Disintegrate asm/system.h for Blackfin [ver #2]
[linux-2.6.git] / fs / dcache.c
blob11828de68dceec56f90409a52dfbf29dc83b68fa
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
138 #endif
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 static inline int dentry_cmp(const unsigned char *cs, size_t scount,
145 const unsigned char *ct, size_t tcount)
147 #ifdef CONFIG_DCACHE_WORD_ACCESS
148 unsigned long a,b,mask;
150 if (unlikely(scount != tcount))
151 return 1;
153 for (;;) {
154 a = *(unsigned long *)cs;
155 b = *(unsigned long *)ct;
156 if (tcount < sizeof(unsigned long))
157 break;
158 if (unlikely(a != b))
159 return 1;
160 cs += sizeof(unsigned long);
161 ct += sizeof(unsigned long);
162 tcount -= sizeof(unsigned long);
163 if (!tcount)
164 return 0;
166 mask = ~(~0ul << tcount*8);
167 return unlikely(!!((a ^ b) & mask));
168 #else
169 if (scount != tcount)
170 return 1;
172 do {
173 if (*cs != *ct)
174 return 1;
175 cs++;
176 ct++;
177 tcount--;
178 } while (tcount);
179 return 0;
180 #endif
183 static void __d_free(struct rcu_head *head)
185 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
187 WARN_ON(!list_empty(&dentry->d_alias));
188 if (dname_external(dentry))
189 kfree(dentry->d_name.name);
190 kmem_cache_free(dentry_cache, dentry);
194 * no locks, please.
196 static void d_free(struct dentry *dentry)
198 BUG_ON(dentry->d_count);
199 this_cpu_dec(nr_dentry);
200 if (dentry->d_op && dentry->d_op->d_release)
201 dentry->d_op->d_release(dentry);
203 /* if dentry was never visible to RCU, immediate free is OK */
204 if (!(dentry->d_flags & DCACHE_RCUACCESS))
205 __d_free(&dentry->d_u.d_rcu);
206 else
207 call_rcu(&dentry->d_u.d_rcu, __d_free);
211 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
212 * @dentry: the target dentry
213 * After this call, in-progress rcu-walk path lookup will fail. This
214 * should be called after unhashing, and after changing d_inode (if
215 * the dentry has not already been unhashed).
217 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
219 assert_spin_locked(&dentry->d_lock);
220 /* Go through a barrier */
221 write_seqcount_barrier(&dentry->d_seq);
225 * Release the dentry's inode, using the filesystem
226 * d_iput() operation if defined. Dentry has no refcount
227 * and is unhashed.
229 static void dentry_iput(struct dentry * dentry)
230 __releases(dentry->d_lock)
231 __releases(dentry->d_inode->i_lock)
233 struct inode *inode = dentry->d_inode;
234 if (inode) {
235 dentry->d_inode = NULL;
236 list_del_init(&dentry->d_alias);
237 spin_unlock(&dentry->d_lock);
238 spin_unlock(&inode->i_lock);
239 if (!inode->i_nlink)
240 fsnotify_inoderemove(inode);
241 if (dentry->d_op && dentry->d_op->d_iput)
242 dentry->d_op->d_iput(dentry, inode);
243 else
244 iput(inode);
245 } else {
246 spin_unlock(&dentry->d_lock);
251 * Release the dentry's inode, using the filesystem
252 * d_iput() operation if defined. dentry remains in-use.
254 static void dentry_unlink_inode(struct dentry * dentry)
255 __releases(dentry->d_lock)
256 __releases(dentry->d_inode->i_lock)
258 struct inode *inode = dentry->d_inode;
259 dentry->d_inode = NULL;
260 list_del_init(&dentry->d_alias);
261 dentry_rcuwalk_barrier(dentry);
262 spin_unlock(&dentry->d_lock);
263 spin_unlock(&inode->i_lock);
264 if (!inode->i_nlink)
265 fsnotify_inoderemove(inode);
266 if (dentry->d_op && dentry->d_op->d_iput)
267 dentry->d_op->d_iput(dentry, inode);
268 else
269 iput(inode);
273 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
275 static void dentry_lru_add(struct dentry *dentry)
277 if (list_empty(&dentry->d_lru)) {
278 spin_lock(&dcache_lru_lock);
279 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
280 dentry->d_sb->s_nr_dentry_unused++;
281 dentry_stat.nr_unused++;
282 spin_unlock(&dcache_lru_lock);
286 static void __dentry_lru_del(struct dentry *dentry)
288 list_del_init(&dentry->d_lru);
289 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
290 dentry->d_sb->s_nr_dentry_unused--;
291 dentry_stat.nr_unused--;
295 * Remove a dentry with references from the LRU.
297 static void dentry_lru_del(struct dentry *dentry)
299 if (!list_empty(&dentry->d_lru)) {
300 spin_lock(&dcache_lru_lock);
301 __dentry_lru_del(dentry);
302 spin_unlock(&dcache_lru_lock);
307 * Remove a dentry that is unreferenced and about to be pruned
308 * (unhashed and destroyed) from the LRU, and inform the file system.
309 * This wrapper should be called _prior_ to unhashing a victim dentry.
311 static void dentry_lru_prune(struct dentry *dentry)
313 if (!list_empty(&dentry->d_lru)) {
314 if (dentry->d_flags & DCACHE_OP_PRUNE)
315 dentry->d_op->d_prune(dentry);
317 spin_lock(&dcache_lru_lock);
318 __dentry_lru_del(dentry);
319 spin_unlock(&dcache_lru_lock);
323 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
325 spin_lock(&dcache_lru_lock);
326 if (list_empty(&dentry->d_lru)) {
327 list_add_tail(&dentry->d_lru, list);
328 dentry->d_sb->s_nr_dentry_unused++;
329 dentry_stat.nr_unused++;
330 } else {
331 list_move_tail(&dentry->d_lru, list);
333 spin_unlock(&dcache_lru_lock);
337 * d_kill - kill dentry and return parent
338 * @dentry: dentry to kill
339 * @parent: parent dentry
341 * The dentry must already be unhashed and removed from the LRU.
343 * If this is the root of the dentry tree, return NULL.
345 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
346 * d_kill.
348 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
349 __releases(dentry->d_lock)
350 __releases(parent->d_lock)
351 __releases(dentry->d_inode->i_lock)
353 list_del(&dentry->d_u.d_child);
355 * Inform try_to_ascend() that we are no longer attached to the
356 * dentry tree
358 dentry->d_flags |= DCACHE_DISCONNECTED;
359 if (parent)
360 spin_unlock(&parent->d_lock);
361 dentry_iput(dentry);
363 * dentry_iput drops the locks, at which point nobody (except
364 * transient RCU lookups) can reach this dentry.
366 d_free(dentry);
367 return parent;
371 * Unhash a dentry without inserting an RCU walk barrier or checking that
372 * dentry->d_lock is locked. The caller must take care of that, if
373 * appropriate.
375 static void __d_shrink(struct dentry *dentry)
377 if (!d_unhashed(dentry)) {
378 struct hlist_bl_head *b;
379 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
380 b = &dentry->d_sb->s_anon;
381 else
382 b = d_hash(dentry->d_parent, dentry->d_name.hash);
384 hlist_bl_lock(b);
385 __hlist_bl_del(&dentry->d_hash);
386 dentry->d_hash.pprev = NULL;
387 hlist_bl_unlock(b);
392 * d_drop - drop a dentry
393 * @dentry: dentry to drop
395 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
396 * be found through a VFS lookup any more. Note that this is different from
397 * deleting the dentry - d_delete will try to mark the dentry negative if
398 * possible, giving a successful _negative_ lookup, while d_drop will
399 * just make the cache lookup fail.
401 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
402 * reason (NFS timeouts or autofs deletes).
404 * __d_drop requires dentry->d_lock.
406 void __d_drop(struct dentry *dentry)
408 if (!d_unhashed(dentry)) {
409 __d_shrink(dentry);
410 dentry_rcuwalk_barrier(dentry);
413 EXPORT_SYMBOL(__d_drop);
415 void d_drop(struct dentry *dentry)
417 spin_lock(&dentry->d_lock);
418 __d_drop(dentry);
419 spin_unlock(&dentry->d_lock);
421 EXPORT_SYMBOL(d_drop);
424 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
425 * @dentry: dentry to drop
427 * This is called when we do a lookup on a placeholder dentry that needed to be
428 * looked up. The dentry should have been hashed in order for it to be found by
429 * the lookup code, but now needs to be unhashed while we do the actual lookup
430 * and clear the DCACHE_NEED_LOOKUP flag.
432 void d_clear_need_lookup(struct dentry *dentry)
434 spin_lock(&dentry->d_lock);
435 __d_drop(dentry);
436 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
437 spin_unlock(&dentry->d_lock);
439 EXPORT_SYMBOL(d_clear_need_lookup);
442 * Finish off a dentry we've decided to kill.
443 * dentry->d_lock must be held, returns with it unlocked.
444 * If ref is non-zero, then decrement the refcount too.
445 * Returns dentry requiring refcount drop, or NULL if we're done.
447 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
448 __releases(dentry->d_lock)
450 struct inode *inode;
451 struct dentry *parent;
453 inode = dentry->d_inode;
454 if (inode && !spin_trylock(&inode->i_lock)) {
455 relock:
456 spin_unlock(&dentry->d_lock);
457 cpu_relax();
458 return dentry; /* try again with same dentry */
460 if (IS_ROOT(dentry))
461 parent = NULL;
462 else
463 parent = dentry->d_parent;
464 if (parent && !spin_trylock(&parent->d_lock)) {
465 if (inode)
466 spin_unlock(&inode->i_lock);
467 goto relock;
470 if (ref)
471 dentry->d_count--;
473 * if dentry was on the d_lru list delete it from there.
474 * inform the fs via d_prune that this dentry is about to be
475 * unhashed and destroyed.
477 dentry_lru_prune(dentry);
478 /* if it was on the hash then remove it */
479 __d_drop(dentry);
480 return d_kill(dentry, parent);
484 * This is dput
486 * This is complicated by the fact that we do not want to put
487 * dentries that are no longer on any hash chain on the unused
488 * list: we'd much rather just get rid of them immediately.
490 * However, that implies that we have to traverse the dentry
491 * tree upwards to the parents which might _also_ now be
492 * scheduled for deletion (it may have been only waiting for
493 * its last child to go away).
495 * This tail recursion is done by hand as we don't want to depend
496 * on the compiler to always get this right (gcc generally doesn't).
497 * Real recursion would eat up our stack space.
501 * dput - release a dentry
502 * @dentry: dentry to release
504 * Release a dentry. This will drop the usage count and if appropriate
505 * call the dentry unlink method as well as removing it from the queues and
506 * releasing its resources. If the parent dentries were scheduled for release
507 * they too may now get deleted.
509 void dput(struct dentry *dentry)
511 if (!dentry)
512 return;
514 repeat:
515 if (dentry->d_count == 1)
516 might_sleep();
517 spin_lock(&dentry->d_lock);
518 BUG_ON(!dentry->d_count);
519 if (dentry->d_count > 1) {
520 dentry->d_count--;
521 spin_unlock(&dentry->d_lock);
522 return;
525 if (dentry->d_flags & DCACHE_OP_DELETE) {
526 if (dentry->d_op->d_delete(dentry))
527 goto kill_it;
530 /* Unreachable? Get rid of it */
531 if (d_unhashed(dentry))
532 goto kill_it;
535 * If this dentry needs lookup, don't set the referenced flag so that it
536 * is more likely to be cleaned up by the dcache shrinker in case of
537 * memory pressure.
539 if (!d_need_lookup(dentry))
540 dentry->d_flags |= DCACHE_REFERENCED;
541 dentry_lru_add(dentry);
543 dentry->d_count--;
544 spin_unlock(&dentry->d_lock);
545 return;
547 kill_it:
548 dentry = dentry_kill(dentry, 1);
549 if (dentry)
550 goto repeat;
552 EXPORT_SYMBOL(dput);
555 * d_invalidate - invalidate a dentry
556 * @dentry: dentry to invalidate
558 * Try to invalidate the dentry if it turns out to be
559 * possible. If there are other dentries that can be
560 * reached through this one we can't delete it and we
561 * return -EBUSY. On success we return 0.
563 * no dcache lock.
566 int d_invalidate(struct dentry * dentry)
569 * If it's already been dropped, return OK.
571 spin_lock(&dentry->d_lock);
572 if (d_unhashed(dentry)) {
573 spin_unlock(&dentry->d_lock);
574 return 0;
577 * Check whether to do a partial shrink_dcache
578 * to get rid of unused child entries.
580 if (!list_empty(&dentry->d_subdirs)) {
581 spin_unlock(&dentry->d_lock);
582 shrink_dcache_parent(dentry);
583 spin_lock(&dentry->d_lock);
587 * Somebody else still using it?
589 * If it's a directory, we can't drop it
590 * for fear of somebody re-populating it
591 * with children (even though dropping it
592 * would make it unreachable from the root,
593 * we might still populate it if it was a
594 * working directory or similar).
595 * We also need to leave mountpoints alone,
596 * directory or not.
598 if (dentry->d_count > 1 && dentry->d_inode) {
599 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
600 spin_unlock(&dentry->d_lock);
601 return -EBUSY;
605 __d_drop(dentry);
606 spin_unlock(&dentry->d_lock);
607 return 0;
609 EXPORT_SYMBOL(d_invalidate);
611 /* This must be called with d_lock held */
612 static inline void __dget_dlock(struct dentry *dentry)
614 dentry->d_count++;
617 static inline void __dget(struct dentry *dentry)
619 spin_lock(&dentry->d_lock);
620 __dget_dlock(dentry);
621 spin_unlock(&dentry->d_lock);
624 struct dentry *dget_parent(struct dentry *dentry)
626 struct dentry *ret;
628 repeat:
630 * Don't need rcu_dereference because we re-check it was correct under
631 * the lock.
633 rcu_read_lock();
634 ret = dentry->d_parent;
635 spin_lock(&ret->d_lock);
636 if (unlikely(ret != dentry->d_parent)) {
637 spin_unlock(&ret->d_lock);
638 rcu_read_unlock();
639 goto repeat;
641 rcu_read_unlock();
642 BUG_ON(!ret->d_count);
643 ret->d_count++;
644 spin_unlock(&ret->d_lock);
645 return ret;
647 EXPORT_SYMBOL(dget_parent);
650 * d_find_alias - grab a hashed alias of inode
651 * @inode: inode in question
652 * @want_discon: flag, used by d_splice_alias, to request
653 * that only a DISCONNECTED alias be returned.
655 * If inode has a hashed alias, or is a directory and has any alias,
656 * acquire the reference to alias and return it. Otherwise return NULL.
657 * Notice that if inode is a directory there can be only one alias and
658 * it can be unhashed only if it has no children, or if it is the root
659 * of a filesystem.
661 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
662 * any other hashed alias over that one unless @want_discon is set,
663 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
665 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
667 struct dentry *alias, *discon_alias;
669 again:
670 discon_alias = NULL;
671 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
672 spin_lock(&alias->d_lock);
673 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
674 if (IS_ROOT(alias) &&
675 (alias->d_flags & DCACHE_DISCONNECTED)) {
676 discon_alias = alias;
677 } else if (!want_discon) {
678 __dget_dlock(alias);
679 spin_unlock(&alias->d_lock);
680 return alias;
683 spin_unlock(&alias->d_lock);
685 if (discon_alias) {
686 alias = discon_alias;
687 spin_lock(&alias->d_lock);
688 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
689 if (IS_ROOT(alias) &&
690 (alias->d_flags & DCACHE_DISCONNECTED)) {
691 __dget_dlock(alias);
692 spin_unlock(&alias->d_lock);
693 return alias;
696 spin_unlock(&alias->d_lock);
697 goto again;
699 return NULL;
702 struct dentry *d_find_alias(struct inode *inode)
704 struct dentry *de = NULL;
706 if (!list_empty(&inode->i_dentry)) {
707 spin_lock(&inode->i_lock);
708 de = __d_find_alias(inode, 0);
709 spin_unlock(&inode->i_lock);
711 return de;
713 EXPORT_SYMBOL(d_find_alias);
716 * Try to kill dentries associated with this inode.
717 * WARNING: you must own a reference to inode.
719 void d_prune_aliases(struct inode *inode)
721 struct dentry *dentry;
722 restart:
723 spin_lock(&inode->i_lock);
724 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
725 spin_lock(&dentry->d_lock);
726 if (!dentry->d_count) {
727 __dget_dlock(dentry);
728 __d_drop(dentry);
729 spin_unlock(&dentry->d_lock);
730 spin_unlock(&inode->i_lock);
731 dput(dentry);
732 goto restart;
734 spin_unlock(&dentry->d_lock);
736 spin_unlock(&inode->i_lock);
738 EXPORT_SYMBOL(d_prune_aliases);
741 * Try to throw away a dentry - free the inode, dput the parent.
742 * Requires dentry->d_lock is held, and dentry->d_count == 0.
743 * Releases dentry->d_lock.
745 * This may fail if locks cannot be acquired no problem, just try again.
747 static void try_prune_one_dentry(struct dentry *dentry)
748 __releases(dentry->d_lock)
750 struct dentry *parent;
752 parent = dentry_kill(dentry, 0);
754 * If dentry_kill returns NULL, we have nothing more to do.
755 * if it returns the same dentry, trylocks failed. In either
756 * case, just loop again.
758 * Otherwise, we need to prune ancestors too. This is necessary
759 * to prevent quadratic behavior of shrink_dcache_parent(), but
760 * is also expected to be beneficial in reducing dentry cache
761 * fragmentation.
763 if (!parent)
764 return;
765 if (parent == dentry)
766 return;
768 /* Prune ancestors. */
769 dentry = parent;
770 while (dentry) {
771 spin_lock(&dentry->d_lock);
772 if (dentry->d_count > 1) {
773 dentry->d_count--;
774 spin_unlock(&dentry->d_lock);
775 return;
777 dentry = dentry_kill(dentry, 1);
781 static void shrink_dentry_list(struct list_head *list)
783 struct dentry *dentry;
785 rcu_read_lock();
786 for (;;) {
787 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
788 if (&dentry->d_lru == list)
789 break; /* empty */
790 spin_lock(&dentry->d_lock);
791 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
792 spin_unlock(&dentry->d_lock);
793 continue;
797 * We found an inuse dentry which was not removed from
798 * the LRU because of laziness during lookup. Do not free
799 * it - just keep it off the LRU list.
801 if (dentry->d_count) {
802 dentry_lru_del(dentry);
803 spin_unlock(&dentry->d_lock);
804 continue;
807 rcu_read_unlock();
809 try_prune_one_dentry(dentry);
811 rcu_read_lock();
813 rcu_read_unlock();
817 * prune_dcache_sb - shrink the dcache
818 * @sb: superblock
819 * @count: number of entries to try to free
821 * Attempt to shrink the superblock dcache LRU by @count entries. This is
822 * done when we need more memory an called from the superblock shrinker
823 * function.
825 * This function may fail to free any resources if all the dentries are in
826 * use.
828 void prune_dcache_sb(struct super_block *sb, int count)
830 struct dentry *dentry;
831 LIST_HEAD(referenced);
832 LIST_HEAD(tmp);
834 relock:
835 spin_lock(&dcache_lru_lock);
836 while (!list_empty(&sb->s_dentry_lru)) {
837 dentry = list_entry(sb->s_dentry_lru.prev,
838 struct dentry, d_lru);
839 BUG_ON(dentry->d_sb != sb);
841 if (!spin_trylock(&dentry->d_lock)) {
842 spin_unlock(&dcache_lru_lock);
843 cpu_relax();
844 goto relock;
847 if (dentry->d_flags & DCACHE_REFERENCED) {
848 dentry->d_flags &= ~DCACHE_REFERENCED;
849 list_move(&dentry->d_lru, &referenced);
850 spin_unlock(&dentry->d_lock);
851 } else {
852 list_move_tail(&dentry->d_lru, &tmp);
853 dentry->d_flags |= DCACHE_SHRINK_LIST;
854 spin_unlock(&dentry->d_lock);
855 if (!--count)
856 break;
858 cond_resched_lock(&dcache_lru_lock);
860 if (!list_empty(&referenced))
861 list_splice(&referenced, &sb->s_dentry_lru);
862 spin_unlock(&dcache_lru_lock);
864 shrink_dentry_list(&tmp);
868 * shrink_dcache_sb - shrink dcache for a superblock
869 * @sb: superblock
871 * Shrink the dcache for the specified super block. This is used to free
872 * the dcache before unmounting a file system.
874 void shrink_dcache_sb(struct super_block *sb)
876 LIST_HEAD(tmp);
878 spin_lock(&dcache_lru_lock);
879 while (!list_empty(&sb->s_dentry_lru)) {
880 list_splice_init(&sb->s_dentry_lru, &tmp);
881 spin_unlock(&dcache_lru_lock);
882 shrink_dentry_list(&tmp);
883 spin_lock(&dcache_lru_lock);
885 spin_unlock(&dcache_lru_lock);
887 EXPORT_SYMBOL(shrink_dcache_sb);
890 * destroy a single subtree of dentries for unmount
891 * - see the comments on shrink_dcache_for_umount() for a description of the
892 * locking
894 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
896 struct dentry *parent;
898 BUG_ON(!IS_ROOT(dentry));
900 for (;;) {
901 /* descend to the first leaf in the current subtree */
902 while (!list_empty(&dentry->d_subdirs))
903 dentry = list_entry(dentry->d_subdirs.next,
904 struct dentry, d_u.d_child);
906 /* consume the dentries from this leaf up through its parents
907 * until we find one with children or run out altogether */
908 do {
909 struct inode *inode;
912 * remove the dentry from the lru, and inform
913 * the fs that this dentry is about to be
914 * unhashed and destroyed.
916 dentry_lru_prune(dentry);
917 __d_shrink(dentry);
919 if (dentry->d_count != 0) {
920 printk(KERN_ERR
921 "BUG: Dentry %p{i=%lx,n=%s}"
922 " still in use (%d)"
923 " [unmount of %s %s]\n",
924 dentry,
925 dentry->d_inode ?
926 dentry->d_inode->i_ino : 0UL,
927 dentry->d_name.name,
928 dentry->d_count,
929 dentry->d_sb->s_type->name,
930 dentry->d_sb->s_id);
931 BUG();
934 if (IS_ROOT(dentry)) {
935 parent = NULL;
936 list_del(&dentry->d_u.d_child);
937 } else {
938 parent = dentry->d_parent;
939 parent->d_count--;
940 list_del(&dentry->d_u.d_child);
943 inode = dentry->d_inode;
944 if (inode) {
945 dentry->d_inode = NULL;
946 list_del_init(&dentry->d_alias);
947 if (dentry->d_op && dentry->d_op->d_iput)
948 dentry->d_op->d_iput(dentry, inode);
949 else
950 iput(inode);
953 d_free(dentry);
955 /* finished when we fall off the top of the tree,
956 * otherwise we ascend to the parent and move to the
957 * next sibling if there is one */
958 if (!parent)
959 return;
960 dentry = parent;
961 } while (list_empty(&dentry->d_subdirs));
963 dentry = list_entry(dentry->d_subdirs.next,
964 struct dentry, d_u.d_child);
969 * destroy the dentries attached to a superblock on unmounting
970 * - we don't need to use dentry->d_lock because:
971 * - the superblock is detached from all mountings and open files, so the
972 * dentry trees will not be rearranged by the VFS
973 * - s_umount is write-locked, so the memory pressure shrinker will ignore
974 * any dentries belonging to this superblock that it comes across
975 * - the filesystem itself is no longer permitted to rearrange the dentries
976 * in this superblock
978 void shrink_dcache_for_umount(struct super_block *sb)
980 struct dentry *dentry;
982 if (down_read_trylock(&sb->s_umount))
983 BUG();
985 dentry = sb->s_root;
986 sb->s_root = NULL;
987 dentry->d_count--;
988 shrink_dcache_for_umount_subtree(dentry);
990 while (!hlist_bl_empty(&sb->s_anon)) {
991 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
992 shrink_dcache_for_umount_subtree(dentry);
997 * This tries to ascend one level of parenthood, but
998 * we can race with renaming, so we need to re-check
999 * the parenthood after dropping the lock and check
1000 * that the sequence number still matches.
1002 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1004 struct dentry *new = old->d_parent;
1006 rcu_read_lock();
1007 spin_unlock(&old->d_lock);
1008 spin_lock(&new->d_lock);
1011 * might go back up the wrong parent if we have had a rename
1012 * or deletion
1014 if (new != old->d_parent ||
1015 (old->d_flags & DCACHE_DISCONNECTED) ||
1016 (!locked && read_seqretry(&rename_lock, seq))) {
1017 spin_unlock(&new->d_lock);
1018 new = NULL;
1020 rcu_read_unlock();
1021 return new;
1026 * Search for at least 1 mount point in the dentry's subdirs.
1027 * We descend to the next level whenever the d_subdirs
1028 * list is non-empty and continue searching.
1032 * have_submounts - check for mounts over a dentry
1033 * @parent: dentry to check.
1035 * Return true if the parent or its subdirectories contain
1036 * a mount point
1038 int have_submounts(struct dentry *parent)
1040 struct dentry *this_parent;
1041 struct list_head *next;
1042 unsigned seq;
1043 int locked = 0;
1045 seq = read_seqbegin(&rename_lock);
1046 again:
1047 this_parent = parent;
1049 if (d_mountpoint(parent))
1050 goto positive;
1051 spin_lock(&this_parent->d_lock);
1052 repeat:
1053 next = this_parent->d_subdirs.next;
1054 resume:
1055 while (next != &this_parent->d_subdirs) {
1056 struct list_head *tmp = next;
1057 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1058 next = tmp->next;
1060 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1061 /* Have we found a mount point ? */
1062 if (d_mountpoint(dentry)) {
1063 spin_unlock(&dentry->d_lock);
1064 spin_unlock(&this_parent->d_lock);
1065 goto positive;
1067 if (!list_empty(&dentry->d_subdirs)) {
1068 spin_unlock(&this_parent->d_lock);
1069 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1070 this_parent = dentry;
1071 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1072 goto repeat;
1074 spin_unlock(&dentry->d_lock);
1077 * All done at this level ... ascend and resume the search.
1079 if (this_parent != parent) {
1080 struct dentry *child = this_parent;
1081 this_parent = try_to_ascend(this_parent, locked, seq);
1082 if (!this_parent)
1083 goto rename_retry;
1084 next = child->d_u.d_child.next;
1085 goto resume;
1087 spin_unlock(&this_parent->d_lock);
1088 if (!locked && read_seqretry(&rename_lock, seq))
1089 goto rename_retry;
1090 if (locked)
1091 write_sequnlock(&rename_lock);
1092 return 0; /* No mount points found in tree */
1093 positive:
1094 if (!locked && read_seqretry(&rename_lock, seq))
1095 goto rename_retry;
1096 if (locked)
1097 write_sequnlock(&rename_lock);
1098 return 1;
1100 rename_retry:
1101 locked = 1;
1102 write_seqlock(&rename_lock);
1103 goto again;
1105 EXPORT_SYMBOL(have_submounts);
1108 * Search the dentry child list for the specified parent,
1109 * and move any unused dentries to the end of the unused
1110 * list for prune_dcache(). We descend to the next level
1111 * whenever the d_subdirs list is non-empty and continue
1112 * searching.
1114 * It returns zero iff there are no unused children,
1115 * otherwise it returns the number of children moved to
1116 * the end of the unused list. This may not be the total
1117 * number of unused children, because select_parent can
1118 * drop the lock and return early due to latency
1119 * constraints.
1121 static int select_parent(struct dentry *parent, struct list_head *dispose)
1123 struct dentry *this_parent;
1124 struct list_head *next;
1125 unsigned seq;
1126 int found = 0;
1127 int locked = 0;
1129 seq = read_seqbegin(&rename_lock);
1130 again:
1131 this_parent = parent;
1132 spin_lock(&this_parent->d_lock);
1133 repeat:
1134 next = this_parent->d_subdirs.next;
1135 resume:
1136 while (next != &this_parent->d_subdirs) {
1137 struct list_head *tmp = next;
1138 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1139 next = tmp->next;
1141 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1144 * move only zero ref count dentries to the dispose list.
1146 * Those which are presently on the shrink list, being processed
1147 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1148 * loop in shrink_dcache_parent() might not make any progress
1149 * and loop forever.
1151 if (dentry->d_count) {
1152 dentry_lru_del(dentry);
1153 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1154 dentry_lru_move_list(dentry, dispose);
1155 dentry->d_flags |= DCACHE_SHRINK_LIST;
1156 found++;
1159 * We can return to the caller if we have found some (this
1160 * ensures forward progress). We'll be coming back to find
1161 * the rest.
1163 if (found && need_resched()) {
1164 spin_unlock(&dentry->d_lock);
1165 goto out;
1169 * Descend a level if the d_subdirs list is non-empty.
1171 if (!list_empty(&dentry->d_subdirs)) {
1172 spin_unlock(&this_parent->d_lock);
1173 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1174 this_parent = dentry;
1175 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1176 goto repeat;
1179 spin_unlock(&dentry->d_lock);
1182 * All done at this level ... ascend and resume the search.
1184 if (this_parent != parent) {
1185 struct dentry *child = this_parent;
1186 this_parent = try_to_ascend(this_parent, locked, seq);
1187 if (!this_parent)
1188 goto rename_retry;
1189 next = child->d_u.d_child.next;
1190 goto resume;
1192 out:
1193 spin_unlock(&this_parent->d_lock);
1194 if (!locked && read_seqretry(&rename_lock, seq))
1195 goto rename_retry;
1196 if (locked)
1197 write_sequnlock(&rename_lock);
1198 return found;
1200 rename_retry:
1201 if (found)
1202 return found;
1203 locked = 1;
1204 write_seqlock(&rename_lock);
1205 goto again;
1209 * shrink_dcache_parent - prune dcache
1210 * @parent: parent of entries to prune
1212 * Prune the dcache to remove unused children of the parent dentry.
1214 void shrink_dcache_parent(struct dentry * parent)
1216 LIST_HEAD(dispose);
1217 int found;
1219 while ((found = select_parent(parent, &dispose)) != 0)
1220 shrink_dentry_list(&dispose);
1222 EXPORT_SYMBOL(shrink_dcache_parent);
1225 * __d_alloc - allocate a dcache entry
1226 * @sb: filesystem it will belong to
1227 * @name: qstr of the name
1229 * Allocates a dentry. It returns %NULL if there is insufficient memory
1230 * available. On a success the dentry is returned. The name passed in is
1231 * copied and the copy passed in may be reused after this call.
1234 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1236 struct dentry *dentry;
1237 char *dname;
1239 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1240 if (!dentry)
1241 return NULL;
1243 if (name->len > DNAME_INLINE_LEN-1) {
1244 dname = kmalloc(name->len + 1, GFP_KERNEL);
1245 if (!dname) {
1246 kmem_cache_free(dentry_cache, dentry);
1247 return NULL;
1249 } else {
1250 dname = dentry->d_iname;
1252 dentry->d_name.name = dname;
1254 dentry->d_name.len = name->len;
1255 dentry->d_name.hash = name->hash;
1256 memcpy(dname, name->name, name->len);
1257 dname[name->len] = 0;
1259 dentry->d_count = 1;
1260 dentry->d_flags = 0;
1261 spin_lock_init(&dentry->d_lock);
1262 seqcount_init(&dentry->d_seq);
1263 dentry->d_inode = NULL;
1264 dentry->d_parent = dentry;
1265 dentry->d_sb = sb;
1266 dentry->d_op = NULL;
1267 dentry->d_fsdata = NULL;
1268 INIT_HLIST_BL_NODE(&dentry->d_hash);
1269 INIT_LIST_HEAD(&dentry->d_lru);
1270 INIT_LIST_HEAD(&dentry->d_subdirs);
1271 INIT_LIST_HEAD(&dentry->d_alias);
1272 INIT_LIST_HEAD(&dentry->d_u.d_child);
1273 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1275 this_cpu_inc(nr_dentry);
1277 return dentry;
1281 * d_alloc - allocate a dcache entry
1282 * @parent: parent of entry to allocate
1283 * @name: qstr of the name
1285 * Allocates a dentry. It returns %NULL if there is insufficient memory
1286 * available. On a success the dentry is returned. The name passed in is
1287 * copied and the copy passed in may be reused after this call.
1289 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1291 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1292 if (!dentry)
1293 return NULL;
1295 spin_lock(&parent->d_lock);
1297 * don't need child lock because it is not subject
1298 * to concurrency here
1300 __dget_dlock(parent);
1301 dentry->d_parent = parent;
1302 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1303 spin_unlock(&parent->d_lock);
1305 return dentry;
1307 EXPORT_SYMBOL(d_alloc);
1309 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1311 struct dentry *dentry = __d_alloc(sb, name);
1312 if (dentry)
1313 dentry->d_flags |= DCACHE_DISCONNECTED;
1314 return dentry;
1316 EXPORT_SYMBOL(d_alloc_pseudo);
1318 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1320 struct qstr q;
1322 q.name = name;
1323 q.len = strlen(name);
1324 q.hash = full_name_hash(q.name, q.len);
1325 return d_alloc(parent, &q);
1327 EXPORT_SYMBOL(d_alloc_name);
1329 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1331 WARN_ON_ONCE(dentry->d_op);
1332 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1333 DCACHE_OP_COMPARE |
1334 DCACHE_OP_REVALIDATE |
1335 DCACHE_OP_DELETE ));
1336 dentry->d_op = op;
1337 if (!op)
1338 return;
1339 if (op->d_hash)
1340 dentry->d_flags |= DCACHE_OP_HASH;
1341 if (op->d_compare)
1342 dentry->d_flags |= DCACHE_OP_COMPARE;
1343 if (op->d_revalidate)
1344 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1345 if (op->d_delete)
1346 dentry->d_flags |= DCACHE_OP_DELETE;
1347 if (op->d_prune)
1348 dentry->d_flags |= DCACHE_OP_PRUNE;
1351 EXPORT_SYMBOL(d_set_d_op);
1353 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1355 spin_lock(&dentry->d_lock);
1356 if (inode) {
1357 if (unlikely(IS_AUTOMOUNT(inode)))
1358 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1359 list_add(&dentry->d_alias, &inode->i_dentry);
1361 dentry->d_inode = inode;
1362 dentry_rcuwalk_barrier(dentry);
1363 spin_unlock(&dentry->d_lock);
1364 fsnotify_d_instantiate(dentry, inode);
1368 * d_instantiate - fill in inode information for a dentry
1369 * @entry: dentry to complete
1370 * @inode: inode to attach to this dentry
1372 * Fill in inode information in the entry.
1374 * This turns negative dentries into productive full members
1375 * of society.
1377 * NOTE! This assumes that the inode count has been incremented
1378 * (or otherwise set) by the caller to indicate that it is now
1379 * in use by the dcache.
1382 void d_instantiate(struct dentry *entry, struct inode * inode)
1384 BUG_ON(!list_empty(&entry->d_alias));
1385 if (inode)
1386 spin_lock(&inode->i_lock);
1387 __d_instantiate(entry, inode);
1388 if (inode)
1389 spin_unlock(&inode->i_lock);
1390 security_d_instantiate(entry, inode);
1392 EXPORT_SYMBOL(d_instantiate);
1395 * d_instantiate_unique - instantiate a non-aliased dentry
1396 * @entry: dentry to instantiate
1397 * @inode: inode to attach to this dentry
1399 * Fill in inode information in the entry. On success, it returns NULL.
1400 * If an unhashed alias of "entry" already exists, then we return the
1401 * aliased dentry instead and drop one reference to inode.
1403 * Note that in order to avoid conflicts with rename() etc, the caller
1404 * had better be holding the parent directory semaphore.
1406 * This also assumes that the inode count has been incremented
1407 * (or otherwise set) by the caller to indicate that it is now
1408 * in use by the dcache.
1410 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1411 struct inode *inode)
1413 struct dentry *alias;
1414 int len = entry->d_name.len;
1415 const char *name = entry->d_name.name;
1416 unsigned int hash = entry->d_name.hash;
1418 if (!inode) {
1419 __d_instantiate(entry, NULL);
1420 return NULL;
1423 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1424 struct qstr *qstr = &alias->d_name;
1427 * Don't need alias->d_lock here, because aliases with
1428 * d_parent == entry->d_parent are not subject to name or
1429 * parent changes, because the parent inode i_mutex is held.
1431 if (qstr->hash != hash)
1432 continue;
1433 if (alias->d_parent != entry->d_parent)
1434 continue;
1435 if (dentry_cmp(qstr->name, qstr->len, name, len))
1436 continue;
1437 __dget(alias);
1438 return alias;
1441 __d_instantiate(entry, inode);
1442 return NULL;
1445 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1447 struct dentry *result;
1449 BUG_ON(!list_empty(&entry->d_alias));
1451 if (inode)
1452 spin_lock(&inode->i_lock);
1453 result = __d_instantiate_unique(entry, inode);
1454 if (inode)
1455 spin_unlock(&inode->i_lock);
1457 if (!result) {
1458 security_d_instantiate(entry, inode);
1459 return NULL;
1462 BUG_ON(!d_unhashed(result));
1463 iput(inode);
1464 return result;
1467 EXPORT_SYMBOL(d_instantiate_unique);
1470 * d_alloc_root - allocate root dentry
1471 * @root_inode: inode to allocate the root for
1473 * Allocate a root ("/") dentry for the inode given. The inode is
1474 * instantiated and returned. %NULL is returned if there is insufficient
1475 * memory or the inode passed is %NULL.
1478 struct dentry * d_alloc_root(struct inode * root_inode)
1480 struct dentry *res = NULL;
1482 if (root_inode) {
1483 static const struct qstr name = { .name = "/", .len = 1 };
1485 res = __d_alloc(root_inode->i_sb, &name);
1486 if (res)
1487 d_instantiate(res, root_inode);
1489 return res;
1491 EXPORT_SYMBOL(d_alloc_root);
1493 struct dentry *d_make_root(struct inode *root_inode)
1495 struct dentry *res = NULL;
1497 if (root_inode) {
1498 static const struct qstr name = { .name = "/", .len = 1 };
1500 res = __d_alloc(root_inode->i_sb, &name);
1501 if (res)
1502 d_instantiate(res, root_inode);
1503 else
1504 iput(root_inode);
1506 return res;
1508 EXPORT_SYMBOL(d_make_root);
1510 static struct dentry * __d_find_any_alias(struct inode *inode)
1512 struct dentry *alias;
1514 if (list_empty(&inode->i_dentry))
1515 return NULL;
1516 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1517 __dget(alias);
1518 return alias;
1522 * d_find_any_alias - find any alias for a given inode
1523 * @inode: inode to find an alias for
1525 * If any aliases exist for the given inode, take and return a
1526 * reference for one of them. If no aliases exist, return %NULL.
1528 struct dentry *d_find_any_alias(struct inode *inode)
1530 struct dentry *de;
1532 spin_lock(&inode->i_lock);
1533 de = __d_find_any_alias(inode);
1534 spin_unlock(&inode->i_lock);
1535 return de;
1537 EXPORT_SYMBOL(d_find_any_alias);
1540 * d_obtain_alias - find or allocate a dentry for a given inode
1541 * @inode: inode to allocate the dentry for
1543 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1544 * similar open by handle operations. The returned dentry may be anonymous,
1545 * or may have a full name (if the inode was already in the cache).
1547 * When called on a directory inode, we must ensure that the inode only ever
1548 * has one dentry. If a dentry is found, that is returned instead of
1549 * allocating a new one.
1551 * On successful return, the reference to the inode has been transferred
1552 * to the dentry. In case of an error the reference on the inode is released.
1553 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1554 * be passed in and will be the error will be propagate to the return value,
1555 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1557 struct dentry *d_obtain_alias(struct inode *inode)
1559 static const struct qstr anonstring = { .name = "" };
1560 struct dentry *tmp;
1561 struct dentry *res;
1563 if (!inode)
1564 return ERR_PTR(-ESTALE);
1565 if (IS_ERR(inode))
1566 return ERR_CAST(inode);
1568 res = d_find_any_alias(inode);
1569 if (res)
1570 goto out_iput;
1572 tmp = __d_alloc(inode->i_sb, &anonstring);
1573 if (!tmp) {
1574 res = ERR_PTR(-ENOMEM);
1575 goto out_iput;
1578 spin_lock(&inode->i_lock);
1579 res = __d_find_any_alias(inode);
1580 if (res) {
1581 spin_unlock(&inode->i_lock);
1582 dput(tmp);
1583 goto out_iput;
1586 /* attach a disconnected dentry */
1587 spin_lock(&tmp->d_lock);
1588 tmp->d_inode = inode;
1589 tmp->d_flags |= DCACHE_DISCONNECTED;
1590 list_add(&tmp->d_alias, &inode->i_dentry);
1591 hlist_bl_lock(&tmp->d_sb->s_anon);
1592 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1593 hlist_bl_unlock(&tmp->d_sb->s_anon);
1594 spin_unlock(&tmp->d_lock);
1595 spin_unlock(&inode->i_lock);
1596 security_d_instantiate(tmp, inode);
1598 return tmp;
1600 out_iput:
1601 if (res && !IS_ERR(res))
1602 security_d_instantiate(res, inode);
1603 iput(inode);
1604 return res;
1606 EXPORT_SYMBOL(d_obtain_alias);
1609 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1610 * @inode: the inode which may have a disconnected dentry
1611 * @dentry: a negative dentry which we want to point to the inode.
1613 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1614 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1615 * and return it, else simply d_add the inode to the dentry and return NULL.
1617 * This is needed in the lookup routine of any filesystem that is exportable
1618 * (via knfsd) so that we can build dcache paths to directories effectively.
1620 * If a dentry was found and moved, then it is returned. Otherwise NULL
1621 * is returned. This matches the expected return value of ->lookup.
1624 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1626 struct dentry *new = NULL;
1628 if (IS_ERR(inode))
1629 return ERR_CAST(inode);
1631 if (inode && S_ISDIR(inode->i_mode)) {
1632 spin_lock(&inode->i_lock);
1633 new = __d_find_alias(inode, 1);
1634 if (new) {
1635 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1636 spin_unlock(&inode->i_lock);
1637 security_d_instantiate(new, inode);
1638 d_move(new, dentry);
1639 iput(inode);
1640 } else {
1641 /* already taking inode->i_lock, so d_add() by hand */
1642 __d_instantiate(dentry, inode);
1643 spin_unlock(&inode->i_lock);
1644 security_d_instantiate(dentry, inode);
1645 d_rehash(dentry);
1647 } else
1648 d_add(dentry, inode);
1649 return new;
1651 EXPORT_SYMBOL(d_splice_alias);
1654 * d_add_ci - lookup or allocate new dentry with case-exact name
1655 * @inode: the inode case-insensitive lookup has found
1656 * @dentry: the negative dentry that was passed to the parent's lookup func
1657 * @name: the case-exact name to be associated with the returned dentry
1659 * This is to avoid filling the dcache with case-insensitive names to the
1660 * same inode, only the actual correct case is stored in the dcache for
1661 * case-insensitive filesystems.
1663 * For a case-insensitive lookup match and if the the case-exact dentry
1664 * already exists in in the dcache, use it and return it.
1666 * If no entry exists with the exact case name, allocate new dentry with
1667 * the exact case, and return the spliced entry.
1669 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1670 struct qstr *name)
1672 int error;
1673 struct dentry *found;
1674 struct dentry *new;
1677 * First check if a dentry matching the name already exists,
1678 * if not go ahead and create it now.
1680 found = d_hash_and_lookup(dentry->d_parent, name);
1681 if (!found) {
1682 new = d_alloc(dentry->d_parent, name);
1683 if (!new) {
1684 error = -ENOMEM;
1685 goto err_out;
1688 found = d_splice_alias(inode, new);
1689 if (found) {
1690 dput(new);
1691 return found;
1693 return new;
1697 * If a matching dentry exists, and it's not negative use it.
1699 * Decrement the reference count to balance the iget() done
1700 * earlier on.
1702 if (found->d_inode) {
1703 if (unlikely(found->d_inode != inode)) {
1704 /* This can't happen because bad inodes are unhashed. */
1705 BUG_ON(!is_bad_inode(inode));
1706 BUG_ON(!is_bad_inode(found->d_inode));
1708 iput(inode);
1709 return found;
1713 * We are going to instantiate this dentry, unhash it and clear the
1714 * lookup flag so we can do that.
1716 if (unlikely(d_need_lookup(found)))
1717 d_clear_need_lookup(found);
1720 * Negative dentry: instantiate it unless the inode is a directory and
1721 * already has a dentry.
1723 new = d_splice_alias(inode, found);
1724 if (new) {
1725 dput(found);
1726 found = new;
1728 return found;
1730 err_out:
1731 iput(inode);
1732 return ERR_PTR(error);
1734 EXPORT_SYMBOL(d_add_ci);
1737 * __d_lookup_rcu - search for a dentry (racy, store-free)
1738 * @parent: parent dentry
1739 * @name: qstr of name we wish to find
1740 * @seq: returns d_seq value at the point where the dentry was found
1741 * @inode: returns dentry->d_inode when the inode was found valid.
1742 * Returns: dentry, or NULL
1744 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1745 * resolution (store-free path walking) design described in
1746 * Documentation/filesystems/path-lookup.txt.
1748 * This is not to be used outside core vfs.
1750 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1751 * held, and rcu_read_lock held. The returned dentry must not be stored into
1752 * without taking d_lock and checking d_seq sequence count against @seq
1753 * returned here.
1755 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1756 * function.
1758 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1759 * the returned dentry, so long as its parent's seqlock is checked after the
1760 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1761 * is formed, giving integrity down the path walk.
1763 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1764 const struct qstr *name,
1765 unsigned *seqp, struct inode **inode)
1767 unsigned int len = name->len;
1768 unsigned int hash = name->hash;
1769 const unsigned char *str = name->name;
1770 struct hlist_bl_head *b = d_hash(parent, hash);
1771 struct hlist_bl_node *node;
1772 struct dentry *dentry;
1775 * Note: There is significant duplication with __d_lookup_rcu which is
1776 * required to prevent single threaded performance regressions
1777 * especially on architectures where smp_rmb (in seqcounts) are costly.
1778 * Keep the two functions in sync.
1782 * The hash list is protected using RCU.
1784 * Carefully use d_seq when comparing a candidate dentry, to avoid
1785 * races with d_move().
1787 * It is possible that concurrent renames can mess up our list
1788 * walk here and result in missing our dentry, resulting in the
1789 * false-negative result. d_lookup() protects against concurrent
1790 * renames using rename_lock seqlock.
1792 * See Documentation/filesystems/path-lookup.txt for more details.
1794 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1795 unsigned seq;
1796 struct inode *i;
1797 const char *tname;
1798 int tlen;
1800 if (dentry->d_name.hash != hash)
1801 continue;
1803 seqretry:
1804 seq = read_seqcount_begin(&dentry->d_seq);
1805 if (dentry->d_parent != parent)
1806 continue;
1807 if (d_unhashed(dentry))
1808 continue;
1809 tlen = dentry->d_name.len;
1810 tname = dentry->d_name.name;
1811 i = dentry->d_inode;
1812 prefetch(tname);
1814 * This seqcount check is required to ensure name and
1815 * len are loaded atomically, so as not to walk off the
1816 * edge of memory when walking. If we could load this
1817 * atomically some other way, we could drop this check.
1819 if (read_seqcount_retry(&dentry->d_seq, seq))
1820 goto seqretry;
1821 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1822 if (parent->d_op->d_compare(parent, *inode,
1823 dentry, i,
1824 tlen, tname, name))
1825 continue;
1826 } else {
1827 if (dentry_cmp(tname, tlen, str, len))
1828 continue;
1831 * No extra seqcount check is required after the name
1832 * compare. The caller must perform a seqcount check in
1833 * order to do anything useful with the returned dentry
1834 * anyway.
1836 *seqp = seq;
1837 *inode = i;
1838 return dentry;
1840 return NULL;
1844 * d_lookup - search for a dentry
1845 * @parent: parent dentry
1846 * @name: qstr of name we wish to find
1847 * Returns: dentry, or NULL
1849 * d_lookup searches the children of the parent dentry for the name in
1850 * question. If the dentry is found its reference count is incremented and the
1851 * dentry is returned. The caller must use dput to free the entry when it has
1852 * finished using it. %NULL is returned if the dentry does not exist.
1854 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1856 struct dentry *dentry;
1857 unsigned seq;
1859 do {
1860 seq = read_seqbegin(&rename_lock);
1861 dentry = __d_lookup(parent, name);
1862 if (dentry)
1863 break;
1864 } while (read_seqretry(&rename_lock, seq));
1865 return dentry;
1867 EXPORT_SYMBOL(d_lookup);
1870 * __d_lookup - search for a dentry (racy)
1871 * @parent: parent dentry
1872 * @name: qstr of name we wish to find
1873 * Returns: dentry, or NULL
1875 * __d_lookup is like d_lookup, however it may (rarely) return a
1876 * false-negative result due to unrelated rename activity.
1878 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1879 * however it must be used carefully, eg. with a following d_lookup in
1880 * the case of failure.
1882 * __d_lookup callers must be commented.
1884 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1886 unsigned int len = name->len;
1887 unsigned int hash = name->hash;
1888 const unsigned char *str = name->name;
1889 struct hlist_bl_head *b = d_hash(parent, hash);
1890 struct hlist_bl_node *node;
1891 struct dentry *found = NULL;
1892 struct dentry *dentry;
1895 * Note: There is significant duplication with __d_lookup_rcu which is
1896 * required to prevent single threaded performance regressions
1897 * especially on architectures where smp_rmb (in seqcounts) are costly.
1898 * Keep the two functions in sync.
1902 * The hash list is protected using RCU.
1904 * Take d_lock when comparing a candidate dentry, to avoid races
1905 * with d_move().
1907 * It is possible that concurrent renames can mess up our list
1908 * walk here and result in missing our dentry, resulting in the
1909 * false-negative result. d_lookup() protects against concurrent
1910 * renames using rename_lock seqlock.
1912 * See Documentation/filesystems/path-lookup.txt for more details.
1914 rcu_read_lock();
1916 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1917 const char *tname;
1918 int tlen;
1920 if (dentry->d_name.hash != hash)
1921 continue;
1923 spin_lock(&dentry->d_lock);
1924 if (dentry->d_parent != parent)
1925 goto next;
1926 if (d_unhashed(dentry))
1927 goto next;
1930 * It is safe to compare names since d_move() cannot
1931 * change the qstr (protected by d_lock).
1933 tlen = dentry->d_name.len;
1934 tname = dentry->d_name.name;
1935 if (parent->d_flags & DCACHE_OP_COMPARE) {
1936 if (parent->d_op->d_compare(parent, parent->d_inode,
1937 dentry, dentry->d_inode,
1938 tlen, tname, name))
1939 goto next;
1940 } else {
1941 if (dentry_cmp(tname, tlen, str, len))
1942 goto next;
1945 dentry->d_count++;
1946 found = dentry;
1947 spin_unlock(&dentry->d_lock);
1948 break;
1949 next:
1950 spin_unlock(&dentry->d_lock);
1952 rcu_read_unlock();
1954 return found;
1958 * d_hash_and_lookup - hash the qstr then search for a dentry
1959 * @dir: Directory to search in
1960 * @name: qstr of name we wish to find
1962 * On hash failure or on lookup failure NULL is returned.
1964 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1966 struct dentry *dentry = NULL;
1969 * Check for a fs-specific hash function. Note that we must
1970 * calculate the standard hash first, as the d_op->d_hash()
1971 * routine may choose to leave the hash value unchanged.
1973 name->hash = full_name_hash(name->name, name->len);
1974 if (dir->d_flags & DCACHE_OP_HASH) {
1975 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1976 goto out;
1978 dentry = d_lookup(dir, name);
1979 out:
1980 return dentry;
1984 * d_validate - verify dentry provided from insecure source (deprecated)
1985 * @dentry: The dentry alleged to be valid child of @dparent
1986 * @dparent: The parent dentry (known to be valid)
1988 * An insecure source has sent us a dentry, here we verify it and dget() it.
1989 * This is used by ncpfs in its readdir implementation.
1990 * Zero is returned in the dentry is invalid.
1992 * This function is slow for big directories, and deprecated, do not use it.
1994 int d_validate(struct dentry *dentry, struct dentry *dparent)
1996 struct dentry *child;
1998 spin_lock(&dparent->d_lock);
1999 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2000 if (dentry == child) {
2001 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2002 __dget_dlock(dentry);
2003 spin_unlock(&dentry->d_lock);
2004 spin_unlock(&dparent->d_lock);
2005 return 1;
2008 spin_unlock(&dparent->d_lock);
2010 return 0;
2012 EXPORT_SYMBOL(d_validate);
2015 * When a file is deleted, we have two options:
2016 * - turn this dentry into a negative dentry
2017 * - unhash this dentry and free it.
2019 * Usually, we want to just turn this into
2020 * a negative dentry, but if anybody else is
2021 * currently using the dentry or the inode
2022 * we can't do that and we fall back on removing
2023 * it from the hash queues and waiting for
2024 * it to be deleted later when it has no users
2028 * d_delete - delete a dentry
2029 * @dentry: The dentry to delete
2031 * Turn the dentry into a negative dentry if possible, otherwise
2032 * remove it from the hash queues so it can be deleted later
2035 void d_delete(struct dentry * dentry)
2037 struct inode *inode;
2038 int isdir = 0;
2040 * Are we the only user?
2042 again:
2043 spin_lock(&dentry->d_lock);
2044 inode = dentry->d_inode;
2045 isdir = S_ISDIR(inode->i_mode);
2046 if (dentry->d_count == 1) {
2047 if (inode && !spin_trylock(&inode->i_lock)) {
2048 spin_unlock(&dentry->d_lock);
2049 cpu_relax();
2050 goto again;
2052 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2053 dentry_unlink_inode(dentry);
2054 fsnotify_nameremove(dentry, isdir);
2055 return;
2058 if (!d_unhashed(dentry))
2059 __d_drop(dentry);
2061 spin_unlock(&dentry->d_lock);
2063 fsnotify_nameremove(dentry, isdir);
2065 EXPORT_SYMBOL(d_delete);
2067 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2069 BUG_ON(!d_unhashed(entry));
2070 hlist_bl_lock(b);
2071 entry->d_flags |= DCACHE_RCUACCESS;
2072 hlist_bl_add_head_rcu(&entry->d_hash, b);
2073 hlist_bl_unlock(b);
2076 static void _d_rehash(struct dentry * entry)
2078 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2082 * d_rehash - add an entry back to the hash
2083 * @entry: dentry to add to the hash
2085 * Adds a dentry to the hash according to its name.
2088 void d_rehash(struct dentry * entry)
2090 spin_lock(&entry->d_lock);
2091 _d_rehash(entry);
2092 spin_unlock(&entry->d_lock);
2094 EXPORT_SYMBOL(d_rehash);
2097 * dentry_update_name_case - update case insensitive dentry with a new name
2098 * @dentry: dentry to be updated
2099 * @name: new name
2101 * Update a case insensitive dentry with new case of name.
2103 * dentry must have been returned by d_lookup with name @name. Old and new
2104 * name lengths must match (ie. no d_compare which allows mismatched name
2105 * lengths).
2107 * Parent inode i_mutex must be held over d_lookup and into this call (to
2108 * keep renames and concurrent inserts, and readdir(2) away).
2110 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2112 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2113 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2115 spin_lock(&dentry->d_lock);
2116 write_seqcount_begin(&dentry->d_seq);
2117 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2118 write_seqcount_end(&dentry->d_seq);
2119 spin_unlock(&dentry->d_lock);
2121 EXPORT_SYMBOL(dentry_update_name_case);
2123 static void switch_names(struct dentry *dentry, struct dentry *target)
2125 if (dname_external(target)) {
2126 if (dname_external(dentry)) {
2128 * Both external: swap the pointers
2130 swap(target->d_name.name, dentry->d_name.name);
2131 } else {
2133 * dentry:internal, target:external. Steal target's
2134 * storage and make target internal.
2136 memcpy(target->d_iname, dentry->d_name.name,
2137 dentry->d_name.len + 1);
2138 dentry->d_name.name = target->d_name.name;
2139 target->d_name.name = target->d_iname;
2141 } else {
2142 if (dname_external(dentry)) {
2144 * dentry:external, target:internal. Give dentry's
2145 * storage to target and make dentry internal
2147 memcpy(dentry->d_iname, target->d_name.name,
2148 target->d_name.len + 1);
2149 target->d_name.name = dentry->d_name.name;
2150 dentry->d_name.name = dentry->d_iname;
2151 } else {
2153 * Both are internal. Just copy target to dentry
2155 memcpy(dentry->d_iname, target->d_name.name,
2156 target->d_name.len + 1);
2157 dentry->d_name.len = target->d_name.len;
2158 return;
2161 swap(dentry->d_name.len, target->d_name.len);
2164 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2167 * XXXX: do we really need to take target->d_lock?
2169 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2170 spin_lock(&target->d_parent->d_lock);
2171 else {
2172 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2173 spin_lock(&dentry->d_parent->d_lock);
2174 spin_lock_nested(&target->d_parent->d_lock,
2175 DENTRY_D_LOCK_NESTED);
2176 } else {
2177 spin_lock(&target->d_parent->d_lock);
2178 spin_lock_nested(&dentry->d_parent->d_lock,
2179 DENTRY_D_LOCK_NESTED);
2182 if (target < dentry) {
2183 spin_lock_nested(&target->d_lock, 2);
2184 spin_lock_nested(&dentry->d_lock, 3);
2185 } else {
2186 spin_lock_nested(&dentry->d_lock, 2);
2187 spin_lock_nested(&target->d_lock, 3);
2191 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2192 struct dentry *target)
2194 if (target->d_parent != dentry->d_parent)
2195 spin_unlock(&dentry->d_parent->d_lock);
2196 if (target->d_parent != target)
2197 spin_unlock(&target->d_parent->d_lock);
2201 * When switching names, the actual string doesn't strictly have to
2202 * be preserved in the target - because we're dropping the target
2203 * anyway. As such, we can just do a simple memcpy() to copy over
2204 * the new name before we switch.
2206 * Note that we have to be a lot more careful about getting the hash
2207 * switched - we have to switch the hash value properly even if it
2208 * then no longer matches the actual (corrupted) string of the target.
2209 * The hash value has to match the hash queue that the dentry is on..
2212 * __d_move - move a dentry
2213 * @dentry: entry to move
2214 * @target: new dentry
2216 * Update the dcache to reflect the move of a file name. Negative
2217 * dcache entries should not be moved in this way. Caller must hold
2218 * rename_lock, the i_mutex of the source and target directories,
2219 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2221 static void __d_move(struct dentry * dentry, struct dentry * target)
2223 if (!dentry->d_inode)
2224 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2226 BUG_ON(d_ancestor(dentry, target));
2227 BUG_ON(d_ancestor(target, dentry));
2229 dentry_lock_for_move(dentry, target);
2231 write_seqcount_begin(&dentry->d_seq);
2232 write_seqcount_begin(&target->d_seq);
2234 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2237 * Move the dentry to the target hash queue. Don't bother checking
2238 * for the same hash queue because of how unlikely it is.
2240 __d_drop(dentry);
2241 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2243 /* Unhash the target: dput() will then get rid of it */
2244 __d_drop(target);
2246 list_del(&dentry->d_u.d_child);
2247 list_del(&target->d_u.d_child);
2249 /* Switch the names.. */
2250 switch_names(dentry, target);
2251 swap(dentry->d_name.hash, target->d_name.hash);
2253 /* ... and switch the parents */
2254 if (IS_ROOT(dentry)) {
2255 dentry->d_parent = target->d_parent;
2256 target->d_parent = target;
2257 INIT_LIST_HEAD(&target->d_u.d_child);
2258 } else {
2259 swap(dentry->d_parent, target->d_parent);
2261 /* And add them back to the (new) parent lists */
2262 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2265 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2267 write_seqcount_end(&target->d_seq);
2268 write_seqcount_end(&dentry->d_seq);
2270 dentry_unlock_parents_for_move(dentry, target);
2271 spin_unlock(&target->d_lock);
2272 fsnotify_d_move(dentry);
2273 spin_unlock(&dentry->d_lock);
2277 * d_move - move a dentry
2278 * @dentry: entry to move
2279 * @target: new dentry
2281 * Update the dcache to reflect the move of a file name. Negative
2282 * dcache entries should not be moved in this way. See the locking
2283 * requirements for __d_move.
2285 void d_move(struct dentry *dentry, struct dentry *target)
2287 write_seqlock(&rename_lock);
2288 __d_move(dentry, target);
2289 write_sequnlock(&rename_lock);
2291 EXPORT_SYMBOL(d_move);
2294 * d_ancestor - search for an ancestor
2295 * @p1: ancestor dentry
2296 * @p2: child dentry
2298 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2299 * an ancestor of p2, else NULL.
2301 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2303 struct dentry *p;
2305 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2306 if (p->d_parent == p1)
2307 return p;
2309 return NULL;
2313 * This helper attempts to cope with remotely renamed directories
2315 * It assumes that the caller is already holding
2316 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2318 * Note: If ever the locking in lock_rename() changes, then please
2319 * remember to update this too...
2321 static struct dentry *__d_unalias(struct inode *inode,
2322 struct dentry *dentry, struct dentry *alias)
2324 struct mutex *m1 = NULL, *m2 = NULL;
2325 struct dentry *ret;
2327 /* If alias and dentry share a parent, then no extra locks required */
2328 if (alias->d_parent == dentry->d_parent)
2329 goto out_unalias;
2331 /* See lock_rename() */
2332 ret = ERR_PTR(-EBUSY);
2333 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2334 goto out_err;
2335 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2336 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2337 goto out_err;
2338 m2 = &alias->d_parent->d_inode->i_mutex;
2339 out_unalias:
2340 __d_move(alias, dentry);
2341 ret = alias;
2342 out_err:
2343 spin_unlock(&inode->i_lock);
2344 if (m2)
2345 mutex_unlock(m2);
2346 if (m1)
2347 mutex_unlock(m1);
2348 return ret;
2352 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2353 * named dentry in place of the dentry to be replaced.
2354 * returns with anon->d_lock held!
2356 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2358 struct dentry *dparent, *aparent;
2360 dentry_lock_for_move(anon, dentry);
2362 write_seqcount_begin(&dentry->d_seq);
2363 write_seqcount_begin(&anon->d_seq);
2365 dparent = dentry->d_parent;
2366 aparent = anon->d_parent;
2368 switch_names(dentry, anon);
2369 swap(dentry->d_name.hash, anon->d_name.hash);
2371 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2372 list_del(&dentry->d_u.d_child);
2373 if (!IS_ROOT(dentry))
2374 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2375 else
2376 INIT_LIST_HEAD(&dentry->d_u.d_child);
2378 anon->d_parent = (dparent == dentry) ? anon : dparent;
2379 list_del(&anon->d_u.d_child);
2380 if (!IS_ROOT(anon))
2381 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2382 else
2383 INIT_LIST_HEAD(&anon->d_u.d_child);
2385 write_seqcount_end(&dentry->d_seq);
2386 write_seqcount_end(&anon->d_seq);
2388 dentry_unlock_parents_for_move(anon, dentry);
2389 spin_unlock(&dentry->d_lock);
2391 /* anon->d_lock still locked, returns locked */
2392 anon->d_flags &= ~DCACHE_DISCONNECTED;
2396 * d_materialise_unique - introduce an inode into the tree
2397 * @dentry: candidate dentry
2398 * @inode: inode to bind to the dentry, to which aliases may be attached
2400 * Introduces an dentry into the tree, substituting an extant disconnected
2401 * root directory alias in its place if there is one. Caller must hold the
2402 * i_mutex of the parent directory.
2404 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2406 struct dentry *actual;
2408 BUG_ON(!d_unhashed(dentry));
2410 if (!inode) {
2411 actual = dentry;
2412 __d_instantiate(dentry, NULL);
2413 d_rehash(actual);
2414 goto out_nolock;
2417 spin_lock(&inode->i_lock);
2419 if (S_ISDIR(inode->i_mode)) {
2420 struct dentry *alias;
2422 /* Does an aliased dentry already exist? */
2423 alias = __d_find_alias(inode, 0);
2424 if (alias) {
2425 actual = alias;
2426 write_seqlock(&rename_lock);
2428 if (d_ancestor(alias, dentry)) {
2429 /* Check for loops */
2430 actual = ERR_PTR(-ELOOP);
2431 } else if (IS_ROOT(alias)) {
2432 /* Is this an anonymous mountpoint that we
2433 * could splice into our tree? */
2434 __d_materialise_dentry(dentry, alias);
2435 write_sequnlock(&rename_lock);
2436 __d_drop(alias);
2437 goto found;
2438 } else {
2439 /* Nope, but we must(!) avoid directory
2440 * aliasing */
2441 actual = __d_unalias(inode, dentry, alias);
2443 write_sequnlock(&rename_lock);
2444 if (IS_ERR(actual)) {
2445 if (PTR_ERR(actual) == -ELOOP)
2446 pr_warn_ratelimited(
2447 "VFS: Lookup of '%s' in %s %s"
2448 " would have caused loop\n",
2449 dentry->d_name.name,
2450 inode->i_sb->s_type->name,
2451 inode->i_sb->s_id);
2452 dput(alias);
2454 goto out_nolock;
2458 /* Add a unique reference */
2459 actual = __d_instantiate_unique(dentry, inode);
2460 if (!actual)
2461 actual = dentry;
2462 else
2463 BUG_ON(!d_unhashed(actual));
2465 spin_lock(&actual->d_lock);
2466 found:
2467 _d_rehash(actual);
2468 spin_unlock(&actual->d_lock);
2469 spin_unlock(&inode->i_lock);
2470 out_nolock:
2471 if (actual == dentry) {
2472 security_d_instantiate(dentry, inode);
2473 return NULL;
2476 iput(inode);
2477 return actual;
2479 EXPORT_SYMBOL_GPL(d_materialise_unique);
2481 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2483 *buflen -= namelen;
2484 if (*buflen < 0)
2485 return -ENAMETOOLONG;
2486 *buffer -= namelen;
2487 memcpy(*buffer, str, namelen);
2488 return 0;
2491 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2493 return prepend(buffer, buflen, name->name, name->len);
2497 * prepend_path - Prepend path string to a buffer
2498 * @path: the dentry/vfsmount to report
2499 * @root: root vfsmnt/dentry
2500 * @buffer: pointer to the end of the buffer
2501 * @buflen: pointer to buffer length
2503 * Caller holds the rename_lock.
2505 static int prepend_path(const struct path *path,
2506 const struct path *root,
2507 char **buffer, int *buflen)
2509 struct dentry *dentry = path->dentry;
2510 struct vfsmount *vfsmnt = path->mnt;
2511 struct mount *mnt = real_mount(vfsmnt);
2512 bool slash = false;
2513 int error = 0;
2515 br_read_lock(vfsmount_lock);
2516 while (dentry != root->dentry || vfsmnt != root->mnt) {
2517 struct dentry * parent;
2519 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2520 /* Global root? */
2521 if (!mnt_has_parent(mnt))
2522 goto global_root;
2523 dentry = mnt->mnt_mountpoint;
2524 mnt = mnt->mnt_parent;
2525 vfsmnt = &mnt->mnt;
2526 continue;
2528 parent = dentry->d_parent;
2529 prefetch(parent);
2530 spin_lock(&dentry->d_lock);
2531 error = prepend_name(buffer, buflen, &dentry->d_name);
2532 spin_unlock(&dentry->d_lock);
2533 if (!error)
2534 error = prepend(buffer, buflen, "/", 1);
2535 if (error)
2536 break;
2538 slash = true;
2539 dentry = parent;
2542 if (!error && !slash)
2543 error = prepend(buffer, buflen, "/", 1);
2545 out:
2546 br_read_unlock(vfsmount_lock);
2547 return error;
2549 global_root:
2551 * Filesystems needing to implement special "root names"
2552 * should do so with ->d_dname()
2554 if (IS_ROOT(dentry) &&
2555 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2556 WARN(1, "Root dentry has weird name <%.*s>\n",
2557 (int) dentry->d_name.len, dentry->d_name.name);
2559 if (!slash)
2560 error = prepend(buffer, buflen, "/", 1);
2561 if (!error)
2562 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2563 goto out;
2567 * __d_path - return the path of a dentry
2568 * @path: the dentry/vfsmount to report
2569 * @root: root vfsmnt/dentry
2570 * @buf: buffer to return value in
2571 * @buflen: buffer length
2573 * Convert a dentry into an ASCII path name.
2575 * Returns a pointer into the buffer or an error code if the
2576 * path was too long.
2578 * "buflen" should be positive.
2580 * If the path is not reachable from the supplied root, return %NULL.
2582 char *__d_path(const struct path *path,
2583 const struct path *root,
2584 char *buf, int buflen)
2586 char *res = buf + buflen;
2587 int error;
2589 prepend(&res, &buflen, "\0", 1);
2590 write_seqlock(&rename_lock);
2591 error = prepend_path(path, root, &res, &buflen);
2592 write_sequnlock(&rename_lock);
2594 if (error < 0)
2595 return ERR_PTR(error);
2596 if (error > 0)
2597 return NULL;
2598 return res;
2601 char *d_absolute_path(const struct path *path,
2602 char *buf, int buflen)
2604 struct path root = {};
2605 char *res = buf + buflen;
2606 int error;
2608 prepend(&res, &buflen, "\0", 1);
2609 write_seqlock(&rename_lock);
2610 error = prepend_path(path, &root, &res, &buflen);
2611 write_sequnlock(&rename_lock);
2613 if (error > 1)
2614 error = -EINVAL;
2615 if (error < 0)
2616 return ERR_PTR(error);
2617 return res;
2621 * same as __d_path but appends "(deleted)" for unlinked files.
2623 static int path_with_deleted(const struct path *path,
2624 const struct path *root,
2625 char **buf, int *buflen)
2627 prepend(buf, buflen, "\0", 1);
2628 if (d_unlinked(path->dentry)) {
2629 int error = prepend(buf, buflen, " (deleted)", 10);
2630 if (error)
2631 return error;
2634 return prepend_path(path, root, buf, buflen);
2637 static int prepend_unreachable(char **buffer, int *buflen)
2639 return prepend(buffer, buflen, "(unreachable)", 13);
2643 * d_path - return the path of a dentry
2644 * @path: path to report
2645 * @buf: buffer to return value in
2646 * @buflen: buffer length
2648 * Convert a dentry into an ASCII path name. If the entry has been deleted
2649 * the string " (deleted)" is appended. Note that this is ambiguous.
2651 * Returns a pointer into the buffer or an error code if the path was
2652 * too long. Note: Callers should use the returned pointer, not the passed
2653 * in buffer, to use the name! The implementation often starts at an offset
2654 * into the buffer, and may leave 0 bytes at the start.
2656 * "buflen" should be positive.
2658 char *d_path(const struct path *path, char *buf, int buflen)
2660 char *res = buf + buflen;
2661 struct path root;
2662 int error;
2665 * We have various synthetic filesystems that never get mounted. On
2666 * these filesystems dentries are never used for lookup purposes, and
2667 * thus don't need to be hashed. They also don't need a name until a
2668 * user wants to identify the object in /proc/pid/fd/. The little hack
2669 * below allows us to generate a name for these objects on demand:
2671 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2672 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2674 get_fs_root(current->fs, &root);
2675 write_seqlock(&rename_lock);
2676 error = path_with_deleted(path, &root, &res, &buflen);
2677 if (error < 0)
2678 res = ERR_PTR(error);
2679 write_sequnlock(&rename_lock);
2680 path_put(&root);
2681 return res;
2683 EXPORT_SYMBOL(d_path);
2686 * d_path_with_unreachable - return the path of a dentry
2687 * @path: path to report
2688 * @buf: buffer to return value in
2689 * @buflen: buffer length
2691 * The difference from d_path() is that this prepends "(unreachable)"
2692 * to paths which are unreachable from the current process' root.
2694 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2696 char *res = buf + buflen;
2697 struct path root;
2698 int error;
2700 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2701 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2703 get_fs_root(current->fs, &root);
2704 write_seqlock(&rename_lock);
2705 error = path_with_deleted(path, &root, &res, &buflen);
2706 if (error > 0)
2707 error = prepend_unreachable(&res, &buflen);
2708 write_sequnlock(&rename_lock);
2709 path_put(&root);
2710 if (error)
2711 res = ERR_PTR(error);
2713 return res;
2717 * Helper function for dentry_operations.d_dname() members
2719 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2720 const char *fmt, ...)
2722 va_list args;
2723 char temp[64];
2724 int sz;
2726 va_start(args, fmt);
2727 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2728 va_end(args);
2730 if (sz > sizeof(temp) || sz > buflen)
2731 return ERR_PTR(-ENAMETOOLONG);
2733 buffer += buflen - sz;
2734 return memcpy(buffer, temp, sz);
2738 * Write full pathname from the root of the filesystem into the buffer.
2740 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2742 char *end = buf + buflen;
2743 char *retval;
2745 prepend(&end, &buflen, "\0", 1);
2746 if (buflen < 1)
2747 goto Elong;
2748 /* Get '/' right */
2749 retval = end-1;
2750 *retval = '/';
2752 while (!IS_ROOT(dentry)) {
2753 struct dentry *parent = dentry->d_parent;
2754 int error;
2756 prefetch(parent);
2757 spin_lock(&dentry->d_lock);
2758 error = prepend_name(&end, &buflen, &dentry->d_name);
2759 spin_unlock(&dentry->d_lock);
2760 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2761 goto Elong;
2763 retval = end;
2764 dentry = parent;
2766 return retval;
2767 Elong:
2768 return ERR_PTR(-ENAMETOOLONG);
2771 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2773 char *retval;
2775 write_seqlock(&rename_lock);
2776 retval = __dentry_path(dentry, buf, buflen);
2777 write_sequnlock(&rename_lock);
2779 return retval;
2781 EXPORT_SYMBOL(dentry_path_raw);
2783 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2785 char *p = NULL;
2786 char *retval;
2788 write_seqlock(&rename_lock);
2789 if (d_unlinked(dentry)) {
2790 p = buf + buflen;
2791 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2792 goto Elong;
2793 buflen++;
2795 retval = __dentry_path(dentry, buf, buflen);
2796 write_sequnlock(&rename_lock);
2797 if (!IS_ERR(retval) && p)
2798 *p = '/'; /* restore '/' overriden with '\0' */
2799 return retval;
2800 Elong:
2801 return ERR_PTR(-ENAMETOOLONG);
2805 * NOTE! The user-level library version returns a
2806 * character pointer. The kernel system call just
2807 * returns the length of the buffer filled (which
2808 * includes the ending '\0' character), or a negative
2809 * error value. So libc would do something like
2811 * char *getcwd(char * buf, size_t size)
2813 * int retval;
2815 * retval = sys_getcwd(buf, size);
2816 * if (retval >= 0)
2817 * return buf;
2818 * errno = -retval;
2819 * return NULL;
2822 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2824 int error;
2825 struct path pwd, root;
2826 char *page = (char *) __get_free_page(GFP_USER);
2828 if (!page)
2829 return -ENOMEM;
2831 get_fs_root_and_pwd(current->fs, &root, &pwd);
2833 error = -ENOENT;
2834 write_seqlock(&rename_lock);
2835 if (!d_unlinked(pwd.dentry)) {
2836 unsigned long len;
2837 char *cwd = page + PAGE_SIZE;
2838 int buflen = PAGE_SIZE;
2840 prepend(&cwd, &buflen, "\0", 1);
2841 error = prepend_path(&pwd, &root, &cwd, &buflen);
2842 write_sequnlock(&rename_lock);
2844 if (error < 0)
2845 goto out;
2847 /* Unreachable from current root */
2848 if (error > 0) {
2849 error = prepend_unreachable(&cwd, &buflen);
2850 if (error)
2851 goto out;
2854 error = -ERANGE;
2855 len = PAGE_SIZE + page - cwd;
2856 if (len <= size) {
2857 error = len;
2858 if (copy_to_user(buf, cwd, len))
2859 error = -EFAULT;
2861 } else {
2862 write_sequnlock(&rename_lock);
2865 out:
2866 path_put(&pwd);
2867 path_put(&root);
2868 free_page((unsigned long) page);
2869 return error;
2873 * Test whether new_dentry is a subdirectory of old_dentry.
2875 * Trivially implemented using the dcache structure
2879 * is_subdir - is new dentry a subdirectory of old_dentry
2880 * @new_dentry: new dentry
2881 * @old_dentry: old dentry
2883 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2884 * Returns 0 otherwise.
2885 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2888 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2890 int result;
2891 unsigned seq;
2893 if (new_dentry == old_dentry)
2894 return 1;
2896 do {
2897 /* for restarting inner loop in case of seq retry */
2898 seq = read_seqbegin(&rename_lock);
2900 * Need rcu_readlock to protect against the d_parent trashing
2901 * due to d_move
2903 rcu_read_lock();
2904 if (d_ancestor(old_dentry, new_dentry))
2905 result = 1;
2906 else
2907 result = 0;
2908 rcu_read_unlock();
2909 } while (read_seqretry(&rename_lock, seq));
2911 return result;
2914 void d_genocide(struct dentry *root)
2916 struct dentry *this_parent;
2917 struct list_head *next;
2918 unsigned seq;
2919 int locked = 0;
2921 seq = read_seqbegin(&rename_lock);
2922 again:
2923 this_parent = root;
2924 spin_lock(&this_parent->d_lock);
2925 repeat:
2926 next = this_parent->d_subdirs.next;
2927 resume:
2928 while (next != &this_parent->d_subdirs) {
2929 struct list_head *tmp = next;
2930 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2931 next = tmp->next;
2933 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2934 if (d_unhashed(dentry) || !dentry->d_inode) {
2935 spin_unlock(&dentry->d_lock);
2936 continue;
2938 if (!list_empty(&dentry->d_subdirs)) {
2939 spin_unlock(&this_parent->d_lock);
2940 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2941 this_parent = dentry;
2942 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2943 goto repeat;
2945 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2946 dentry->d_flags |= DCACHE_GENOCIDE;
2947 dentry->d_count--;
2949 spin_unlock(&dentry->d_lock);
2951 if (this_parent != root) {
2952 struct dentry *child = this_parent;
2953 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2954 this_parent->d_flags |= DCACHE_GENOCIDE;
2955 this_parent->d_count--;
2957 this_parent = try_to_ascend(this_parent, locked, seq);
2958 if (!this_parent)
2959 goto rename_retry;
2960 next = child->d_u.d_child.next;
2961 goto resume;
2963 spin_unlock(&this_parent->d_lock);
2964 if (!locked && read_seqretry(&rename_lock, seq))
2965 goto rename_retry;
2966 if (locked)
2967 write_sequnlock(&rename_lock);
2968 return;
2970 rename_retry:
2971 locked = 1;
2972 write_seqlock(&rename_lock);
2973 goto again;
2977 * find_inode_number - check for dentry with name
2978 * @dir: directory to check
2979 * @name: Name to find.
2981 * Check whether a dentry already exists for the given name,
2982 * and return the inode number if it has an inode. Otherwise
2983 * 0 is returned.
2985 * This routine is used to post-process directory listings for
2986 * filesystems using synthetic inode numbers, and is necessary
2987 * to keep getcwd() working.
2990 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2992 struct dentry * dentry;
2993 ino_t ino = 0;
2995 dentry = d_hash_and_lookup(dir, name);
2996 if (dentry) {
2997 if (dentry->d_inode)
2998 ino = dentry->d_inode->i_ino;
2999 dput(dentry);
3001 return ino;
3003 EXPORT_SYMBOL(find_inode_number);
3005 static __initdata unsigned long dhash_entries;
3006 static int __init set_dhash_entries(char *str)
3008 if (!str)
3009 return 0;
3010 dhash_entries = simple_strtoul(str, &str, 0);
3011 return 1;
3013 __setup("dhash_entries=", set_dhash_entries);
3015 static void __init dcache_init_early(void)
3017 unsigned int loop;
3019 /* If hashes are distributed across NUMA nodes, defer
3020 * hash allocation until vmalloc space is available.
3022 if (hashdist)
3023 return;
3025 dentry_hashtable =
3026 alloc_large_system_hash("Dentry cache",
3027 sizeof(struct hlist_bl_head),
3028 dhash_entries,
3030 HASH_EARLY,
3031 &d_hash_shift,
3032 &d_hash_mask,
3035 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3036 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3039 static void __init dcache_init(void)
3041 unsigned int loop;
3044 * A constructor could be added for stable state like the lists,
3045 * but it is probably not worth it because of the cache nature
3046 * of the dcache.
3048 dentry_cache = KMEM_CACHE(dentry,
3049 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3051 /* Hash may have been set up in dcache_init_early */
3052 if (!hashdist)
3053 return;
3055 dentry_hashtable =
3056 alloc_large_system_hash("Dentry cache",
3057 sizeof(struct hlist_bl_head),
3058 dhash_entries,
3061 &d_hash_shift,
3062 &d_hash_mask,
3065 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3066 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3069 /* SLAB cache for __getname() consumers */
3070 struct kmem_cache *names_cachep __read_mostly;
3071 EXPORT_SYMBOL(names_cachep);
3073 EXPORT_SYMBOL(d_genocide);
3075 void __init vfs_caches_init_early(void)
3077 dcache_init_early();
3078 inode_init_early();
3081 void __init vfs_caches_init(unsigned long mempages)
3083 unsigned long reserve;
3085 /* Base hash sizes on available memory, with a reserve equal to
3086 150% of current kernel size */
3088 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3089 mempages -= reserve;
3091 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3092 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3094 dcache_init();
3095 inode_init();
3096 files_init(mempages);
3097 mnt_init();
3098 bdev_cache_init();
3099 chrdev_init();