[PATCH] sched: smp nice bias busy queues on idle rebalance
[linux-2.6.git] / kernel / sched.c
blobec9ea9119b9819c1f93fed13160bb44e6b73ab9c
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
200 struct runqueue {
201 spinlock_t lock;
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long prio_bias;
210 unsigned long cpu_load[3];
211 #endif
212 unsigned long long nr_switches;
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
220 unsigned long nr_uninterruptible;
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
224 task_t *curr, *idle;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
228 atomic_t nr_iowait;
230 #ifdef CONFIG_SMP
231 struct sched_domain *sd;
233 /* For active balancing */
234 int active_balance;
235 int push_cpu;
237 task_t *migration_thread;
238 struct list_head migration_queue;
239 #endif
241 #ifdef CONFIG_SCHEDSTATS
242 /* latency stats */
243 struct sched_info rq_sched_info;
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
259 #endif
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266 * See detach_destroy_domains: synchronize_sched for details.
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
274 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275 #define this_rq() (&__get_cpu_var(runqueues))
276 #define task_rq(p) cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next) do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev) do { } while (0)
284 #endif
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
289 return rq->curr == p;
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
298 #ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
301 #endif
302 spin_unlock_irq(&rq->lock);
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
308 #ifdef CONFIG_SMP
309 return p->oncpu;
310 #else
311 return rq->curr == p;
312 #endif
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
317 #ifdef CONFIG_SMP
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
321 * here.
323 next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
327 #else
328 spin_unlock(&rq->lock);
329 #endif
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
334 #ifdef CONFIG_SMP
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
338 * finished.
340 smp_wmb();
341 prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344 local_irq_enable();
345 #endif
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 __acquires(rq->lock)
357 struct runqueue *rq;
359 repeat_lock_task:
360 local_irq_save(*flags);
361 rq = task_rq(p);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
367 return rq;
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371 __releases(rq->lock)
373 spin_unlock_irqrestore(&rq->lock, *flags);
376 #ifdef CONFIG_SCHEDSTATS
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
381 #define SCHEDSTAT_VERSION 12
383 static int show_schedstat(struct seq_file *seq, void *v)
385 int cpu;
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392 struct sched_domain *sd;
393 int dcnt = 0;
394 #endif
396 /* runqueue-specific stats */
397 seq_printf(seq,
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
406 seq_printf(seq, "\n");
408 #ifdef CONFIG_SMP
409 /* domain-specific stats */
410 preempt_disable();
411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418 itype++) {
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420 sd->lb_cnt[itype],
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
435 preempt_enable();
436 #endif
438 return 0;
441 static int schedstat_open(struct inode *inode, struct file *file)
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
445 struct seq_file *m;
446 int res;
448 if (!buf)
449 return -ENOMEM;
450 res = single_open(file, show_schedstat, NULL);
451 if (!res) {
452 m = file->private_data;
453 m->buf = buf;
454 m->size = size;
455 } else
456 kfree(buf);
457 return res;
460 struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
462 .read = seq_read,
463 .llseek = seq_lseek,
464 .release = single_release,
467 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field) do { } while (0)
471 # define schedstat_add(rq, field, amt) do { } while (0)
472 #endif
475 * rq_lock - lock a given runqueue and disable interrupts.
477 static inline runqueue_t *this_rq_lock(void)
478 __acquires(rq->lock)
480 runqueue_t *rq;
482 local_irq_disable();
483 rq = this_rq();
484 spin_lock(&rq->lock);
486 return rq;
489 #ifdef CONFIG_SCHEDSTATS
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
503 * finally hit a cpu.
505 static inline void sched_info_dequeued(task_t *t)
507 t->sched_info.last_queued = 0;
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
515 static inline void sched_info_arrive(task_t *t)
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
527 if (!rq)
528 return;
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543 * to runqueue.
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
549 static inline void sched_info_queued(task_t *t)
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
559 static inline void sched_info_depart(task_t *t)
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
564 t->sched_info.cpu_time += diff;
566 if (rq)
567 rq->rq_sched_info.cpu_time += diff;
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
575 static inline void sched_info_switch(task_t *prev, task_t *next)
577 struct runqueue *rq = task_rq(prev);
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
582 * process, however.
584 if (prev != rq->idle)
585 sched_info_depart(prev);
587 if (next != rq->idle)
588 sched_info_arrive(next);
590 #else
591 #define sched_info_queued(t) do { } while (0)
592 #define sched_info_switch(t, next) do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
596 * Adding/removing a task to/from a priority array:
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
600 array->nr_active--;
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
611 array->nr_active++;
612 p->array = array;
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
621 list_move_tail(&p->run_list, array->queue + p->prio);
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
628 array->nr_active++;
629 p->array = array;
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
639 * We use 25% of the full 0...39 priority range so that:
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
644 * Both properties are important to certain workloads.
646 static int effective_prio(task_t *p)
648 int bonus, prio;
650 if (rt_task(p))
651 return p->prio;
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
657 prio = MAX_RT_PRIO;
658 if (prio > MAX_PRIO-1)
659 prio = MAX_PRIO-1;
660 return prio;
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
666 rq->prio_bias += MAX_PRIO - prio;
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
671 rq->prio_bias -= MAX_PRIO - prio;
673 #else
674 static inline void inc_prio_bias(runqueue_t *rq, int prio)
678 static inline void dec_prio_bias(runqueue_t *rq, int prio)
681 #endif
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
685 rq->nr_running++;
686 if (rt_task(p))
687 inc_prio_bias(rq, p->prio);
688 else
689 inc_prio_bias(rq, p->static_prio);
692 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
694 rq->nr_running--;
695 if (rt_task(p))
696 dec_prio_bias(rq, p->prio);
697 else
698 dec_prio_bias(rq, p->static_prio);
702 * __activate_task - move a task to the runqueue.
704 static inline void __activate_task(task_t *p, runqueue_t *rq)
706 enqueue_task(p, rq->active);
707 inc_nr_running(p, rq);
711 * __activate_idle_task - move idle task to the _front_ of runqueue.
713 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
715 enqueue_task_head(p, rq->active);
716 inc_nr_running(p, rq);
719 static int recalc_task_prio(task_t *p, unsigned long long now)
721 /* Caller must always ensure 'now >= p->timestamp' */
722 unsigned long long __sleep_time = now - p->timestamp;
723 unsigned long sleep_time;
725 if (__sleep_time > NS_MAX_SLEEP_AVG)
726 sleep_time = NS_MAX_SLEEP_AVG;
727 else
728 sleep_time = (unsigned long)__sleep_time;
730 if (likely(sleep_time > 0)) {
732 * User tasks that sleep a long time are categorised as
733 * idle and will get just interactive status to stay active &
734 * prevent them suddenly becoming cpu hogs and starving
735 * other processes.
737 if (p->mm && p->activated != -1 &&
738 sleep_time > INTERACTIVE_SLEEP(p)) {
739 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
740 DEF_TIMESLICE);
741 } else {
743 * The lower the sleep avg a task has the more
744 * rapidly it will rise with sleep time.
746 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
749 * Tasks waking from uninterruptible sleep are
750 * limited in their sleep_avg rise as they
751 * are likely to be waiting on I/O
753 if (p->activated == -1 && p->mm) {
754 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
755 sleep_time = 0;
756 else if (p->sleep_avg + sleep_time >=
757 INTERACTIVE_SLEEP(p)) {
758 p->sleep_avg = INTERACTIVE_SLEEP(p);
759 sleep_time = 0;
764 * This code gives a bonus to interactive tasks.
766 * The boost works by updating the 'average sleep time'
767 * value here, based on ->timestamp. The more time a
768 * task spends sleeping, the higher the average gets -
769 * and the higher the priority boost gets as well.
771 p->sleep_avg += sleep_time;
773 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
774 p->sleep_avg = NS_MAX_SLEEP_AVG;
778 return effective_prio(p);
782 * activate_task - move a task to the runqueue and do priority recalculation
784 * Update all the scheduling statistics stuff. (sleep average
785 * calculation, priority modifiers, etc.)
787 static void activate_task(task_t *p, runqueue_t *rq, int local)
789 unsigned long long now;
791 now = sched_clock();
792 #ifdef CONFIG_SMP
793 if (!local) {
794 /* Compensate for drifting sched_clock */
795 runqueue_t *this_rq = this_rq();
796 now = (now - this_rq->timestamp_last_tick)
797 + rq->timestamp_last_tick;
799 #endif
801 p->prio = recalc_task_prio(p, now);
804 * This checks to make sure it's not an uninterruptible task
805 * that is now waking up.
807 if (!p->activated) {
809 * Tasks which were woken up by interrupts (ie. hw events)
810 * are most likely of interactive nature. So we give them
811 * the credit of extending their sleep time to the period
812 * of time they spend on the runqueue, waiting for execution
813 * on a CPU, first time around:
815 if (in_interrupt())
816 p->activated = 2;
817 else {
819 * Normal first-time wakeups get a credit too for
820 * on-runqueue time, but it will be weighted down:
822 p->activated = 1;
825 p->timestamp = now;
827 __activate_task(p, rq);
831 * deactivate_task - remove a task from the runqueue.
833 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
835 dec_nr_running(p, rq);
836 dequeue_task(p, p->array);
837 p->array = NULL;
841 * resched_task - mark a task 'to be rescheduled now'.
843 * On UP this means the setting of the need_resched flag, on SMP it
844 * might also involve a cross-CPU call to trigger the scheduler on
845 * the target CPU.
847 #ifdef CONFIG_SMP
848 static void resched_task(task_t *p)
850 int need_resched, nrpolling;
852 assert_spin_locked(&task_rq(p)->lock);
854 /* minimise the chance of sending an interrupt to poll_idle() */
855 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
856 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
857 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
859 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
860 smp_send_reschedule(task_cpu(p));
862 #else
863 static inline void resched_task(task_t *p)
865 set_tsk_need_resched(p);
867 #endif
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
873 inline int task_curr(const task_t *p)
875 return cpu_curr(task_cpu(p)) == p;
878 #ifdef CONFIG_SMP
879 typedef struct {
880 struct list_head list;
882 task_t *task;
883 int dest_cpu;
885 struct completion done;
886 } migration_req_t;
889 * The task's runqueue lock must be held.
890 * Returns true if you have to wait for migration thread.
892 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
894 runqueue_t *rq = task_rq(p);
897 * If the task is not on a runqueue (and not running), then
898 * it is sufficient to simply update the task's cpu field.
900 if (!p->array && !task_running(rq, p)) {
901 set_task_cpu(p, dest_cpu);
902 return 0;
905 init_completion(&req->done);
906 req->task = p;
907 req->dest_cpu = dest_cpu;
908 list_add(&req->list, &rq->migration_queue);
909 return 1;
913 * wait_task_inactive - wait for a thread to unschedule.
915 * The caller must ensure that the task *will* unschedule sometime soon,
916 * else this function might spin for a *long* time. This function can't
917 * be called with interrupts off, or it may introduce deadlock with
918 * smp_call_function() if an IPI is sent by the same process we are
919 * waiting to become inactive.
921 void wait_task_inactive(task_t *p)
923 unsigned long flags;
924 runqueue_t *rq;
925 int preempted;
927 repeat:
928 rq = task_rq_lock(p, &flags);
929 /* Must be off runqueue entirely, not preempted. */
930 if (unlikely(p->array || task_running(rq, p))) {
931 /* If it's preempted, we yield. It could be a while. */
932 preempted = !task_running(rq, p);
933 task_rq_unlock(rq, &flags);
934 cpu_relax();
935 if (preempted)
936 yield();
937 goto repeat;
939 task_rq_unlock(rq, &flags);
942 /***
943 * kick_process - kick a running thread to enter/exit the kernel
944 * @p: the to-be-kicked thread
946 * Cause a process which is running on another CPU to enter
947 * kernel-mode, without any delay. (to get signals handled.)
949 * NOTE: this function doesnt have to take the runqueue lock,
950 * because all it wants to ensure is that the remote task enters
951 * the kernel. If the IPI races and the task has been migrated
952 * to another CPU then no harm is done and the purpose has been
953 * achieved as well.
955 void kick_process(task_t *p)
957 int cpu;
959 preempt_disable();
960 cpu = task_cpu(p);
961 if ((cpu != smp_processor_id()) && task_curr(p))
962 smp_send_reschedule(cpu);
963 preempt_enable();
967 * Return a low guess at the load of a migration-source cpu.
969 * We want to under-estimate the load of migration sources, to
970 * balance conservatively.
972 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
974 runqueue_t *rq = cpu_rq(cpu);
975 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
976 load_now = rq->nr_running * SCHED_LOAD_SCALE;
978 if (type == 0)
979 source_load = load_now;
980 else
981 source_load = min(cpu_load, load_now);
983 if (idle == NOT_IDLE || rq->nr_running > 1)
985 * If we are busy rebalancing the load is biased by
986 * priority to create 'nice' support across cpus. When
987 * idle rebalancing we should only bias the source_load if
988 * there is more than one task running on that queue to
989 * prevent idle rebalance from trying to pull tasks from a
990 * queue with only one running task.
992 source_load *= rq->prio_bias;
994 return source_load;
997 static inline unsigned long source_load(int cpu, int type)
999 return __source_load(cpu, type, NOT_IDLE);
1003 * Return a high guess at the load of a migration-target cpu
1005 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1007 runqueue_t *rq = cpu_rq(cpu);
1008 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1009 load_now = rq->nr_running * SCHED_LOAD_SCALE;
1011 if (type == 0)
1012 target_load = load_now;
1013 else
1014 target_load = max(cpu_load, load_now);
1016 if (idle == NOT_IDLE || rq->nr_running > 1)
1017 target_load *= rq->prio_bias;
1019 return target_load;
1022 static inline unsigned long target_load(int cpu, int type)
1024 return __target_load(cpu, type, NOT_IDLE);
1028 * find_idlest_group finds and returns the least busy CPU group within the
1029 * domain.
1031 static struct sched_group *
1032 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1034 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1035 unsigned long min_load = ULONG_MAX, this_load = 0;
1036 int load_idx = sd->forkexec_idx;
1037 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1039 do {
1040 unsigned long load, avg_load;
1041 int local_group;
1042 int i;
1044 /* Skip over this group if it has no CPUs allowed */
1045 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1046 goto nextgroup;
1048 local_group = cpu_isset(this_cpu, group->cpumask);
1050 /* Tally up the load of all CPUs in the group */
1051 avg_load = 0;
1053 for_each_cpu_mask(i, group->cpumask) {
1054 /* Bias balancing toward cpus of our domain */
1055 if (local_group)
1056 load = source_load(i, load_idx);
1057 else
1058 load = target_load(i, load_idx);
1060 avg_load += load;
1063 /* Adjust by relative CPU power of the group */
1064 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1066 if (local_group) {
1067 this_load = avg_load;
1068 this = group;
1069 } else if (avg_load < min_load) {
1070 min_load = avg_load;
1071 idlest = group;
1073 nextgroup:
1074 group = group->next;
1075 } while (group != sd->groups);
1077 if (!idlest || 100*this_load < imbalance*min_load)
1078 return NULL;
1079 return idlest;
1083 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1085 static int
1086 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1088 cpumask_t tmp;
1089 unsigned long load, min_load = ULONG_MAX;
1090 int idlest = -1;
1091 int i;
1093 /* Traverse only the allowed CPUs */
1094 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1096 for_each_cpu_mask(i, tmp) {
1097 load = source_load(i, 0);
1099 if (load < min_load || (load == min_load && i == this_cpu)) {
1100 min_load = load;
1101 idlest = i;
1105 return idlest;
1109 * sched_balance_self: balance the current task (running on cpu) in domains
1110 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1111 * SD_BALANCE_EXEC.
1113 * Balance, ie. select the least loaded group.
1115 * Returns the target CPU number, or the same CPU if no balancing is needed.
1117 * preempt must be disabled.
1119 static int sched_balance_self(int cpu, int flag)
1121 struct task_struct *t = current;
1122 struct sched_domain *tmp, *sd = NULL;
1124 for_each_domain(cpu, tmp)
1125 if (tmp->flags & flag)
1126 sd = tmp;
1128 while (sd) {
1129 cpumask_t span;
1130 struct sched_group *group;
1131 int new_cpu;
1132 int weight;
1134 span = sd->span;
1135 group = find_idlest_group(sd, t, cpu);
1136 if (!group)
1137 goto nextlevel;
1139 new_cpu = find_idlest_cpu(group, t, cpu);
1140 if (new_cpu == -1 || new_cpu == cpu)
1141 goto nextlevel;
1143 /* Now try balancing at a lower domain level */
1144 cpu = new_cpu;
1145 nextlevel:
1146 sd = NULL;
1147 weight = cpus_weight(span);
1148 for_each_domain(cpu, tmp) {
1149 if (weight <= cpus_weight(tmp->span))
1150 break;
1151 if (tmp->flags & flag)
1152 sd = tmp;
1154 /* while loop will break here if sd == NULL */
1157 return cpu;
1160 #endif /* CONFIG_SMP */
1163 * wake_idle() will wake a task on an idle cpu if task->cpu is
1164 * not idle and an idle cpu is available. The span of cpus to
1165 * search starts with cpus closest then further out as needed,
1166 * so we always favor a closer, idle cpu.
1168 * Returns the CPU we should wake onto.
1170 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1171 static int wake_idle(int cpu, task_t *p)
1173 cpumask_t tmp;
1174 struct sched_domain *sd;
1175 int i;
1177 if (idle_cpu(cpu))
1178 return cpu;
1180 for_each_domain(cpu, sd) {
1181 if (sd->flags & SD_WAKE_IDLE) {
1182 cpus_and(tmp, sd->span, p->cpus_allowed);
1183 for_each_cpu_mask(i, tmp) {
1184 if (idle_cpu(i))
1185 return i;
1188 else
1189 break;
1191 return cpu;
1193 #else
1194 static inline int wake_idle(int cpu, task_t *p)
1196 return cpu;
1198 #endif
1200 /***
1201 * try_to_wake_up - wake up a thread
1202 * @p: the to-be-woken-up thread
1203 * @state: the mask of task states that can be woken
1204 * @sync: do a synchronous wakeup?
1206 * Put it on the run-queue if it's not already there. The "current"
1207 * thread is always on the run-queue (except when the actual
1208 * re-schedule is in progress), and as such you're allowed to do
1209 * the simpler "current->state = TASK_RUNNING" to mark yourself
1210 * runnable without the overhead of this.
1212 * returns failure only if the task is already active.
1214 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1216 int cpu, this_cpu, success = 0;
1217 unsigned long flags;
1218 long old_state;
1219 runqueue_t *rq;
1220 #ifdef CONFIG_SMP
1221 unsigned long load, this_load;
1222 struct sched_domain *sd, *this_sd = NULL;
1223 int new_cpu;
1224 #endif
1226 rq = task_rq_lock(p, &flags);
1227 old_state = p->state;
1228 if (!(old_state & state))
1229 goto out;
1231 if (p->array)
1232 goto out_running;
1234 cpu = task_cpu(p);
1235 this_cpu = smp_processor_id();
1237 #ifdef CONFIG_SMP
1238 if (unlikely(task_running(rq, p)))
1239 goto out_activate;
1241 new_cpu = cpu;
1243 schedstat_inc(rq, ttwu_cnt);
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 goto out_set_cpu;
1249 for_each_domain(this_cpu, sd) {
1250 if (cpu_isset(cpu, sd->span)) {
1251 schedstat_inc(sd, ttwu_wake_remote);
1252 this_sd = sd;
1253 break;
1257 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1258 goto out_set_cpu;
1261 * Check for affine wakeup and passive balancing possibilities.
1263 if (this_sd) {
1264 int idx = this_sd->wake_idx;
1265 unsigned int imbalance;
1267 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1269 load = source_load(cpu, idx);
1270 this_load = target_load(this_cpu, idx);
1272 new_cpu = this_cpu; /* Wake to this CPU if we can */
1274 if (this_sd->flags & SD_WAKE_AFFINE) {
1275 unsigned long tl = this_load;
1277 * If sync wakeup then subtract the (maximum possible)
1278 * effect of the currently running task from the load
1279 * of the current CPU:
1281 if (sync)
1282 tl -= SCHED_LOAD_SCALE;
1284 if ((tl <= load &&
1285 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1286 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1288 * This domain has SD_WAKE_AFFINE and
1289 * p is cache cold in this domain, and
1290 * there is no bad imbalance.
1292 schedstat_inc(this_sd, ttwu_move_affine);
1293 goto out_set_cpu;
1298 * Start passive balancing when half the imbalance_pct
1299 * limit is reached.
1301 if (this_sd->flags & SD_WAKE_BALANCE) {
1302 if (imbalance*this_load <= 100*load) {
1303 schedstat_inc(this_sd, ttwu_move_balance);
1304 goto out_set_cpu;
1309 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1310 out_set_cpu:
1311 new_cpu = wake_idle(new_cpu, p);
1312 if (new_cpu != cpu) {
1313 set_task_cpu(p, new_cpu);
1314 task_rq_unlock(rq, &flags);
1315 /* might preempt at this point */
1316 rq = task_rq_lock(p, &flags);
1317 old_state = p->state;
1318 if (!(old_state & state))
1319 goto out;
1320 if (p->array)
1321 goto out_running;
1323 this_cpu = smp_processor_id();
1324 cpu = task_cpu(p);
1327 out_activate:
1328 #endif /* CONFIG_SMP */
1329 if (old_state == TASK_UNINTERRUPTIBLE) {
1330 rq->nr_uninterruptible--;
1332 * Tasks on involuntary sleep don't earn
1333 * sleep_avg beyond just interactive state.
1335 p->activated = -1;
1339 * Tasks that have marked their sleep as noninteractive get
1340 * woken up without updating their sleep average. (i.e. their
1341 * sleep is handled in a priority-neutral manner, no priority
1342 * boost and no penalty.)
1344 if (old_state & TASK_NONINTERACTIVE)
1345 __activate_task(p, rq);
1346 else
1347 activate_task(p, rq, cpu == this_cpu);
1349 * Sync wakeups (i.e. those types of wakeups where the waker
1350 * has indicated that it will leave the CPU in short order)
1351 * don't trigger a preemption, if the woken up task will run on
1352 * this cpu. (in this case the 'I will reschedule' promise of
1353 * the waker guarantees that the freshly woken up task is going
1354 * to be considered on this CPU.)
1356 if (!sync || cpu != this_cpu) {
1357 if (TASK_PREEMPTS_CURR(p, rq))
1358 resched_task(rq->curr);
1360 success = 1;
1362 out_running:
1363 p->state = TASK_RUNNING;
1364 out:
1365 task_rq_unlock(rq, &flags);
1367 return success;
1370 int fastcall wake_up_process(task_t *p)
1372 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1373 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1376 EXPORT_SYMBOL(wake_up_process);
1378 int fastcall wake_up_state(task_t *p, unsigned int state)
1380 return try_to_wake_up(p, state, 0);
1384 * Perform scheduler related setup for a newly forked process p.
1385 * p is forked by current.
1387 void fastcall sched_fork(task_t *p, int clone_flags)
1389 int cpu = get_cpu();
1391 #ifdef CONFIG_SMP
1392 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1393 #endif
1394 set_task_cpu(p, cpu);
1397 * We mark the process as running here, but have not actually
1398 * inserted it onto the runqueue yet. This guarantees that
1399 * nobody will actually run it, and a signal or other external
1400 * event cannot wake it up and insert it on the runqueue either.
1402 p->state = TASK_RUNNING;
1403 INIT_LIST_HEAD(&p->run_list);
1404 p->array = NULL;
1405 #ifdef CONFIG_SCHEDSTATS
1406 memset(&p->sched_info, 0, sizeof(p->sched_info));
1407 #endif
1408 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1409 p->oncpu = 0;
1410 #endif
1411 #ifdef CONFIG_PREEMPT
1412 /* Want to start with kernel preemption disabled. */
1413 p->thread_info->preempt_count = 1;
1414 #endif
1416 * Share the timeslice between parent and child, thus the
1417 * total amount of pending timeslices in the system doesn't change,
1418 * resulting in more scheduling fairness.
1420 local_irq_disable();
1421 p->time_slice = (current->time_slice + 1) >> 1;
1423 * The remainder of the first timeslice might be recovered by
1424 * the parent if the child exits early enough.
1426 p->first_time_slice = 1;
1427 current->time_slice >>= 1;
1428 p->timestamp = sched_clock();
1429 if (unlikely(!current->time_slice)) {
1431 * This case is rare, it happens when the parent has only
1432 * a single jiffy left from its timeslice. Taking the
1433 * runqueue lock is not a problem.
1435 current->time_slice = 1;
1436 scheduler_tick();
1438 local_irq_enable();
1439 put_cpu();
1443 * wake_up_new_task - wake up a newly created task for the first time.
1445 * This function will do some initial scheduler statistics housekeeping
1446 * that must be done for every newly created context, then puts the task
1447 * on the runqueue and wakes it.
1449 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1451 unsigned long flags;
1452 int this_cpu, cpu;
1453 runqueue_t *rq, *this_rq;
1455 rq = task_rq_lock(p, &flags);
1456 BUG_ON(p->state != TASK_RUNNING);
1457 this_cpu = smp_processor_id();
1458 cpu = task_cpu(p);
1461 * We decrease the sleep average of forking parents
1462 * and children as well, to keep max-interactive tasks
1463 * from forking tasks that are max-interactive. The parent
1464 * (current) is done further down, under its lock.
1466 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1467 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1469 p->prio = effective_prio(p);
1471 if (likely(cpu == this_cpu)) {
1472 if (!(clone_flags & CLONE_VM)) {
1474 * The VM isn't cloned, so we're in a good position to
1475 * do child-runs-first in anticipation of an exec. This
1476 * usually avoids a lot of COW overhead.
1478 if (unlikely(!current->array))
1479 __activate_task(p, rq);
1480 else {
1481 p->prio = current->prio;
1482 list_add_tail(&p->run_list, &current->run_list);
1483 p->array = current->array;
1484 p->array->nr_active++;
1485 inc_nr_running(p, rq);
1487 set_need_resched();
1488 } else
1489 /* Run child last */
1490 __activate_task(p, rq);
1492 * We skip the following code due to cpu == this_cpu
1494 * task_rq_unlock(rq, &flags);
1495 * this_rq = task_rq_lock(current, &flags);
1497 this_rq = rq;
1498 } else {
1499 this_rq = cpu_rq(this_cpu);
1502 * Not the local CPU - must adjust timestamp. This should
1503 * get optimised away in the !CONFIG_SMP case.
1505 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1506 + rq->timestamp_last_tick;
1507 __activate_task(p, rq);
1508 if (TASK_PREEMPTS_CURR(p, rq))
1509 resched_task(rq->curr);
1512 * Parent and child are on different CPUs, now get the
1513 * parent runqueue to update the parent's ->sleep_avg:
1515 task_rq_unlock(rq, &flags);
1516 this_rq = task_rq_lock(current, &flags);
1518 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1519 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1520 task_rq_unlock(this_rq, &flags);
1524 * Potentially available exiting-child timeslices are
1525 * retrieved here - this way the parent does not get
1526 * penalized for creating too many threads.
1528 * (this cannot be used to 'generate' timeslices
1529 * artificially, because any timeslice recovered here
1530 * was given away by the parent in the first place.)
1532 void fastcall sched_exit(task_t *p)
1534 unsigned long flags;
1535 runqueue_t *rq;
1538 * If the child was a (relative-) CPU hog then decrease
1539 * the sleep_avg of the parent as well.
1541 rq = task_rq_lock(p->parent, &flags);
1542 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1543 p->parent->time_slice += p->time_slice;
1544 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1545 p->parent->time_slice = task_timeslice(p);
1547 if (p->sleep_avg < p->parent->sleep_avg)
1548 p->parent->sleep_avg = p->parent->sleep_avg /
1549 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1550 (EXIT_WEIGHT + 1);
1551 task_rq_unlock(rq, &flags);
1555 * prepare_task_switch - prepare to switch tasks
1556 * @rq: the runqueue preparing to switch
1557 * @next: the task we are going to switch to.
1559 * This is called with the rq lock held and interrupts off. It must
1560 * be paired with a subsequent finish_task_switch after the context
1561 * switch.
1563 * prepare_task_switch sets up locking and calls architecture specific
1564 * hooks.
1566 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1568 prepare_lock_switch(rq, next);
1569 prepare_arch_switch(next);
1573 * finish_task_switch - clean up after a task-switch
1574 * @rq: runqueue associated with task-switch
1575 * @prev: the thread we just switched away from.
1577 * finish_task_switch must be called after the context switch, paired
1578 * with a prepare_task_switch call before the context switch.
1579 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1580 * and do any other architecture-specific cleanup actions.
1582 * Note that we may have delayed dropping an mm in context_switch(). If
1583 * so, we finish that here outside of the runqueue lock. (Doing it
1584 * with the lock held can cause deadlocks; see schedule() for
1585 * details.)
1587 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1588 __releases(rq->lock)
1590 struct mm_struct *mm = rq->prev_mm;
1591 unsigned long prev_task_flags;
1593 rq->prev_mm = NULL;
1596 * A task struct has one reference for the use as "current".
1597 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1598 * calls schedule one last time. The schedule call will never return,
1599 * and the scheduled task must drop that reference.
1600 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1601 * still held, otherwise prev could be scheduled on another cpu, die
1602 * there before we look at prev->state, and then the reference would
1603 * be dropped twice.
1604 * Manfred Spraul <manfred@colorfullife.com>
1606 prev_task_flags = prev->flags;
1607 finish_arch_switch(prev);
1608 finish_lock_switch(rq, prev);
1609 if (mm)
1610 mmdrop(mm);
1611 if (unlikely(prev_task_flags & PF_DEAD))
1612 put_task_struct(prev);
1616 * schedule_tail - first thing a freshly forked thread must call.
1617 * @prev: the thread we just switched away from.
1619 asmlinkage void schedule_tail(task_t *prev)
1620 __releases(rq->lock)
1622 runqueue_t *rq = this_rq();
1623 finish_task_switch(rq, prev);
1624 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1625 /* In this case, finish_task_switch does not reenable preemption */
1626 preempt_enable();
1627 #endif
1628 if (current->set_child_tid)
1629 put_user(current->pid, current->set_child_tid);
1633 * context_switch - switch to the new MM and the new
1634 * thread's register state.
1636 static inline
1637 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1639 struct mm_struct *mm = next->mm;
1640 struct mm_struct *oldmm = prev->active_mm;
1642 if (unlikely(!mm)) {
1643 next->active_mm = oldmm;
1644 atomic_inc(&oldmm->mm_count);
1645 enter_lazy_tlb(oldmm, next);
1646 } else
1647 switch_mm(oldmm, mm, next);
1649 if (unlikely(!prev->mm)) {
1650 prev->active_mm = NULL;
1651 WARN_ON(rq->prev_mm);
1652 rq->prev_mm = oldmm;
1655 /* Here we just switch the register state and the stack. */
1656 switch_to(prev, next, prev);
1658 return prev;
1662 * nr_running, nr_uninterruptible and nr_context_switches:
1664 * externally visible scheduler statistics: current number of runnable
1665 * threads, current number of uninterruptible-sleeping threads, total
1666 * number of context switches performed since bootup.
1668 unsigned long nr_running(void)
1670 unsigned long i, sum = 0;
1672 for_each_online_cpu(i)
1673 sum += cpu_rq(i)->nr_running;
1675 return sum;
1678 unsigned long nr_uninterruptible(void)
1680 unsigned long i, sum = 0;
1682 for_each_cpu(i)
1683 sum += cpu_rq(i)->nr_uninterruptible;
1686 * Since we read the counters lockless, it might be slightly
1687 * inaccurate. Do not allow it to go below zero though:
1689 if (unlikely((long)sum < 0))
1690 sum = 0;
1692 return sum;
1695 unsigned long long nr_context_switches(void)
1697 unsigned long long i, sum = 0;
1699 for_each_cpu(i)
1700 sum += cpu_rq(i)->nr_switches;
1702 return sum;
1705 unsigned long nr_iowait(void)
1707 unsigned long i, sum = 0;
1709 for_each_cpu(i)
1710 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1712 return sum;
1715 #ifdef CONFIG_SMP
1718 * double_rq_lock - safely lock two runqueues
1720 * Note this does not disable interrupts like task_rq_lock,
1721 * you need to do so manually before calling.
1723 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1724 __acquires(rq1->lock)
1725 __acquires(rq2->lock)
1727 if (rq1 == rq2) {
1728 spin_lock(&rq1->lock);
1729 __acquire(rq2->lock); /* Fake it out ;) */
1730 } else {
1731 if (rq1 < rq2) {
1732 spin_lock(&rq1->lock);
1733 spin_lock(&rq2->lock);
1734 } else {
1735 spin_lock(&rq2->lock);
1736 spin_lock(&rq1->lock);
1742 * double_rq_unlock - safely unlock two runqueues
1744 * Note this does not restore interrupts like task_rq_unlock,
1745 * you need to do so manually after calling.
1747 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1748 __releases(rq1->lock)
1749 __releases(rq2->lock)
1751 spin_unlock(&rq1->lock);
1752 if (rq1 != rq2)
1753 spin_unlock(&rq2->lock);
1754 else
1755 __release(rq2->lock);
1759 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1761 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1762 __releases(this_rq->lock)
1763 __acquires(busiest->lock)
1764 __acquires(this_rq->lock)
1766 if (unlikely(!spin_trylock(&busiest->lock))) {
1767 if (busiest < this_rq) {
1768 spin_unlock(&this_rq->lock);
1769 spin_lock(&busiest->lock);
1770 spin_lock(&this_rq->lock);
1771 } else
1772 spin_lock(&busiest->lock);
1777 * If dest_cpu is allowed for this process, migrate the task to it.
1778 * This is accomplished by forcing the cpu_allowed mask to only
1779 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1780 * the cpu_allowed mask is restored.
1782 static void sched_migrate_task(task_t *p, int dest_cpu)
1784 migration_req_t req;
1785 runqueue_t *rq;
1786 unsigned long flags;
1788 rq = task_rq_lock(p, &flags);
1789 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1790 || unlikely(cpu_is_offline(dest_cpu)))
1791 goto out;
1793 /* force the process onto the specified CPU */
1794 if (migrate_task(p, dest_cpu, &req)) {
1795 /* Need to wait for migration thread (might exit: take ref). */
1796 struct task_struct *mt = rq->migration_thread;
1797 get_task_struct(mt);
1798 task_rq_unlock(rq, &flags);
1799 wake_up_process(mt);
1800 put_task_struct(mt);
1801 wait_for_completion(&req.done);
1802 return;
1804 out:
1805 task_rq_unlock(rq, &flags);
1809 * sched_exec - execve() is a valuable balancing opportunity, because at
1810 * this point the task has the smallest effective memory and cache footprint.
1812 void sched_exec(void)
1814 int new_cpu, this_cpu = get_cpu();
1815 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1816 put_cpu();
1817 if (new_cpu != this_cpu)
1818 sched_migrate_task(current, new_cpu);
1822 * pull_task - move a task from a remote runqueue to the local runqueue.
1823 * Both runqueues must be locked.
1825 static inline
1826 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1827 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1829 dequeue_task(p, src_array);
1830 dec_nr_running(p, src_rq);
1831 set_task_cpu(p, this_cpu);
1832 inc_nr_running(p, this_rq);
1833 enqueue_task(p, this_array);
1834 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1835 + this_rq->timestamp_last_tick;
1837 * Note that idle threads have a prio of MAX_PRIO, for this test
1838 * to be always true for them.
1840 if (TASK_PREEMPTS_CURR(p, this_rq))
1841 resched_task(this_rq->curr);
1845 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1847 static inline
1848 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1849 struct sched_domain *sd, enum idle_type idle,
1850 int *all_pinned)
1853 * We do not migrate tasks that are:
1854 * 1) running (obviously), or
1855 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1856 * 3) are cache-hot on their current CPU.
1858 if (!cpu_isset(this_cpu, p->cpus_allowed))
1859 return 0;
1860 *all_pinned = 0;
1862 if (task_running(rq, p))
1863 return 0;
1866 * Aggressive migration if:
1867 * 1) task is cache cold, or
1868 * 2) too many balance attempts have failed.
1871 if (sd->nr_balance_failed > sd->cache_nice_tries)
1872 return 1;
1874 if (task_hot(p, rq->timestamp_last_tick, sd))
1875 return 0;
1876 return 1;
1880 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1881 * as part of a balancing operation within "domain". Returns the number of
1882 * tasks moved.
1884 * Called with both runqueues locked.
1886 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1887 unsigned long max_nr_move, struct sched_domain *sd,
1888 enum idle_type idle, int *all_pinned)
1890 prio_array_t *array, *dst_array;
1891 struct list_head *head, *curr;
1892 int idx, pulled = 0, pinned = 0;
1893 task_t *tmp;
1895 if (max_nr_move == 0)
1896 goto out;
1898 pinned = 1;
1901 * We first consider expired tasks. Those will likely not be
1902 * executed in the near future, and they are most likely to
1903 * be cache-cold, thus switching CPUs has the least effect
1904 * on them.
1906 if (busiest->expired->nr_active) {
1907 array = busiest->expired;
1908 dst_array = this_rq->expired;
1909 } else {
1910 array = busiest->active;
1911 dst_array = this_rq->active;
1914 new_array:
1915 /* Start searching at priority 0: */
1916 idx = 0;
1917 skip_bitmap:
1918 if (!idx)
1919 idx = sched_find_first_bit(array->bitmap);
1920 else
1921 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1922 if (idx >= MAX_PRIO) {
1923 if (array == busiest->expired && busiest->active->nr_active) {
1924 array = busiest->active;
1925 dst_array = this_rq->active;
1926 goto new_array;
1928 goto out;
1931 head = array->queue + idx;
1932 curr = head->prev;
1933 skip_queue:
1934 tmp = list_entry(curr, task_t, run_list);
1936 curr = curr->prev;
1938 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1939 if (curr != head)
1940 goto skip_queue;
1941 idx++;
1942 goto skip_bitmap;
1945 #ifdef CONFIG_SCHEDSTATS
1946 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1947 schedstat_inc(sd, lb_hot_gained[idle]);
1948 #endif
1950 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1951 pulled++;
1953 /* We only want to steal up to the prescribed number of tasks. */
1954 if (pulled < max_nr_move) {
1955 if (curr != head)
1956 goto skip_queue;
1957 idx++;
1958 goto skip_bitmap;
1960 out:
1962 * Right now, this is the only place pull_task() is called,
1963 * so we can safely collect pull_task() stats here rather than
1964 * inside pull_task().
1966 schedstat_add(sd, lb_gained[idle], pulled);
1968 if (all_pinned)
1969 *all_pinned = pinned;
1970 return pulled;
1974 * find_busiest_group finds and returns the busiest CPU group within the
1975 * domain. It calculates and returns the number of tasks which should be
1976 * moved to restore balance via the imbalance parameter.
1978 static struct sched_group *
1979 find_busiest_group(struct sched_domain *sd, int this_cpu,
1980 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1982 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1983 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1984 unsigned long max_pull;
1985 int load_idx;
1987 max_load = this_load = total_load = total_pwr = 0;
1988 if (idle == NOT_IDLE)
1989 load_idx = sd->busy_idx;
1990 else if (idle == NEWLY_IDLE)
1991 load_idx = sd->newidle_idx;
1992 else
1993 load_idx = sd->idle_idx;
1995 do {
1996 unsigned long load;
1997 int local_group;
1998 int i;
2000 local_group = cpu_isset(this_cpu, group->cpumask);
2002 /* Tally up the load of all CPUs in the group */
2003 avg_load = 0;
2005 for_each_cpu_mask(i, group->cpumask) {
2006 if (*sd_idle && !idle_cpu(i))
2007 *sd_idle = 0;
2009 /* Bias balancing toward cpus of our domain */
2010 if (local_group)
2011 load = __target_load(i, load_idx, idle);
2012 else
2013 load = __source_load(i, load_idx, idle);
2015 avg_load += load;
2018 total_load += avg_load;
2019 total_pwr += group->cpu_power;
2021 /* Adjust by relative CPU power of the group */
2022 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2024 if (local_group) {
2025 this_load = avg_load;
2026 this = group;
2027 } else if (avg_load > max_load) {
2028 max_load = avg_load;
2029 busiest = group;
2031 group = group->next;
2032 } while (group != sd->groups);
2034 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2035 goto out_balanced;
2037 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2039 if (this_load >= avg_load ||
2040 100*max_load <= sd->imbalance_pct*this_load)
2041 goto out_balanced;
2044 * We're trying to get all the cpus to the average_load, so we don't
2045 * want to push ourselves above the average load, nor do we wish to
2046 * reduce the max loaded cpu below the average load, as either of these
2047 * actions would just result in more rebalancing later, and ping-pong
2048 * tasks around. Thus we look for the minimum possible imbalance.
2049 * Negative imbalances (*we* are more loaded than anyone else) will
2050 * be counted as no imbalance for these purposes -- we can't fix that
2051 * by pulling tasks to us. Be careful of negative numbers as they'll
2052 * appear as very large values with unsigned longs.
2055 /* Don't want to pull so many tasks that a group would go idle */
2056 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2058 /* How much load to actually move to equalise the imbalance */
2059 *imbalance = min(max_pull * busiest->cpu_power,
2060 (avg_load - this_load) * this->cpu_power)
2061 / SCHED_LOAD_SCALE;
2063 if (*imbalance < SCHED_LOAD_SCALE) {
2064 unsigned long pwr_now = 0, pwr_move = 0;
2065 unsigned long tmp;
2067 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2068 *imbalance = 1;
2069 return busiest;
2073 * OK, we don't have enough imbalance to justify moving tasks,
2074 * however we may be able to increase total CPU power used by
2075 * moving them.
2078 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2079 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2080 pwr_now /= SCHED_LOAD_SCALE;
2082 /* Amount of load we'd subtract */
2083 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2084 if (max_load > tmp)
2085 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2086 max_load - tmp);
2088 /* Amount of load we'd add */
2089 if (max_load*busiest->cpu_power <
2090 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2091 tmp = max_load*busiest->cpu_power/this->cpu_power;
2092 else
2093 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2094 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2095 pwr_move /= SCHED_LOAD_SCALE;
2097 /* Move if we gain throughput */
2098 if (pwr_move <= pwr_now)
2099 goto out_balanced;
2101 *imbalance = 1;
2102 return busiest;
2105 /* Get rid of the scaling factor, rounding down as we divide */
2106 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2107 return busiest;
2109 out_balanced:
2111 *imbalance = 0;
2112 return NULL;
2116 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2118 static runqueue_t *find_busiest_queue(struct sched_group *group,
2119 enum idle_type idle)
2121 unsigned long load, max_load = 0;
2122 runqueue_t *busiest = NULL;
2123 int i;
2125 for_each_cpu_mask(i, group->cpumask) {
2126 load = __source_load(i, 0, idle);
2128 if (load > max_load) {
2129 max_load = load;
2130 busiest = cpu_rq(i);
2134 return busiest;
2138 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2139 * so long as it is large enough.
2141 #define MAX_PINNED_INTERVAL 512
2144 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2145 * tasks if there is an imbalance.
2147 * Called with this_rq unlocked.
2149 static int load_balance(int this_cpu, runqueue_t *this_rq,
2150 struct sched_domain *sd, enum idle_type idle)
2152 struct sched_group *group;
2153 runqueue_t *busiest;
2154 unsigned long imbalance;
2155 int nr_moved, all_pinned = 0;
2156 int active_balance = 0;
2157 int sd_idle = 0;
2159 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2160 sd_idle = 1;
2162 schedstat_inc(sd, lb_cnt[idle]);
2164 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2165 if (!group) {
2166 schedstat_inc(sd, lb_nobusyg[idle]);
2167 goto out_balanced;
2170 busiest = find_busiest_queue(group, idle);
2171 if (!busiest) {
2172 schedstat_inc(sd, lb_nobusyq[idle]);
2173 goto out_balanced;
2176 BUG_ON(busiest == this_rq);
2178 schedstat_add(sd, lb_imbalance[idle], imbalance);
2180 nr_moved = 0;
2181 if (busiest->nr_running > 1) {
2183 * Attempt to move tasks. If find_busiest_group has found
2184 * an imbalance but busiest->nr_running <= 1, the group is
2185 * still unbalanced. nr_moved simply stays zero, so it is
2186 * correctly treated as an imbalance.
2188 double_rq_lock(this_rq, busiest);
2189 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2190 imbalance, sd, idle, &all_pinned);
2191 double_rq_unlock(this_rq, busiest);
2193 /* All tasks on this runqueue were pinned by CPU affinity */
2194 if (unlikely(all_pinned))
2195 goto out_balanced;
2198 if (!nr_moved) {
2199 schedstat_inc(sd, lb_failed[idle]);
2200 sd->nr_balance_failed++;
2202 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2204 spin_lock(&busiest->lock);
2206 /* don't kick the migration_thread, if the curr
2207 * task on busiest cpu can't be moved to this_cpu
2209 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2210 spin_unlock(&busiest->lock);
2211 all_pinned = 1;
2212 goto out_one_pinned;
2215 if (!busiest->active_balance) {
2216 busiest->active_balance = 1;
2217 busiest->push_cpu = this_cpu;
2218 active_balance = 1;
2220 spin_unlock(&busiest->lock);
2221 if (active_balance)
2222 wake_up_process(busiest->migration_thread);
2225 * We've kicked active balancing, reset the failure
2226 * counter.
2228 sd->nr_balance_failed = sd->cache_nice_tries+1;
2230 } else
2231 sd->nr_balance_failed = 0;
2233 if (likely(!active_balance)) {
2234 /* We were unbalanced, so reset the balancing interval */
2235 sd->balance_interval = sd->min_interval;
2236 } else {
2238 * If we've begun active balancing, start to back off. This
2239 * case may not be covered by the all_pinned logic if there
2240 * is only 1 task on the busy runqueue (because we don't call
2241 * move_tasks).
2243 if (sd->balance_interval < sd->max_interval)
2244 sd->balance_interval *= 2;
2247 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2248 return -1;
2249 return nr_moved;
2251 out_balanced:
2252 schedstat_inc(sd, lb_balanced[idle]);
2254 sd->nr_balance_failed = 0;
2256 out_one_pinned:
2257 /* tune up the balancing interval */
2258 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2259 (sd->balance_interval < sd->max_interval))
2260 sd->balance_interval *= 2;
2262 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2263 return -1;
2264 return 0;
2268 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2269 * tasks if there is an imbalance.
2271 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2272 * this_rq is locked.
2274 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2275 struct sched_domain *sd)
2277 struct sched_group *group;
2278 runqueue_t *busiest = NULL;
2279 unsigned long imbalance;
2280 int nr_moved = 0;
2281 int sd_idle = 0;
2283 if (sd->flags & SD_SHARE_CPUPOWER)
2284 sd_idle = 1;
2286 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2287 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2288 if (!group) {
2289 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2290 goto out_balanced;
2293 busiest = find_busiest_queue(group, NEWLY_IDLE);
2294 if (!busiest) {
2295 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2296 goto out_balanced;
2299 BUG_ON(busiest == this_rq);
2301 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2303 nr_moved = 0;
2304 if (busiest->nr_running > 1) {
2305 /* Attempt to move tasks */
2306 double_lock_balance(this_rq, busiest);
2307 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2308 imbalance, sd, NEWLY_IDLE, NULL);
2309 spin_unlock(&busiest->lock);
2312 if (!nr_moved) {
2313 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2314 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2315 return -1;
2316 } else
2317 sd->nr_balance_failed = 0;
2319 return nr_moved;
2321 out_balanced:
2322 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2323 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2324 return -1;
2325 sd->nr_balance_failed = 0;
2326 return 0;
2330 * idle_balance is called by schedule() if this_cpu is about to become
2331 * idle. Attempts to pull tasks from other CPUs.
2333 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2335 struct sched_domain *sd;
2337 for_each_domain(this_cpu, sd) {
2338 if (sd->flags & SD_BALANCE_NEWIDLE) {
2339 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2340 /* We've pulled tasks over so stop searching */
2341 break;
2348 * active_load_balance is run by migration threads. It pushes running tasks
2349 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2350 * running on each physical CPU where possible, and avoids physical /
2351 * logical imbalances.
2353 * Called with busiest_rq locked.
2355 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2357 struct sched_domain *sd;
2358 runqueue_t *target_rq;
2359 int target_cpu = busiest_rq->push_cpu;
2361 if (busiest_rq->nr_running <= 1)
2362 /* no task to move */
2363 return;
2365 target_rq = cpu_rq(target_cpu);
2368 * This condition is "impossible", if it occurs
2369 * we need to fix it. Originally reported by
2370 * Bjorn Helgaas on a 128-cpu setup.
2372 BUG_ON(busiest_rq == target_rq);
2374 /* move a task from busiest_rq to target_rq */
2375 double_lock_balance(busiest_rq, target_rq);
2377 /* Search for an sd spanning us and the target CPU. */
2378 for_each_domain(target_cpu, sd)
2379 if ((sd->flags & SD_LOAD_BALANCE) &&
2380 cpu_isset(busiest_cpu, sd->span))
2381 break;
2383 if (unlikely(sd == NULL))
2384 goto out;
2386 schedstat_inc(sd, alb_cnt);
2388 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2389 schedstat_inc(sd, alb_pushed);
2390 else
2391 schedstat_inc(sd, alb_failed);
2392 out:
2393 spin_unlock(&target_rq->lock);
2397 * rebalance_tick will get called every timer tick, on every CPU.
2399 * It checks each scheduling domain to see if it is due to be balanced,
2400 * and initiates a balancing operation if so.
2402 * Balancing parameters are set up in arch_init_sched_domains.
2405 /* Don't have all balancing operations going off at once */
2406 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2408 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2409 enum idle_type idle)
2411 unsigned long old_load, this_load;
2412 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2413 struct sched_domain *sd;
2414 int i;
2416 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2417 /* Update our load */
2418 for (i = 0; i < 3; i++) {
2419 unsigned long new_load = this_load;
2420 int scale = 1 << i;
2421 old_load = this_rq->cpu_load[i];
2423 * Round up the averaging division if load is increasing. This
2424 * prevents us from getting stuck on 9 if the load is 10, for
2425 * example.
2427 if (new_load > old_load)
2428 new_load += scale-1;
2429 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2432 for_each_domain(this_cpu, sd) {
2433 unsigned long interval;
2435 if (!(sd->flags & SD_LOAD_BALANCE))
2436 continue;
2438 interval = sd->balance_interval;
2439 if (idle != SCHED_IDLE)
2440 interval *= sd->busy_factor;
2442 /* scale ms to jiffies */
2443 interval = msecs_to_jiffies(interval);
2444 if (unlikely(!interval))
2445 interval = 1;
2447 if (j - sd->last_balance >= interval) {
2448 if (load_balance(this_cpu, this_rq, sd, idle)) {
2450 * We've pulled tasks over so either we're no
2451 * longer idle, or one of our SMT siblings is
2452 * not idle.
2454 idle = NOT_IDLE;
2456 sd->last_balance += interval;
2460 #else
2462 * on UP we do not need to balance between CPUs:
2464 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2467 static inline void idle_balance(int cpu, runqueue_t *rq)
2470 #endif
2472 static inline int wake_priority_sleeper(runqueue_t *rq)
2474 int ret = 0;
2475 #ifdef CONFIG_SCHED_SMT
2476 spin_lock(&rq->lock);
2478 * If an SMT sibling task has been put to sleep for priority
2479 * reasons reschedule the idle task to see if it can now run.
2481 if (rq->nr_running) {
2482 resched_task(rq->idle);
2483 ret = 1;
2485 spin_unlock(&rq->lock);
2486 #endif
2487 return ret;
2490 DEFINE_PER_CPU(struct kernel_stat, kstat);
2492 EXPORT_PER_CPU_SYMBOL(kstat);
2495 * This is called on clock ticks and on context switches.
2496 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2498 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2499 unsigned long long now)
2501 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2502 p->sched_time += now - last;
2506 * Return current->sched_time plus any more ns on the sched_clock
2507 * that have not yet been banked.
2509 unsigned long long current_sched_time(const task_t *tsk)
2511 unsigned long long ns;
2512 unsigned long flags;
2513 local_irq_save(flags);
2514 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2515 ns = tsk->sched_time + (sched_clock() - ns);
2516 local_irq_restore(flags);
2517 return ns;
2521 * We place interactive tasks back into the active array, if possible.
2523 * To guarantee that this does not starve expired tasks we ignore the
2524 * interactivity of a task if the first expired task had to wait more
2525 * than a 'reasonable' amount of time. This deadline timeout is
2526 * load-dependent, as the frequency of array switched decreases with
2527 * increasing number of running tasks. We also ignore the interactivity
2528 * if a better static_prio task has expired:
2530 #define EXPIRED_STARVING(rq) \
2531 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2532 (jiffies - (rq)->expired_timestamp >= \
2533 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2534 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2537 * Account user cpu time to a process.
2538 * @p: the process that the cpu time gets accounted to
2539 * @hardirq_offset: the offset to subtract from hardirq_count()
2540 * @cputime: the cpu time spent in user space since the last update
2542 void account_user_time(struct task_struct *p, cputime_t cputime)
2544 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2545 cputime64_t tmp;
2547 p->utime = cputime_add(p->utime, cputime);
2549 /* Add user time to cpustat. */
2550 tmp = cputime_to_cputime64(cputime);
2551 if (TASK_NICE(p) > 0)
2552 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2553 else
2554 cpustat->user = cputime64_add(cpustat->user, tmp);
2558 * Account system cpu time to a process.
2559 * @p: the process that the cpu time gets accounted to
2560 * @hardirq_offset: the offset to subtract from hardirq_count()
2561 * @cputime: the cpu time spent in kernel space since the last update
2563 void account_system_time(struct task_struct *p, int hardirq_offset,
2564 cputime_t cputime)
2566 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2567 runqueue_t *rq = this_rq();
2568 cputime64_t tmp;
2570 p->stime = cputime_add(p->stime, cputime);
2572 /* Add system time to cpustat. */
2573 tmp = cputime_to_cputime64(cputime);
2574 if (hardirq_count() - hardirq_offset)
2575 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2576 else if (softirq_count())
2577 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2578 else if (p != rq->idle)
2579 cpustat->system = cputime64_add(cpustat->system, tmp);
2580 else if (atomic_read(&rq->nr_iowait) > 0)
2581 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2582 else
2583 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2584 /* Account for system time used */
2585 acct_update_integrals(p);
2589 * Account for involuntary wait time.
2590 * @p: the process from which the cpu time has been stolen
2591 * @steal: the cpu time spent in involuntary wait
2593 void account_steal_time(struct task_struct *p, cputime_t steal)
2595 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2596 cputime64_t tmp = cputime_to_cputime64(steal);
2597 runqueue_t *rq = this_rq();
2599 if (p == rq->idle) {
2600 p->stime = cputime_add(p->stime, steal);
2601 if (atomic_read(&rq->nr_iowait) > 0)
2602 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2603 else
2604 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2605 } else
2606 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2610 * This function gets called by the timer code, with HZ frequency.
2611 * We call it with interrupts disabled.
2613 * It also gets called by the fork code, when changing the parent's
2614 * timeslices.
2616 void scheduler_tick(void)
2618 int cpu = smp_processor_id();
2619 runqueue_t *rq = this_rq();
2620 task_t *p = current;
2621 unsigned long long now = sched_clock();
2623 update_cpu_clock(p, rq, now);
2625 rq->timestamp_last_tick = now;
2627 if (p == rq->idle) {
2628 if (wake_priority_sleeper(rq))
2629 goto out;
2630 rebalance_tick(cpu, rq, SCHED_IDLE);
2631 return;
2634 /* Task might have expired already, but not scheduled off yet */
2635 if (p->array != rq->active) {
2636 set_tsk_need_resched(p);
2637 goto out;
2639 spin_lock(&rq->lock);
2641 * The task was running during this tick - update the
2642 * time slice counter. Note: we do not update a thread's
2643 * priority until it either goes to sleep or uses up its
2644 * timeslice. This makes it possible for interactive tasks
2645 * to use up their timeslices at their highest priority levels.
2647 if (rt_task(p)) {
2649 * RR tasks need a special form of timeslice management.
2650 * FIFO tasks have no timeslices.
2652 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2653 p->time_slice = task_timeslice(p);
2654 p->first_time_slice = 0;
2655 set_tsk_need_resched(p);
2657 /* put it at the end of the queue: */
2658 requeue_task(p, rq->active);
2660 goto out_unlock;
2662 if (!--p->time_slice) {
2663 dequeue_task(p, rq->active);
2664 set_tsk_need_resched(p);
2665 p->prio = effective_prio(p);
2666 p->time_slice = task_timeslice(p);
2667 p->first_time_slice = 0;
2669 if (!rq->expired_timestamp)
2670 rq->expired_timestamp = jiffies;
2671 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2672 enqueue_task(p, rq->expired);
2673 if (p->static_prio < rq->best_expired_prio)
2674 rq->best_expired_prio = p->static_prio;
2675 } else
2676 enqueue_task(p, rq->active);
2677 } else {
2679 * Prevent a too long timeslice allowing a task to monopolize
2680 * the CPU. We do this by splitting up the timeslice into
2681 * smaller pieces.
2683 * Note: this does not mean the task's timeslices expire or
2684 * get lost in any way, they just might be preempted by
2685 * another task of equal priority. (one with higher
2686 * priority would have preempted this task already.) We
2687 * requeue this task to the end of the list on this priority
2688 * level, which is in essence a round-robin of tasks with
2689 * equal priority.
2691 * This only applies to tasks in the interactive
2692 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2694 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2695 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2696 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2697 (p->array == rq->active)) {
2699 requeue_task(p, rq->active);
2700 set_tsk_need_resched(p);
2703 out_unlock:
2704 spin_unlock(&rq->lock);
2705 out:
2706 rebalance_tick(cpu, rq, NOT_IDLE);
2709 #ifdef CONFIG_SCHED_SMT
2710 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2712 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2713 if (rq->curr == rq->idle && rq->nr_running)
2714 resched_task(rq->idle);
2717 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2719 struct sched_domain *tmp, *sd = NULL;
2720 cpumask_t sibling_map;
2721 int i;
2723 for_each_domain(this_cpu, tmp)
2724 if (tmp->flags & SD_SHARE_CPUPOWER)
2725 sd = tmp;
2727 if (!sd)
2728 return;
2731 * Unlock the current runqueue because we have to lock in
2732 * CPU order to avoid deadlocks. Caller knows that we might
2733 * unlock. We keep IRQs disabled.
2735 spin_unlock(&this_rq->lock);
2737 sibling_map = sd->span;
2739 for_each_cpu_mask(i, sibling_map)
2740 spin_lock(&cpu_rq(i)->lock);
2742 * We clear this CPU from the mask. This both simplifies the
2743 * inner loop and keps this_rq locked when we exit:
2745 cpu_clear(this_cpu, sibling_map);
2747 for_each_cpu_mask(i, sibling_map) {
2748 runqueue_t *smt_rq = cpu_rq(i);
2750 wakeup_busy_runqueue(smt_rq);
2753 for_each_cpu_mask(i, sibling_map)
2754 spin_unlock(&cpu_rq(i)->lock);
2756 * We exit with this_cpu's rq still held and IRQs
2757 * still disabled:
2762 * number of 'lost' timeslices this task wont be able to fully
2763 * utilize, if another task runs on a sibling. This models the
2764 * slowdown effect of other tasks running on siblings:
2766 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2768 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2771 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2773 struct sched_domain *tmp, *sd = NULL;
2774 cpumask_t sibling_map;
2775 prio_array_t *array;
2776 int ret = 0, i;
2777 task_t *p;
2779 for_each_domain(this_cpu, tmp)
2780 if (tmp->flags & SD_SHARE_CPUPOWER)
2781 sd = tmp;
2783 if (!sd)
2784 return 0;
2787 * The same locking rules and details apply as for
2788 * wake_sleeping_dependent():
2790 spin_unlock(&this_rq->lock);
2791 sibling_map = sd->span;
2792 for_each_cpu_mask(i, sibling_map)
2793 spin_lock(&cpu_rq(i)->lock);
2794 cpu_clear(this_cpu, sibling_map);
2797 * Establish next task to be run - it might have gone away because
2798 * we released the runqueue lock above:
2800 if (!this_rq->nr_running)
2801 goto out_unlock;
2802 array = this_rq->active;
2803 if (!array->nr_active)
2804 array = this_rq->expired;
2805 BUG_ON(!array->nr_active);
2807 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2808 task_t, run_list);
2810 for_each_cpu_mask(i, sibling_map) {
2811 runqueue_t *smt_rq = cpu_rq(i);
2812 task_t *smt_curr = smt_rq->curr;
2814 /* Kernel threads do not participate in dependent sleeping */
2815 if (!p->mm || !smt_curr->mm || rt_task(p))
2816 goto check_smt_task;
2819 * If a user task with lower static priority than the
2820 * running task on the SMT sibling is trying to schedule,
2821 * delay it till there is proportionately less timeslice
2822 * left of the sibling task to prevent a lower priority
2823 * task from using an unfair proportion of the
2824 * physical cpu's resources. -ck
2826 if (rt_task(smt_curr)) {
2828 * With real time tasks we run non-rt tasks only
2829 * per_cpu_gain% of the time.
2831 if ((jiffies % DEF_TIMESLICE) >
2832 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2833 ret = 1;
2834 } else
2835 if (smt_curr->static_prio < p->static_prio &&
2836 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2837 smt_slice(smt_curr, sd) > task_timeslice(p))
2838 ret = 1;
2840 check_smt_task:
2841 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2842 rt_task(smt_curr))
2843 continue;
2844 if (!p->mm) {
2845 wakeup_busy_runqueue(smt_rq);
2846 continue;
2850 * Reschedule a lower priority task on the SMT sibling for
2851 * it to be put to sleep, or wake it up if it has been put to
2852 * sleep for priority reasons to see if it should run now.
2854 if (rt_task(p)) {
2855 if ((jiffies % DEF_TIMESLICE) >
2856 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2857 resched_task(smt_curr);
2858 } else {
2859 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2860 smt_slice(p, sd) > task_timeslice(smt_curr))
2861 resched_task(smt_curr);
2862 else
2863 wakeup_busy_runqueue(smt_rq);
2866 out_unlock:
2867 for_each_cpu_mask(i, sibling_map)
2868 spin_unlock(&cpu_rq(i)->lock);
2869 return ret;
2871 #else
2872 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2876 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2878 return 0;
2880 #endif
2882 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2884 void fastcall add_preempt_count(int val)
2887 * Underflow?
2889 BUG_ON((preempt_count() < 0));
2890 preempt_count() += val;
2892 * Spinlock count overflowing soon?
2894 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2896 EXPORT_SYMBOL(add_preempt_count);
2898 void fastcall sub_preempt_count(int val)
2901 * Underflow?
2903 BUG_ON(val > preempt_count());
2905 * Is the spinlock portion underflowing?
2907 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2908 preempt_count() -= val;
2910 EXPORT_SYMBOL(sub_preempt_count);
2912 #endif
2915 * schedule() is the main scheduler function.
2917 asmlinkage void __sched schedule(void)
2919 long *switch_count;
2920 task_t *prev, *next;
2921 runqueue_t *rq;
2922 prio_array_t *array;
2923 struct list_head *queue;
2924 unsigned long long now;
2925 unsigned long run_time;
2926 int cpu, idx, new_prio;
2929 * Test if we are atomic. Since do_exit() needs to call into
2930 * schedule() atomically, we ignore that path for now.
2931 * Otherwise, whine if we are scheduling when we should not be.
2933 if (likely(!current->exit_state)) {
2934 if (unlikely(in_atomic())) {
2935 printk(KERN_ERR "scheduling while atomic: "
2936 "%s/0x%08x/%d\n",
2937 current->comm, preempt_count(), current->pid);
2938 dump_stack();
2941 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2943 need_resched:
2944 preempt_disable();
2945 prev = current;
2946 release_kernel_lock(prev);
2947 need_resched_nonpreemptible:
2948 rq = this_rq();
2951 * The idle thread is not allowed to schedule!
2952 * Remove this check after it has been exercised a bit.
2954 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2955 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2956 dump_stack();
2959 schedstat_inc(rq, sched_cnt);
2960 now = sched_clock();
2961 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2962 run_time = now - prev->timestamp;
2963 if (unlikely((long long)(now - prev->timestamp) < 0))
2964 run_time = 0;
2965 } else
2966 run_time = NS_MAX_SLEEP_AVG;
2969 * Tasks charged proportionately less run_time at high sleep_avg to
2970 * delay them losing their interactive status
2972 run_time /= (CURRENT_BONUS(prev) ? : 1);
2974 spin_lock_irq(&rq->lock);
2976 if (unlikely(prev->flags & PF_DEAD))
2977 prev->state = EXIT_DEAD;
2979 switch_count = &prev->nivcsw;
2980 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2981 switch_count = &prev->nvcsw;
2982 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2983 unlikely(signal_pending(prev))))
2984 prev->state = TASK_RUNNING;
2985 else {
2986 if (prev->state == TASK_UNINTERRUPTIBLE)
2987 rq->nr_uninterruptible++;
2988 deactivate_task(prev, rq);
2992 cpu = smp_processor_id();
2993 if (unlikely(!rq->nr_running)) {
2994 go_idle:
2995 idle_balance(cpu, rq);
2996 if (!rq->nr_running) {
2997 next = rq->idle;
2998 rq->expired_timestamp = 0;
2999 wake_sleeping_dependent(cpu, rq);
3001 * wake_sleeping_dependent() might have released
3002 * the runqueue, so break out if we got new
3003 * tasks meanwhile:
3005 if (!rq->nr_running)
3006 goto switch_tasks;
3008 } else {
3009 if (dependent_sleeper(cpu, rq)) {
3010 next = rq->idle;
3011 goto switch_tasks;
3014 * dependent_sleeper() releases and reacquires the runqueue
3015 * lock, hence go into the idle loop if the rq went
3016 * empty meanwhile:
3018 if (unlikely(!rq->nr_running))
3019 goto go_idle;
3022 array = rq->active;
3023 if (unlikely(!array->nr_active)) {
3025 * Switch the active and expired arrays.
3027 schedstat_inc(rq, sched_switch);
3028 rq->active = rq->expired;
3029 rq->expired = array;
3030 array = rq->active;
3031 rq->expired_timestamp = 0;
3032 rq->best_expired_prio = MAX_PRIO;
3035 idx = sched_find_first_bit(array->bitmap);
3036 queue = array->queue + idx;
3037 next = list_entry(queue->next, task_t, run_list);
3039 if (!rt_task(next) && next->activated > 0) {
3040 unsigned long long delta = now - next->timestamp;
3041 if (unlikely((long long)(now - next->timestamp) < 0))
3042 delta = 0;
3044 if (next->activated == 1)
3045 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3047 array = next->array;
3048 new_prio = recalc_task_prio(next, next->timestamp + delta);
3050 if (unlikely(next->prio != new_prio)) {
3051 dequeue_task(next, array);
3052 next->prio = new_prio;
3053 enqueue_task(next, array);
3054 } else
3055 requeue_task(next, array);
3057 next->activated = 0;
3058 switch_tasks:
3059 if (next == rq->idle)
3060 schedstat_inc(rq, sched_goidle);
3061 prefetch(next);
3062 prefetch_stack(next);
3063 clear_tsk_need_resched(prev);
3064 rcu_qsctr_inc(task_cpu(prev));
3066 update_cpu_clock(prev, rq, now);
3068 prev->sleep_avg -= run_time;
3069 if ((long)prev->sleep_avg <= 0)
3070 prev->sleep_avg = 0;
3071 prev->timestamp = prev->last_ran = now;
3073 sched_info_switch(prev, next);
3074 if (likely(prev != next)) {
3075 next->timestamp = now;
3076 rq->nr_switches++;
3077 rq->curr = next;
3078 ++*switch_count;
3080 prepare_task_switch(rq, next);
3081 prev = context_switch(rq, prev, next);
3082 barrier();
3084 * this_rq must be evaluated again because prev may have moved
3085 * CPUs since it called schedule(), thus the 'rq' on its stack
3086 * frame will be invalid.
3088 finish_task_switch(this_rq(), prev);
3089 } else
3090 spin_unlock_irq(&rq->lock);
3092 prev = current;
3093 if (unlikely(reacquire_kernel_lock(prev) < 0))
3094 goto need_resched_nonpreemptible;
3095 preempt_enable_no_resched();
3096 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3097 goto need_resched;
3100 EXPORT_SYMBOL(schedule);
3102 #ifdef CONFIG_PREEMPT
3104 * this is is the entry point to schedule() from in-kernel preemption
3105 * off of preempt_enable. Kernel preemptions off return from interrupt
3106 * occur there and call schedule directly.
3108 asmlinkage void __sched preempt_schedule(void)
3110 struct thread_info *ti = current_thread_info();
3111 #ifdef CONFIG_PREEMPT_BKL
3112 struct task_struct *task = current;
3113 int saved_lock_depth;
3114 #endif
3116 * If there is a non-zero preempt_count or interrupts are disabled,
3117 * we do not want to preempt the current task. Just return..
3119 if (unlikely(ti->preempt_count || irqs_disabled()))
3120 return;
3122 need_resched:
3123 add_preempt_count(PREEMPT_ACTIVE);
3125 * We keep the big kernel semaphore locked, but we
3126 * clear ->lock_depth so that schedule() doesnt
3127 * auto-release the semaphore:
3129 #ifdef CONFIG_PREEMPT_BKL
3130 saved_lock_depth = task->lock_depth;
3131 task->lock_depth = -1;
3132 #endif
3133 schedule();
3134 #ifdef CONFIG_PREEMPT_BKL
3135 task->lock_depth = saved_lock_depth;
3136 #endif
3137 sub_preempt_count(PREEMPT_ACTIVE);
3139 /* we could miss a preemption opportunity between schedule and now */
3140 barrier();
3141 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3142 goto need_resched;
3145 EXPORT_SYMBOL(preempt_schedule);
3148 * this is is the entry point to schedule() from kernel preemption
3149 * off of irq context.
3150 * Note, that this is called and return with irqs disabled. This will
3151 * protect us against recursive calling from irq.
3153 asmlinkage void __sched preempt_schedule_irq(void)
3155 struct thread_info *ti = current_thread_info();
3156 #ifdef CONFIG_PREEMPT_BKL
3157 struct task_struct *task = current;
3158 int saved_lock_depth;
3159 #endif
3160 /* Catch callers which need to be fixed*/
3161 BUG_ON(ti->preempt_count || !irqs_disabled());
3163 need_resched:
3164 add_preempt_count(PREEMPT_ACTIVE);
3166 * We keep the big kernel semaphore locked, but we
3167 * clear ->lock_depth so that schedule() doesnt
3168 * auto-release the semaphore:
3170 #ifdef CONFIG_PREEMPT_BKL
3171 saved_lock_depth = task->lock_depth;
3172 task->lock_depth = -1;
3173 #endif
3174 local_irq_enable();
3175 schedule();
3176 local_irq_disable();
3177 #ifdef CONFIG_PREEMPT_BKL
3178 task->lock_depth = saved_lock_depth;
3179 #endif
3180 sub_preempt_count(PREEMPT_ACTIVE);
3182 /* we could miss a preemption opportunity between schedule and now */
3183 barrier();
3184 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3185 goto need_resched;
3188 #endif /* CONFIG_PREEMPT */
3190 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3191 void *key)
3193 task_t *p = curr->private;
3194 return try_to_wake_up(p, mode, sync);
3197 EXPORT_SYMBOL(default_wake_function);
3200 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3201 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3202 * number) then we wake all the non-exclusive tasks and one exclusive task.
3204 * There are circumstances in which we can try to wake a task which has already
3205 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3206 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3208 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3209 int nr_exclusive, int sync, void *key)
3211 struct list_head *tmp, *next;
3213 list_for_each_safe(tmp, next, &q->task_list) {
3214 wait_queue_t *curr;
3215 unsigned flags;
3216 curr = list_entry(tmp, wait_queue_t, task_list);
3217 flags = curr->flags;
3218 if (curr->func(curr, mode, sync, key) &&
3219 (flags & WQ_FLAG_EXCLUSIVE) &&
3220 !--nr_exclusive)
3221 break;
3226 * __wake_up - wake up threads blocked on a waitqueue.
3227 * @q: the waitqueue
3228 * @mode: which threads
3229 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3230 * @key: is directly passed to the wakeup function
3232 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3233 int nr_exclusive, void *key)
3235 unsigned long flags;
3237 spin_lock_irqsave(&q->lock, flags);
3238 __wake_up_common(q, mode, nr_exclusive, 0, key);
3239 spin_unlock_irqrestore(&q->lock, flags);
3242 EXPORT_SYMBOL(__wake_up);
3245 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3247 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3249 __wake_up_common(q, mode, 1, 0, NULL);
3253 * __wake_up_sync - wake up threads blocked on a waitqueue.
3254 * @q: the waitqueue
3255 * @mode: which threads
3256 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3258 * The sync wakeup differs that the waker knows that it will schedule
3259 * away soon, so while the target thread will be woken up, it will not
3260 * be migrated to another CPU - ie. the two threads are 'synchronized'
3261 * with each other. This can prevent needless bouncing between CPUs.
3263 * On UP it can prevent extra preemption.
3265 void fastcall
3266 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3268 unsigned long flags;
3269 int sync = 1;
3271 if (unlikely(!q))
3272 return;
3274 if (unlikely(!nr_exclusive))
3275 sync = 0;
3277 spin_lock_irqsave(&q->lock, flags);
3278 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3279 spin_unlock_irqrestore(&q->lock, flags);
3281 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3283 void fastcall complete(struct completion *x)
3285 unsigned long flags;
3287 spin_lock_irqsave(&x->wait.lock, flags);
3288 x->done++;
3289 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3290 1, 0, NULL);
3291 spin_unlock_irqrestore(&x->wait.lock, flags);
3293 EXPORT_SYMBOL(complete);
3295 void fastcall complete_all(struct completion *x)
3297 unsigned long flags;
3299 spin_lock_irqsave(&x->wait.lock, flags);
3300 x->done += UINT_MAX/2;
3301 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3302 0, 0, NULL);
3303 spin_unlock_irqrestore(&x->wait.lock, flags);
3305 EXPORT_SYMBOL(complete_all);
3307 void fastcall __sched wait_for_completion(struct completion *x)
3309 might_sleep();
3310 spin_lock_irq(&x->wait.lock);
3311 if (!x->done) {
3312 DECLARE_WAITQUEUE(wait, current);
3314 wait.flags |= WQ_FLAG_EXCLUSIVE;
3315 __add_wait_queue_tail(&x->wait, &wait);
3316 do {
3317 __set_current_state(TASK_UNINTERRUPTIBLE);
3318 spin_unlock_irq(&x->wait.lock);
3319 schedule();
3320 spin_lock_irq(&x->wait.lock);
3321 } while (!x->done);
3322 __remove_wait_queue(&x->wait, &wait);
3324 x->done--;
3325 spin_unlock_irq(&x->wait.lock);
3327 EXPORT_SYMBOL(wait_for_completion);
3329 unsigned long fastcall __sched
3330 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3332 might_sleep();
3334 spin_lock_irq(&x->wait.lock);
3335 if (!x->done) {
3336 DECLARE_WAITQUEUE(wait, current);
3338 wait.flags |= WQ_FLAG_EXCLUSIVE;
3339 __add_wait_queue_tail(&x->wait, &wait);
3340 do {
3341 __set_current_state(TASK_UNINTERRUPTIBLE);
3342 spin_unlock_irq(&x->wait.lock);
3343 timeout = schedule_timeout(timeout);
3344 spin_lock_irq(&x->wait.lock);
3345 if (!timeout) {
3346 __remove_wait_queue(&x->wait, &wait);
3347 goto out;
3349 } while (!x->done);
3350 __remove_wait_queue(&x->wait, &wait);
3352 x->done--;
3353 out:
3354 spin_unlock_irq(&x->wait.lock);
3355 return timeout;
3357 EXPORT_SYMBOL(wait_for_completion_timeout);
3359 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3361 int ret = 0;
3363 might_sleep();
3365 spin_lock_irq(&x->wait.lock);
3366 if (!x->done) {
3367 DECLARE_WAITQUEUE(wait, current);
3369 wait.flags |= WQ_FLAG_EXCLUSIVE;
3370 __add_wait_queue_tail(&x->wait, &wait);
3371 do {
3372 if (signal_pending(current)) {
3373 ret = -ERESTARTSYS;
3374 __remove_wait_queue(&x->wait, &wait);
3375 goto out;
3377 __set_current_state(TASK_INTERRUPTIBLE);
3378 spin_unlock_irq(&x->wait.lock);
3379 schedule();
3380 spin_lock_irq(&x->wait.lock);
3381 } while (!x->done);
3382 __remove_wait_queue(&x->wait, &wait);
3384 x->done--;
3385 out:
3386 spin_unlock_irq(&x->wait.lock);
3388 return ret;
3390 EXPORT_SYMBOL(wait_for_completion_interruptible);
3392 unsigned long fastcall __sched
3393 wait_for_completion_interruptible_timeout(struct completion *x,
3394 unsigned long timeout)
3396 might_sleep();
3398 spin_lock_irq(&x->wait.lock);
3399 if (!x->done) {
3400 DECLARE_WAITQUEUE(wait, current);
3402 wait.flags |= WQ_FLAG_EXCLUSIVE;
3403 __add_wait_queue_tail(&x->wait, &wait);
3404 do {
3405 if (signal_pending(current)) {
3406 timeout = -ERESTARTSYS;
3407 __remove_wait_queue(&x->wait, &wait);
3408 goto out;
3410 __set_current_state(TASK_INTERRUPTIBLE);
3411 spin_unlock_irq(&x->wait.lock);
3412 timeout = schedule_timeout(timeout);
3413 spin_lock_irq(&x->wait.lock);
3414 if (!timeout) {
3415 __remove_wait_queue(&x->wait, &wait);
3416 goto out;
3418 } while (!x->done);
3419 __remove_wait_queue(&x->wait, &wait);
3421 x->done--;
3422 out:
3423 spin_unlock_irq(&x->wait.lock);
3424 return timeout;
3426 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3429 #define SLEEP_ON_VAR \
3430 unsigned long flags; \
3431 wait_queue_t wait; \
3432 init_waitqueue_entry(&wait, current);
3434 #define SLEEP_ON_HEAD \
3435 spin_lock_irqsave(&q->lock,flags); \
3436 __add_wait_queue(q, &wait); \
3437 spin_unlock(&q->lock);
3439 #define SLEEP_ON_TAIL \
3440 spin_lock_irq(&q->lock); \
3441 __remove_wait_queue(q, &wait); \
3442 spin_unlock_irqrestore(&q->lock, flags);
3444 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3446 SLEEP_ON_VAR
3448 current->state = TASK_INTERRUPTIBLE;
3450 SLEEP_ON_HEAD
3451 schedule();
3452 SLEEP_ON_TAIL
3455 EXPORT_SYMBOL(interruptible_sleep_on);
3457 long fastcall __sched
3458 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3460 SLEEP_ON_VAR
3462 current->state = TASK_INTERRUPTIBLE;
3464 SLEEP_ON_HEAD
3465 timeout = schedule_timeout(timeout);
3466 SLEEP_ON_TAIL
3468 return timeout;
3471 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3473 void fastcall __sched sleep_on(wait_queue_head_t *q)
3475 SLEEP_ON_VAR
3477 current->state = TASK_UNINTERRUPTIBLE;
3479 SLEEP_ON_HEAD
3480 schedule();
3481 SLEEP_ON_TAIL
3484 EXPORT_SYMBOL(sleep_on);
3486 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3488 SLEEP_ON_VAR
3490 current->state = TASK_UNINTERRUPTIBLE;
3492 SLEEP_ON_HEAD
3493 timeout = schedule_timeout(timeout);
3494 SLEEP_ON_TAIL
3496 return timeout;
3499 EXPORT_SYMBOL(sleep_on_timeout);
3501 void set_user_nice(task_t *p, long nice)
3503 unsigned long flags;
3504 prio_array_t *array;
3505 runqueue_t *rq;
3506 int old_prio, new_prio, delta;
3508 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3509 return;
3511 * We have to be careful, if called from sys_setpriority(),
3512 * the task might be in the middle of scheduling on another CPU.
3514 rq = task_rq_lock(p, &flags);
3516 * The RT priorities are set via sched_setscheduler(), but we still
3517 * allow the 'normal' nice value to be set - but as expected
3518 * it wont have any effect on scheduling until the task is
3519 * not SCHED_NORMAL:
3521 if (rt_task(p)) {
3522 p->static_prio = NICE_TO_PRIO(nice);
3523 goto out_unlock;
3525 array = p->array;
3526 if (array) {
3527 dequeue_task(p, array);
3528 dec_prio_bias(rq, p->static_prio);
3531 old_prio = p->prio;
3532 new_prio = NICE_TO_PRIO(nice);
3533 delta = new_prio - old_prio;
3534 p->static_prio = NICE_TO_PRIO(nice);
3535 p->prio += delta;
3537 if (array) {
3538 enqueue_task(p, array);
3539 inc_prio_bias(rq, p->static_prio);
3541 * If the task increased its priority or is running and
3542 * lowered its priority, then reschedule its CPU:
3544 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3545 resched_task(rq->curr);
3547 out_unlock:
3548 task_rq_unlock(rq, &flags);
3551 EXPORT_SYMBOL(set_user_nice);
3554 * can_nice - check if a task can reduce its nice value
3555 * @p: task
3556 * @nice: nice value
3558 int can_nice(const task_t *p, const int nice)
3560 /* convert nice value [19,-20] to rlimit style value [1,40] */
3561 int nice_rlim = 20 - nice;
3562 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3563 capable(CAP_SYS_NICE));
3566 #ifdef __ARCH_WANT_SYS_NICE
3569 * sys_nice - change the priority of the current process.
3570 * @increment: priority increment
3572 * sys_setpriority is a more generic, but much slower function that
3573 * does similar things.
3575 asmlinkage long sys_nice(int increment)
3577 int retval;
3578 long nice;
3581 * Setpriority might change our priority at the same moment.
3582 * We don't have to worry. Conceptually one call occurs first
3583 * and we have a single winner.
3585 if (increment < -40)
3586 increment = -40;
3587 if (increment > 40)
3588 increment = 40;
3590 nice = PRIO_TO_NICE(current->static_prio) + increment;
3591 if (nice < -20)
3592 nice = -20;
3593 if (nice > 19)
3594 nice = 19;
3596 if (increment < 0 && !can_nice(current, nice))
3597 return -EPERM;
3599 retval = security_task_setnice(current, nice);
3600 if (retval)
3601 return retval;
3603 set_user_nice(current, nice);
3604 return 0;
3607 #endif
3610 * task_prio - return the priority value of a given task.
3611 * @p: the task in question.
3613 * This is the priority value as seen by users in /proc.
3614 * RT tasks are offset by -200. Normal tasks are centered
3615 * around 0, value goes from -16 to +15.
3617 int task_prio(const task_t *p)
3619 return p->prio - MAX_RT_PRIO;
3623 * task_nice - return the nice value of a given task.
3624 * @p: the task in question.
3626 int task_nice(const task_t *p)
3628 return TASK_NICE(p);
3630 EXPORT_SYMBOL_GPL(task_nice);
3633 * idle_cpu - is a given cpu idle currently?
3634 * @cpu: the processor in question.
3636 int idle_cpu(int cpu)
3638 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3642 * idle_task - return the idle task for a given cpu.
3643 * @cpu: the processor in question.
3645 task_t *idle_task(int cpu)
3647 return cpu_rq(cpu)->idle;
3651 * find_process_by_pid - find a process with a matching PID value.
3652 * @pid: the pid in question.
3654 static inline task_t *find_process_by_pid(pid_t pid)
3656 return pid ? find_task_by_pid(pid) : current;
3659 /* Actually do priority change: must hold rq lock. */
3660 static void __setscheduler(struct task_struct *p, int policy, int prio)
3662 BUG_ON(p->array);
3663 p->policy = policy;
3664 p->rt_priority = prio;
3665 if (policy != SCHED_NORMAL)
3666 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3667 else
3668 p->prio = p->static_prio;
3672 * sched_setscheduler - change the scheduling policy and/or RT priority of
3673 * a thread.
3674 * @p: the task in question.
3675 * @policy: new policy.
3676 * @param: structure containing the new RT priority.
3678 int sched_setscheduler(struct task_struct *p, int policy,
3679 struct sched_param *param)
3681 int retval;
3682 int oldprio, oldpolicy = -1;
3683 prio_array_t *array;
3684 unsigned long flags;
3685 runqueue_t *rq;
3687 recheck:
3688 /* double check policy once rq lock held */
3689 if (policy < 0)
3690 policy = oldpolicy = p->policy;
3691 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3692 policy != SCHED_NORMAL)
3693 return -EINVAL;
3695 * Valid priorities for SCHED_FIFO and SCHED_RR are
3696 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3698 if (param->sched_priority < 0 ||
3699 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3700 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3701 return -EINVAL;
3702 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3703 return -EINVAL;
3706 * Allow unprivileged RT tasks to decrease priority:
3708 if (!capable(CAP_SYS_NICE)) {
3709 /* can't change policy */
3710 if (policy != p->policy &&
3711 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3712 return -EPERM;
3713 /* can't increase priority */
3714 if (policy != SCHED_NORMAL &&
3715 param->sched_priority > p->rt_priority &&
3716 param->sched_priority >
3717 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3718 return -EPERM;
3719 /* can't change other user's priorities */
3720 if ((current->euid != p->euid) &&
3721 (current->euid != p->uid))
3722 return -EPERM;
3725 retval = security_task_setscheduler(p, policy, param);
3726 if (retval)
3727 return retval;
3729 * To be able to change p->policy safely, the apropriate
3730 * runqueue lock must be held.
3732 rq = task_rq_lock(p, &flags);
3733 /* recheck policy now with rq lock held */
3734 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3735 policy = oldpolicy = -1;
3736 task_rq_unlock(rq, &flags);
3737 goto recheck;
3739 array = p->array;
3740 if (array)
3741 deactivate_task(p, rq);
3742 oldprio = p->prio;
3743 __setscheduler(p, policy, param->sched_priority);
3744 if (array) {
3745 __activate_task(p, rq);
3747 * Reschedule if we are currently running on this runqueue and
3748 * our priority decreased, or if we are not currently running on
3749 * this runqueue and our priority is higher than the current's
3751 if (task_running(rq, p)) {
3752 if (p->prio > oldprio)
3753 resched_task(rq->curr);
3754 } else if (TASK_PREEMPTS_CURR(p, rq))
3755 resched_task(rq->curr);
3757 task_rq_unlock(rq, &flags);
3758 return 0;
3760 EXPORT_SYMBOL_GPL(sched_setscheduler);
3762 static int
3763 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3765 int retval;
3766 struct sched_param lparam;
3767 struct task_struct *p;
3769 if (!param || pid < 0)
3770 return -EINVAL;
3771 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3772 return -EFAULT;
3773 read_lock_irq(&tasklist_lock);
3774 p = find_process_by_pid(pid);
3775 if (!p) {
3776 read_unlock_irq(&tasklist_lock);
3777 return -ESRCH;
3779 retval = sched_setscheduler(p, policy, &lparam);
3780 read_unlock_irq(&tasklist_lock);
3781 return retval;
3785 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3786 * @pid: the pid in question.
3787 * @policy: new policy.
3788 * @param: structure containing the new RT priority.
3790 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3791 struct sched_param __user *param)
3793 return do_sched_setscheduler(pid, policy, param);
3797 * sys_sched_setparam - set/change the RT priority of a thread
3798 * @pid: the pid in question.
3799 * @param: structure containing the new RT priority.
3801 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3803 return do_sched_setscheduler(pid, -1, param);
3807 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3808 * @pid: the pid in question.
3810 asmlinkage long sys_sched_getscheduler(pid_t pid)
3812 int retval = -EINVAL;
3813 task_t *p;
3815 if (pid < 0)
3816 goto out_nounlock;
3818 retval = -ESRCH;
3819 read_lock(&tasklist_lock);
3820 p = find_process_by_pid(pid);
3821 if (p) {
3822 retval = security_task_getscheduler(p);
3823 if (!retval)
3824 retval = p->policy;
3826 read_unlock(&tasklist_lock);
3828 out_nounlock:
3829 return retval;
3833 * sys_sched_getscheduler - get the RT priority of a thread
3834 * @pid: the pid in question.
3835 * @param: structure containing the RT priority.
3837 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3839 struct sched_param lp;
3840 int retval = -EINVAL;
3841 task_t *p;
3843 if (!param || pid < 0)
3844 goto out_nounlock;
3846 read_lock(&tasklist_lock);
3847 p = find_process_by_pid(pid);
3848 retval = -ESRCH;
3849 if (!p)
3850 goto out_unlock;
3852 retval = security_task_getscheduler(p);
3853 if (retval)
3854 goto out_unlock;
3856 lp.sched_priority = p->rt_priority;
3857 read_unlock(&tasklist_lock);
3860 * This one might sleep, we cannot do it with a spinlock held ...
3862 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3864 out_nounlock:
3865 return retval;
3867 out_unlock:
3868 read_unlock(&tasklist_lock);
3869 return retval;
3872 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3874 task_t *p;
3875 int retval;
3876 cpumask_t cpus_allowed;
3878 lock_cpu_hotplug();
3879 read_lock(&tasklist_lock);
3881 p = find_process_by_pid(pid);
3882 if (!p) {
3883 read_unlock(&tasklist_lock);
3884 unlock_cpu_hotplug();
3885 return -ESRCH;
3889 * It is not safe to call set_cpus_allowed with the
3890 * tasklist_lock held. We will bump the task_struct's
3891 * usage count and then drop tasklist_lock.
3893 get_task_struct(p);
3894 read_unlock(&tasklist_lock);
3896 retval = -EPERM;
3897 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3898 !capable(CAP_SYS_NICE))
3899 goto out_unlock;
3901 cpus_allowed = cpuset_cpus_allowed(p);
3902 cpus_and(new_mask, new_mask, cpus_allowed);
3903 retval = set_cpus_allowed(p, new_mask);
3905 out_unlock:
3906 put_task_struct(p);
3907 unlock_cpu_hotplug();
3908 return retval;
3911 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3912 cpumask_t *new_mask)
3914 if (len < sizeof(cpumask_t)) {
3915 memset(new_mask, 0, sizeof(cpumask_t));
3916 } else if (len > sizeof(cpumask_t)) {
3917 len = sizeof(cpumask_t);
3919 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3923 * sys_sched_setaffinity - set the cpu affinity of a process
3924 * @pid: pid of the process
3925 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3926 * @user_mask_ptr: user-space pointer to the new cpu mask
3928 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3929 unsigned long __user *user_mask_ptr)
3931 cpumask_t new_mask;
3932 int retval;
3934 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3935 if (retval)
3936 return retval;
3938 return sched_setaffinity(pid, new_mask);
3942 * Represents all cpu's present in the system
3943 * In systems capable of hotplug, this map could dynamically grow
3944 * as new cpu's are detected in the system via any platform specific
3945 * method, such as ACPI for e.g.
3948 cpumask_t cpu_present_map;
3949 EXPORT_SYMBOL(cpu_present_map);
3951 #ifndef CONFIG_SMP
3952 cpumask_t cpu_online_map = CPU_MASK_ALL;
3953 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3954 #endif
3956 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3958 int retval;
3959 task_t *p;
3961 lock_cpu_hotplug();
3962 read_lock(&tasklist_lock);
3964 retval = -ESRCH;
3965 p = find_process_by_pid(pid);
3966 if (!p)
3967 goto out_unlock;
3969 retval = 0;
3970 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3972 out_unlock:
3973 read_unlock(&tasklist_lock);
3974 unlock_cpu_hotplug();
3975 if (retval)
3976 return retval;
3978 return 0;
3982 * sys_sched_getaffinity - get the cpu affinity of a process
3983 * @pid: pid of the process
3984 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3985 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3987 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3988 unsigned long __user *user_mask_ptr)
3990 int ret;
3991 cpumask_t mask;
3993 if (len < sizeof(cpumask_t))
3994 return -EINVAL;
3996 ret = sched_getaffinity(pid, &mask);
3997 if (ret < 0)
3998 return ret;
4000 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4001 return -EFAULT;
4003 return sizeof(cpumask_t);
4007 * sys_sched_yield - yield the current processor to other threads.
4009 * this function yields the current CPU by moving the calling thread
4010 * to the expired array. If there are no other threads running on this
4011 * CPU then this function will return.
4013 asmlinkage long sys_sched_yield(void)
4015 runqueue_t *rq = this_rq_lock();
4016 prio_array_t *array = current->array;
4017 prio_array_t *target = rq->expired;
4019 schedstat_inc(rq, yld_cnt);
4021 * We implement yielding by moving the task into the expired
4022 * queue.
4024 * (special rule: RT tasks will just roundrobin in the active
4025 * array.)
4027 if (rt_task(current))
4028 target = rq->active;
4030 if (array->nr_active == 1) {
4031 schedstat_inc(rq, yld_act_empty);
4032 if (!rq->expired->nr_active)
4033 schedstat_inc(rq, yld_both_empty);
4034 } else if (!rq->expired->nr_active)
4035 schedstat_inc(rq, yld_exp_empty);
4037 if (array != target) {
4038 dequeue_task(current, array);
4039 enqueue_task(current, target);
4040 } else
4042 * requeue_task is cheaper so perform that if possible.
4044 requeue_task(current, array);
4047 * Since we are going to call schedule() anyway, there's
4048 * no need to preempt or enable interrupts:
4050 __release(rq->lock);
4051 _raw_spin_unlock(&rq->lock);
4052 preempt_enable_no_resched();
4054 schedule();
4056 return 0;
4059 static inline void __cond_resched(void)
4062 * The BKS might be reacquired before we have dropped
4063 * PREEMPT_ACTIVE, which could trigger a second
4064 * cond_resched() call.
4066 if (unlikely(preempt_count()))
4067 return;
4068 do {
4069 add_preempt_count(PREEMPT_ACTIVE);
4070 schedule();
4071 sub_preempt_count(PREEMPT_ACTIVE);
4072 } while (need_resched());
4075 int __sched cond_resched(void)
4077 if (need_resched()) {
4078 __cond_resched();
4079 return 1;
4081 return 0;
4084 EXPORT_SYMBOL(cond_resched);
4087 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4088 * call schedule, and on return reacquire the lock.
4090 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4091 * operations here to prevent schedule() from being called twice (once via
4092 * spin_unlock(), once by hand).
4094 int cond_resched_lock(spinlock_t *lock)
4096 int ret = 0;
4098 if (need_lockbreak(lock)) {
4099 spin_unlock(lock);
4100 cpu_relax();
4101 ret = 1;
4102 spin_lock(lock);
4104 if (need_resched()) {
4105 _raw_spin_unlock(lock);
4106 preempt_enable_no_resched();
4107 __cond_resched();
4108 ret = 1;
4109 spin_lock(lock);
4111 return ret;
4114 EXPORT_SYMBOL(cond_resched_lock);
4116 int __sched cond_resched_softirq(void)
4118 BUG_ON(!in_softirq());
4120 if (need_resched()) {
4121 __local_bh_enable();
4122 __cond_resched();
4123 local_bh_disable();
4124 return 1;
4126 return 0;
4129 EXPORT_SYMBOL(cond_resched_softirq);
4133 * yield - yield the current processor to other threads.
4135 * this is a shortcut for kernel-space yielding - it marks the
4136 * thread runnable and calls sys_sched_yield().
4138 void __sched yield(void)
4140 set_current_state(TASK_RUNNING);
4141 sys_sched_yield();
4144 EXPORT_SYMBOL(yield);
4147 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4148 * that process accounting knows that this is a task in IO wait state.
4150 * But don't do that if it is a deliberate, throttling IO wait (this task
4151 * has set its backing_dev_info: the queue against which it should throttle)
4153 void __sched io_schedule(void)
4155 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4157 atomic_inc(&rq->nr_iowait);
4158 schedule();
4159 atomic_dec(&rq->nr_iowait);
4162 EXPORT_SYMBOL(io_schedule);
4164 long __sched io_schedule_timeout(long timeout)
4166 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4167 long ret;
4169 atomic_inc(&rq->nr_iowait);
4170 ret = schedule_timeout(timeout);
4171 atomic_dec(&rq->nr_iowait);
4172 return ret;
4176 * sys_sched_get_priority_max - return maximum RT priority.
4177 * @policy: scheduling class.
4179 * this syscall returns the maximum rt_priority that can be used
4180 * by a given scheduling class.
4182 asmlinkage long sys_sched_get_priority_max(int policy)
4184 int ret = -EINVAL;
4186 switch (policy) {
4187 case SCHED_FIFO:
4188 case SCHED_RR:
4189 ret = MAX_USER_RT_PRIO-1;
4190 break;
4191 case SCHED_NORMAL:
4192 ret = 0;
4193 break;
4195 return ret;
4199 * sys_sched_get_priority_min - return minimum RT priority.
4200 * @policy: scheduling class.
4202 * this syscall returns the minimum rt_priority that can be used
4203 * by a given scheduling class.
4205 asmlinkage long sys_sched_get_priority_min(int policy)
4207 int ret = -EINVAL;
4209 switch (policy) {
4210 case SCHED_FIFO:
4211 case SCHED_RR:
4212 ret = 1;
4213 break;
4214 case SCHED_NORMAL:
4215 ret = 0;
4217 return ret;
4221 * sys_sched_rr_get_interval - return the default timeslice of a process.
4222 * @pid: pid of the process.
4223 * @interval: userspace pointer to the timeslice value.
4225 * this syscall writes the default timeslice value of a given process
4226 * into the user-space timespec buffer. A value of '0' means infinity.
4228 asmlinkage
4229 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4231 int retval = -EINVAL;
4232 struct timespec t;
4233 task_t *p;
4235 if (pid < 0)
4236 goto out_nounlock;
4238 retval = -ESRCH;
4239 read_lock(&tasklist_lock);
4240 p = find_process_by_pid(pid);
4241 if (!p)
4242 goto out_unlock;
4244 retval = security_task_getscheduler(p);
4245 if (retval)
4246 goto out_unlock;
4248 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4249 0 : task_timeslice(p), &t);
4250 read_unlock(&tasklist_lock);
4251 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4252 out_nounlock:
4253 return retval;
4254 out_unlock:
4255 read_unlock(&tasklist_lock);
4256 return retval;
4259 static inline struct task_struct *eldest_child(struct task_struct *p)
4261 if (list_empty(&p->children)) return NULL;
4262 return list_entry(p->children.next,struct task_struct,sibling);
4265 static inline struct task_struct *older_sibling(struct task_struct *p)
4267 if (p->sibling.prev==&p->parent->children) return NULL;
4268 return list_entry(p->sibling.prev,struct task_struct,sibling);
4271 static inline struct task_struct *younger_sibling(struct task_struct *p)
4273 if (p->sibling.next==&p->parent->children) return NULL;
4274 return list_entry(p->sibling.next,struct task_struct,sibling);
4277 static void show_task(task_t *p)
4279 task_t *relative;
4280 unsigned state;
4281 unsigned long free = 0;
4282 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4284 printk("%-13.13s ", p->comm);
4285 state = p->state ? __ffs(p->state) + 1 : 0;
4286 if (state < ARRAY_SIZE(stat_nam))
4287 printk(stat_nam[state]);
4288 else
4289 printk("?");
4290 #if (BITS_PER_LONG == 32)
4291 if (state == TASK_RUNNING)
4292 printk(" running ");
4293 else
4294 printk(" %08lX ", thread_saved_pc(p));
4295 #else
4296 if (state == TASK_RUNNING)
4297 printk(" running task ");
4298 else
4299 printk(" %016lx ", thread_saved_pc(p));
4300 #endif
4301 #ifdef CONFIG_DEBUG_STACK_USAGE
4303 unsigned long *n = (unsigned long *) (p->thread_info+1);
4304 while (!*n)
4305 n++;
4306 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4308 #endif
4309 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4310 if ((relative = eldest_child(p)))
4311 printk("%5d ", relative->pid);
4312 else
4313 printk(" ");
4314 if ((relative = younger_sibling(p)))
4315 printk("%7d", relative->pid);
4316 else
4317 printk(" ");
4318 if ((relative = older_sibling(p)))
4319 printk(" %5d", relative->pid);
4320 else
4321 printk(" ");
4322 if (!p->mm)
4323 printk(" (L-TLB)\n");
4324 else
4325 printk(" (NOTLB)\n");
4327 if (state != TASK_RUNNING)
4328 show_stack(p, NULL);
4331 void show_state(void)
4333 task_t *g, *p;
4335 #if (BITS_PER_LONG == 32)
4336 printk("\n"
4337 " sibling\n");
4338 printk(" task PC pid father child younger older\n");
4339 #else
4340 printk("\n"
4341 " sibling\n");
4342 printk(" task PC pid father child younger older\n");
4343 #endif
4344 read_lock(&tasklist_lock);
4345 do_each_thread(g, p) {
4347 * reset the NMI-timeout, listing all files on a slow
4348 * console might take alot of time:
4350 touch_nmi_watchdog();
4351 show_task(p);
4352 } while_each_thread(g, p);
4354 read_unlock(&tasklist_lock);
4358 * init_idle - set up an idle thread for a given CPU
4359 * @idle: task in question
4360 * @cpu: cpu the idle task belongs to
4362 * NOTE: this function does not set the idle thread's NEED_RESCHED
4363 * flag, to make booting more robust.
4365 void __devinit init_idle(task_t *idle, int cpu)
4367 runqueue_t *rq = cpu_rq(cpu);
4368 unsigned long flags;
4370 idle->sleep_avg = 0;
4371 idle->array = NULL;
4372 idle->prio = MAX_PRIO;
4373 idle->state = TASK_RUNNING;
4374 idle->cpus_allowed = cpumask_of_cpu(cpu);
4375 set_task_cpu(idle, cpu);
4377 spin_lock_irqsave(&rq->lock, flags);
4378 rq->curr = rq->idle = idle;
4379 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4380 idle->oncpu = 1;
4381 #endif
4382 spin_unlock_irqrestore(&rq->lock, flags);
4384 /* Set the preempt count _outside_ the spinlocks! */
4385 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4386 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4387 #else
4388 idle->thread_info->preempt_count = 0;
4389 #endif
4393 * In a system that switches off the HZ timer nohz_cpu_mask
4394 * indicates which cpus entered this state. This is used
4395 * in the rcu update to wait only for active cpus. For system
4396 * which do not switch off the HZ timer nohz_cpu_mask should
4397 * always be CPU_MASK_NONE.
4399 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4401 #ifdef CONFIG_SMP
4403 * This is how migration works:
4405 * 1) we queue a migration_req_t structure in the source CPU's
4406 * runqueue and wake up that CPU's migration thread.
4407 * 2) we down() the locked semaphore => thread blocks.
4408 * 3) migration thread wakes up (implicitly it forces the migrated
4409 * thread off the CPU)
4410 * 4) it gets the migration request and checks whether the migrated
4411 * task is still in the wrong runqueue.
4412 * 5) if it's in the wrong runqueue then the migration thread removes
4413 * it and puts it into the right queue.
4414 * 6) migration thread up()s the semaphore.
4415 * 7) we wake up and the migration is done.
4419 * Change a given task's CPU affinity. Migrate the thread to a
4420 * proper CPU and schedule it away if the CPU it's executing on
4421 * is removed from the allowed bitmask.
4423 * NOTE: the caller must have a valid reference to the task, the
4424 * task must not exit() & deallocate itself prematurely. The
4425 * call is not atomic; no spinlocks may be held.
4427 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4429 unsigned long flags;
4430 int ret = 0;
4431 migration_req_t req;
4432 runqueue_t *rq;
4434 rq = task_rq_lock(p, &flags);
4435 if (!cpus_intersects(new_mask, cpu_online_map)) {
4436 ret = -EINVAL;
4437 goto out;
4440 p->cpus_allowed = new_mask;
4441 /* Can the task run on the task's current CPU? If so, we're done */
4442 if (cpu_isset(task_cpu(p), new_mask))
4443 goto out;
4445 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4446 /* Need help from migration thread: drop lock and wait. */
4447 task_rq_unlock(rq, &flags);
4448 wake_up_process(rq->migration_thread);
4449 wait_for_completion(&req.done);
4450 tlb_migrate_finish(p->mm);
4451 return 0;
4453 out:
4454 task_rq_unlock(rq, &flags);
4455 return ret;
4458 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4461 * Move (not current) task off this cpu, onto dest cpu. We're doing
4462 * this because either it can't run here any more (set_cpus_allowed()
4463 * away from this CPU, or CPU going down), or because we're
4464 * attempting to rebalance this task on exec (sched_exec).
4466 * So we race with normal scheduler movements, but that's OK, as long
4467 * as the task is no longer on this CPU.
4469 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4471 runqueue_t *rq_dest, *rq_src;
4473 if (unlikely(cpu_is_offline(dest_cpu)))
4474 return;
4476 rq_src = cpu_rq(src_cpu);
4477 rq_dest = cpu_rq(dest_cpu);
4479 double_rq_lock(rq_src, rq_dest);
4480 /* Already moved. */
4481 if (task_cpu(p) != src_cpu)
4482 goto out;
4483 /* Affinity changed (again). */
4484 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4485 goto out;
4487 set_task_cpu(p, dest_cpu);
4488 if (p->array) {
4490 * Sync timestamp with rq_dest's before activating.
4491 * The same thing could be achieved by doing this step
4492 * afterwards, and pretending it was a local activate.
4493 * This way is cleaner and logically correct.
4495 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4496 + rq_dest->timestamp_last_tick;
4497 deactivate_task(p, rq_src);
4498 activate_task(p, rq_dest, 0);
4499 if (TASK_PREEMPTS_CURR(p, rq_dest))
4500 resched_task(rq_dest->curr);
4503 out:
4504 double_rq_unlock(rq_src, rq_dest);
4508 * migration_thread - this is a highprio system thread that performs
4509 * thread migration by bumping thread off CPU then 'pushing' onto
4510 * another runqueue.
4512 static int migration_thread(void *data)
4514 runqueue_t *rq;
4515 int cpu = (long)data;
4517 rq = cpu_rq(cpu);
4518 BUG_ON(rq->migration_thread != current);
4520 set_current_state(TASK_INTERRUPTIBLE);
4521 while (!kthread_should_stop()) {
4522 struct list_head *head;
4523 migration_req_t *req;
4525 try_to_freeze();
4527 spin_lock_irq(&rq->lock);
4529 if (cpu_is_offline(cpu)) {
4530 spin_unlock_irq(&rq->lock);
4531 goto wait_to_die;
4534 if (rq->active_balance) {
4535 active_load_balance(rq, cpu);
4536 rq->active_balance = 0;
4539 head = &rq->migration_queue;
4541 if (list_empty(head)) {
4542 spin_unlock_irq(&rq->lock);
4543 schedule();
4544 set_current_state(TASK_INTERRUPTIBLE);
4545 continue;
4547 req = list_entry(head->next, migration_req_t, list);
4548 list_del_init(head->next);
4550 spin_unlock(&rq->lock);
4551 __migrate_task(req->task, cpu, req->dest_cpu);
4552 local_irq_enable();
4554 complete(&req->done);
4556 __set_current_state(TASK_RUNNING);
4557 return 0;
4559 wait_to_die:
4560 /* Wait for kthread_stop */
4561 set_current_state(TASK_INTERRUPTIBLE);
4562 while (!kthread_should_stop()) {
4563 schedule();
4564 set_current_state(TASK_INTERRUPTIBLE);
4566 __set_current_state(TASK_RUNNING);
4567 return 0;
4570 #ifdef CONFIG_HOTPLUG_CPU
4571 /* Figure out where task on dead CPU should go, use force if neccessary. */
4572 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4574 int dest_cpu;
4575 cpumask_t mask;
4577 /* On same node? */
4578 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4579 cpus_and(mask, mask, tsk->cpus_allowed);
4580 dest_cpu = any_online_cpu(mask);
4582 /* On any allowed CPU? */
4583 if (dest_cpu == NR_CPUS)
4584 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4586 /* No more Mr. Nice Guy. */
4587 if (dest_cpu == NR_CPUS) {
4588 cpus_setall(tsk->cpus_allowed);
4589 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4592 * Don't tell them about moving exiting tasks or
4593 * kernel threads (both mm NULL), since they never
4594 * leave kernel.
4596 if (tsk->mm && printk_ratelimit())
4597 printk(KERN_INFO "process %d (%s) no "
4598 "longer affine to cpu%d\n",
4599 tsk->pid, tsk->comm, dead_cpu);
4601 __migrate_task(tsk, dead_cpu, dest_cpu);
4605 * While a dead CPU has no uninterruptible tasks queued at this point,
4606 * it might still have a nonzero ->nr_uninterruptible counter, because
4607 * for performance reasons the counter is not stricly tracking tasks to
4608 * their home CPUs. So we just add the counter to another CPU's counter,
4609 * to keep the global sum constant after CPU-down:
4611 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4613 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4614 unsigned long flags;
4616 local_irq_save(flags);
4617 double_rq_lock(rq_src, rq_dest);
4618 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4619 rq_src->nr_uninterruptible = 0;
4620 double_rq_unlock(rq_src, rq_dest);
4621 local_irq_restore(flags);
4624 /* Run through task list and migrate tasks from the dead cpu. */
4625 static void migrate_live_tasks(int src_cpu)
4627 struct task_struct *tsk, *t;
4629 write_lock_irq(&tasklist_lock);
4631 do_each_thread(t, tsk) {
4632 if (tsk == current)
4633 continue;
4635 if (task_cpu(tsk) == src_cpu)
4636 move_task_off_dead_cpu(src_cpu, tsk);
4637 } while_each_thread(t, tsk);
4639 write_unlock_irq(&tasklist_lock);
4642 /* Schedules idle task to be the next runnable task on current CPU.
4643 * It does so by boosting its priority to highest possible and adding it to
4644 * the _front_ of runqueue. Used by CPU offline code.
4646 void sched_idle_next(void)
4648 int cpu = smp_processor_id();
4649 runqueue_t *rq = this_rq();
4650 struct task_struct *p = rq->idle;
4651 unsigned long flags;
4653 /* cpu has to be offline */
4654 BUG_ON(cpu_online(cpu));
4656 /* Strictly not necessary since rest of the CPUs are stopped by now
4657 * and interrupts disabled on current cpu.
4659 spin_lock_irqsave(&rq->lock, flags);
4661 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4662 /* Add idle task to _front_ of it's priority queue */
4663 __activate_idle_task(p, rq);
4665 spin_unlock_irqrestore(&rq->lock, flags);
4668 /* Ensures that the idle task is using init_mm right before its cpu goes
4669 * offline.
4671 void idle_task_exit(void)
4673 struct mm_struct *mm = current->active_mm;
4675 BUG_ON(cpu_online(smp_processor_id()));
4677 if (mm != &init_mm)
4678 switch_mm(mm, &init_mm, current);
4679 mmdrop(mm);
4682 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4684 struct runqueue *rq = cpu_rq(dead_cpu);
4686 /* Must be exiting, otherwise would be on tasklist. */
4687 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4689 /* Cannot have done final schedule yet: would have vanished. */
4690 BUG_ON(tsk->flags & PF_DEAD);
4692 get_task_struct(tsk);
4695 * Drop lock around migration; if someone else moves it,
4696 * that's OK. No task can be added to this CPU, so iteration is
4697 * fine.
4699 spin_unlock_irq(&rq->lock);
4700 move_task_off_dead_cpu(dead_cpu, tsk);
4701 spin_lock_irq(&rq->lock);
4703 put_task_struct(tsk);
4706 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4707 static void migrate_dead_tasks(unsigned int dead_cpu)
4709 unsigned arr, i;
4710 struct runqueue *rq = cpu_rq(dead_cpu);
4712 for (arr = 0; arr < 2; arr++) {
4713 for (i = 0; i < MAX_PRIO; i++) {
4714 struct list_head *list = &rq->arrays[arr].queue[i];
4715 while (!list_empty(list))
4716 migrate_dead(dead_cpu,
4717 list_entry(list->next, task_t,
4718 run_list));
4722 #endif /* CONFIG_HOTPLUG_CPU */
4725 * migration_call - callback that gets triggered when a CPU is added.
4726 * Here we can start up the necessary migration thread for the new CPU.
4728 static int migration_call(struct notifier_block *nfb, unsigned long action,
4729 void *hcpu)
4731 int cpu = (long)hcpu;
4732 struct task_struct *p;
4733 struct runqueue *rq;
4734 unsigned long flags;
4736 switch (action) {
4737 case CPU_UP_PREPARE:
4738 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4739 if (IS_ERR(p))
4740 return NOTIFY_BAD;
4741 p->flags |= PF_NOFREEZE;
4742 kthread_bind(p, cpu);
4743 /* Must be high prio: stop_machine expects to yield to it. */
4744 rq = task_rq_lock(p, &flags);
4745 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4746 task_rq_unlock(rq, &flags);
4747 cpu_rq(cpu)->migration_thread = p;
4748 break;
4749 case CPU_ONLINE:
4750 /* Strictly unneccessary, as first user will wake it. */
4751 wake_up_process(cpu_rq(cpu)->migration_thread);
4752 break;
4753 #ifdef CONFIG_HOTPLUG_CPU
4754 case CPU_UP_CANCELED:
4755 /* Unbind it from offline cpu so it can run. Fall thru. */
4756 kthread_bind(cpu_rq(cpu)->migration_thread,
4757 any_online_cpu(cpu_online_map));
4758 kthread_stop(cpu_rq(cpu)->migration_thread);
4759 cpu_rq(cpu)->migration_thread = NULL;
4760 break;
4761 case CPU_DEAD:
4762 migrate_live_tasks(cpu);
4763 rq = cpu_rq(cpu);
4764 kthread_stop(rq->migration_thread);
4765 rq->migration_thread = NULL;
4766 /* Idle task back to normal (off runqueue, low prio) */
4767 rq = task_rq_lock(rq->idle, &flags);
4768 deactivate_task(rq->idle, rq);
4769 rq->idle->static_prio = MAX_PRIO;
4770 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4771 migrate_dead_tasks(cpu);
4772 task_rq_unlock(rq, &flags);
4773 migrate_nr_uninterruptible(rq);
4774 BUG_ON(rq->nr_running != 0);
4776 /* No need to migrate the tasks: it was best-effort if
4777 * they didn't do lock_cpu_hotplug(). Just wake up
4778 * the requestors. */
4779 spin_lock_irq(&rq->lock);
4780 while (!list_empty(&rq->migration_queue)) {
4781 migration_req_t *req;
4782 req = list_entry(rq->migration_queue.next,
4783 migration_req_t, list);
4784 list_del_init(&req->list);
4785 complete(&req->done);
4787 spin_unlock_irq(&rq->lock);
4788 break;
4789 #endif
4791 return NOTIFY_OK;
4794 /* Register at highest priority so that task migration (migrate_all_tasks)
4795 * happens before everything else.
4797 static struct notifier_block __devinitdata migration_notifier = {
4798 .notifier_call = migration_call,
4799 .priority = 10
4802 int __init migration_init(void)
4804 void *cpu = (void *)(long)smp_processor_id();
4805 /* Start one for boot CPU. */
4806 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4807 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4808 register_cpu_notifier(&migration_notifier);
4809 return 0;
4811 #endif
4813 #ifdef CONFIG_SMP
4814 #undef SCHED_DOMAIN_DEBUG
4815 #ifdef SCHED_DOMAIN_DEBUG
4816 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4818 int level = 0;
4820 if (!sd) {
4821 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4822 return;
4825 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4827 do {
4828 int i;
4829 char str[NR_CPUS];
4830 struct sched_group *group = sd->groups;
4831 cpumask_t groupmask;
4833 cpumask_scnprintf(str, NR_CPUS, sd->span);
4834 cpus_clear(groupmask);
4836 printk(KERN_DEBUG);
4837 for (i = 0; i < level + 1; i++)
4838 printk(" ");
4839 printk("domain %d: ", level);
4841 if (!(sd->flags & SD_LOAD_BALANCE)) {
4842 printk("does not load-balance\n");
4843 if (sd->parent)
4844 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4845 break;
4848 printk("span %s\n", str);
4850 if (!cpu_isset(cpu, sd->span))
4851 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4852 if (!cpu_isset(cpu, group->cpumask))
4853 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4855 printk(KERN_DEBUG);
4856 for (i = 0; i < level + 2; i++)
4857 printk(" ");
4858 printk("groups:");
4859 do {
4860 if (!group) {
4861 printk("\n");
4862 printk(KERN_ERR "ERROR: group is NULL\n");
4863 break;
4866 if (!group->cpu_power) {
4867 printk("\n");
4868 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4871 if (!cpus_weight(group->cpumask)) {
4872 printk("\n");
4873 printk(KERN_ERR "ERROR: empty group\n");
4876 if (cpus_intersects(groupmask, group->cpumask)) {
4877 printk("\n");
4878 printk(KERN_ERR "ERROR: repeated CPUs\n");
4881 cpus_or(groupmask, groupmask, group->cpumask);
4883 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4884 printk(" %s", str);
4886 group = group->next;
4887 } while (group != sd->groups);
4888 printk("\n");
4890 if (!cpus_equal(sd->span, groupmask))
4891 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4893 level++;
4894 sd = sd->parent;
4896 if (sd) {
4897 if (!cpus_subset(groupmask, sd->span))
4898 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4901 } while (sd);
4903 #else
4904 #define sched_domain_debug(sd, cpu) {}
4905 #endif
4907 static int sd_degenerate(struct sched_domain *sd)
4909 if (cpus_weight(sd->span) == 1)
4910 return 1;
4912 /* Following flags need at least 2 groups */
4913 if (sd->flags & (SD_LOAD_BALANCE |
4914 SD_BALANCE_NEWIDLE |
4915 SD_BALANCE_FORK |
4916 SD_BALANCE_EXEC)) {
4917 if (sd->groups != sd->groups->next)
4918 return 0;
4921 /* Following flags don't use groups */
4922 if (sd->flags & (SD_WAKE_IDLE |
4923 SD_WAKE_AFFINE |
4924 SD_WAKE_BALANCE))
4925 return 0;
4927 return 1;
4930 static int sd_parent_degenerate(struct sched_domain *sd,
4931 struct sched_domain *parent)
4933 unsigned long cflags = sd->flags, pflags = parent->flags;
4935 if (sd_degenerate(parent))
4936 return 1;
4938 if (!cpus_equal(sd->span, parent->span))
4939 return 0;
4941 /* Does parent contain flags not in child? */
4942 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4943 if (cflags & SD_WAKE_AFFINE)
4944 pflags &= ~SD_WAKE_BALANCE;
4945 /* Flags needing groups don't count if only 1 group in parent */
4946 if (parent->groups == parent->groups->next) {
4947 pflags &= ~(SD_LOAD_BALANCE |
4948 SD_BALANCE_NEWIDLE |
4949 SD_BALANCE_FORK |
4950 SD_BALANCE_EXEC);
4952 if (~cflags & pflags)
4953 return 0;
4955 return 1;
4959 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4960 * hold the hotplug lock.
4962 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4964 runqueue_t *rq = cpu_rq(cpu);
4965 struct sched_domain *tmp;
4967 /* Remove the sched domains which do not contribute to scheduling. */
4968 for (tmp = sd; tmp; tmp = tmp->parent) {
4969 struct sched_domain *parent = tmp->parent;
4970 if (!parent)
4971 break;
4972 if (sd_parent_degenerate(tmp, parent))
4973 tmp->parent = parent->parent;
4976 if (sd && sd_degenerate(sd))
4977 sd = sd->parent;
4979 sched_domain_debug(sd, cpu);
4981 rcu_assign_pointer(rq->sd, sd);
4984 /* cpus with isolated domains */
4985 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4987 /* Setup the mask of cpus configured for isolated domains */
4988 static int __init isolated_cpu_setup(char *str)
4990 int ints[NR_CPUS], i;
4992 str = get_options(str, ARRAY_SIZE(ints), ints);
4993 cpus_clear(cpu_isolated_map);
4994 for (i = 1; i <= ints[0]; i++)
4995 if (ints[i] < NR_CPUS)
4996 cpu_set(ints[i], cpu_isolated_map);
4997 return 1;
5000 __setup ("isolcpus=", isolated_cpu_setup);
5003 * init_sched_build_groups takes an array of groups, the cpumask we wish
5004 * to span, and a pointer to a function which identifies what group a CPU
5005 * belongs to. The return value of group_fn must be a valid index into the
5006 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5007 * keep track of groups covered with a cpumask_t).
5009 * init_sched_build_groups will build a circular linked list of the groups
5010 * covered by the given span, and will set each group's ->cpumask correctly,
5011 * and ->cpu_power to 0.
5013 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5014 int (*group_fn)(int cpu))
5016 struct sched_group *first = NULL, *last = NULL;
5017 cpumask_t covered = CPU_MASK_NONE;
5018 int i;
5020 for_each_cpu_mask(i, span) {
5021 int group = group_fn(i);
5022 struct sched_group *sg = &groups[group];
5023 int j;
5025 if (cpu_isset(i, covered))
5026 continue;
5028 sg->cpumask = CPU_MASK_NONE;
5029 sg->cpu_power = 0;
5031 for_each_cpu_mask(j, span) {
5032 if (group_fn(j) != group)
5033 continue;
5035 cpu_set(j, covered);
5036 cpu_set(j, sg->cpumask);
5038 if (!first)
5039 first = sg;
5040 if (last)
5041 last->next = sg;
5042 last = sg;
5044 last->next = first;
5047 #define SD_NODES_PER_DOMAIN 16
5049 #ifdef CONFIG_NUMA
5051 * find_next_best_node - find the next node to include in a sched_domain
5052 * @node: node whose sched_domain we're building
5053 * @used_nodes: nodes already in the sched_domain
5055 * Find the next node to include in a given scheduling domain. Simply
5056 * finds the closest node not already in the @used_nodes map.
5058 * Should use nodemask_t.
5060 static int find_next_best_node(int node, unsigned long *used_nodes)
5062 int i, n, val, min_val, best_node = 0;
5064 min_val = INT_MAX;
5066 for (i = 0; i < MAX_NUMNODES; i++) {
5067 /* Start at @node */
5068 n = (node + i) % MAX_NUMNODES;
5070 if (!nr_cpus_node(n))
5071 continue;
5073 /* Skip already used nodes */
5074 if (test_bit(n, used_nodes))
5075 continue;
5077 /* Simple min distance search */
5078 val = node_distance(node, n);
5080 if (val < min_val) {
5081 min_val = val;
5082 best_node = n;
5086 set_bit(best_node, used_nodes);
5087 return best_node;
5091 * sched_domain_node_span - get a cpumask for a node's sched_domain
5092 * @node: node whose cpumask we're constructing
5093 * @size: number of nodes to include in this span
5095 * Given a node, construct a good cpumask for its sched_domain to span. It
5096 * should be one that prevents unnecessary balancing, but also spreads tasks
5097 * out optimally.
5099 static cpumask_t sched_domain_node_span(int node)
5101 int i;
5102 cpumask_t span, nodemask;
5103 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5105 cpus_clear(span);
5106 bitmap_zero(used_nodes, MAX_NUMNODES);
5108 nodemask = node_to_cpumask(node);
5109 cpus_or(span, span, nodemask);
5110 set_bit(node, used_nodes);
5112 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5113 int next_node = find_next_best_node(node, used_nodes);
5114 nodemask = node_to_cpumask(next_node);
5115 cpus_or(span, span, nodemask);
5118 return span;
5120 #endif
5123 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5124 * can switch it on easily if needed.
5126 #ifdef CONFIG_SCHED_SMT
5127 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5128 static struct sched_group sched_group_cpus[NR_CPUS];
5129 static int cpu_to_cpu_group(int cpu)
5131 return cpu;
5133 #endif
5135 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5136 static struct sched_group sched_group_phys[NR_CPUS];
5137 static int cpu_to_phys_group(int cpu)
5139 #ifdef CONFIG_SCHED_SMT
5140 return first_cpu(cpu_sibling_map[cpu]);
5141 #else
5142 return cpu;
5143 #endif
5146 #ifdef CONFIG_NUMA
5148 * The init_sched_build_groups can't handle what we want to do with node
5149 * groups, so roll our own. Now each node has its own list of groups which
5150 * gets dynamically allocated.
5152 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5153 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5155 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5156 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5158 static int cpu_to_allnodes_group(int cpu)
5160 return cpu_to_node(cpu);
5162 #endif
5165 * Build sched domains for a given set of cpus and attach the sched domains
5166 * to the individual cpus
5168 void build_sched_domains(const cpumask_t *cpu_map)
5170 int i;
5171 #ifdef CONFIG_NUMA
5172 struct sched_group **sched_group_nodes = NULL;
5173 struct sched_group *sched_group_allnodes = NULL;
5176 * Allocate the per-node list of sched groups
5178 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5179 GFP_ATOMIC);
5180 if (!sched_group_nodes) {
5181 printk(KERN_WARNING "Can not alloc sched group node list\n");
5182 return;
5184 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5185 #endif
5188 * Set up domains for cpus specified by the cpu_map.
5190 for_each_cpu_mask(i, *cpu_map) {
5191 int group;
5192 struct sched_domain *sd = NULL, *p;
5193 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5195 cpus_and(nodemask, nodemask, *cpu_map);
5197 #ifdef CONFIG_NUMA
5198 if (cpus_weight(*cpu_map)
5199 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5200 if (!sched_group_allnodes) {
5201 sched_group_allnodes
5202 = kmalloc(sizeof(struct sched_group)
5203 * MAX_NUMNODES,
5204 GFP_KERNEL);
5205 if (!sched_group_allnodes) {
5206 printk(KERN_WARNING
5207 "Can not alloc allnodes sched group\n");
5208 break;
5210 sched_group_allnodes_bycpu[i]
5211 = sched_group_allnodes;
5213 sd = &per_cpu(allnodes_domains, i);
5214 *sd = SD_ALLNODES_INIT;
5215 sd->span = *cpu_map;
5216 group = cpu_to_allnodes_group(i);
5217 sd->groups = &sched_group_allnodes[group];
5218 p = sd;
5219 } else
5220 p = NULL;
5222 sd = &per_cpu(node_domains, i);
5223 *sd = SD_NODE_INIT;
5224 sd->span = sched_domain_node_span(cpu_to_node(i));
5225 sd->parent = p;
5226 cpus_and(sd->span, sd->span, *cpu_map);
5227 #endif
5229 p = sd;
5230 sd = &per_cpu(phys_domains, i);
5231 group = cpu_to_phys_group(i);
5232 *sd = SD_CPU_INIT;
5233 sd->span = nodemask;
5234 sd->parent = p;
5235 sd->groups = &sched_group_phys[group];
5237 #ifdef CONFIG_SCHED_SMT
5238 p = sd;
5239 sd = &per_cpu(cpu_domains, i);
5240 group = cpu_to_cpu_group(i);
5241 *sd = SD_SIBLING_INIT;
5242 sd->span = cpu_sibling_map[i];
5243 cpus_and(sd->span, sd->span, *cpu_map);
5244 sd->parent = p;
5245 sd->groups = &sched_group_cpus[group];
5246 #endif
5249 #ifdef CONFIG_SCHED_SMT
5250 /* Set up CPU (sibling) groups */
5251 for_each_cpu_mask(i, *cpu_map) {
5252 cpumask_t this_sibling_map = cpu_sibling_map[i];
5253 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5254 if (i != first_cpu(this_sibling_map))
5255 continue;
5257 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5258 &cpu_to_cpu_group);
5260 #endif
5262 /* Set up physical groups */
5263 for (i = 0; i < MAX_NUMNODES; i++) {
5264 cpumask_t nodemask = node_to_cpumask(i);
5266 cpus_and(nodemask, nodemask, *cpu_map);
5267 if (cpus_empty(nodemask))
5268 continue;
5270 init_sched_build_groups(sched_group_phys, nodemask,
5271 &cpu_to_phys_group);
5274 #ifdef CONFIG_NUMA
5275 /* Set up node groups */
5276 if (sched_group_allnodes)
5277 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5278 &cpu_to_allnodes_group);
5280 for (i = 0; i < MAX_NUMNODES; i++) {
5281 /* Set up node groups */
5282 struct sched_group *sg, *prev;
5283 cpumask_t nodemask = node_to_cpumask(i);
5284 cpumask_t domainspan;
5285 cpumask_t covered = CPU_MASK_NONE;
5286 int j;
5288 cpus_and(nodemask, nodemask, *cpu_map);
5289 if (cpus_empty(nodemask)) {
5290 sched_group_nodes[i] = NULL;
5291 continue;
5294 domainspan = sched_domain_node_span(i);
5295 cpus_and(domainspan, domainspan, *cpu_map);
5297 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5298 sched_group_nodes[i] = sg;
5299 for_each_cpu_mask(j, nodemask) {
5300 struct sched_domain *sd;
5301 sd = &per_cpu(node_domains, j);
5302 sd->groups = sg;
5303 if (sd->groups == NULL) {
5304 /* Turn off balancing if we have no groups */
5305 sd->flags = 0;
5308 if (!sg) {
5309 printk(KERN_WARNING
5310 "Can not alloc domain group for node %d\n", i);
5311 continue;
5313 sg->cpu_power = 0;
5314 sg->cpumask = nodemask;
5315 cpus_or(covered, covered, nodemask);
5316 prev = sg;
5318 for (j = 0; j < MAX_NUMNODES; j++) {
5319 cpumask_t tmp, notcovered;
5320 int n = (i + j) % MAX_NUMNODES;
5322 cpus_complement(notcovered, covered);
5323 cpus_and(tmp, notcovered, *cpu_map);
5324 cpus_and(tmp, tmp, domainspan);
5325 if (cpus_empty(tmp))
5326 break;
5328 nodemask = node_to_cpumask(n);
5329 cpus_and(tmp, tmp, nodemask);
5330 if (cpus_empty(tmp))
5331 continue;
5333 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5334 if (!sg) {
5335 printk(KERN_WARNING
5336 "Can not alloc domain group for node %d\n", j);
5337 break;
5339 sg->cpu_power = 0;
5340 sg->cpumask = tmp;
5341 cpus_or(covered, covered, tmp);
5342 prev->next = sg;
5343 prev = sg;
5345 prev->next = sched_group_nodes[i];
5347 #endif
5349 /* Calculate CPU power for physical packages and nodes */
5350 for_each_cpu_mask(i, *cpu_map) {
5351 int power;
5352 struct sched_domain *sd;
5353 #ifdef CONFIG_SCHED_SMT
5354 sd = &per_cpu(cpu_domains, i);
5355 power = SCHED_LOAD_SCALE;
5356 sd->groups->cpu_power = power;
5357 #endif
5359 sd = &per_cpu(phys_domains, i);
5360 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5361 (cpus_weight(sd->groups->cpumask)-1) / 10;
5362 sd->groups->cpu_power = power;
5364 #ifdef CONFIG_NUMA
5365 sd = &per_cpu(allnodes_domains, i);
5366 if (sd->groups) {
5367 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5368 (cpus_weight(sd->groups->cpumask)-1) / 10;
5369 sd->groups->cpu_power = power;
5371 #endif
5374 #ifdef CONFIG_NUMA
5375 for (i = 0; i < MAX_NUMNODES; i++) {
5376 struct sched_group *sg = sched_group_nodes[i];
5377 int j;
5379 if (sg == NULL)
5380 continue;
5381 next_sg:
5382 for_each_cpu_mask(j, sg->cpumask) {
5383 struct sched_domain *sd;
5384 int power;
5386 sd = &per_cpu(phys_domains, j);
5387 if (j != first_cpu(sd->groups->cpumask)) {
5389 * Only add "power" once for each
5390 * physical package.
5392 continue;
5394 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5395 (cpus_weight(sd->groups->cpumask)-1) / 10;
5397 sg->cpu_power += power;
5399 sg = sg->next;
5400 if (sg != sched_group_nodes[i])
5401 goto next_sg;
5403 #endif
5405 /* Attach the domains */
5406 for_each_cpu_mask(i, *cpu_map) {
5407 struct sched_domain *sd;
5408 #ifdef CONFIG_SCHED_SMT
5409 sd = &per_cpu(cpu_domains, i);
5410 #else
5411 sd = &per_cpu(phys_domains, i);
5412 #endif
5413 cpu_attach_domain(sd, i);
5417 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5419 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5421 cpumask_t cpu_default_map;
5424 * Setup mask for cpus without special case scheduling requirements.
5425 * For now this just excludes isolated cpus, but could be used to
5426 * exclude other special cases in the future.
5428 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5430 build_sched_domains(&cpu_default_map);
5433 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5435 #ifdef CONFIG_NUMA
5436 int i;
5437 int cpu;
5439 for_each_cpu_mask(cpu, *cpu_map) {
5440 struct sched_group *sched_group_allnodes
5441 = sched_group_allnodes_bycpu[cpu];
5442 struct sched_group **sched_group_nodes
5443 = sched_group_nodes_bycpu[cpu];
5445 if (sched_group_allnodes) {
5446 kfree(sched_group_allnodes);
5447 sched_group_allnodes_bycpu[cpu] = NULL;
5450 if (!sched_group_nodes)
5451 continue;
5453 for (i = 0; i < MAX_NUMNODES; i++) {
5454 cpumask_t nodemask = node_to_cpumask(i);
5455 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5457 cpus_and(nodemask, nodemask, *cpu_map);
5458 if (cpus_empty(nodemask))
5459 continue;
5461 if (sg == NULL)
5462 continue;
5463 sg = sg->next;
5464 next_sg:
5465 oldsg = sg;
5466 sg = sg->next;
5467 kfree(oldsg);
5468 if (oldsg != sched_group_nodes[i])
5469 goto next_sg;
5471 kfree(sched_group_nodes);
5472 sched_group_nodes_bycpu[cpu] = NULL;
5474 #endif
5478 * Detach sched domains from a group of cpus specified in cpu_map
5479 * These cpus will now be attached to the NULL domain
5481 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5483 int i;
5485 for_each_cpu_mask(i, *cpu_map)
5486 cpu_attach_domain(NULL, i);
5487 synchronize_sched();
5488 arch_destroy_sched_domains(cpu_map);
5492 * Partition sched domains as specified by the cpumasks below.
5493 * This attaches all cpus from the cpumasks to the NULL domain,
5494 * waits for a RCU quiescent period, recalculates sched
5495 * domain information and then attaches them back to the
5496 * correct sched domains
5497 * Call with hotplug lock held
5499 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5501 cpumask_t change_map;
5503 cpus_and(*partition1, *partition1, cpu_online_map);
5504 cpus_and(*partition2, *partition2, cpu_online_map);
5505 cpus_or(change_map, *partition1, *partition2);
5507 /* Detach sched domains from all of the affected cpus */
5508 detach_destroy_domains(&change_map);
5509 if (!cpus_empty(*partition1))
5510 build_sched_domains(partition1);
5511 if (!cpus_empty(*partition2))
5512 build_sched_domains(partition2);
5515 #ifdef CONFIG_HOTPLUG_CPU
5517 * Force a reinitialization of the sched domains hierarchy. The domains
5518 * and groups cannot be updated in place without racing with the balancing
5519 * code, so we temporarily attach all running cpus to the NULL domain
5520 * which will prevent rebalancing while the sched domains are recalculated.
5522 static int update_sched_domains(struct notifier_block *nfb,
5523 unsigned long action, void *hcpu)
5525 switch (action) {
5526 case CPU_UP_PREPARE:
5527 case CPU_DOWN_PREPARE:
5528 detach_destroy_domains(&cpu_online_map);
5529 return NOTIFY_OK;
5531 case CPU_UP_CANCELED:
5532 case CPU_DOWN_FAILED:
5533 case CPU_ONLINE:
5534 case CPU_DEAD:
5536 * Fall through and re-initialise the domains.
5538 break;
5539 default:
5540 return NOTIFY_DONE;
5543 /* The hotplug lock is already held by cpu_up/cpu_down */
5544 arch_init_sched_domains(&cpu_online_map);
5546 return NOTIFY_OK;
5548 #endif
5550 void __init sched_init_smp(void)
5552 lock_cpu_hotplug();
5553 arch_init_sched_domains(&cpu_online_map);
5554 unlock_cpu_hotplug();
5555 /* XXX: Theoretical race here - CPU may be hotplugged now */
5556 hotcpu_notifier(update_sched_domains, 0);
5558 #else
5559 void __init sched_init_smp(void)
5562 #endif /* CONFIG_SMP */
5564 int in_sched_functions(unsigned long addr)
5566 /* Linker adds these: start and end of __sched functions */
5567 extern char __sched_text_start[], __sched_text_end[];
5568 return in_lock_functions(addr) ||
5569 (addr >= (unsigned long)__sched_text_start
5570 && addr < (unsigned long)__sched_text_end);
5573 void __init sched_init(void)
5575 runqueue_t *rq;
5576 int i, j, k;
5578 for (i = 0; i < NR_CPUS; i++) {
5579 prio_array_t *array;
5581 rq = cpu_rq(i);
5582 spin_lock_init(&rq->lock);
5583 rq->nr_running = 0;
5584 rq->active = rq->arrays;
5585 rq->expired = rq->arrays + 1;
5586 rq->best_expired_prio = MAX_PRIO;
5588 #ifdef CONFIG_SMP
5589 rq->sd = NULL;
5590 for (j = 1; j < 3; j++)
5591 rq->cpu_load[j] = 0;
5592 rq->active_balance = 0;
5593 rq->push_cpu = 0;
5594 rq->migration_thread = NULL;
5595 INIT_LIST_HEAD(&rq->migration_queue);
5596 #endif
5597 atomic_set(&rq->nr_iowait, 0);
5599 for (j = 0; j < 2; j++) {
5600 array = rq->arrays + j;
5601 for (k = 0; k < MAX_PRIO; k++) {
5602 INIT_LIST_HEAD(array->queue + k);
5603 __clear_bit(k, array->bitmap);
5605 // delimiter for bitsearch
5606 __set_bit(MAX_PRIO, array->bitmap);
5611 * The boot idle thread does lazy MMU switching as well:
5613 atomic_inc(&init_mm.mm_count);
5614 enter_lazy_tlb(&init_mm, current);
5617 * Make us the idle thread. Technically, schedule() should not be
5618 * called from this thread, however somewhere below it might be,
5619 * but because we are the idle thread, we just pick up running again
5620 * when this runqueue becomes "idle".
5622 init_idle(current, smp_processor_id());
5625 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5626 void __might_sleep(char *file, int line)
5628 #if defined(in_atomic)
5629 static unsigned long prev_jiffy; /* ratelimiting */
5631 if ((in_atomic() || irqs_disabled()) &&
5632 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5633 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5634 return;
5635 prev_jiffy = jiffies;
5636 printk(KERN_ERR "Debug: sleeping function called from invalid"
5637 " context at %s:%d\n", file, line);
5638 printk("in_atomic():%d, irqs_disabled():%d\n",
5639 in_atomic(), irqs_disabled());
5640 dump_stack();
5642 #endif
5644 EXPORT_SYMBOL(__might_sleep);
5645 #endif
5647 #ifdef CONFIG_MAGIC_SYSRQ
5648 void normalize_rt_tasks(void)
5650 struct task_struct *p;
5651 prio_array_t *array;
5652 unsigned long flags;
5653 runqueue_t *rq;
5655 read_lock_irq(&tasklist_lock);
5656 for_each_process (p) {
5657 if (!rt_task(p))
5658 continue;
5660 rq = task_rq_lock(p, &flags);
5662 array = p->array;
5663 if (array)
5664 deactivate_task(p, task_rq(p));
5665 __setscheduler(p, SCHED_NORMAL, 0);
5666 if (array) {
5667 __activate_task(p, task_rq(p));
5668 resched_task(rq->curr);
5671 task_rq_unlock(rq, &flags);
5673 read_unlock_irq(&tasklist_lock);
5676 #endif /* CONFIG_MAGIC_SYSRQ */
5678 #ifdef CONFIG_IA64
5680 * These functions are only useful for the IA64 MCA handling.
5682 * They can only be called when the whole system has been
5683 * stopped - every CPU needs to be quiescent, and no scheduling
5684 * activity can take place. Using them for anything else would
5685 * be a serious bug, and as a result, they aren't even visible
5686 * under any other configuration.
5690 * curr_task - return the current task for a given cpu.
5691 * @cpu: the processor in question.
5693 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5695 task_t *curr_task(int cpu)
5697 return cpu_curr(cpu);
5701 * set_curr_task - set the current task for a given cpu.
5702 * @cpu: the processor in question.
5703 * @p: the task pointer to set.
5705 * Description: This function must only be used when non-maskable interrupts
5706 * are serviced on a separate stack. It allows the architecture to switch the
5707 * notion of the current task on a cpu in a non-blocking manner. This function
5708 * must be called with all CPU's synchronized, and interrupts disabled, the
5709 * and caller must save the original value of the current task (see
5710 * curr_task() above) and restore that value before reenabling interrupts and
5711 * re-starting the system.
5713 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5715 void set_curr_task(int cpu, task_t *p)
5717 cpu_curr(cpu) = p;
5720 #endif