, ctx))
951 break;
953 rcu_read_unlock();
956 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
957 int return_valid,
958 long return_code)
960 struct audit_context *context = tsk->audit_context;
962 if (!context)
963 return NULL;
964 context->return_valid = return_valid;
967 * we need to fix up the return code in the audit logs if the actual
968 * return codes are later going to be fixed up by the arch specific
969 * signal handlers
971 * This is actually a test for:
972 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
973 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
975 * but is faster than a bunch of ||
977 if (unlikely(return_code <= -ERESTARTSYS) &&
978 (return_code >= -ERESTART_RESTARTBLOCK) &&
979 (return_code != -ENOIOCTLCMD))
980 context->return_code = -EINTR;
981 else
982 context->return_code = return_code;
984 if (context->in_syscall && !context->dummy) {
985 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
986 audit_filter_inodes(tsk, context);
989 tsk->audit_context = NULL;
990 return context;
993 static inline void audit_free_names(struct audit_context *context)
995 struct audit_names *n, *next;
997 #if AUDIT_DEBUG == 2
998 if (context->put_count + context->ino_count != context->name_count) {
999 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1000 " name_count=%d put_count=%d"
1001 " ino_count=%d [NOT freeing]\n",
1002 __FILE__, __LINE__,
1003 context->serial, context->major, context->in_syscall,
1004 context->name_count, context->put_count,
1005 context->ino_count);
1006 list_for_each_entry(n, &context->names_list, list) {
1007 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1008 n->name, n->name ?: "(null)");
1010 dump_stack();
1011 return;
1013 #endif
1014 #if AUDIT_DEBUG
1015 context->put_count = 0;
1016 context->ino_count = 0;
1017 #endif
1019 list_for_each_entry_safe(n, next, &context->names_list, list) {
1020 list_del(&n->list);
1021 if (n->name && n->name_put)
1022 __putname(n->name);
1023 if (n->should_free)
1024 kfree(n);
1026 context->name_count = 0;
1027 path_put(&context->pwd);
1028 context->pwd.dentry = NULL;
1029 context->pwd.mnt = NULL;
1032 static inline void audit_free_aux(struct audit_context *context)
1034 struct audit_aux_data *aux;
1036 while ((aux = context->aux)) {
1037 context->aux = aux->next;
1038 kfree(aux);
1040 while ((aux = context->aux_pids)) {
1041 context->aux_pids = aux->next;
1042 kfree(aux);
1046 static inline void audit_zero_context(struct audit_context *context,
1047 enum audit_state state)
1049 memset(context, 0, sizeof(*context));
1050 context->state = state;
1051 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1054 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056 struct audit_context *context;
1058 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1059 return NULL;
1060 audit_zero_context(context, state);
1061 INIT_LIST_HEAD(&context->killed_trees);
1062 INIT_LIST_HEAD(&context->names_list);
1063 return context;
1067 * audit_alloc - allocate an audit context block for a task
1068 * @tsk: task
1070 * Filter on the task information and allocate a per-task audit context
1071 * if necessary. Doing so turns on system call auditing for the
1072 * specified task. This is called from copy_process, so no lock is
1073 * needed.
1075 int audit_alloc(struct task_struct *tsk)
1077 struct audit_context *context;
1078 enum audit_state state;
1079 char *key = NULL;
1081 if (likely(!audit_ever_enabled))
1082 return 0; /* Return if not auditing. */
1084 state = audit_filter_task(tsk, &key);
1085 if (state == AUDIT_DISABLED)
1086 return 0;
1088 if (!(context = audit_alloc_context(state))) {
1089 kfree(key);
1090 audit_log_lost("out of memory in audit_alloc");
1091 return -ENOMEM;
1093 context->filterkey = key;
1095 tsk->audit_context = context;
1096 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1097 return 0;
1100 static inline void audit_free_context(struct audit_context *context)
1102 struct audit_context *previous;
1103 int count = 0;
1105 do {
1106 previous = context->previous;
1107 if (previous || (count && count < 10)) {
1108 ++count;
1109 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1110 " freeing multiple contexts (%d)\n",
1111 context->serial, context->major,
1112 context->name_count, count);
1114 audit_free_names(context);
1115 unroll_tree_refs(context, NULL, 0);
1116 free_tree_refs(context);
1117 audit_free_aux(context);
1118 kfree(context->filterkey);
1119 kfree(context->sockaddr);
1120 kfree(context);
1121 context = previous;
1122 } while (context);
1123 if (count >= 10)
1124 printk(KERN_ERR "audit: freed %d contexts\n", count);
1127 void audit_log_task_context(struct audit_buffer *ab)
1129 char *ctx = NULL;
1130 unsigned len;
1131 int error;
1132 u32 sid;
1134 security_task_getsecid(current, &sid);
1135 if (!sid)
1136 return;
1138 error = security_secid_to_secctx(sid, &ctx, &len);
1139 if (error) {
1140 if (error != -EINVAL)
1141 goto error_path;
1142 return;
1145 audit_log_format(ab, " subj=%s", ctx);
1146 security_release_secctx(ctx, len);
1147 return;
1149 error_path:
1150 audit_panic("error in audit_log_task_context");
1151 return;
1154 EXPORT_SYMBOL(audit_log_task_context);
1156 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158 char name[sizeof(tsk->comm)];
1159 struct mm_struct *mm = tsk->mm;
1160 struct vm_area_struct *vma;
1162 /* tsk == current */
1164 get_task_comm(name, tsk);
1165 audit_log_format(ab, " comm=");
1166 audit_log_untrustedstring(ab, name);
1168 if (mm) {
1169 down_read(&mm->mmap_sem);
1170 vma = mm->mmap;
1171 while (vma) {
1172 if ((vma->vm_flags & VM_EXECUTABLE) &&
1173 vma->vm_file) {
1174 audit_log_d_path(ab, " exe=",
1175 &vma->vm_file->f_path);
1176 break;
1178 vma = vma->vm_next;
1180 up_read(&mm->mmap_sem);
1182 audit_log_task_context(ab);
1185 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1186 uid_t auid, uid_t uid, unsigned int sessionid,
1187 u32 sid, char *comm)
1189 struct audit_buffer *ab;
1190 char *ctx = NULL;
1191 u32 len;
1192 int rc = 0;
1194 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1195 if (!ab)
1196 return rc;
1198 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1199 uid, sessionid);
1200 if (security_secid_to_secctx(sid, &ctx, &len)) {
1201 audit_log_format(ab, " obj=(none)");
1202 rc = 1;
1203 } else {
1204 audit_log_format(ab, " obj=%s", ctx);
1205 security_release_secctx(ctx, len);
1207 audit_log_format(ab, " ocomm=");
1208 audit_log_untrustedstring(ab, comm);
1209 audit_log_end(ab);
1211 return rc;
1215 * to_send and len_sent accounting are very loose estimates. We aren't
1216 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1217 * within about 500 bytes (next page boundary)
1219 * why snprintf? an int is up to 12 digits long. if we just assumed when
1220 * logging that a[%d]= was going to be 16 characters long we would be wasting
1221 * space in every audit message. In one 7500 byte message we can log up to
1222 * about 1000 min size arguments. That comes down to about 50% waste of space
1223 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 static int audit_log_single_execve_arg(struct audit_context *context,
1226 struct audit_buffer **ab,
1227 int arg_num,
1228 size_t *len_sent,
1229 const char __user *p,
1230 char *buf)
1232 char arg_num_len_buf[12];
1233 const char __user *tmp_p = p;
1234 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1235 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1236 size_t len, len_left, to_send;
1237 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1238 unsigned int i, has_cntl = 0, too_long = 0;
1239 int ret;
1241 /* strnlen_user includes the null we don't want to send */
1242 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1245 * We just created this mm, if we can't find the strings
1246 * we just copied into it something is _very_ wrong. Similar
1247 * for strings that are too long, we should not have created
1248 * any.
1250 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1251 WARN_ON(1);
1252 send_sig(SIGKILL, current, 0);
1253 return -1;
1256 /* walk the whole argument looking for non-ascii chars */
1257 do {
1258 if (len_left > MAX_EXECVE_AUDIT_LEN)
1259 to_send = MAX_EXECVE_AUDIT_LEN;
1260 else
1261 to_send = len_left;
1262 ret = copy_from_user(buf, tmp_p, to_send);
1264 * There is no reason for this copy to be short. We just
1265 * copied them here, and the mm hasn't been exposed to user-
1266 * space yet.
1268 if (ret) {
1269 WARN_ON(1);
1270 send_sig(SIGKILL, current, 0);
1271 return -1;
1273 buf[to_send] = '\0';
1274 has_cntl = audit_string_contains_control(buf, to_send);
1275 if (has_cntl) {
1277 * hex messages get logged as 2 bytes, so we can only
1278 * send half as much in each message
1280 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1281 break;
1283 len_left -= to_send;
1284 tmp_p += to_send;
1285 } while (len_left > 0);
1287 len_left = len;
1289 if (len > max_execve_audit_len)
1290 too_long = 1;
1292 /* rewalk the argument actually logging the message */
1293 for (i = 0; len_left > 0; i++) {
1294 int room_left;
1296 if (len_left > max_execve_audit_len)
1297 to_send = max_execve_audit_len;
1298 else
1299 to_send = len_left;
1301 /* do we have space left to send this argument in this ab? */
1302 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1303 if (has_cntl)
1304 room_left -= (to_send * 2);
1305 else
1306 room_left -= to_send;
1307 if (room_left < 0) {
1308 *len_sent = 0;
1309 audit_log_end(*ab);
1310 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1311 if (!*ab)
1312 return 0;
1316 * first record needs to say how long the original string was
1317 * so we can be sure nothing was lost.
1319 if ((i == 0) && (too_long))
1320 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1321 has_cntl ? 2*len : len);
1324 * normally arguments are small enough to fit and we already
1325 * filled buf above when we checked for control characters
1326 * so don't bother with another copy_from_user
1328 if (len >= max_execve_audit_len)
1329 ret = copy_from_user(buf, p, to_send);
1330 else
1331 ret = 0;
1332 if (ret) {
1333 WARN_ON(1);
1334 send_sig(SIGKILL, current, 0);
1335 return -1;
1337 buf[to_send] = '\0';
1339 /* actually log it */
1340 audit_log_format(*ab, " a%d", arg_num);
1341 if (too_long)
1342 audit_log_format(*ab, "[%d]", i);
1343 audit_log_format(*ab, "=");
1344 if (has_cntl)
1345 audit_log_n_hex(*ab, buf, to_send);
1346 else
1347 audit_log_string(*ab, buf);
1349 p += to_send;
1350 len_left -= to_send;
1351 *len_sent += arg_num_len;
1352 if (has_cntl)
1353 *len_sent += to_send * 2;
1354 else
1355 *len_sent += to_send;
1357 /* include the null we didn't log */
1358 return len + 1;
1361 static void audit_log_execve_info(struct audit_context *context,
1362 struct audit_buffer **ab,
1363 struct audit_aux_data_execve *axi)
1365 int i, len;
1366 size_t len_sent = 0;
1367 const char __user *p;
1368 char *buf;
1370 if (axi->mm != current->mm)
1371 return; /* execve failed, no additional info */
1373 p = (const char __user *)axi->mm->arg_start;
1375 audit_log_format(*ab, "argc=%d", axi->argc);
1378 * we need some kernel buffer to hold the userspace args. Just
1379 * allocate one big one rather than allocating one of the right size
1380 * for every single argument inside audit_log_single_execve_arg()
1381 * should be <8k allocation so should be pretty safe.
1383 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1384 if (!buf) {
1385 audit_panic("out of memory for argv string\n");
1386 return;
1389 for (i = 0; i < axi->argc; i++) {
1390 len = audit_log_single_execve_arg(context, ab, i,
1391 &len_sent, p, buf);
1392 if (len <= 0)
1393 break;
1394 p += len;
1396 kfree(buf);
1399 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1401 int i;
1403 audit_log_format(ab, " %s=", prefix);
1404 CAP_FOR_EACH_U32(i) {
1405 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1409 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411 kernel_cap_t *perm = &name->fcap.permitted;
1412 kernel_cap_t *inh = &name->fcap.inheritable;
1413 int log = 0;
1415 if (!cap_isclear(*perm)) {
1416 audit_log_cap(ab, "cap_fp", perm);
1417 log = 1;
1419 if (!cap_isclear(*inh)) {
1420 audit_log_cap(ab, "cap_fi", inh);
1421 log = 1;
1424 if (log)
1425 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1428 static void show_special(struct audit_context *context, int *call_panic)
1430 struct audit_buffer *ab;
1431 int i;
1433 ab = audit_log_start(context, GFP_KERNEL, context->type);
1434 if (!ab)
1435 return;
1437 switch (context->type) {
1438 case AUDIT_SOCKETCALL: {
1439 int nargs = context->socketcall.nargs;
1440 audit_log_format(ab, "nargs=%d", nargs);
1441 for (i = 0; i < nargs; i++)
1442 audit_log_format(ab, " a%d=%lx", i,
1443 context->socketcall.args[i]);
1444 break; }
1445 case AUDIT_IPC: {
1446 u32 osid = context->ipc.osid;
1448 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1449 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1450 if (osid) {
1451 char *ctx = NULL;
1452 u32 len;
1453 if (security_secid_to_secctx(osid, &ctx, &len)) {
1454 audit_log_format(ab, " osid=%u", osid);
1455 *call_panic = 1;
1456 } else {
1457 audit_log_format(ab, " obj=%s", ctx);
1458 security_release_secctx(ctx, len);
1461 if (context->ipc.has_perm) {
1462 audit_log_end(ab);
1463 ab = audit_log_start(context, GFP_KERNEL,
1464 AUDIT_IPC_SET_PERM);
1465 audit_log_format(ab,
1466 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1467 context->ipc.qbytes,
1468 context->ipc.perm_uid,
1469 context->ipc.perm_gid,
1470 context->ipc.perm_mode);
1471 if (!ab)
1472 return;
1474 break; }
1475 case AUDIT_MQ_OPEN: {
1476 audit_log_format(ab,
1477 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1478 "mq_msgsize=%ld mq_curmsgs=%ld",
1479 context->mq_open.oflag, context->mq_open.mode,
1480 context->mq_open.attr.mq_flags,
1481 context->mq_open.attr.mq_maxmsg,
1482 context->mq_open.attr.mq_msgsize,
1483 context->mq_open.attr.mq_curmsgs);
1484 break; }
1485 case AUDIT_MQ_SENDRECV: {
1486 audit_log_format(ab,
1487 "mqdes=%d msg_len=%zd msg_prio=%u "
1488 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1489 context->mq_sendrecv.mqdes,
1490 context->mq_sendrecv.msg_len,
1491 context->mq_sendrecv.msg_prio,
1492 context->mq_sendrecv.abs_timeout.tv_sec,
1493 context->mq_sendrecv.abs_timeout.tv_nsec);
1494 break; }
1495 case AUDIT_MQ_NOTIFY: {
1496 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1497 context->mq_notify.mqdes,
1498 context->mq_notify.sigev_signo);
1499 break; }
1500 case AUDIT_MQ_GETSETATTR: {
1501 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1502 audit_log_format(ab,
1503 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1504 "mq_curmsgs=%ld ",
1505 context->mq_getsetattr.mqdes,
1506 attr->mq_flags, attr->mq_maxmsg,
1507 attr->mq_msgsize, attr->mq_curmsgs);
1508 break; }
1509 case AUDIT_CAPSET: {
1510 audit_log_format(ab, "pid=%d", context->capset.pid);
1511 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1512 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1513 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1514 break; }
1515 case AUDIT_MMAP: {
1516 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1517 context->mmap.flags);
1518 break; }
1520 audit_log_end(ab);
1523 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1524 int record_num, int *call_panic)
1526 struct audit_buffer *ab;
1527 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1528 if (!ab)
1529 return; /* audit_panic has been called */
1531 audit_log_format(ab, "item=%d", record_num);
1533 if (n->name) {
1534 switch (n->name_len) {
1535 case AUDIT_NAME_FULL:
1536 /* log the full path */
1537 audit_log_format(ab, " name=");
1538 audit_log_untrustedstring(ab, n->name);
1539 break;
1540 case 0:
1541 /* name was specified as a relative path and the
1542 * directory component is the cwd */
1543 audit_log_d_path(ab, " name=", &context->pwd);
1544 break;
1545 default:
1546 /* log the name's directory component */
1547 audit_log_format(ab, " name=");
1548 audit_log_n_untrustedstring(ab, n->name,
1549 n->name_len);
1551 } else
1552 audit_log_format(ab, " name=(null)");
1554 if (n->ino != (unsigned long)-1) {
1555 audit_log_format(ab, " inode=%lu"
1556 " dev=%02x:%02x mode=%#ho"
1557 " ouid=%u ogid=%u rdev=%02x:%02x",
1558 n->ino,
1559 MAJOR(n->dev),
1560 MINOR(n->dev),
1561 n->mode,
1562 n->uid,
1563 n->gid,
1564 MAJOR(n->rdev),
1565 MINOR(n->rdev));
1567 if (n->osid != 0) {
1568 char *ctx = NULL;
1569 u32 len;
1570 if (security_secid_to_secctx(
1571 n->osid, &ctx, &len)) {
1572 audit_log_format(ab, " osid=%u", n->osid);
1573 *call_panic = 2;
1574 } else {
1575 audit_log_format(ab, " obj=%s", ctx);
1576 security_release_secctx(ctx, len);
1580 audit_log_fcaps(ab, n);
1582 audit_log_end(ab);
1585 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1587 const struct cred *cred;
1588 int i, call_panic = 0;
1589 struct audit_buffer *ab;
1590 struct audit_aux_data *aux;
1591 const char *tty;
1592 struct audit_names *n;
1594 /* tsk == current */
1595 context->pid = tsk->pid;
1596 if (!context->ppid)
1597 context->ppid = sys_getppid();
1598 cred = current_cred();
1599 context->uid = cred->uid;
1600 context->gid = cred->gid;
1601 context->euid = cred->euid;
1602 context->suid = cred->suid;
1603 context->fsuid = cred->fsuid;
1604 context->egid = cred->egid;
1605 context->sgid = cred->sgid;
1606 context->fsgid = cred->fsgid;
1607 context->personality = tsk->personality;
1609 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1610 if (!ab)
1611 return; /* audit_panic has been called */
1612 audit_log_format(ab, "arch=%x syscall=%d",
1613 context->arch, context->major);
1614 if (context->personality != PER_LINUX)
1615 audit_log_format(ab, " per=%lx", context->personality);
1616 if (context->return_valid)
1617 audit_log_format(ab, " success=%s exit=%ld",
1618 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1619 context->return_code);
1621 spin_lock_irq(&tsk->sighand->siglock);
1622 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1623 tty = tsk->signal->tty->name;
1624 else
1625 tty = "(none)";
1626 spin_unlock_irq(&tsk->sighand->siglock);
1628 audit_log_format(ab,
1629 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1630 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1631 " euid=%u suid=%u fsuid=%u"
1632 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1633 context->argv[0],
1634 context->argv[1],
1635 context->argv[2],
1636 context->argv[3],
1637 context->name_count,
1638 context->ppid,
1639 context->pid,
1640 tsk->loginuid,
1641 context->uid,
1642 context->gid,
1643 context->euid, context->suid, context->fsuid,
1644 context->egid, context->sgid, context->fsgid, tty,
1645 tsk->sessionid);
1648 audit_log_task_info(ab, tsk);
1649 audit_log_key(ab, context->filterkey);
1650 audit_log_end(ab);
1652 for (aux = context->aux; aux; aux = aux->next) {
1654 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1655 if (!ab)
1656 continue; /* audit_panic has been called */
1658 switch (aux->type) {
1660 case AUDIT_EXECVE: {
1661 struct audit_aux_data_execve *axi = (void *)aux;
1662 audit_log_execve_info(context, &ab, axi);
1663 break; }
1665 case AUDIT_BPRM_FCAPS: {
1666 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1667 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1668 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1669 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1670 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1671 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1672 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1673 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1674 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1675 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1676 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1677 break; }
1680 audit_log_end(ab);
1683 if (context->type)
1684 show_special(context, &call_panic);
1686 if (context->fds[0] >= 0) {
1687 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1688 if (ab) {
1689 audit_log_format(ab, "fd0=%d fd1=%d",
1690 context->fds[0], context->fds[1]);
1691 audit_log_end(ab);
1695 if (context->sockaddr_len) {
1696 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1697 if (ab) {
1698 audit_log_format(ab, "saddr=");
1699 audit_log_n_hex(ab, (void *)context->sockaddr,
1700 context->sockaddr_len);
1701 audit_log_end(ab);
1705 for (aux = context->aux_pids; aux; aux = aux->next) {
1706 struct audit_aux_data_pids *axs = (void *)aux;
1708 for (i = 0; i < axs->pid_count; i++)
1709 if (audit_log_pid_context(context, axs->target_pid[i],
1710 axs->target_auid[i],
1711 axs->target_uid[i],
1712 axs->target_sessionid[i],
1713 axs->target_sid[i],
1714 axs->target_comm[i]))
1715 call_panic = 1;
1718 if (context->target_pid &&
1719 audit_log_pid_context(context, context->target_pid,
1720 context->target_auid, context->target_uid,
1721 context->target_sessionid,
1722 context->target_sid, context->target_comm))
1723 call_panic = 1;
1725 if (context->pwd.dentry && context->pwd.mnt) {
1726 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1727 if (ab) {
1728 audit_log_d_path(ab, " cwd=", &context->pwd);
1729 audit_log_end(ab);
1733 i = 0;
1734 list_for_each_entry(n, &context->names_list, list)
1735 audit_log_name(context, n, i++, &call_panic);
1737 /* Send end of event record to help user space know we are finished */
1738 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1739 if (ab)
1740 audit_log_end(ab);
1741 if (call_panic)
1742 audit_panic("error converting sid to string");
1746 * audit_free - free a per-task audit context
1747 * @tsk: task whose audit context block to free
1749 * Called from copy_process and do_exit
1751 void __audit_free(struct task_struct *tsk)
1753 struct audit_context *context;
1755 context = audit_get_context(tsk, 0, 0);
1756 if (!context)
1757 return;
1759 /* Check for system calls that do not go through the exit
1760 * function (e.g., exit_group), then free context block.
1761 * We use GFP_ATOMIC here because we might be doing this
1762 * in the context of the idle thread */
1763 /* that can happen only if we are called from do_exit() */
1764 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1765 audit_log_exit(context, tsk);
1766 if (!list_empty(&context->killed_trees))
1767 audit_kill_trees(&context->killed_trees);
1769 audit_free_context(context);
1773 * audit_syscall_entry - fill in an audit record at syscall entry
1774 * @arch: architecture type
1775 * @major: major syscall type (function)
1776 * @a1: additional syscall register 1
1777 * @a2: additional syscall register 2
1778 * @a3: additional syscall register 3
1779 * @a4: additional syscall register 4
1781 * Fill in audit context at syscall entry. This only happens if the
1782 * audit context was created when the task was created and the state or
1783 * filters demand the audit context be built. If the state from the
1784 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1785 * then the record will be written at syscall exit time (otherwise, it
1786 * will only be written if another part of the kernel requests that it
1787 * be written).
1789 void __audit_syscall_entry(int arch, int major,
1790 unsigned long a1, unsigned long a2,
1791 unsigned long a3, unsigned long a4)
1793 struct task_struct *tsk = current;
1794 struct audit_context *context = tsk->audit_context;
1795 enum audit_state state;
1797 if (!context)
1798 return;
1801 * This happens only on certain architectures that make system
1802 * calls in kernel_thread via the entry.S interface, instead of
1803 * with direct calls. (If you are porting to a new
1804 * architecture, hitting this condition can indicate that you
1805 * got the _exit/_leave calls backward in entry.S.)
1807 * i386 no
1808 * x86_64 no
1809 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1811 * This also happens with vm86 emulation in a non-nested manner
1812 * (entries without exits), so this case must be caught.
1814 if (context->in_syscall) {
1815 struct audit_context *newctx;
1817 #if AUDIT_DEBUG
1818 printk(KERN_ERR
1819 "audit(:%d) pid=%d in syscall=%d;"
1820 " entering syscall=%d\n",
1821 context->serial, tsk->pid, context->major, major);
1822 #endif
1823 newctx = audit_alloc_context(context->state);
1824 if (newctx) {
1825 newctx->previous = context;
1826 context = newctx;
1827 tsk->audit_context = newctx;
1828 } else {
1829 /* If we can't alloc a new context, the best we
1830 * can do is to leak memory (any pending putname
1831 * will be lost). The only other alternative is
1832 * to abandon auditing. */
1833 audit_zero_context(context, context->state);
1836 BUG_ON(context->in_syscall || context->name_count);
1838 if (!audit_enabled)
1839 return;
1841 context->arch = arch;
1842 context->major = major;
1843 context->argv[0] = a1;
1844 context->argv[1] = a2;
1845 context->argv[2] = a3;
1846 context->argv[3] = a4;
1848 state = context->state;
1849 context->dummy = !audit_n_rules;
1850 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1851 context->prio = 0;
1852 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854 if (state == AUDIT_DISABLED)
1855 return;
1857 context->serial = 0;
1858 context->ctime = CURRENT_TIME;
1859 context->in_syscall = 1;
1860 context->current_state = state;
1861 context->ppid = 0;
1865 * audit_syscall_exit - deallocate audit context after a system call
1866 * @success: success value of the syscall
1867 * @return_code: return value of the syscall
1869 * Tear down after system call. If the audit context has been marked as
1870 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1871 * filtering, or because some other part of the kernel wrote an audit
1872 * message), then write out the syscall information. In call cases,
1873 * free the names stored from getname().
1875 void __audit_syscall_exit(int success, long return_code)
1877 struct task_struct *tsk = current;
1878 struct audit_context *context;
1880 if (success)
1881 success = AUDITSC_SUCCESS;
1882 else
1883 success = AUDITSC_FAILURE;
1885 context = audit_get_context(tsk, success, return_code);
1886 if (!context)
1887 return;
1889 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1890 audit_log_exit(context, tsk);
1892 context->in_syscall = 0;
1893 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895 if (!list_empty(&context->killed_trees))
1896 audit_kill_trees(&context->killed_trees);
1898 if (context->previous) {
1899 struct audit_context *new_context = context->previous;
1900 context->previous = NULL;
1901 audit_free_context(context);
1902 tsk->audit_context = new_context;
1903 } else {
1904 audit_free_names(context);
1905 unroll_tree_refs(context, NULL, 0);
1906 audit_free_aux(context);
1907 context->aux = NULL;
1908 context->aux_pids = NULL;
1909 context->target_pid = 0;
1910 context->target_sid = 0;
1911 context->sockaddr_len = 0;
1912 context->type = 0;
1913 context->fds[0] = -1;
1914 if (context->state != AUDIT_RECORD_CONTEXT) {
1915 kfree(context->filterkey);
1916 context->filterkey = NULL;
1918 tsk->audit_context = context;
1922 static inline void handle_one(const struct inode *inode)
1924 #ifdef CONFIG_AUDIT_TREE
1925 struct audit_context *context;
1926 struct audit_tree_refs *p;
1927 struct audit_chunk *chunk;
1928 int count;
1929 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1930 return;
1931 context = current->audit_context;
1932 p = context->trees;
1933 count = context->tree_count;
1934 rcu_read_lock();
1935 chunk = audit_tree_lookup(inode);
1936 rcu_read_unlock();
1937 if (!chunk)
1938 return;
1939 if (likely(put_tree_ref(context, chunk)))
1940 return;
1941 if (unlikely(!grow_tree_refs(context))) {
1942 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1943 audit_set_auditable(context);
1944 audit_put_chunk(chunk);
1945 unroll_tree_refs(context, p, count);
1946 return;
1948 put_tree_ref(context, chunk);
1949 #endif
1952 static void handle_path(const struct dentry *dentry)
1954 #ifdef CONFIG_AUDIT_TREE
1955 struct audit_context *context;
1956 struct audit_tree_refs *p;
1957 const struct dentry *d, *parent;
1958 struct audit_chunk *drop;
1959 unsigned long seq;
1960 int count;
1962 context = current->audit_context;
1963 p = context->trees;
1964 count = context->tree_count;
1965 retry:
1966 drop = NULL;
1967 d = dentry;
1968 rcu_read_lock();
1969 seq = read_seqbegin(&rename_lock);
1970 for(;;) {
1971 struct inode *inode = d->d_inode;
1972 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1973 struct audit_chunk *chunk;
1974 chunk = audit_tree_lookup(inode);
1975 if (chunk) {
1976 if (unlikely(!put_tree_ref(context, chunk))) {
1977 drop = chunk;
1978 break;
1982 parent = d->d_parent;
1983 if (parent == d)
1984 break;
1985 d = parent;
1987 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1988 rcu_read_unlock();
1989 if (!drop) {
1990 /* just a race with rename */
1991 unroll_tree_refs(context, p, count);
1992 goto retry;
1994 audit_put_chunk(drop);
1995 if (grow_tree_refs(context)) {
1996 /* OK, got more space */
1997 unroll_tree_refs(context, p, count);
1998 goto retry;
2000 /* too bad */
2001 printk(KERN_WARNING
2002 "out of memory, audit has lost a tree reference\n");
2003 unroll_tree_refs(context, p, count);
2004 audit_set_auditable(context);
2005 return;
2007 rcu_read_unlock();
2008 #endif
2011 static struct audit_names *audit_alloc_name(struct audit_context *context)
2013 struct audit_names *aname;
2015 if (context->name_count < AUDIT_NAMES) {
2016 aname = &context->preallocated_names[context->name_count];
2017 memset(aname, 0, sizeof(*aname));
2018 } else {
2019 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2020 if (!aname)
2021 return NULL;
2022 aname->should_free = true;
2025 aname->ino = (unsigned long)-1;
2026 list_add_tail(&aname->list, &context->names_list);
2028 context->name_count++;
2029 #if AUDIT_DEBUG
2030 context->ino_count++;
2031 #endif
2032 return aname;
2036 * audit_getname - add a name to the list
2037 * @name: name to add
2039 * Add a name to the list of audit names for this context.
2040 * Called from fs/namei.c:getname().
2042 void __audit_getname(const char *name)
2044 struct audit_context *context = current->audit_context;
2045 struct audit_names *n;
2047 if (!context->in_syscall) {
2048 #if AUDIT_DEBUG == 2
2049 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2050 __FILE__, __LINE__, context->serial, name);
2051 dump_stack();
2052 #endif
2053 return;
2056 n = audit_alloc_name(context);
2057 if (!n)
2058 return;
2060 n->name = name;
2061 n->name_len = AUDIT_NAME_FULL;
2062 n->name_put = true;
2064 if (!context->pwd.dentry)
2065 get_fs_pwd(current->fs, &context->pwd);
2068 /* audit_putname - intercept a putname request
2069 * @name: name to intercept and delay for putname
2071 * If we have stored the name from getname in the audit context,
2072 * then we delay the putname until syscall exit.
2073 * Called from include/linux/fs.h:putname().
2075 void audit_putname(const char *name)
2077 struct audit_context *context = current->audit_context;
2079 BUG_ON(!context);
2080 if (!context->in_syscall) {
2081 #if AUDIT_DEBUG == 2
2082 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2083 __FILE__, __LINE__, context->serial, name);
2084 if (context->name_count) {
2085 struct audit_names *n;
2086 int i;
2088 list_for_each_entry(n, &context->names_list, list)
2089 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2090 n->name, n->name ?: "(null)");
2092 #endif
2093 __putname(name);
2095 #if AUDIT_DEBUG
2096 else {
2097 ++context->put_count;
2098 if (context->put_count > context->name_count) {
2099 printk(KERN_ERR "%s:%d(:%d): major=%d"
2100 " in_syscall=%d putname(%p) name_count=%d"
2101 " put_count=%d\n",
2102 __FILE__, __LINE__,
2103 context->serial, context->major,
2104 context->in_syscall, name, context->name_count,
2105 context->put_count);
2106 dump_stack();
2109 #endif
2112 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114 struct cpu_vfs_cap_data caps;
2115 int rc;
2117 if (!dentry)
2118 return 0;
2120 rc = get_vfs_caps_from_disk(dentry, &caps);
2121 if (rc)
2122 return rc;
2124 name->fcap.permitted = caps.permitted;
2125 name->fcap.inheritable = caps.inheritable;
2126 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2127 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2129 return 0;
2133 /* Copy inode data into an audit_names. */
2134 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2135 const struct inode *inode)
2137 name->ino = inode->i_ino;
2138 name->dev = inode->i_sb->s_dev;
2139 name->mode = inode->i_mode;
2140 name->uid = inode->i_uid;
2141 name->gid = inode->i_gid;
2142 name->rdev = inode->i_rdev;
2143 security_inode_getsecid(inode, &name->osid);
2144 audit_copy_fcaps(name, dentry);
2148 * audit_inode - store the inode and device from a lookup
2149 * @name: name being audited
2150 * @dentry: dentry being audited
2152 * Called from fs/namei.c:path_lookup().
2154 void __audit_inode(const char *name, const struct dentry *dentry)
2156 struct audit_context *context = current->audit_context;
2157 const struct inode *inode = dentry->d_inode;
2158 struct audit_names *n;
2160 if (!context->in_syscall)
2161 return;
2163 list_for_each_entry_reverse(n, &context->names_list, list) {
2164 if (n->name && (n->name == name))
2165 goto out;
2168 /* unable to find the name from a previous getname() */
2169 n = audit_alloc_name(context);
2170 if (!n)
2171 return;
2172 out:
2173 handle_path(dentry);
2174 audit_copy_inode(n, dentry, inode);
2178 * audit_inode_child - collect inode info for created/removed objects
2179 * @dentry: dentry being audited
2180 * @parent: inode of dentry parent
2182 * For syscalls that create or remove filesystem objects, audit_inode
2183 * can only collect information for the filesystem object's parent.
2184 * This call updates the audit context with the child's information.
2185 * Syscalls that create a new filesystem object must be hooked after
2186 * the object is created. Syscalls that remove a filesystem object
2187 * must be hooked prior, in order to capture the target inode during
2188 * unsuccessful attempts.
2190 void __audit_inode_child(const struct dentry *dentry,
2191 const struct inode *parent)
2193 struct audit_context *context = current->audit_context;
2194 const char *found_parent = NULL, *found_child = NULL;
2195 const struct inode *inode = dentry->d_inode;
2196 const char *dname = dentry->d_name.name;
2197 struct audit_names *n;
2198 int dirlen = 0;
2200 if (!context->in_syscall)
2201 return;
2203 if (inode)
2204 handle_one(inode);
2206 /* parent is more likely, look for it first */
2207 list_for_each_entry(n, &context->names_list, list) {
2208 if (!n->name)
2209 continue;
2211 if (n->ino == parent->i_ino &&
2212 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2213 n->name_len = dirlen; /* update parent data in place */
2214 found_parent = n->name;
2215 goto add_names;
2219 /* no matching parent, look for matching child */
2220 list_for_each_entry(n, &context->names_list, list) {
2221 if (!n->name)
2222 continue;
2224 /* strcmp() is the more likely scenario */
2225 if (!strcmp(dname, n->name) ||
2226 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2227 if (inode)
2228 audit_copy_inode(n, NULL, inode);
2229 else
2230 n->ino = (unsigned long)-1;
2231 found_child = n->name;
2232 goto add_names;
2236 add_names:
2237 if (!found_parent) {
2238 n = audit_alloc_name(context);
2239 if (!n)
2240 return;
2241 audit_copy_inode(n, NULL, parent);
2244 if (!found_child) {
2245 n = audit_alloc_name(context);
2246 if (!n)
2247 return;
2249 /* Re-use the name belonging to the slot for a matching parent
2250 * directory. All names for this context are relinquished in
2251 * audit_free_names() */
2252 if (found_parent) {
2253 n->name = found_parent;
2254 n->name_len = AUDIT_NAME_FULL;
2255 /* don't call __putname() */
2256 n->name_put = false;
2259 if (inode)
2260 audit_copy_inode(n, NULL, inode);
2263 EXPORT_SYMBOL_GPL(__audit_inode_child);
2266 * auditsc_get_stamp - get local copies of audit_context values
2267 * @ctx: audit_context for the task
2268 * @t: timespec to store time recorded in the audit_context
2269 * @serial: serial value that is recorded in the audit_context
2271 * Also sets the context as auditable.
2273 int auditsc_get_stamp(struct audit_context *ctx,
2274 struct timespec *t, unsigned int *serial)
2276 if (!ctx->in_syscall)
2277 return 0;
2278 if (!ctx->serial)
2279 ctx->serial = audit_serial();
2280 t->tv_sec = ctx->ctime.tv_sec;
2281 t->tv_nsec = ctx->ctime.tv_nsec;
2282 *serial = ctx->serial;
2283 if (!ctx->prio) {
2284 ctx->prio = 1;
2285 ctx->current_state = AUDIT_RECORD_CONTEXT;
2287 return 1;
2290 /* global counter which is incremented every time something logs in */
2291 static atomic_t session_id = ATOMIC_INIT(0);
2294 * audit_set_loginuid - set current task's audit_context loginuid
2295 * @loginuid: loginuid value
2297 * Returns 0.
2299 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 int audit_set_loginuid(uid_t loginuid)
2303 struct task_struct *task = current;
2304 struct audit_context *context = task->audit_context;
2305 unsigned int sessionid;
2307 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2308 if (task->loginuid != -1)
2309 return -EPERM;
2310 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2311 if (!capable(CAP_AUDIT_CONTROL))
2312 return -EPERM;
2313 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315 sessionid = atomic_inc_return(&session_id);
2316 if (context && context->in_syscall) {
2317 struct audit_buffer *ab;
2319 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2320 if (ab) {
2321 audit_log_format(ab, "login pid=%d uid=%u "
2322 "old auid=%u new auid=%u"
2323 " old ses=%u new ses=%u",
2324 task->pid, task_uid(task),
2325 task->loginuid, loginuid,
2326 task->sessionid, sessionid);
2327 audit_log_end(ab);
2330 task->sessionid = sessionid;
2331 task->loginuid = loginuid;
2332 return 0;
2336 * __audit_mq_open - record audit data for a POSIX MQ open
2337 * @oflag: open flag
2338 * @mode: mode bits
2339 * @attr: queue attributes
2342 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344 struct audit_context *context = current->audit_context;
2346 if (attr)
2347 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2348 else
2349 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351 context->mq_open.oflag = oflag;
2352 context->mq_open.mode = mode;
2354 context->type = AUDIT_MQ_OPEN;
2358 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2359 * @mqdes: MQ descriptor
2360 * @msg_len: Message length
2361 * @msg_prio: Message priority
2362 * @abs_timeout: Message timeout in absolute time
2365 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2366 const struct timespec *abs_timeout)
2368 struct audit_context *context = current->audit_context;
2369 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371 if (abs_timeout)
2372 memcpy(p, abs_timeout, sizeof(struct timespec));
2373 else
2374 memset(p, 0, sizeof(struct timespec));
2376 context->mq_sendrecv.mqdes = mqdes;
2377 context->mq_sendrecv.msg_len = msg_len;
2378 context->mq_sendrecv.msg_prio = msg_prio;
2380 context->type = AUDIT_MQ_SENDRECV;
2384 * __audit_mq_notify - record audit data for a POSIX MQ notify
2385 * @mqdes: MQ descriptor
2386 * @notification: Notification event
2390 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392 struct audit_context *context = current->audit_context;
2394 if (notification)
2395 context->mq_notify.sigev_signo = notification->sigev_signo;
2396 else
2397 context->mq_notify.sigev_signo = 0;
2399 context->mq_notify.mqdes = mqdes;
2400 context->type = AUDIT_MQ_NOTIFY;
2404 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2405 * @mqdes: MQ descriptor
2406 * @mqstat: MQ flags
2409 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411 struct audit_context *context = current->audit_context;
2412 context->mq_getsetattr.mqdes = mqdes;
2413 context->mq_getsetattr.mqstat = *mqstat;
2414 context->type = AUDIT_MQ_GETSETATTR;
2418 * audit_ipc_obj - record audit data for ipc object
2419 * @ipcp: ipc permissions
2422 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424 struct audit_context *context = current->audit_context;
2425 context->ipc.uid = ipcp->uid;
2426 context->ipc.gid = ipcp->gid;
2427 context->ipc.mode = ipcp->mode;
2428 context->ipc.has_perm = 0;
2429 security_ipc_getsecid(ipcp, &context->ipc.osid);
2430 context->type = AUDIT_IPC;
2434 * audit_ipc_set_perm - record audit data for new ipc permissions
2435 * @qbytes: msgq bytes
2436 * @uid: msgq user id
2437 * @gid: msgq group id
2438 * @mode: msgq mode (permissions)
2440 * Called only after audit_ipc_obj().
2442 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444 struct audit_context *context = current->audit_context;
2446 context->ipc.qbytes = qbytes;
2447 context->ipc.perm_uid = uid;
2448 context->ipc.perm_gid = gid;
2449 context->ipc.perm_mode = mode;
2450 context->ipc.has_perm = 1;
2453 int __audit_bprm(struct linux_binprm *bprm)
2455 struct audit_aux_data_execve *ax;
2456 struct audit_context *context = current->audit_context;
2458 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2459 if (!ax)
2460 return -ENOMEM;
2462 ax->argc = bprm->argc;
2463 ax->envc = bprm->envc;
2464 ax->mm = bprm->mm;
2465 ax->d.type = AUDIT_EXECVE;
2466 ax->d.next = context->aux;
2467 context->aux = (void *)ax;
2468 return 0;
2473 * audit_socketcall - record audit data for sys_socketcall
2474 * @nargs: number of args
2475 * @args: args array
2478 void __audit_socketcall(int nargs, unsigned long *args)
2480 struct audit_context *context = current->audit_context;
2482 context->type = AUDIT_SOCKETCALL;
2483 context->socketcall.nargs = nargs;
2484 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2488 * __audit_fd_pair - record audit data for pipe and socketpair
2489 * @fd1: the first file descriptor
2490 * @fd2: the second file descriptor
2493 void __audit_fd_pair(int fd1, int fd2)
2495 struct audit_context *context = current->audit_context;
2496 context->fds[0] = fd1;
2497 context->fds[1] = fd2;
2501 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2502 * @len: data length in user space
2503 * @a: data address in kernel space
2505 * Returns 0 for success or NULL context or < 0 on error.
2507 int __audit_sockaddr(int len, void *a)
2509 struct audit_context *context = current->audit_context;
2511 if (!context->sockaddr) {
2512 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2513 if (!p)
2514 return -ENOMEM;
2515 context->sockaddr = p;
2518 context->sockaddr_len = len;
2519 memcpy(context->sockaddr, a, len);
2520 return 0;
2523 void __audit_ptrace(struct task_struct *t)
2525 struct audit_context *context = current->audit_context;
2527 context->target_pid = t->pid;
2528 context->target_auid = audit_get_loginuid(t);
2529 context->target_uid = task_uid(t);
2530 context->target_sessionid = audit_get_sessionid(t);
2531 security_task_getsecid(t, &context->target_sid);
2532 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2536 * audit_signal_info - record signal info for shutting down audit subsystem
2537 * @sig: signal value
2538 * @t: task being signaled
2540 * If the audit subsystem is being terminated, record the task (pid)
2541 * and uid that is doing that.
2543 int __audit_signal_info(int sig, struct task_struct *t)
2545 struct audit_aux_data_pids *axp;
2546 struct task_struct *tsk = current;
2547 struct audit_context *ctx = tsk->audit_context;
2548 uid_t uid = current_uid(), t_uid = task_uid(t);
2550 if (audit_pid && t->tgid == audit_pid) {
2551 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2552 audit_sig_pid = tsk->pid;
2553 if (tsk->loginuid != -1)
2554 audit_sig_uid = tsk->loginuid;
2555 else
2556 audit_sig_uid = uid;
2557 security_task_getsecid(tsk, &audit_sig_sid);
2559 if (!audit_signals || audit_dummy_context())
2560 return 0;
2563 /* optimize the common case by putting first signal recipient directly
2564 * in audit_context */
2565 if (!ctx->target_pid) {
2566 ctx->target_pid = t->tgid;
2567 ctx->target_auid = audit_get_loginuid(t);
2568 ctx->target_uid = t_uid;
2569 ctx->target_sessionid = audit_get_sessionid(t);
2570 security_task_getsecid(t, &ctx->target_sid);
2571 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2572 return 0;
2575 axp = (void *)ctx->aux_pids;
2576 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2577 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2578 if (!axp)
2579 return -ENOMEM;
2581 axp->d.type = AUDIT_OBJ_PID;
2582 axp->d.next = ctx->aux_pids;
2583 ctx->aux_pids = (void *)axp;
2585 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587 axp->target_pid[axp->pid_count] = t->tgid;
2588 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2589 axp->target_uid[axp->pid_count] = t_uid;
2590 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2591 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2592 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2593 axp->pid_count++;
2595 return 0;
2599 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2600 * @bprm: pointer to the bprm being processed
2601 * @new: the proposed new credentials
2602 * @old: the old credentials
2604 * Simply check if the proc already has the caps given by the file and if not
2605 * store the priv escalation info for later auditing at the end of the syscall
2607 * -Eric
2609 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2610 const struct cred *new, const struct cred *old)
2612 struct audit_aux_data_bprm_fcaps *ax;
2613 struct audit_context *context = current->audit_context;
2614 struct cpu_vfs_cap_data vcaps;
2615 struct dentry *dentry;
2617 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2618 if (!ax)
2619 return -ENOMEM;
2621 ax->d.type = AUDIT_BPRM_FCAPS;
2622 ax->d.next = context->aux;
2623 context->aux = (void *)ax;
2625 dentry = dget(bprm->file->f_dentry);
2626 get_vfs_caps_from_disk(dentry, &vcaps);
2627 dput(dentry);
2629 ax->fcap.permitted = vcaps.permitted;
2630 ax->fcap.inheritable = vcaps.inheritable;
2631 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2632 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634 ax->old_pcap.permitted = old->cap_permitted;
2635 ax->old_pcap.inheritable = old->cap_inheritable;
2636 ax->old_pcap.effective = old->cap_effective;
2638 ax->new_pcap.permitted = new->cap_permitted;
2639 ax->new_pcap.inheritable = new->cap_inheritable;
2640 ax->new_pcap.effective = new->cap_effective;
2641 return 0;
2645 * __audit_log_capset - store information about the arguments to the capset syscall
2646 * @pid: target pid of the capset call
2647 * @new: the new credentials
2648 * @old: the old (current) credentials
2650 * Record the aguments userspace sent to sys_capset for later printing by the
2651 * audit system if applicable
2653 void __audit_log_capset(pid_t pid,
2654 const struct cred *new, const struct cred *old)
2656 struct audit_context *context = current->audit_context;
2657 context->capset.pid = pid;
2658 context->capset.cap.effective = new->cap_effective;
2659 context->capset.cap.inheritable = new->cap_effective;
2660 context->capset.cap.permitted = new->cap_permitted;
2661 context->type = AUDIT_CAPSET;
2664 void __audit_mmap_fd(int fd, int flags)
2666 struct audit_context *context = current->audit_context;
2667 context->mmap.fd = fd;
2668 context->mmap.flags = flags;
2669 context->type = AUDIT_MMAP;
2672 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2674 uid_t auid, uid;
2675 gid_t gid;
2676 unsigned int sessionid;
2678 auid = audit_get_loginuid(current);
2679 sessionid = audit_get_sessionid(current);
2680 current_uid_gid(&uid, &gid);
2682 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2683 auid, uid, gid, sessionid);
2684 audit_log_task_context(ab);
2685 audit_log_format(ab, " pid=%d comm=", current->pid);
2686 audit_log_untrustedstring(ab, current->comm);
2687 audit_log_format(ab, " reason=");
2688 audit_log_string(ab, reason);
2689 audit_log_format(ab, " sig=%ld", signr);
2692 * audit_core_dumps - record information about processes that end abnormally
2693 * @signr: signal value
2695 * If a process ends with a core dump, something fishy is going on and we
2696 * should record the event for investigation.
2698 void audit_core_dumps(long signr)
2700 struct audit_buffer *ab;
2702 if (!audit_enabled)
2703 return;
2705 if (signr == SIGQUIT) /* don't care for those */
2706 return;
2708 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2709 audit_log_abend(ab, "memory violation", signr);
2710 audit_log_end(ab);
2713 void __audit_seccomp(unsigned long syscall)
2715 struct audit_buffer *ab;
2717 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2718 audit_log_abend(ab, "seccomp", SIGKILL);
2719 audit_log_format(ab, " syscall=%ld", syscall);
2720 audit_log_end(ab);
2723 struct list_head *audit_killed_trees(void)
2725 struct audit_context *ctx = current->audit_context;
2726 if (likely(!ctx || !ctx->in_syscall))
2727 return NULL;
2728 return &ctx->killed_trees;